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Abstract
Purpose To compare the ability of radiological semantic and quantitative texture features in lung cancer diagnosis of pulmonary
nodules.
Materials and methods A total of N = 121 subjects with confirmed non-small-cell lung cancer were matched with 117 controls
based on age and gender. Radiological semantic and quantitative texture features were extracted from CT images with or without
contrast enhancement. Three different models were compared using LASSO logistic regression: “CS” using clinical and semantic
variables, “T” using texture features, and “CST” using clinical, semantic, and texture variables. For each model, we performed
100 trials of fivefold cross-validation and the average receiver operating curve was accessed. The AUC of the cross-validation
study (AUCCV) was calculated together with its 95% confidence interval.
Results The AUCCV (and 95% confidence interval) for models T, CS, and CSTwas 0.85 (0.71–0.96), 0.88 (0.77–0.96), and 0.88
(0.77–0.97), respectively. After separating the data into two groups with or without contrast enhancement, the AUC (without
cross-validation) of the model T was 0.86 both for images with and without contrast enhancement, suggesting that contrast
enhancement did not impact the utility of texture analysis.
Conclusions The models with semantic and texture features provided cross-validated AUCs of 0.85–0.88 for classification of
benign versus cancerous nodules, showing potential in aiding the management of patients.
Key Points
• Pretest probability of cancer can aid and direct the physician in the diagnosis and management of pulmonary nodules in a cost-
effective way.

• Semantic features (qualitative features reported by radiologists to characterize lung lesions) and radiomic (e.g., texture)
features can be extracted from CT images.
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• Input of these variables into a model can generate a pretest likelihood of cancer to aid clinical decision and management of
pulmonary nodules.

Keywords Lung cancer . Tomography . Radiomics . Semantics . Statistical models

Abbreviations
CI Confidence intervals
CT X-ray computed tomography
NSCLC Non-small cell lung cancer
VM The bounding volume maximum length
VOI Volume of interest

Introduction

Management of pulmonary nodules is a problem in clinical
scenarios, in part due to increasing use of multislice computed
tomography (CT) with contiguous thin sections, considered the
gold standard for pulmonary nodule detection [1]. For both
screening and incidental findings, it can be challenging to clas-
sify pulmonary nodules between benign and malignant at first
presentation, and overdiagnosis is a challenging issue [2–4].

It has been accepted by clinicians that the pretest probabil-
ity of cancer can aid and direct the physician in the diagnosis
of pulmonary nodules in a cost-effective way. While many
clinicians and radiologists rely on clinical experience to assess
the likelihood that a nodule is cancerous, there is recent re-
search using quantitative methods to inform the assessment of
a newly discovered pulmonary nodule. Prediction models
have been developed that utilize both clinical and radiological
data to classify nodules. A few of these models [5–7] have
been independently validated to exhibit classification accura-
cies (as measured by the area under the receiver operator char-
acteristic curve, or AUC) in the range of 0.57 to 0.90 [8–10].

The emerging field of “radiomics” has been recently stud-
ied as a method to extract more quantitative information from
radiological images to aid clinical decisions. In radiomics,
mathematical formulae that quantitatively describe various
image qualities (e.g., contrast, homogeneity, texture) are de-
fined in a region and compared to outcomes to form a predic-
tive model. Providing a definition of the radiomics paradigm,
Gilles et al stated that “Images Are More than Pictures, They
Are Data” [11]. Specifically, radiology images are trans-
formed to higher dimensional data to search for useful corre-
lations that define a useful radiographic phenotype before,
during, or after therapy [12]. Recent developments in
radiomics indicate that quantitative analysis of images can
help discriminate different types of cancer, predict disease
outcomes, and determine response to treatment [13–17]. The
application of radiomics methods to the management of pul-
monary nodules has been suggested [18] and evaluated in
patients in at least two previous studies [19, 20].

Quantitative texture features may compliment traditional
prediction models for pulmonary nodule diagnosis, and a
model that integrates these approaches may lead to increased
predictive classification accuracy. In this study, we created
individual models with exclusive texture or clinical and se-
mantic features as well as their combination in order to assess
the predictive power of each. We also examined the ability of
quantitative texture features to compliment clinical data (e.g.,
smoking history) and semantic imaging features (e.g.,
spiculated nodule, ground glass opacity), with the goal of
determining how radiomics may help with pulmonary nodule
classification.

Materials and methods

Patients

Data were prospectively collected from October 2010 to
September 2015 for a cohort of 492 subjects enrolled in the
Fred Hutch Lung Cancer Early Detection and Prevention
Clinic (LCEDC) under an active institutional review board,
and written informed consents were acquired. All of the cases
were reviewed by a multidisciplinary lung nodule board, and
CT images were collected at 3–12-month intervals until they
were determined to be malignant or benign. For our retrospec-
tive study of the LCEDC data, IRB approval and a waiver of
written informed consent were obtained. Inclusion criteria
were as follows: (1) Only the patients with at least one pul-
monary nodule that was at least 1 mm in diameter, when using
lung parenchymal CT display thresholds, on the baseline CT
image were included [7]. (2) For patients with malignant tu-
mors, only subjects with nodules that were determined to be
non-small cell lung cancer (NSCLC) by histopathology before
the consent date of May 2014 were included. (3) For benign
nodules, only those confirmed by histopathologic examina-
tion of tissue obtained via surgical resection, or the lesion
was found to be stable radiographically for at least 2 years
of follow-up, or resolved under CT surveillance, were includ-
ed. There wereN = 125 NSCLC case subjects included, which
were 1:1 matched with subjects with benign nodules.
Matching was first based on gender (exact match), then age
(± 2 years). In attempting to match the NSCLC cases with
controls for pack years of smoking, we found that matching
was not possible due to the limited sample size. Clinical de-
mographics of age, gender, race, BMI, smoking behavior, in-
cluding current smoking status, pack-years, and histology
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were recorded. We excluded 12 subjects who did not have
qualifying CT scan or did not have full clinical demographic
records. Figure 1 summarizes the flowchart of the study en-
rolling process and reasons for patient exclusion. A total of
238 patients were included in this study.

CT imaging acquisition

The CT scans used in this study were from multiple institu-
tions using local imaging protocols. This resulted in non-
uniform imaging protocols across patients in the study. The
CT images were acquired with or without contrast enhance-
ment. Details regarding the different protocols and acquisition
parameters are in the Supplementary Material.

Nodule segmentation

For each patient, only the largest nodule confirmed by histo-
pathology, or confirmed to be benign by surveillance, was
chosen for analysis. Contours defining the nodule region
(Fig. 2) were manually delineated slice-by-slice on the
transaxial CT images by a thoracic radiologist (W.W., 6 years
of experience) using the MIM image viewing and analysis
software (MIM Software, Inc.). For the nodules which are
larger than 5 mm in long-axis diameter, the slice thickness
of the images for contouring is 2.5 mm, while for nodules
which are equal or less than 5 mm, the slice thickness for
contouring is 1.25 mm. Lesion volumes were first contoured
in a mediastinal window (WW 350 HU WL 40 HU) to iden-
tify the boundaries with the chest wall or other soft tissues,
then in a lung window (WW 1324 HU WL -362 HU) to

capture the extent in the lung parenchyma. A 3D volume of
interest (VOI) was created to encompass the entire nodule and
then converted to a binary mask.

Radiomics feature extraction

For each patient, the CT image and corresponding binary VOI
mask were imported into the PORTS radiomics software
package [21] (details in Supplementary Material). PORTS
computed 42 quantitative image and texture metrics from
the voxels within the VOI (Supplementary Table S2 and
Fig. 3).

Semantic feature extraction

A second thoracic radiologist (S.P., 12 years of experience),
blinded to clinical and histologic findings, evaluated semantic
features including nodule count, location, size, shape, density,
and the visual presence and the types of invasiveness, lymph-
adenopathy, emphysema, fibrosis, and asbestosis. In total, 13
categories of semantic features from CT images were extract-
ed for the analysis.

Statistical analysis

Univariate tests were performed to assess the difference of the
estimated features between the case and control status using
the PASW Statistics16.0™ analysis package (SPSS Inc.). The
Fisher exact test was used for the categorical data and the
Mann-Whitney U test was used for continuous data.

Fig. 1 Flowchart of the study enrolling process and reasons for patient exclusion
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LASSO penalized logistic regression [22, 23] was used as a
variable-selection procedure to build a low-dimensional logis-
tic regression model. LASSO was performed using the glmnet
package in R version 3.4.3 [24]. We constructed three models
based on subsets of variables (details in Supplementary
Material). The three models are “CS” using the clinical and
semantic variables only, “T” using the texture features as well

as the CTscan in kilovoltage peak (kVp), and “CST” using all
of the clinical, semantic, and texture variables. In each case,
the variables selected by the LASSO were used to fit an ordi-
nary logistic regression model and estimate the regression
coefficients. For the resultingmodels, a receiver operator char-
acteristic curve (ROC) was created and the area under the
curve (AUC) was computed to evaluate the prediction

Fig. 3 Examples of PORTS texture analysis showing the quantitative values of four different texture features

Fig. 2 Example images
illustrating the categories of
patient (NSCLC vs. benign, and
contrast vs. non-contrast imaging
protocol) and pulmonary nodule
segmentation of each
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capability for each model separately. For each model, we per-
formed 100 trials of fivefold cross-validation, where four-
fifths of data was used as training and one-fifth of the data
was used for testing. The AUC of the cross-validation study
(AUCCV) was calculated together with its 95% confidence
interval.

Since the CT images were approximately equally divided
between those with and without contrast enhancement, we
also assessed the impact of contrast enhancement on texture
features within the CT images by comparing the abilities of
the texture-only models (i.e., the model T) to predict nodule
status. The goal was to evaluate if there was any impact of
contrast enhancement on the texture model and no attempt
was made to compare with the CS and CST models described
above.

Results

Clinical characteristics

Clinical characteristics for the total 238 patients and their dis-
tribution in case or control group are summarized in Table 1.
The mean age was 63.8 ± 10.6 years. There were 121 NSCLC
subjects and 117 control subjects which included 64 cases
with the nodules stable for at least 2 years, 24 cases with the

nodules resolved during the follow-up, and 29 cases with con-
firmed histopathology diagnosis. There was no difference for
the mean age, proportion of males, or BMI between the
NSCLC and control groups. However, the control and
NSCLC groups exhibited some difference in smoking history
with the control group containing patients who were former
(i.e., not current) smokers or who had never smoked, while
there were more current smokers in the NSCLC group
(p < 0.05). We further reviewed all cases of former smokers
and found that the minimal cessation time was 18 days. For
most of the former smokers, the cessation time was longer
than 1 year and just 5 cases (5/123) had a cessation time of
less than 1 year. The control group had a mean of 25.3 pack-
years smoked versus 32.4 pack-years for the NSCLC group;
however, there was no significant difference (p = 0.064). We
note that reported univariate p values in Table 1 (and
Supplementary Table S1) are not claims about the statistical
significance of the models, as it relates to the population of all
cancer samples, but rather they are reported here for descrip-
tive and comparative purposes only.

Semantic and texture features

The Fisher exact test and Mann-Whitney U test revealed that
six categories of semantic features have the potential for
distinguishing between cases and controls. (Supplementary

Table 1 Clinical characteristics
of participants with NSCLC and
benign nodules

Category: data type Full sample Benign NSCLC p* value

Age: mean (± SD) 63.8 (±10.6) 63.0 (±11.5) 64.4 (±9.52) 0.42

Male: N (%) 106 (44.5) 53 (45.3) 53 (43.8) 0.90

BMI: mean (± SD) 27.8 (±7.2) 27.7 (±7.3) 28.0 (±7.1) 0.49

Pack-years: mean (± SD) 28.9 (±26.0) 25.3 (±22.1) 32.4 (±29.0) 0.06

Smoking history: N (%) 0.04

Never smoker 43 (18.1) 26 (22.2) 17 (14.0)

Former smoker 123 (51.7) 64 (54.7) 59 (48.8)

Current smoker 72 (30.3) 27 (23.1) 45 (37.2)

Histology: N (%) –

Adenocarcinoma 89 (37.4) – 89 (73.6) –

Adenocarcinoma in situ 13 (5.5) – 13 (10.7) –

Squamous 17 (7.1) – 17 (14.0) –

Large cell 2 (0.8) – 2 (1.7) –

Infections 10 (4.2) 10 (8.5) – –

Inflammation 17 (7.1) 17 (14.5) – –

Choroid hamartoma 1 (0.4) 1 (0.9) – –

Fibrosis/scarring 1 (0.4) 1 (0.9) – –

p values are uncorrected for multiple comparisons and are used only descriptively

A former smoker is defined as an adult who has smoked at least 100 cigarettes in his or her lifetime but who had
quit smoking at the time of interview. This is consistent with the definition of the National Health Interview
Survey (NHIS) from Centers for Disease Control and Prevention (CDC)

*Mann-Whitney U test for continuous data, Fisher exact test for categorical data
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Table S1). We report here the unadjusted p values as a means
to describe their relative strength for discrimination. These
features include emphysema degree (p = 0.01), nodule loca-
tion (p = 0.02), size including long-axis diameters (L), short-
axis diameters (S), height (H), and the bounding volume max-

imum length (VM, defined as VM=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ S2 þ H2 Þ

q
)

(p < 0.001 for each), shape (p < 0.001), invasiveness
(p < 0.001), and lymphadenopathy (p < 0.001). No difference
was detected between two groups for pattern of emphysema,
region of emphysema, fibrosis, nodule count, or nodule den-
sity. The distribution of each semantic feature for the two
groups is summarized in Supplementary Table S1. With the
exception of features F9, F16, F17, and F31, all quantitative
texture metrics showed evidence of a difference between the
NSCLC and control groups (p < 0.05).

Multivariate and ROC analysis of clinical, semantic,
and texture features in classification of cases versus
controls

Model T used the texture features and kVp as input variables.
The LASSO regression selected 6 (out of 43) variables: F10
(GTSDM-Correlation), F19 (GTSDM-Information
Correlation1), F21 (GTSDM-Autocorrelation), F22
(GTSDM-Dissimilarity), F41 (GLZSM-Zone Size Non-
Uniformity), and F42 (GLZSM-Zone Size Percentage). The
AUCCV for model Twas 0.85 with a 95% confidence interval
of 0.71–0.96. Model CS used the clinical and semantic vari-
ables only. The LASSO selected 5 (out of 22) variables:
smoothness, spiculation, invasiveness, lymphadenopathy,
and VM. The AUCCV was 0.88 with a 95% confidence inter-
val of 0.77–0.96. Model CST combined all of the clinical,
semantic, and texture variables. The LASSO selected 7 (out
of 64) variables: smoothness, spiculation, invasiveness,
lymphadenopathy, VM, F19 (GTSDM-Information
Correlation1), and F22 (GTSDM-Dissimilarity). The
AUCCV was 0.88 with a 95% confidence interval of 0.77–
0.97. These results are presented in Table 2 and Fig. 4.

Comparison of models of contrast versus
non-contrast images

There were 125 patients with contrast-enhanced images and
113 patients with non-contrast-enhanced images. The AUC

(without cross-validation) of the model T was 0.86 both for
images with and without contrast enhancement. When these
data are combined into a single population, the AUC was also
0.86. The three ROC curves and AUCs are shown in
Supplementary Fig. S1.

Discussion and conclusion

We examined the capabilities of clinical, semantic, and image
texture features to assess cancer risk in pulmonary nodules.
Our cross-validated multivariate analysis shows that models
CS and CST had AUCCV = 0.88, slightly larger than model T
with AUCCV = 0.85 (Fig. 4). The 95% confidence intervals of
all three models show that the ROC performance largely o-
verlapped, demonstrating similar performance of all three
models. While the AUC is a global measure accounting for
all possible sensitivity and specificity thresholds, for compar-
ison purposes, we can estimate that for a true-positive rate
(sensitivity) of 90%, the false-positive rate (1-specificity)
ranges from 34 to 38%. If the true-positive rate is relaxed to
80%, the false-positive rate is reduced to a range of 23 to 31%
for the three methods (Fig. 4). These models were controlled

Fig. 4 ROCs and cross-validated AUCCVof three different models. Solid
lines are the fivefold cross-validated AUCs and the dotted lines in
corresponding colors refer to the 95% confidence interval for each
AUCCV

Table 2 Prediction performance
of the three different models Model Subjects Variables

considered
Number of LASSO-selected top
predictor variables

AUC (all
data)

AUCCV (95%
CI)

T 238 43 6 0.86 0.85 (0.71–0.96)

CS 238 22 5 0.89 0.88 (0.77–0.96)

CST 238 64 7 0.89 0.88 (0.77–0.97)
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for gender and age, but not smoking history or smoking pack-
years. To check the impact of these factors we separately in-
cluded smoking history and smoking pack-years into the
models. When adjusted for smoking history, the AUCCV

values were 0.88, 0.88, and 0.85 for the CS, CST, and T
models. In other words, there was no detectable change com-
pared to the models without any adjustment. When adjusted
for smoking pack-years, the AUCCV values increased very
slightly to 0.89, 0.89, and 0.86 for the CS, CST, and Tmodels,
respectively— very similar to the performance of the models
with the smoking history adjustment. The similar results may
be due to a high correlation between smoking pack-years and
smoking history.

These results indicate that models based on semantic fea-
tures determined by an experienced thoracic radiologist will
likely slightly outperform models based only on computed
texture features. This is supported by the recent work of Liu
et al who demonstrated that a set of clinically relevant radio-
logic features can be readily scored to effectively determine
lung cancer risk for solitary pulmonary nodules [25].

Even so, the texture features perform nearly as well and can
be used to standardize performance across clinical sites. In
addition, work continues in the exploration of radiomics
methods with larger cohorts so further performance improve-
ments are also possible.

A key component is the integration of accurate and effi-
cient lung nodule delineation or segmentation methods.
Evaluation of this component was beyond the scope of this
study, but we note that manual delineation is time-consuming
and known to suffer from intra- and inter-reader variability
[26]. However, recent studies have shown that some automat-
ed and semi-automated lung nodule segmentation tools can
reduce variability [27]. In the event an automated or semi-
automated lung nodule delineation is incorporated, the
radiomics workflow could be very efficient. This might be
particularly helpful in instances where radiologists have less
lung specific training or expertise.

To our knowledge, the inclusion of quantitative texture
features with semantic features in our predictive model is
unique among similar studies, including the Mayo Clinic
model [6], the Veteran’s Affairs model [5], the Herder model
[28], and the model from Brock University [7], which use
clinical and limited semantic features. One 2016 study found
that a model using texture features performed statistically sim-
ilarly to that using the Brock University model on the NLST
(National Lung Screening Trial) dataset with accuracy of 78%
[19]. Another 2018 study of a relative small sample demon-
strated a radiomics-only model with the ability to discriminate
between malignant and benign pulmonary nodules with an
accuracy of 84% [20].

To evaluate if it is reasonable to include both non-contrast-
enhanced and contrast-enhanced images in our model, we
performed a substudy to compare the texture feature

performance in the contrast and non-contrast groups. Our
analysis showed that quantitative texture features perform
similarly in patient populations with and without contrast-
enhanced images (AUC of 0.86). Although one previous
study reported that the predictive performance of quantitative
texture features is superior in non-contrast-enhanced images
(AUC= 0.86) than those with contrast (AUC = 0.83) [29], a
more recent study on discrimination of lung-invasive adeno-
carcinoma validated the radiomics signature in two indepen-
dent non-contrast-enhanced and contrast-enhanced cohorts
and found the performance was similar [30], consistent with
our findings. In the discussion for this study, it was hypothe-
sized that the radiomics signature may be independent of the
injection of a contrast agent as the selected radiomics features
measure the correlation, uniformity, or deviation of the pixels,
which reduces the effect of contrast increase of the overall
image intensity. Although plausible, this hypothesis should
be confirmed. Regardless, as our model is independent with
regard to the use of contrast and its combination of images
with multiprotocols, this may allow for broader applicability
in clinical care.

There were several limitations in our study. First, this was a
retrospective analysis with a relatively small population that
included prediagnostic (screening) and diagnostic patients.
Second, we did not have an independent patient population
as a validation cohort, as would be required to assess the
accuracy the models. Instead, these models provide a proof
of principle regarding the role of radiomic and semantic fea-
tures to facilitate the clinical assessment of pulmonary nod-
ules. For validation, a follow-up study with an independent
patient population is needed. Potentially another limitation is
the non-standardized image acquisition and definition of ra-
diological semantic features. There is an unresolved debate on
the requirement for standardized protocols versus the need for
methods that work in a typical imaging network [31]. In gen-
eral, we expect standardized acquisition and processing to
enable distinguishing smaller differences between tumor phe-
notypes. In clinical practice, however, a wide variety of scan-
ning techniques and parameters are used. In CT phantom
studies, differences in slice thickness and reconstruction algo-
rithm (standard versus lung) were shown to substantially
change radiomic feature values [32]. However, recent studies
on the reproducibility of features extracted from lung CT im-
ages have demonstrated that a subset of radiomic features are
reproducible and informative even in the presence of scan
protocol differences [33, 34]. In addition, Zhao et al [33] and
Lu et al [35] showed that use of both 1.25-mm and 2.5-mm
slice thicknesses is acceptable if the use of “lung” image re-
construction filters is avoided, as was the case for our study.
Finally, we note that a recent study concluded that voxel-size
resampling is an appropriate preprocessing step for image
datasets acquired with variable voxel sizes to obtain more
reproducible CT features [36]. As noted in the supplementary
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data, this was the procedure used for the radiomics analysis
presented here. Another potential limitation of our approach
became apparent for 8 of the 117 control cases that had nod-
ules smaller than 4 mm. Since nodules less than 4 to 6 mm are
considered less significant clinically [1, 37], and the small size
may prevent calculation of texture metrics, the impact of these
smaller lesions is unclear. In our analysis, only one texture
metric was not calculable for 7 of the cases with nodules
smaller than 4 mm. We estimated these missing values using
the k-nearest-neighbor approach by grouping subjects with the
similar characteristics of age, race, smoking history, and BMI
status [38]. When the most important texture variables were
chosen using LASSO regression as described above, the non-
calculable texture metric was not selected. Thus, for our study,
we believe there was no impact from these few small nodules.
However, the issue of non-calculable texture metrics for very
small nodules should be considered in future studies. If there
is an observable effect, then the use of interpolation to smaller
voxels might be considered.

Despite these limitations, we conclude that using semantic
and quantitative texture features from CT images has the po-
tential to aid and facilitate the clinical decision or management
of pulmonary nodules.
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