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In the past few decades, developments in medical imag-
ing technology and the increased role of imaging within 

the diagnostic process have resulted in a rapid expansion of 
recorded medical visual data, generating a need for novel 
computational models (1). Several image analysis models 
were developed, and the latest advancement in this field is 
a technique called deep learning.

Deep learning is considered by some to be an inte-
gral part of the Fourth Industrial Revolution (2). A major 
breakthrough in the field of deep learning was presented 
by Lecun and colleagues in 1998 (3), whereby they ap-
plied their novel convolutional neural network (CNN), 
LeNet, to handwritten digit classification. Deep learn-
ing–based methods, however, did not receive wide ac-
knowledgment until 2012, in the ImageNet challenge 
for the classification of more than a million images into 
1000 classes. In this competition, Krizhevsky and Hinton 
(4) successfully developed a CNN named AlexNet that 
surpassed other competing classic machine learning tech-
niques. Today, CNN is considered to represent the state 
of the art in image analysis (5,6).

Comprehensive academic research, as well as start-up 
endeavors, is working on finding deep learning solutions 

that can be applicable to the medical world. This is par-
ticularly important to the field of radiology, with its visual-
based data (6–8).

Several deep learning reviews have been published in 
the last few years. Some have focused primarily on deep 
learning methodology (5,9,10). Other reviews, such as 
the article by Litjens et al on studies published until Feb-
ruary of 2017 (6), have presented a comprehensive survey 
of the literature with an overview of deep learning tech-
niques and applications (6,11–13). Given the sharp surge 
in the volume of deep learning articles published in medi-
cal journals in 2017 that is commensurate with the trend 
of growing awareness and interest in deep learning within 
the radiologic community, the time appears optimal for 
presenting a guide on deep learning for radiologists that 
includes a general framework of deep learning research 
and its applications in the field of radiology.

In this review, we aim to provide the radiologist with 
(a) an introduction to deep learning technology, including 
relevant terminology; (b) an understanding of the general 
framework of a radiologic deep learning study; and (c) an 
overview of the literature on CNN application in radio-
logic image analysis according to anatomic region.
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be used as a guide for radiologists planning research in the field of radiologic image analysis using convolutional neural networks.
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cell, the activation function output determines the firing of neu-
rons based on a weighted sum of its input. A nonlinear activation 
function f is applied to the sum of the multiplication of inputs 
and weights (∑xv). In the past, a common choice for activation 
function was the sigmoid function s(z) = 1/[1 + exp(2z)], which 
takes a real-valued input and “squashes” it to range between 0 
and 1. At present, the most popular nonlinear function is the 
rectified linear unit (ReLU) function, a mathematical formula 
that chooses the maximum of either z or 0 and is designated as

=( )  max(0,  )f z z .
Artificial neural networks are modeled as collections of neu-

rons that are connected in an acyclic graph where the outputs of 
some neurons can become inputs to other neurons. Neurons are 
arranged in multiple hidden layers in which neurons in adjacent 
layers have full pairwise connections, but neurons within a layer 

Abbreviations
AI = artificial intelligence, CNN = convolutional neural network, 
CONV = convolution, ReLU = rectified linear unit

Summary
This article is a guide to convolutional neural network technologies 
and their clinical applications in the analysis of radiologic images.

Essentials
nn The design process of convolutional neural network research 

includes defining the clinical question, choosing a predefined 
computer vision task, generating data acquisition and data prepro-
cessing, selecting hardware and software solutions, developing a 
network architecture, and validating the algorithm performance.

nn Current research has applied convolutional neural networks to 
various organ systems and pathologic disorders, including the fol-
lowing five major anatomic regions: chest, breast, brain, musculo-
skeletal system, and abdomen and pelvis.

Overview of Deep Learning Technology

The Basic Concept of CNNs
CNN algorithms are a subclass in the hierarchic terminology 
that includes artificial intelligence (AI), machine learning, and 
deep learning (14). Figure 1 presents a Venn diagram of this 
terminology hierarchy. AI describes algorithms that solve prob-
lems that usually require human intelligence. Machine learning 
is a subclass of AI, devoted to creating algorithms with the abil-
ity to learn without being explicitly programmed. Deep learn-
ing is the next subclass in the hierarchic terminology. The main 
difference between deep learning and classic machine learning 
is that in the latter, human experts choose imaging features that 
appear to best represent the visual data, while in deep learn-
ing, no feature selection is used. Instead, the deep learning al-
gorithms learn on their own which features are best for the 
computational task. Most deep learning algorithms are based 
on artificial neural networks. A CNN is a subcategory of artifi-
cial neural network that makes the explicit assumption that the 
inputs are images. In the past few years, CNN technology has 
been the basis for some of the most influential innovations in 
the field of computer vision (5,15).

Artificial neural networks.—An analogy between the artificial 
neuron and the biologic neuron can contribute to the under-
standing of the underlying technology. The model of biologic 
neurons assumes that neurons typically consist of three parts: 
dendrites, a cell body, and an axon (Fig 2). Neurons receive 
input signals via the dendrites, and a “function” is performed 
in the cell body. If the final sum is above a certain threshold, 
the neuron outputs an action potential, sending a spike along 
its axon. In most synapses, signals are sent from the axon of one 
neuron to a dendrite of another.

Inspired by biologic neural systems, artificial neural networks 
are composed of multiple computational units called artificial 
neurons (Fig 2). An artificial neuron receives input signals 
x1, x2, …, xn, which are multiplied by the synapses’ strength, 
termed weights (v). Parallel to the action potential firing in the 

Figure 1:  Venn diagram representation of convolutional neural net-
works in the artificial intelligence hierarchic terminology.

Figure 2:  (a) Schematic representation of an artificial neuron 
shows its similarities to (b) a biologic neuron. Input of data is received 
through the dendrites, which are usually termed weights in the artificial 
neuron. Each input is multiplied by its corresponding weight, and all 
the multiplications are summed (dot product). A nonlinear mathemati-
cal formula is performed on the result. The most commonly used for-
mula today is the rectified linear unit (ReLU) function. The output of the 
neuron serves as an input in the next layer of neurons. W = weight, X 
= input, Y = output.
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The convolution (CONV) layer is the core building 
block of a CNN. The CONV layer’s parameters consist of 
a set of learnable filters. Each filter can be spatially small 
but extends through the full depth of the input volume. 
During the forward pass, each filter is convolved across the 
width and height of the input volume and computes dot 
products between the entries of the filter and the input at 
any position (Fig 5). As the filter slides over the input vol-
ume, a two-dimensional map is produced that provides the 
responses of that filter at every spatial position. One CONV 
layer contains a set of filters, and each filter will produce a 
separate map. The output volume is a stack of these maps 
along the depth dimension. Every entry in the output vol-
ume can thus also be interpreted as an output of a neuron 
that looks at a small region in the input and shares param-
eters with neurons in the same activation map.

The pooling layer usually performs down-sampling of the 
spatial dimension. It is common to periodically insert a pool-
ing layer between successive CONV layers. The function of the 
pooling layer is to progressively reduce the spatial size of the 
representation to minimize the amount of parameters and com-
putation in the network, as well as to control overfitting. The 
pooling layer operates independently on every depth slice of the 
input and resizes it spatially. The most common pooling func-
tion is the MAX pooling function, which uses the maximum 
value from each cluster of neurons at the prior layer to form a 
new neuron in the next layer. Other functions like average pool-
ing are also applicable.

The nonlinearity layer is a layer that applies element-wise 
nonlinearity by using a specific activation function. As men-
tioned, the most common activation function is the ReLU func-
tion, =( )   max(0, )f z z , which is simply thresholded at zero.

The fully connected layer (also known as the dense layer) is 
a layer of neurons with full connections to all activations in the 
previous layer, as seen in classic neural networks. The CONV 
and pooling layers act as feature extractors from the input im-
age, while the fully connected layer acts as a classifier. It is worth 
mentioning that we can implement a fully connected layer using 
a CONV layer by setting the filter size to be exactly the size of 
the input volume.

Although we can explain the process by which algorithms are 
mathematically constructed, a CNN is still considered to be a 
“black box,” as it is difficult to determine how the network ar-
rived at its conclusion. More information on the black box and 
strategies developed to understand what the CNN is responding 
to in the decision-making process has been presented in various 
articles (5,6,16).

Deep Learning Study Design
Designing a deep learning study entails a common pattern 
that includes several steps. The initial step is the formulation 
of a clinical question. After establishing the clinical question, 
a suitable computer vision task is chosen, with its appropriate 
metrics. Subsequently, the stage of data acquisition and data 
preprocessing is addressed, and this includes planning of data 
for both training and testing and the annotation of medical 
data. Thereafter, the software framework and the hardware 

are not connected. Feedforward neural networks (Fig 3) learn to 
map a fixed-size input (eg, an image) to a fixed-size output (eg, a 
probability for each of several categories).

CNN architecture.—CNNs are very similar to artificial 
neural networks, with the explicit assumption that the in-
puts are images. This assumption allows us to encode certain 
properties into the CNN architecture. The typical CNN ar-
chitecture is built of several layers that enable it to learn hi-
erarchic feature representation of an image. Features in the 
first layer of representation typically represent the presence 
or absence of edges at particular orientations and locations 
in the image. The second layer typically detects motifs by 
spotting arrangements of edges, regardless of small varia-
tions in the edge positions. The third layer may assemble 
motifs into larger combinations that correspond to parts of 
familiar objects, and subsequent layers can detect objects as 
combinations of these parts.

The CNN architecture comprises a sequence of layers that 
transform the image volume into output class scores (Fig 4). 
Every layer transforms one volume of activations to another 
through a differentiable function. The main types of layers com-
bined to build a CNN are the convolutional layer, the pooling 
layer, the nonlinearity layer, and the fully connected layer, which 
are discussed further below.

Figure 3:  (a) Schematic representation of an artificial neural net-
work and its similarity to (b) a biologic neural network. The strength of 
artificial neural networks resides in the integration of multiple neurons 
in the multiple deep hidden layers. The outputs of one layer serve 
as the inputs of the next layer. The last layer of neurons consists of 
a loss function, which estimates the current accuracy of the network 
in predicting the labels of specified data, a process called forward 
propagation. On the basis of the loss, small changes are conducted in 
the network’s weights in a process called back propagation. Repeated 
iterations of forward and back propagation on the entire data set 
eventually produce an optimized network.
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platform are selected, and the network’s ar-
chitecture is designed. Finally, the results 
are validated on the testing data using the 
chosen metrics. Each step of this process 
will be elaborated in the following subsec-
tions (Fig 6).

Clinical question.—The clinical question 
that is selected evolves from the various 
radiologic fields and the relevant imag-
ing modalities. Clinical tasks are mostly 
based on the radiologists’ experience and 

are generated from practical needs. 
When selecting a clinical task, it is 
important to ascertain that it can be 
applicable to the technologic deep 
learning solution. Deep learning has 
a distinct advantage when process-
ing unstructured data, while classic 
machine learning may be preferred 
for data that are characterized as be-
ing well structured and having well-
defined features (5).

Computer vision tasks.—Common 
computer vision tasks that are par-
ticularly applicable to the radiology 
field include classification, detection, 
and segmentation (5) (Fig 7). An-
other category that we have chosen 
to include as a network task is image 
optimization.

Classification is the task of cat-
egorizing or labeling an image into 
a specific class—for example, clas-

sifying chest radiographs as either normal or 
showing features of tuberculosis. This computer 
vision task is fundamental to accomplish further 
network tasks. Detection allows for the identifi-
cation of the location of lesions, organs, or other 
objects of interest—for example, localizing the 
x, y coordinates of hepatic masses. Segmentation 
is implemented to define the precise pixel-wise 
boundaries of an organ or pathologic feature. 
Image optimization includes tasks such as the 
enhancement of image resolution, as well as the 
formulation of synthetic image input (17). It is 
important to note that the determination of a 
task as one of the above-defined labels is not al-
ways clear cut.

Each specific task makes use of a particular 
statistical method (metrics) to present the re-
sults. For example, classification results can be 
evaluated by using receiver operating character-
istic curves, detection results can be measured 
by using true-positive rate and false-positive 
rate, and segmentation results can be estimated 

Figure 4:  A typical convolutional neural network (CNN) architecture for image classifica-
tion. CNN architecture comprises a sequence of layers that transform the image volume 
into output class scores. Every layer transforms one volume of activations to another through 
a differentiable function. There are four main types of layers that are combined to build a 
CNN: convolution (Conv), pooling (Pool), nonlinearity (rectified linear unit [ReLU]), and fully 
connected (FC) layers.

Figure 5:  Illustration of a convolution from the input to output. The main difference between con-
volutional neural networks (CNNs) and regular artificial neural networks is the use of weight shar-
ing in the former. Images are very large matrixes of pixels, and each pixel constitutes one input. 
Using separate weights for each pixel would be computationally taxing. Another characterization 
of images is the appearance of recurrent patterns. CNNs make use of this property. Each layer 
in the network consists of small matrices of weights, also called filters. Each filter is systematically 
shifted along the image, so that in each area along the image a dot product is made between the 
pixels and the weights. The dot product between each filter and each specific region creates a 
neuron per pixel in the image.

Figure 6:  Diagram of the steps involved in constructing a deep learning study. 
The first step is to define a clinical question. A suitable computer vision task is then 
chosen. Thereafter, data acquisition and data preprocessing are generated. The en-
gineering team selects the software framework and the hardware platform, and the 
network’s architecture is designed. Last, the network is validated on the testing data. 
This research design emphasizes the cooperative effort between the clinical team 
and the engineering group so as to accomplish optimal results.
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Figure 7:  Three common tasks in computer vision include classification, detection, and segmentation. The labeling of 
the images depends on the required task. Classification requires image labeling. Detection requires marking of a region 
of interest, such as a boxplot. Segmentation requires pixel-wise delineation of the desired object. The complexity of the 
labeling increases from classification to detection to segmentation. In this image we present examples of popular net-
works. AlexNet (top) and VGG (middle) architectures are used for classification and detection, and U-Net (bottom) is the 
most commonly used network for segmentation.

by using the Dice coefficient or Jaccard index, two statistical 
methods that are used for comparing the similarity of two 
samples (5).

Data acquisition.—Training of deep networks relies on 
large data sets. The existing imaging data set in the medi-
cal world is more limited in comparison to the wider non-
medical data sets in computer vision (6). Examples of two 
large nonmedical databases include the ImageNet database, 
which contains more than 14 million annotated images 
(18), and the CIFAR-10 database, which contains 60 000 
annotated images (19).

Studies that have used deep learning in radiology are 
based on either a private data set or a publicly available data 
set. The use of a public database offers the opportunity for 
collaboration between researchers in the academic commu-
nity. In addition, the public data sets are annotated to allow 
for a uniform label to evaluate the algorithm performance. 
Once the data are acquired, they are then split into training 
and testing sets. More information on the topic of splitting 
data sets can be found in an article by Park and Han (20).

Preprocessing of data.—An important point in medical 
image analysis is data preparation. Manual labeling and an-
notation are time consuming. Several options can be used 
for the process of data preparation and include the follow-
ing, in increasing order of complexity: (a) image labeling (eg, 
“radiograph with tuberculosis”); (b) region of interest (ROI) 
markings, such as square or circular ROIs; and (c) pixel-wise 
segmentation. Different computer vision tasks require differ-
ent annotations. For example, organ or pathologic feature seg-
mentation requires laborious pixel-wise segmentation, while 
classifying chest radiographs as either showing tuberculosis or 
normal requires only image labeling and thus may potentially 
allow the use of a larger cohort.

Data augmentation is a technique used to overcome the 
obstacle of a limited training data set. Augmentation is imple-
mented to artificially increase the number of training images. 
This is accomplished by using various combinations of mul-
tiple transformations that include techniques such as image 
rotation and image flipping. A substantial machine learning 
obstacle is overfitting, whereby a model is unable to general-
ize patterns beyond the training set. With data augmentation, 
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medical images, the data are in the form of three-dimen-
sional volumes. When analyzing the volumetric data, a 
two-dimensional CNN architecture can be used; however, 
the use of a single-section analysis may lead to the loss of 
important volumetric information. The disadvantage of this 
approach can be overcome by using a direct three-dimen-
sional CNN architecture. This, however, is at the expense of 
a much higher computational cost.

CNN predefined architectures, such as AlexNet or VGG, 
may be pretrained on large-scale data sets such as ImageNet 
before training on the small specific medical data set of inter-
est (30,31). This method, referred to as pretraining or transfer 
learning, is currently widely implemented in the deep learning 
medical world and may alleviate the limitation of small data 
sets. Transfer learning can be understood by examining hu-
man behavior: When a person confronts a novel task, he or she 
transfers information that is accumulated from other fields of 
knowledge. While in nontransfer learning, all the weights are 
randomly assigned in the pre-training phase, in transfer learn-
ing, the weights of layers of the network are derived from train-
ing on the nonmedical large-scale data. There are variations 
in transfer learning regarding how many layers should be re-
trained with medical data and whether the weights in the layers 
to be retrained should be fine-tuned or trained from scratch.

Validation.—In machine learning, and specifically in deep 
learning, a validation technique is adopted to formulate a 
predictive model that is able to evaluate the system’s ability 
to generalize to an independent set of data. Two common 
types of validation methods include the holdout method 
and the k-fold cross-validation method. In the holdout 
method, data are randomly subdivided into training, valida-
tion, and testing sets.

more data are created, and thus the model becomes more ro-
bust for independent information on the testing set.

Hardware and software.—The next step in the research 
design process is the selection of a hardware platform and a 
software framework. Deep learning has been made possible 
by the development of novel hardware technology, which 
allows for the highly rapid processing of matrix operations. 
The introduction of the graphics processing unit, or GPU, 
has opened the possibility of training large networks in an 
effective and time-saving manner. Parallel to hardware devel-
opment, sophisticated software tools have also been created 
that have enabled the formation of deep neural networks. 
These open-source frameworks have eased the programming 
of neural networks (21,22). Popular packages include the 
following:

•  Caffe (23), which was developed by Berkeley Vision and 
Learning Center and supports interfaces like C, C++, Python, 
and MATLAB.

• TensorFlow (24), created by Google, which supports lan-
guages such as Python, C++, and R.

• Torch (25), a package developed and maintained by Ronan 
Collobert, Koray Kavukcuoglu, and Clement Farabet that is a 
Lua-based deep learning framework used by Facebook, Twitter, 
and Google.

•  Keras (26), developed by François Chollet and designated 
as a third-party package, as it is capable of running on top of 
TensorFlow or Theano.

Architecture.—The CNN architecture defines the structure 
of the layers of the neural network. Although there are vari-
ous forms of CNN architectures, they are generally based on 
a repeated pattern of sequences. As discussed above, the archi-
tecture includes an input layer, hidden learning layers (which 
in most cases consist of convolutional and pooling sublayers), 
and an output layer (15). Different tasks require different net-
work architectures, and choosing the appropriate architecture 
can improve the overall performance. Researchers can choose 
to make use of previously developed CNN models, or they 
can construct their own “in-house” architecture (4,27–29). 
Popular architectures include the following:

•  AlexNet (4), which is a classification architecture con-
sisting of five convolutional layers that was developed by Alex 
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton and was 
awarded first place in the ImageNet Large Scale Visual Recogni-
tion Challenge in 2012.

•  VGG16/VGG19 (28), which represent architectures con-
sisting of 16 and 19 layers, respectively. This architecture was 
developed by Karen Simonyan and Andrew Zisserman and won 
first place in the ImageNet challenge of 2014.

•  U-Net (29), a segmentation architecture formulated of a 
contracting path and an expansive path that substitutes the fully 
connected layers and allows fewer training images and yields 
more accurate segmentations. This architecture was developed 
by Olaf Ronneberger at the University of Freiburg.

The input data for CNN can be either a two-dimensional 
matrix or a three-dimensional tensor. In a large portion of 

Figure 8:  Bar graph shows the trend of deep learning ra-
diology articles published in recent years. A growth trend has 
occurred recently in clinical radiology journals compared with 
biocomputing journals.
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Table 1: Reviewed Articles according to Deep Learning Study Design

Stage in Deep Learning  
Research Design Frequency of Implementation
Stage 1: clinical question Top three investigated organs: brain (22%), chest (18%), abdomen/pelvis (16%); top three investigated 

modalities: MRI (35%), CT (26%), mammography (11%)
Stage 2: computer vision task Task implementation: classification (43%), segmentation (29%), detection (19%), image optimization 

(9%)
Stage 3: data acquisition Data set size: 100 cases (25%), 101–1000 cases (49%), 1001–10 000 cases (20%), .10 000 cases (6%); 

type of data set: private (64%), public (27%), private and public (9%)
Stage 4: data preprocessing Type of annotation: pixel-wise segmentation (44%), image labeling (29%), ROI (27%); data augmen-

tation: implemented by 51% of the studies
Stage 5: hardware and software Type of hardware: NVIDIA GPU (99%), CPU (1%); top three libraries: Caffe (23%), Theano (11%), 

Keras (7%)*
Stage 6: architecture Top three networks: AlexNet (18%), VGG (11%), GoogLeNet (9%)†; 3D CNN architecture: imple-

mented by 15% of the studies‡; transfer learning: implemented by 30% of the studies
Stage 7: validation Type of validation: holdout method (58%), k-fold cross validation (42%)

Note.—CNN = convolutional neural network, CPU = central processing unit, GPU = graphics processing unit, ROI = region of interest, 
3D = three-dimensional.
* Only 112 (62%) of 180 articles specified the hardware solution that was implemented.
† Eighty-eight (48%) of 180 studies used an “in-house” network.
‡ One hundred seventeen (65%) of 180 studies used volumetric data.

Figure 9:  Histograms show the categorization of the reviewed articles in our report according to studied, A, organ systems, 
B, type of pathologic finding, C, image modality, and, D, the various computer vision tasks.

In the k-fold cross validation method, the data are partitioned 
into k nonoverlapping subsets. The training and validation pro-
cess is performed k times, during which the k subsets take turns 
in serving as the validation set while the remaining (k 2 1) sub-
sets are used together as the training set in each of the k cycles 
(32,33).

For any machine learning model, after the training and valida-
tion optimization is performed, it is crucial to validate the perfor-
mance of the trained model with an independent test set that has 
not been seen by the model during the training and validation 
process. The use of independent testing is an important step before 
a model can be considered to be generalizable to the population.
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Figure 10:  Histogram shows the relationship between an-
notation type and data set size. In each type of annotation and 
labeling, we can see the total number of cases, as well as their 
distribution into various ranges according to the number of 
cases used. ROI = region of interest.

Literature to Date of CNN Studies in 
Radiologic Imaging

Literature Search
A search of the published literature was performed by using 
PubMed for the key words (“deep learning” OR “convolutional 
neural network”) AND (“image” OR “imaging” OR “radiol-
ogy”). All peer-reviewed original publications in journals, as 
well as in conference proceedings, that were published between 
January 2013 and January 2018 in the subject of CNN ap-
plication in image radiology analysis were included. The year 
2013 was chosen as a starting point for inclusion, as this was 
the period that followed the initial acknowledgment of the 
CNN in the computer vision community (4). We excluded 
articles that focused on the implementation of CNN to nonra-
diologic medical images.

Although we performed a broad search, we are aware that we 
were not able to include all the published data. We focused on 
PubMed as our search engine, although other electronic databases, 
such as arXiv, are available. PubMed is a central database that is 
widely used by the medical community, and despite the fact that 
it does not contain all written work on this subject, it nevertheless 
covers the prominent issues in this field. In addition, deep learning 
is a dynamic topic, and rapid changes in this field are continu-
ously occurring. Because our database stems from peer-reviewed 
journals, it is important to take into account that the information 
presented in the articles may reach the reader at a delay.

Literature Search Results
The search results produced 744 articles, of which 180 were 
found to be relevant. Figure 8 shows the trend of deep learning 
radiology articles published in recent years. Each article was 
examined according to the deep learning research design that 
was presented above (Table 1).

When we analyzed the reviewed articles, we found it interest-
ing to note the organs and imaging modalities that were involved, 
as well as the types of pathologic findings. Neuroimaging and 
MRI were shown to be the most common selections for CNN 
research (Fig 9, A and C); moreover, the field of oncology was the 
most frequently investigated disease (Fig 9, B). The most prevalent 
selection for computer vision task was classification (Fig 9, D). In 
addition, we examined the data set size according to the type of 
annotation (Fig 10). About 95% of the studies used data sets with 
fewer than 10 000 cases. Seventy percent of the studies with more 
than 10 000 cases used image labeling for annotation.

The following section presents a summary of the applied deep 
learning research in radiology divided by the top five investigated 
major organ systems: neurology, chest, abdomen and pelvis, breast, 
and musculoskeletal system. For each topic, we have chosen to 
present one or two prominent studies that were found to be clini-
cally influential. Tables 2–4 summarize various clinical tasks that 
were investigated according to the relevant organ or organ system.

Neuroimaging.—Neuroimaging deep learning research has 
primarily focused on neuroanatomic structure segmentation 
(41–43). One prominent network (41) is aimed at segmenting 
the brain into four class structures: gray matter, white matter, 

cerebrospinal fluid, and background at MRI. The study used a 
public data set, the Medical Image Computing and Computer 
Assisted Intervention, or MICCAI, Society MRBrainS (Table 5) 
data set, which contains 20 segmented MRI studies, and showed 
Dice coefficients of 0.84–0.89 for the different structures. Fur-
ther works have presented CNN research on brain lesions with 
a focus on glioma tumor segmentation (52–54). Academic en-
deavors have also presented several works in the classification of 
neurodegenerative diseases. CNN technology has been imple-
mented for the classification of Alzheimer disease and mild cog-
nitive impairment on MR images and CT scans for a noninva-
sive biomarker to determine which patients may benefit from 
early treatment. These works utilized the Alzheimer’s Disease 
Neuroimaging Initiative public database (Table 5) (34,35).

Chest.—Deep learning has been used for the detection and 
classification of chest abnormalities, including cancer, paren-
chymal lung disease, and infectious disease. The most prevalent 
task is the detection and classification of lung nodules in chest 
radiographs and in CT scans (101–106,111). The LUNA16 is 
an example of a challenge using the public Lung Image Data-
base Consortium–Image Database Resource Initiative data set 
(Table 5) for pulmonary nodule detection. For the classifica-
tion task, most research groups directly categorized nodules as 
either malignant or non-malignant, whereas few investigators 
chose to characterize nodules according to radiologic features 
such as nodule density, calcification, and location (101,102). 
CNN methods have also been developed for the classification 
of parenchymal lung disease, including interstitial lung disease 
patterns and chronic obstructive pulmonary disease (121–
123). Other research utilizing a large private data set (35 038 
radiographs) classified radiographs as either normal or showing 
one of the following pathologic features: cardiomegaly, consoli-
dation, pleural effusion, pulmonary edema, or pneumothorax. 
This algorithm had areas under the receiver operating charac-
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ing classification of liver lesions at CT (172), classification of 
liver metastases according to the primary origin site (178), and 
staging of liver fibrosis at MRI (194). Other abdominopelvic 
oncologic research has evaluated prostate, bladder, and rectal 
cancer (182,191,195). Research on the application of CNNs 
to gastrointestinal pathologic findings is still scarce; one study 
classified small-bowel obstruction on radiographs (185), and 
another study detected colitis at CT (186).

Breast.—The most commonly researched CNN application in 
breast imaging is detection and classification of breast cancer at 

teristic curve of 0.850–0.962 for the different findings (134). 
Additional work on radiographs has evaluated CNN methods 
for the detection of pulmonary tuberculosis (129,130).

Abdomen and pelvis.—Abdominopelvic imaging analysis 
using deep learning has mainly focused on organ segmenta-
tion (eg, liver, spleen, kidney, urinary bladder, and prostate) 
on CT scans and US images (40,118,137,174,175,181,183, 
190,193). Many deep learning studies have focused on the 
liver. In addition to liver segmentation, other studies have in-
vestigated the classification of liver pathologic findings, includ-

Table 2: A Summary of Various Clinical Tasks That Were Investigated in Neuroimaging as Well as in the Musculoskeletal 
System

Organ System and Classification Detection Segmentation
Image Technique and Image 
Optimization

Neurologic system
  Classification of AD/MCI  

  (at MRI, CT, PET/CT) (34–39)
Brain anatomic landmarks  

(at MRI) (40)
Brain anatomic structures  

(at MRI) (41–48)
“Skull stripping” (at MRI) (49)

  Identification of PD (with brain  
  SPECT) (50)

Brain hyperperfusion  
(at MRI) (51)

Brain tumors (at MRI)  
(52–56)

MRI-based synthetic  
CT generation (57)

  Prediction of tissue necrosis after CVA  
  (at MRI) (58)

Cerebral aneurysms  
(at MRI) (59)

Brain stroke (at MRI)  
(53,60,61)

Reduction of diffusion MRI 
data processing to a single 
optimized step (62)

  Characterization of carotid plaque  
  composition (at US) (63)

Cerebral microbleeds  
(at MRI) (64)

Traumatic brain injury  
(at MRI) (53)

Multimodal MRI sequence 
synthesis (65)

  Identification of isocitrate  
 � dehydrogenase 1 mutation  

status in low-grade glioma  
(at MRI) (66,67)

... Multiple sclerosis lesions  
(at MRI) (68)

Generation of arterial  
spin-labeling perfusion 
images by using a smaller 
number of subtraction  
images (at MRI) (69)

  Classification of GBM methylation  
 � according to the O6-methylguanine  

methyltransferase gene status  
(at MRI) (70,71)

... Organs at risk at head and  
neck CT (72)

...

  Overall survival prediction for GBM  
  (at MRI) (73,74)

... Thyroid nodules at  
US (75,76)

...

  Prediction of brain age (at MRI) (77) ... Infant brain tissue at  
MRI (78)

...

  Identification of alcoholism in the brain  
  (at MRI) (79)

... ... ...

  Classification of thyroid nodules  
  (at US) (80,81)

... ... ...

Musculoskeletal system … … …
  Bone age assessment (at radiography)  

  (82–85)
Spinal disk and vertebral  

pathologic findings at  
MRI (86)

Knee joint cartilage or  
bone at MRI (87,88)

…

  Identification of hip osteoarthritis  
  (at radiography) (88)

Vertebra labeling (at CT,  
MRI, radiography, US) 
(89–93)

Skeletal muscle at  
CT (94)

…

  Identification of myositis (at US) (95) Vertebral metastases at  
MRI (96)

Adipose tissue at  
CT (97)

…

  Classification of histopathologic subtypes  
  of rhabdomyosarcoma at MRI (98)

L3 slice at CT (99) ... …

  Identification of wrist, hand, and ankle  
  fractures (at radiography) (100)

... ... …

Note.—AD = Alzheimer disease, CVA = cerebrovascular accident, GBM = glioblastoma multiforme, MCI = mild cognitive impairment, 
PD = Parkinson disease, SPECT = single photon emission computed tomography.
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Table 3: A Summary of Various Clinical Tasks That Were Investigated in Chest Imaging, Cardiac Imaging, and Obstetrics

Organ System and Classification Detection Segmentation
Image Technique and Image 
Optimization

Chest
  Classification of lung nodules  

  at CT (101–110)
Lung nodules (at radiography,  

CT, PET/CT) (111–114)
Vessel segmentation  

(at angiography) (115)
Bone suppression (at radiography)  

(116)
  Classification of mediastinal  

  lymph nodes (at PET/CT) (117)
Mediastinal lymph nodes at  

CT (118)
Lung nodules at CT (119) Enhancement of image resolution 

in chest CT (120)
  Classification of parenchymal  

 � pulmonary disease at  
CT (121–125)

Peripherally inserted central  
catheter tip location at  
radiography (126)

Anatomic structures at  
CT (127,128)

...

  Identification of tuberculosis at  
  radiography (129,130)

Longevity prediction at  
CT (131)

... ...

  Classification of PA and lateral  
  radiographs (132)

... ... ...

  Predicting response to neoadjuvant  
 � chemotherapy in esophageal  

cancer at PET (133)

... ... ...

  Classification of chest radiographs  
 � according to common findings  

(134)

... ... ...

Cardiac imaging
  Quality assessment of  

  echocardiograms (135)
Identification and  

quantification of coronary  
artery calcification at CT 
(136)

Cardiac structures at MRI 
(137–139)

…

  Identification of end-diastole and  
  end-systole frames at MRI (140)

... Reconstruction of 2D  
cardiac MR images (141)

…

  Classification of coronary artery  
 � stenosis at CT (142)

... ... …

Obstetrics
  Recognition of fetal facial standard  

  plane at US (143)
Fetal brain tissue at MRI  

(144)
  Recognition of fetal abdominal  

  standard plane at US (145)
Fetal body and amniotic  

fluid at US (146)

Note.—PA = posterioranterior, 2D = two-dimensional.

mammography (147–151,159–161,166,204). Parameters that 
are similar to those adopted by radiologists have been incorpo-
rated by some researchers, including symmetry differences, tem-
poral changes (160), and detection of microcalcifications (166). 
For classification, most researchers have focused on benign versus 
malignant lesion differentiation, and some studies have catego-
rized images according to the Breast Imaging Reporting and Data 
System, or BI-RADS, score (168). More recently, several investiga-
tions have implemented a more holistic approach (150,151). For 
example, a study (150) using the public data sets INbreast and 
the Digital Database for Screening Mammography (Table 5) for 
1090 scans presented an algorithm that generated segmentation 
maps from breast lesions as well as from microcalcifications and 
concurrently classified the entire scan. This algorithm provides a 
complete automated method for mammography analysis, with an 
area under the receiver operating characteristic curve of 0.86.

Musculoskeletal system.—Prominent investigated muscu-
loskeletal imaging tasks include bone age assessment (82–85), 
spine level detection (89–92), spinal orthopedic pathologic find-

ing detection (86), osteoarthritis detection (87,88,205), and 
fracture detection (100). A popular musculoskeletal task is bone 
age assessment, which has been the focus of several studies (82–
85). Although classic machine learning tools for skeletal matu-
rity assessment have been commercially available, novel research 
endeavors are focused on the implementation of CNNs on skel-
etal maturity tasks. One prominent study (82) has developed a 
CNN-based system using a large private database of 12 000 ra-
diographs of the left hand and has demonstrated that the CNN 
showed similar accuracy to both an expert radiologist and the 
available automated non-CNN programs. Researchers have also 
focused on a need to accurately identify the correct vertebra level 
and have applied CNN for various image modalities, including 
MRI, CT, and radiography (89–92).

Future Trends
As we have seen in our review, the majority of studies have con-
centrated on one specific computer vision task such as classi-
fication, detection, or segmentation. For example, many chest 
imaging (111–113) and breast imaging (159–164) studies deal 
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Table 4: A Summary of Various Clinical Tasks That Were Investigated in the Breast, in the Abdomen and Pelvis, and 
in Multiorgan Systems

Organ System and Classification Detection Segmentation
Image Technique and Image 
Optimization

Breast
  Classification of breast lesions  

  (at MG, US, MRI, TS) (147–158)
Breast lesions (at MG, US, TS)  

(151,159–164)
Breast lesions at MG (151) …

  Classification of breast parenchyma  
 � into normal and high risk at  

MG (165)

Breast microcalcifications at  
MG (166)

Breast fibroglandular tissue  
at MRI (167)

…

  Classification of breast density  
  categories at MG (168–170)

Breast calcified arteries at  
MG (171)

… …

Abdomen and pelvis
  Classification of liver lesions at  

  CT (172)
Liver tumors at follow-up  

CT (173)
Liver and liver lesions  

(at CT, MRI) (137,174–176)
Pelvic image de-noising and  

contrast enhancement  
(at radiography) (177)

  Classification of liver metastases  
 � into the primary site of origin at  

CT (178)

Prostate landmarks at CT (40) Portal vein at CT (179) Screening of T2-weighted  
liver acquisitions for  
nondiagnostic images at  
MRI (180)

  Classification of abdominal organs  
  at US (181)

Prostate cancer at MRI (182) Prostate at MRI (183) Pseudo-CT generation from 
pelvis MRI and PET/MRI 
(184)

  Identification of bowel obstruction  
  at radiography (185)

Colitis at CT (186) Kidney and polycystic kidney  
at CT (174,187)

…

  Identification of cirrhosis at US (188) Abdominal LN at CT (118) Spleen at CT (174) …
  Bladder cancer treatment response  

  assessment at CT (189)
… Urinary bladder and bladder  

cancer at CT (190,191)
…

  Identification of prostate cancer at  
  MRI (192)

… Pancreas at CT (193) …

  Liver fibrosis staging at MRI (194) … Rectal cancer at MRI (195) …
Multiorgan systems
  Identification of motion artifacts at  

  MRI (196)
Localization of anatomic  

structures at CT (197)
Tumor segmentation at  

PET/CT (198)
Reconstruction of low-dose 

CT images (199–201)
  … … … Registration of a 3D  

radiography map  
provided by CT with a  
2D radiography image in  
real time (202)

  … … … Retrieval of medical  
images having visual and 
semantic similarities at 
radiography (203)

Note.—LN = lymph node, MG = mammography, 3D = three-dimensional, TS = tomosynthesis, 2D = two-dimensional.

with the detection of nodules and masses. Tools for automatic 
lesion detection can be integrated into picture archiving and 
communication systems and can help radiologists in the pro-
cess of image interpretation.

In the coming years, we expect researchers to adopt a holistic 
approach in which they simultaneously perform several com-
puter vision tasks, whereby the algorithm will provide a fully 
automatic solution. For example, new breast imaging CNN 
studies present a holistic approach that mimics the radiologist’s 
work (150,151), providing a completely automated method for 
lesion detection and classification in mammograms. In the past, 
machine learning computer-aided diagnosis systems for breast 

cancer detection have been approved by the U.S. Food and Drug 
Administration, but there has been disagreement about whether 
they have been able to contribute to the radiologists’ work (206). 
Using the holistic approach and the implementation of new 
CNN studies may improve the detection and classification pro-
cess of breast lesions.

An interesting task that is scarcely implemented in current 
literature, to our knowledge, is the use of deep learning to obtain 
information that is beyond the radiologists’ interpretation. An 
example of a study that adds data to the interpretation of medi-
cal images is the research on liver fibrosis quantification at MRI 
(194). Future advancement in this field will allow for greater 
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Table 5: Public Data Sets Used in the Reviewed Studies

Type of Repository and  
Collection Web Page

Organ  
System

Image  
Modality Data

Public database
  Indiana University Chest  

  X-ray Collection
http://openi.nlm.nih.gov/ Chest Radiography A total of 3996 radiology reports from  

the Indiana Network for Patient Care 
and 8121 associated images

  The standard digital image  
 � database with and without 

chest lung nodules (JSRT 
database)

http://db.jsrt.or.jp/eng.php Chest Radiography A total of 154 nodule images and  
93 non-nodule images

  The Lung Image Database  
 � Consortium image  

collection (LIDC-IDRI)

https://wiki.cancerimagingarchive.
net/display/Public/LIDC-IDRI

Chest CT A total of 1018 cases with annotated 
nodules

  A collection of cases with  
  ILDs (ILD Database)

http://medgift.hevs.ch/wordpress/
databases/ild-database/

Chest CT Multimedia database of findings in  
128 patients with one of the  
13 histologic diagnoses of ILDs

  DDSM: Digital Database for  
  Screening Mammography

http://marathon.csee.usf.edu/ 
Mammography/Database.html

Breast MG Approximately 2500 cases—each study 
includes two images of each breast

  INbreast mammographic  
  database

http://medicalresearch.inescporto.
pt/breastresearch/index.php/
Get_INbreast_Database

Breast MG A total of 115 cases with several types  
of lesions (masses, calcifications,  
asymmetries, and distortions); accurate 
contours made by specialists are also 
provided

  Breast Cancer Digital  
  Repository (BCDR)

https://bcdr.eu/information/about Breast MG, US Mammography and US images in  
1734 patients that include information 
on clinical history, lesion segmentation, 
and selected pre-computed image-based 
descriptors

  The Alzheimer’s Disease  
 � Neuroimaging Initiative 

(ADNI)

http://adni.loni.usc.edu/ Brain MRI, PET Data in 650 patients with MCI,  
350 patients with AD, and 350 elderly 
control subjects

  The Parkinson’s Progression  
  Markers Initiative (PPMI)

http://www.ppmi-info.org/ Brain MRI, PET,  
SPECT

Data in 431 patients with PD, 193 healthy  
control subjects, and 77 patients with  
scans without evidence of dopamine  
deficit

  The Internet Brain  
 � Segmentation Repository 

(IBSR)

https://www.nitrc.org/projects/ibsr/ Brain MRI Includes 18 sets of MRI data with  
complete expert segmentations

  The LONI Probabilistic  
  Brain Atlas (LPBA40)

http://www.loni.usc.edu/atlases/ 
Atlas_Detail.php?atlas_id=12

Brain MRI Includes 40 MRI studies with segmentations  
of a set of 56 structures in the brain

  The Open Access Series of  
  Imaging Studies (OASIS)

http://www.oasis-brains.org/ Brain MRI A collection of MRI studies in 416 subjects 
aged 18–96 years

  Autism Brain Imaging Data  
  Exchange (ABDE)

http://fcon_1000.projects.nitrc.org/
indi/abide/

Brain MRI Data in 1112 cases, including 539 individuals 
with autism spectrum disorder (ASD) 
and 573 control subjects

  Disk-degeneration linked  
  pathologies (GENODISC)

http://www.physiol.ox.ac.uk/ 
genodisc/index.html

Spine MRI Consists of 12 018 individual disk volumes, 
from 2009 patients

  Platform for research on  
 � spinal imaging and image 

analysis (SpineWeb)

http://spineweb.digitalimaging-
group.ca/spineweb/index.
php?action=home

Spine CT, MRI Includes data on vertebral segmentation, 
intervertebral disk localization and 
segmentation, and segmentation and 
classification of fractured vertebrae

  Cartilage and bone  
 � segmentation from knee 

MRI data (SKI10)

http://www.ski10.org/ Knee MRI A total of 150 segmented knee joint cases

  The Digital Hand Atlas  
  Database

https://ipilab.usc.edu/research/
baaweb/

Hand Radiography A total of 1391 left-hand radiographs in 
children up to 18 years of age

Table 5 (continues)
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Table 5 (continued): Public Data Sets Used in the Reviewed Studies

Type of Repository and  
Collection Web Page

Organ  
System

Image  
Modality Data

  Left Ventricle  
Segmentation  
  Challenge (LVSC)

http://www.cardiacatlas.org/ 
challenges/lv-segmentation-challenge/

Cardiac MRI A total of 200 segmented myocardium 
cases

  An open-access database  
 � of thyroid US images 

(DDTI)

http://cimalab.intec.
co/?lang=en&mod=project&id=31

Thyroid US A total of 99 cases and 134 images; 
each case is presented as an XML file 
with the expert´s annotation and the 
patient´s information

Data set collections
  The Cancer  

Imaging Archive  
  (TCIA)

http://www.cancerimagingarchive.net/ Multiorgan Multimodality The image data in TCIA are organized 
into purpose-built collections of 
subjects. The subjects typically have 
a cancer type and/or anatomic site 
(lung, brain, etc) in common.

  MICCAI challenges https://grand-challenge.org/all_ 
challenges/

Multiorgan Multimodality Data sets designated for machine learn-
ing challenges within the area of 
medical image analysis

Note.—AD = Alzheimer disease, IDRI = Image Database Resource Initiative, ILD = interstitial lung disease, JSRT = Japanese Society of 
Radiological Technology, LONI = (University of Southern California) Laboratory of Neuro Imaging, MCI = mild cognitive impairment, 
MICCAI = Medical Image Computing and Computer Assisted Intervention, MG = mammography, SKI10 = Segmentation of Knee Im-
ages 2010.

creativity and will introduce innovation and imagination to the 
application of this computer technique to the medical world, 
targeting tasks that are beyond the capabilities of human experts.

When formulating an interpretation, the radiologist must take 
into consideration a wide range of parameters, such as demographic 
factors, the patient’s diagnosis, previous test results, and reasons for 
referral. In our review, we noticed few studies that incorporated 
meta-information into the image analysis (160,173,178). New 
directions in deep learning may expand this focus on analysis that 
is based not only on images but also on an input of a broad scope 
of relevant factors that are taken into account by the radiologist.

Today most of the published research is based on program-
ming of networks by engineers according to clinical problems 
raised by radiologists. Few studies (159,207) are based on exist-
ing dedicated toolkits that make use of neural networks without 
the need for explicit programming. As deep learning is gaining 
popularity, it seems that there is room for new dedicated plat-
forms that will promote machine learning research. A promising 
project is Google’s cloud AutoML Vision, which aims to provide 
machine and deep learning products that enable developers with 
limited machine learning expertise to train models (208).

A known limitation of deep learning research in radiology is 
the scarcity of annotated data. In our review, we noticed that the 
majority of studies used data sets with fewer than 10 000 cases. 
Most of the studies with more than 10 000 cases used image la-
beling for annotation. Several methods have been adopted to 
overcome the challenge of limited data. One solution is the de-
velopment of publicly available databases. We expect to see larger 
and more sophisticated public data sets as the interest in computer 
vision is increasing. The trend of data expansion is evident by the 
more than 100 000 labeled chest radiographs that were released 
to the public by the National Institutes of Health in September 

2017 (209). The labels in this database were formulated by using 
natural language processing (NLP) to derive information regard-
ing disease classification from the radiologic reports. Methods that 
use free-text analysis, such as NLP, allow for the implementation 
of a larger database so that the stage of labeling can be omitted. An 
additional strategy that can be applied to overcome the phase of 
labeling is the implementation of an unsupervised method that is 
used independently or that is incorporated into supervised strate-
gies. An example of an unsupervised strategy that has been applied 
is generative adversarial networks (210); the value of unsupervised 
learning alone is still undetermined.

In conclusion, a convolutional neural network (CNN) is an 
artificial intelligence algorithm that presents remarkable capa-
bilities for image analysis. Recently, there has been a great deal of 
interest in using this technology in radiologic research, and the 
number of deep learning radiology publications is dramatically 
increasing and encompasses the major organ systems and imag-
ing modalities. CNN studies show a general framework pattern 
according to the clinical question, computer vision tasks, data 
acquisition and preprocessing, hardware and software require-
ments, network architecture, and the validation of the results. At 
present, the application of CNNs to the clinical field is limited 
mostly to research. Nonetheless, current studies on this subject 
are of crucial importance, as they can potentially prove to be a 
stepping stone for advancing health care.
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