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Deep learning is increasingly used in medical imaging; 
however, advancement in efficacy has outpaced the 

ability to visualize what these models are actually learn-
ing (1). Difficulty in isolating learned image features 
currently limits the safe application of deep learning in 
radiology.

This study examined a technique developed by the 
authors using generative learning (2), a form of un-
supervised deep learning, to create Generative Visual 
Rationales (GVRs). GVRs are a visual output that dis-
plays features used to classify an image. Unlike exist-
ing interpretability techniques, GVRs use Wasserstein 
generative adversarial networks (GANs) (2,3) to syn-
thesize visual reconstructions that answer the question 
“How would this patient’s image need to change to 
appear without the disease?”

The example of congestive heart failure (CHF) 
prediction from chest radiographs was chosen by the 
authors to test the utility of GVRs. Conventional ra-
diographic features of CHF include cardiomegaly, 
pulmonary venous congestion, septal lines, airspace 
opacification, and pleural effusions (4). In other chest 
diseases such as lung cancer, features are often local-
ized to one part of the image, and hence conventional 

visualization methods such as heat maps can discern 
what the model is focusing on. However, in CHF, fea-
tures tend to affect large parts of the image, making 
heat maps not as effective, while GVRs can demon-
strate how the image as a whole contributes to the pre-
diction of disease.

Serum B-type natriuretic peptide (BNP) is secreted 
by the heart to regulate fluid balance and is commonly 
used to diagnose and monitor CHF. At the threshold of  
100 ng/L, serum BNP has a sensitivity of 0.95 and 
specificity of 0.63 for acute CHF (5). Thus, at this cut-
off, BNP can reliably exclude acute CHF independent 
of clinical gestalt and radiologic interpretation (6).

Using BNP levels instead of radiology reports as la-
bels enables the training of a deep learning model free 
of human bias. It allows the comparison of features 
that the neural network model has learned de novo 
with features of CHF that radiologists have tradition-
ally identified.

Our study assessed chest radiograph GVRs that the 
neural network model estimated to have a BNP above 
100 ng/L to determine the frequency at which CHF 
features are highlighted, with the primary hypoth-
esis that a correctly trained deep learning model will 
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Purpose: To examine Generative Visual Rationales (GVRs) as a tool for visualizing neural network learning of chest radiograph 
features in congestive heart failure (CHF).

Materials and Methods: A total of 103 489 frontal chest radiographs in 46 712 patients acquired from January 1, 2007, to December 
31, 2016, were divided into a labeled data set (with B-type natriuretic peptide [BNP] result as a marker of CHF) and unlabeled 
data set (without BNP result). A generative model was trained on the unlabeled data set, and a neural network was trained on 
the encoded representations of the labeled data set to estimate BNP. The model was used to visualize how a radiograph with high 
estimated BNP would look without disease (a “healthy” radiograph). An overfitted model was developed for comparison, and 100 
GVRs were blindly assessed by two experts for features of CHF. Area under the receiver operating characteristic curve (AUC), k 
coefficient, and mixed-effects logistic regression were used for statistical analyses.

Results: At a cutoff BNP of 100 ng/L as a marker of CHF, the correctly trained model achieved an AUC of 0.82. Assessment of 
GVRs revealed that the correctly trained model highlighted conventional radiographic features of CHF as reasons for an elevated 
BNP prediction more frequently than the overfitted model, including cardiomegaly (153 [76.5%] of 200 vs 64 [32%] of 200, re-
spectively; P , .001) and pleural effusions (47 [23.5%] of 200 vs 16 [8%] of 200, respectively; P = .003).

Conclusion: Features of congestive heart failure on chest radiographs learned by neural networks can be identified using Generative 
Visual Rationales, enabling detection of bias and overfitted models.
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produce GVRs that do so more frequently than an inten-
tionally overfitted model.

Materials and Methods

Data Set and Image Handling
Approval was obtained from the relevant research ethics 
committee for use of a de-identified data set, without the 
requirement for patient consent. All available frontal chest 
radiographs (supine or erect) were extracted from the authors' 
institution's picture archiving and communication system 
(PACS) from January 1, 2007, to December 31, 2016, with 
103 489 images obtained in 46 712 unique patients. All ex-
tracted radiographs were included in the study data set, with 
no exclusion criteria applied. No financial or material support 
was obtained for this project, and no conflicts of interest are 
known to the authors. Although the same data set was used 
previously (7) to explain the technical parameters of the GVR 
algorithm, no statistical analysis was performed, and hence 
no data in the 46 712 patients were reported. In contrast to 
earlier work (7), this study conducted an experiment using 
GVRs to identify biases and overfitting in a model by quan-
tifying and statistically analyzing image features that neural 
networks learn.

The REASON Cohort Discovery Tool (8) identified 7390 
radiographs from 5232 unique patients with a paired BNP 
result within 36 hours of image acquisition, comprising the 
labeled data set. A total of 96 099 radiographs did not have a 
corresponding BNP result and comprised the unlabeled data 
set. Radiographs were scaled to 128 3 128 pixels. The labeled 
data set was split by patient, with data in 4185 (80%) of 5232 
patients used for training and data in 1047 (20%) of 5232 
used for testing.

Deep Learning Model and GVR Creation
Model training used Python 3.4 (Python Software Founda-
tion), PyTorch 0.2.0 (9), and NumPy 1.13.1 (10). Model 
construction was performed by J.C.Y.S., a 1st-year radiology 
resident with 6 years of machine learning experience. First, a 
GAN was trained on the unlabeled data set. A deep convolu-

tional GAN architecture was used, with 64 feature maps in 
the layer prior to the generated image (11). This produced 
a generator (decoder) capable of producing artificial radio-
graphs indistinguishable from real radiographs in the unla-
beled data set.

Next, a neural network encoder was trained to reproduce 
latent space representations from input radiographs. The en-
coder and decoder together form an autoencoder (12), en-
abling the conversion of radiographs to and from this latent 
space. A latent space representation is a set of numbers that 
represents the salient features of that radiograph. Last, simple 
statistical models, including a linear regression as well as a 
multilayer perceptron, were trained on the latent representa-
tions of the labeled data set. A radiograph with a high pre-
dicted BNP (the original radiograph showing heart failure) 
was then processed by encoding it into the latent space and 
then decoding it to produce what we refer to as a “diseased” 
radiograph, which is similar but subtly different from the 
original radiograph, as some information is lost during this 
encoding and decoding process. The encoding and decod-
ing processes are important steps for the model to learn how 
to recreate what we refer to as a “healthy” radiograph. We 
changed the latent space representation of the original radio-
graph such that disease (as defined by a BNP level . 100 
ng/L) was no longer predicted and decoded this representa-
tion into a healthy radiograph, which is what the model pre-
dicts the radiograph will look like without heart failure. It is 
important to note that the diseased and healthy radiographs 
are not actual radiographs but are synthetically generated im-
ages that indicate what the model is seeing.

The healthy radiograph was subtracted from the diseased 
radiograph with the difference superimposed in color (or-
ange representing density removed and purple representing 
density added) over the original radiograph to produce the 
GVR (Fig 1). A technique to produce inverse GVRs is also 
shown, where predicted healthy radiographs are permuted 
until they appear diseased.

Qualitative Assessment of GVRs
To evaluate the usefulness of GVRs, a comparison was made 
between a correctly trained BNP prediction model and an 
overfitted model. As mentioned in the Data Set and Image 
Handling section, the labeled data set is split by patient into 
a training and testing data set at a ratio of 80:20. In the cor-
rectly trained model, latent representations from the training 
data set were fitted to the BNP results, and the subsequent 
model was evaluated on the testing set. This is standard prac-
tice in most machine learning setups to prevent the model 
from memorizing patient-specific features.

In the overfitted model, the training and testing data 
sets were deliberately combined during training, with one-
fourth of the training data set withheld as a further vali-
dation set. The correctly trained model implements early 
stopping based on the results of the held-out testing set, 
while the overfitted model is unable to do so because it has 
access to the testing set during training and is trained to 
convergence.

Abbreviations
AUC = area under the ROC curve, BNP = B-type natriuretic peptide, 
CHF = congestive heart failure, GAN = generative adversarial network, 
GVR = Generative Visual Rationale, PACS = picture archiving and 
communication system, ROC = receiver operating characteristic

Summary
Generative Visual Rationales can identify imaging features learned by 
a model trained to predict congestive heart failure from chest radio-
graphs, allowing radiologists to better identify faults and biases.

Implication for Patient Care
Generative Visual Rationales can identify image features learned 
by neural networks when estimating their degree of heart failure; 
radiologists can then examine these features to uncover hidden biases, 
enabling the safer application of deep learning to imaging studies.
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Readers were tasked with identifying whether 
GVRs were highlighting CHF features, includ-
ing cardiomegaly, pleural effusion, and airspace 
opacity. Pulmonary venous congestion and septal 
lines were not assessed because of resolution lim-
itations. To evaluate intraobserver consistency, 
each GVR appeared in a random order in two 
rounds, which were performed within a day of 
each other. Pooled results from both readers were 
analyzed for statistically significant differences 
between features identified on GVRs created by 
the correctly trained model and those created by 
the overfitted model. Pooled results from both 
readers were preferred to reduce the risk of ob-
server bias and to obtain a more accurate esti-
mate of the prevalence of each feature generated 
by the correctly trained and overfitted models, 
because different readers have different thresh-
olds for naming features within a GVR.

Statistical Analyses
Area under the receiver operating characteris-
tic (ROC) curve (AUC) was used to assess the 
predictive accuracy of the models. Intra- and in-
terobserver agreement were assessed with Cohen 
k coefficients. A mixed-effects logistic regression 
model was used to test the null hypothesis that 
the frequency of highlighted features was inde-
pendent of the model (correctly trained or over-
fitted) from which the GVR originated, taking 
into account fixed effects from different readers 
and patients. Simple statistical models, includ-
ing a fully connected multilayer perceptron, as 
well as a linear regression, were used to predict 
BNP values from the latent space representations 
of radiographs. Mann-Whitney U tests were used 
to analyze population demographics. P , .05 
was considered to indicate a statistically signifi-
cant difference. Statistical calculations were per-
formed with SciKit-Learn 0.19.0 (13) and R Stu-
dio (version 3.5.1 for Windows, R Core Team, 

Vienna, Austria) with the lme4 package (14).

Results
Mean age, BNP levels, and sex ratios were similar between 
the training and testing sets (Table 1). The unlabeled set 
had an equivalent sex ratio but younger mean age than the 
labeled sets. Female patients had a mean age of 60 years 
(range, 0–107 years), and male patients had a mean age of 
55 years (range, 0–105 years). The entire study population 
had a mean age of 57 years (range, 0–107 years). The aver-
age age of the female patients was significantly higher than 
average age of male patients (P , .001).

Performance of the Deep Learning Model
The neural network’s predictive accuracy for BNP from chest 
radiographs was analyzed on the testing set without further 

Because the training and testing split is created to pre-
vent the model from memorizing patient-specific features, 
we hypothesized that without this split, the model would 
choose to memorize these features rather than using disease-
specific features. This enables testing of the GVR method’s 
ability to identify the features used by a particular model, 
as the overfitted model should produce GVRs with less con-
ventional radiographic features of CHF as compared with 
the correctly trained model. Two readers, one radiology resi-
dent (J.S.N.T., with 2 years of experience [reader A]) and 
one radiologist (A.F.D., with 10 years of experience [reader 
B]), were independently given 100 GVRs with predicted 
high BNPs and were blinded to the originating model and 
all other information about each GVR. Fifty GVRs were 
from the correctly trained model and 50 were from the over-
fitted model.

Figure 1: Generative Visual Rationale (GVR) creation process. The original image 
is encoded into a 100-dimensional vector and then permuted until the disease is no 
longer predicted. The original and permuted vectors are decoded by using the genera-
tive model into “diseased” and “healthy” reconstructions. The subtracted difference is 
superimposed over the original image to produce the GVR, with the removed density 
in orange and the added density in purple. The GVR essentially answers the question 
“How would this patient’s image need to change to appear without the disease?”
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Table 1: Demographics of the Data Sets

Characteristic Test Set Training Set Unlabeled Set
Per radiograph (103 489 total radiographs)
 Total no. 1518 5872 96 099
 Median BNP (ng/L)* 350 (121–978) 374 (127–1010) …
 No. of radiographs with BNP , 100 ng/L† 301/1518 (20) 1244/5872 (21) …
Per patient (46 712 unique patients)
 Total no. 1047 4185 41480
 Mean age 6 standard deviation (y) 74 (16) 74 (16) 57 (22)
 Age range (y) 14–104 17–104 0–107
 No. of female patients† 492/1047 (47) 1884/4185 (45) 18 549/41 480 (45)
 No. of male patients† 555/1047 (53) 2301/4185 (55) 22 931/41 480 (55)

Note.—There was no difference in age, sex ratio, or B-type natriuretic peptide (BNP) level between the testing and training sets used for 
the BNP prediction models (P . .1). The unlabeled set, which was used to train the generative model to reconstruct radiographs, had a 
younger mean age (P , .001). Each patient had one or more frontal chest radiographs in the set, leading to more radiographs than patients. 
Importantly, testing and training sets were separated at a patient level.
* Data in parentheses are interquartile ranges.
† Data in parentheses are percentages.

Figure 2: A, Scatterplot of predicted B-type natriuretic peptide (BNP) versus actual 
BNP on a logarithmic scale for the correctly trained model. B, Receiver operating char-
acteristic (ROC) curve. At a cutoff of 100 ng/L, this model achieved an area under the 
ROC curve, or AUC, of 0.82 for predicting BNP from frontal chest radiographs.

ensembling. Images were encoded into the latent 
space, and a multilayer perceptron (15) was ap-
plied. At a cutoff BNP of 100 ng/L as a marker 
for the presence of CHF, the correctly trained 
model obtained a good AUC of 0.82 (Fig 2). 
The linear regression model applied to the latent 
space achieved the same AUC of 0.82. The over-
fitted model achieved an AUC of 0.99 because 
it memorized each radiograph during training. 
When tested on the previously unseen validation 
set, the overfitted model subsequently achieved 
an AUC of 0.75, indicating poor ability to gen-
eralize as a result of overfitting.

GVRs for Predicted “Diseased” Radiographs
A selected sample of GVRs from the correctly 
trained and overfitted models are shown in  
Figure 3. Results of the blinded GVR feature as-
sessments are presented in Table 2. Reader A was 
generally less likely to assign features than reader 
B and had lower intraobserver agreement, par-
ticularly for airspace opacity. Interobserver agree-
ment was highest for cardiomegaly. There was a 
higher frequency of cardiomegaly (153 [76.5%] 
of 200 vs 64 [32%] of 200; P , .001) and pleural 
effusion (47 [23.5%] of 200 vs 16 [8%] of 200;  
P = .003), highlighted by the correctly trained 
model compared with the overfitted model. 
While airspace opacity was more frequently 
highlighted by GVRs from the correctly trained 
model, this was not statistically significant (35 
[17.5%] of 200 vs 12 [6%] of 200; P = .38). 
Overall, 127 (63.5%) of 200 GVRs from the 
overfitted model failed to highlight any features 
of CHF, compared with 40 (20%) of 200 for the 
correctly trained model (P , .001).



Visualizing Neural Network Learning on Chest Radiographs in Congestive Heart Failure

518 radiology.rsna.org n Radiology: Volume 290: Number 2—February 2019

Figure 3: Chest radiographs predicted to indicate a high B-type natriuretic peptide (BNP) level. From top left to bottom right, images obtained 
in, respectively, an 80-year-old man, a 69-year-old woman, an 69-year-old woman, a 48-year-old man, a 68-year-old man, and an 86-year-old 
woman. Selected Generative Visual Rationales (GVRs) from the correctly trained model (top) and overfitted model (bottom) are shown. GVRs 
highlight features that the model believes need to be removed (orange) or added (purple) to remove the disease prediction. In the example of BNP 
prediction, the GVRs from the correctly trained model highlight congestive heart failure features, including cardiomegaly (arrowheads), pleural effu-
sions (arrow), and airspace opacity (∗). These features are statistically assessed in a larger blinded set in Table 2.

Table 2: Number of Features Identified by Blinded Readers on GVRs

Model and Reader

Heart Failure Features

Cardiomegaly Pleural Effusion Airspace Opacity No CHF features

First Reading
Second  
Reading First Reading

Second  
Reading First Reading

Second  
Reading First Reading

Second  
Reading

Correctly trained model
 Reader A 35/50 34/50 6/50 3/50 4/50 3/50 12/50 15/50
 Reader B 41/50 43/50 19/50 19/50 14/50 14/50 5/50 8/50
 Pooled result 153/200 (76.5) 47/200 (23.5) 35/200 (17.5) 40/200 (20)
Overfitted model
 Reader A 18/50 14/50 3/50 1/50 0/50 0/50 31/50 36/50
 Reader B 16/50 16/50 7/50 5/50 6/50 6/50 31/50 29/50
 Pooled result 64/200 (32) 16/200 (8) 12/200 (6) 127/200 (63.5)

Note.—Reader A was a radiology resident, and reader B was a radiologist. Each reader assessed 100 Generative Visual Rationales (GVRs)—
50 from a correctly trained model and 50 from an overfitted model. This process was repeated (in reading 1 and reading 2) with GVRs 
displayed in random order. For instance, reader A identified 35 GVRs demonstrating cardiomegaly as a feature from the correctly trained 
model on their first read. This demonstrates a higher frequency of cardiac failure features highlighted by the correctly trained model. CHF = 
congestive heart failure. Data in parentheses are percentages. The intraobserver k for reader A was 0.78 for cardiomegaly, 0.43 for pleural ef-
fusion, 0.26 for airspace opacity, and 0.76 for no CHF features. The intraobserver k for reader B was 0.75 for cardiomegaly, 0.79 for pleural 
effusion, 0.75 for airspace opacity, and 0.81 for no CHF features. The interobserver k was 0.64 for cardiomegaly, 0.31 for pleural effusion, 
0.20 for airspace opacity, and 0.67 for no CHF features. The P value for the correct versus overfitted difference was .001 for cardiomegaly, 
.003 for pleural effusion, .38 for airspace opacity, and .001 for no CHF features.
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Figure 4: Chest radiographs in a 36-year-old woman. (a) Generative Visual Rationale (GVR) using the correctly trained model (top) and over-
fitted model (bottom) for the same input radiograph. For GVR, the correctly trained model highlights cardiomegaly (a sign of congestive heart 
failure), as well as low body mass (independent B-type natriuretic peptide, or BNP, associations), while the overfitted model highlights edges, sug-
gesting memorization of the radiograph. (b) Comparison with other available interpretability methods. The other methods produce less intelligible 
visual reasoning. An animated movie showing this radiograph being permuted from “diseased” to “healthy” is available as Movie 1 (online). 
LIME = Local Model-Agnostic Explanations.
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BNP: removal of cardiomegaly and higher body mass else-
where. The GVR from the overfitted model simply alters edges, 
indicating memorization of the radiograph. Other commonly 
used interpretability techniques, including occlusion maps, in-
tegrated gradients, Local Interpretable Model-Agnostic Expla-
nations, or LIME, and global max pooling (16,17) provide far 
less useful information about the prediction (Fig 4b).

Inverse GVRs for Predicted “Healthy” Radiographs
To further validate the image features learned, inverse GVRs 
were generated on predicted healthy radiographs to answer 
the question “How would this radiograph change if it had an 
elevated BNP?” A selected sample of inverse GVRs is shown 
in Figure 5 and confirms that the model adds CHF features. 
Inverse GVRs from a single healthy radiograph at progressively 
higher BNP levels are shown in Figure 6. At 4000 ng/L, the 
model adds a pacemaker, indicating that it has learned this as 
an additional feature of raised BNP.

The readers noted during their evaluation of the GVRs 
that reduced body mass (axillary/supraclavicular/chest re-
gions highlighted purple) was unexpectedly highlighted fre-
quently in GVRs. Because this was not a conventional radio-
graphic feature of increased BNP, readers had not been asked 
to specifically identify this. However, in light of the fact that 
obesity is known to reduce BNP values, we believed that it 
was biologically plausible that the model was utilizing the ap-
parent body mass as a feature for identifying radiographs with 
low BNP values.

Hence, readers were asked to reevaluate the blinded GVRs 
and found that reduced body mass was more frequently high-
lighted as a reason for elevated BNP by the correctly trained 
model (145 [72.5%] of 200 vs 32 [16%] of 200; P , .001).

Figure 4a compares a GVR produced by the correctly 
trained model and one produced by the overfitted model for 
the same radiograph. It demonstrates the density changes that 
the correct model predicts would need to occur to normalize 

Figure 5: Normal chest radiographs in (a) 73-year-old, (b) 86-year-old, (c) 81-year-old, and (d) 94-year-old 
women show selected inverse Generative Visual Rationales for radiographs with predicted normal B-type natri-
uretic peptide (BNP) that answer the question “How would this patient’s radiograph change with an elevated 
BNP?” Purple = density added and shows that the model creates the expected features for congestive heart fail-
ure, including cardiomegaly (arrowheads), pleural effusions (3) and airspace opacity (∗).
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Figure 6: Normal chest radiograph in a 91-year-old man analyzed with the inverse Generative Visual Rationale (GVR) technique. Top row from 
left to right: inverse GVRs for a radiograph with predicted normal B-type natriuretic peptide (BNP) visualized at BNP levels of 250, 1000, and 
4000 ng/L, respectively. The model progressively adds cardiomegaly (arrowheads) and pleural effusions (white arrow), and, at 4000 ng/L, it 
adds a focal left upper zone density representing a pacemaker (black arrow). An animated movie showing this radiograph being permuted from 
“healthy” to “diseased” is available as Movie 2 (online).

Discussion
This study shows that GVRs can reveal imaging features 
learned by a deep learning model trained to predict BNP 
values as a marker of CHF from frontal chest radiographs. 
Current techniques available to localize findings on medi-
cal images include occlusion maps, global max pooling, 
and LIME. These methods examine the contribution of 
individual pixels or small patches (groups of pixels) to the 
final predication, with more important pixels or patches 
highlighted. In contrast, GVRs examine how the image as 
a whole has to alter to change the prediction and are there-
fore able to identify non-local image features such as soft-
tissue thickness or cardiomediastinal contour, which are not 
necessarily found within one region of an image. Given the 
ability of GVRs to highlight features that make the image 
abnormal, this helps discriminate between correctly trained 
models, which would use expected features, and overfitted 
models, which would not.

GVRs in Medical Imaging
Unlike recognizing handwritten digits, where there is a clear 
answer, many problems within radiology deal with images 
that cannot be confidently classified. Therefore, when ap-
plying machine learning to radiology problems, incorrect 
predictions based on incorrect features are difficult to de-
tect, especially with existing interpretability techniques. 
Most efforts to avoid bias therefore focus on rigorous data 
preparation and training methods (18), with little current 
attempt to isolate faults after the model has been trained.

GVRs are predicated on the idea that the ability to gen-
erate realistic images similar to those in the original data 
set implies understanding of the data set itself. By predict-
ing disease from the latent space representation of an im-
age, the model can use image features learned during its 

unsupervised generative training. This allows GVRs to 
give an intuitive visual explanation of what a deep learning 
model has learned and to rationalize individual predictions. 
This could be useful in the emerging role of deep learning 
models as second readers—by providing GVRs to justify 
individual predictions. The specific application to chest ra-
diographs is interesting because of their wide use and variety 
of pathologic features, with many groups tackling this prob-
lem specifically with deep learning models such as ChexNet 
(19).

Our study results demonstrate that GVRs can identify 
some confounding image features learned by a deep learn-
ing model. GVRs not only showed that CHF features had 
been learned de novo by the correctly trained model but 
also demonstrated an ability to expose the overfitted model 
and revealed that the correctly trained model was unexpect-
edly highlighting chest wall soft tissues when predicting 
BNP. This prompted a reevaluation of the blinded GVRs, 
which found that reduced body mass was more frequently 
highlighted by the correctly trained model. This unexpected 
feature caused the authors to review published literature and 
learn of a negative association between BNP and obesity 
(20,21). While adding an extra feature for assessment is un-
conventional, we believe that the ability of GVRs to identify 
this unexpected feature is a strong argument for the utility 
of GVRs and that the unusual step of asking readers to re-
view an additional feature does not invalidate these results.

Although we have demonstrated the GVR technique 
only in our specific data set and problem, GVRs have also 
been shown to be effective in nonmedical data sets such as 
the benchmark Modified National Institute of Standards 
and Technology digit recognition problem (7), which sug-
gests the technique may be able to be extended into other 
medical imaging modalities.
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While a number of techniques have recently been de-
veloped to visualize predictions, these typically identify the 
predictive contribution of individual image patches. In con-
trast, the GVR examines how the image as a whole would 
need to change to elicit a different prediction. With this 
global visual understanding, radiologists and engineers can 
better exclude undesirable biases and potentially even iden-
tify previously unknown imaging features of disease.

Limitations of the Technique
A technical challenge for the GVR technique is in generat-
ing realistic images larger than 128 3 128 pixels at current 
memory limitations. In our study, limited resolution pre-
vented the assessment of fine image details. However, much 
higher resolution generative networks (up to 1024 3 1024 
pixels) may mitigate this limitation in the future (22).

Another fundamental limitation of GVRs is that they use 
a different architecture from existing deep learning models 
that cannot be applied to already trained models. Adoption 
of a GVR-friendly architecture would be required to use 
GVRs more broadly.

In conclusion, GVRs can identify imaging features 
learned by a model trained to predict CHF from chest ra-
diographs, allowing radiologists to better identify faults and 
biases. Future work will explore the application of genera-
tive learning to further improve deep learning interpretabil-
ity in medical imaging.
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