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Abstract
This paper presents a systematic literature review concerning 3D segmentation algorithms for computerized tomographic
imaging. This analysis covers articles published in the range 2006—March 2018 found in four scientific databases (Science
Direct, IEEEXplore, ACM, and PubMed), using the methodology for systematic review proposed by Kitchenham. We
present the analyzed segmentation methods categorized according to its application, algorithmic strategy, validation, and use
of prior knowledge, as well as its general conceptual description. Additionally, we present a general overview, discussions,
and further prospects for the 3D segmentation methods applied for tomographic images.

Keywords 3D segmentation · Computerized tomographic imaging · Kitchenham’s systematic review · Segmentation
methods categorization

Introduction

Segmentation is a key process where a given input signal
I is divided into its constituent regions or partitions [1].
These partitions should share some local properties in
common regarding low-level cues, such as pixel or voxel
intensities, continuity, and regularity of the signal, variance,
texture information, and others, usually guided by some
similarity criterion used to guide the merging process [2].
This basic concept goes beyond the idea of dimensionality
and can be applied also to bi-dimensional or volumetric
samples, single-channel or multi-variated real-domain, and
multi-range or normalized data.

The early stages of image segmentation were derived
from the uni-dimensional case of grayscale images. After
several computational improvements of hardware archi-
tectures, those methods were quickly extended to the
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multi-dimensional case, including not only color but con-
catenating other information into subsequent dimensions.
The fact is that there are several methods found in the liter-
ature whose concepts are merely extensions of the 1D case
previously designed. Additionally, with the popularization
of the use of volumetric data whose acquisition procedure
is provided by a non-destructive device, such as comput-
erized tomographic imaging—CT-imaging, magnetic res-
onance imaging—MRI, and its derivations; segmentation
algorithms taking into account 3D information were also
developed for health, material, geology, and many other
application domains. Those methods are usually applied
considering its voxel’s organization in a fully 3D context,
but can be applied slice by slice as well.

On the other hand, the wide variety of 3D segmenta-
tion methods can make difficult the analysis of the most
suitable approaches for specific purposes/applications. Over
the literature, we can find extensive reviews specifically
designed to investigate 3D segmentation methods. For the
medical context, there are several methods developed for the
segmentation of specific human organs or anatomical struc-
tures. A more general description regarding 3D segmen-
tation of medical images is presented by [3]. This review
categorizes the segmentation methods into threshold, based
on pattern recognition techniques and lastly deformable
models. For each category typical algorithms are presented,
as well as their potential applications for each model
for female pelvic cavity. Later, the same authors present
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a review of algorithms for medical image segmentation
and their applications to female pelvic cavity [4], where
the methods are classified into threshold-based, clustering-
based, parametric, and geometric deformable model meth-
ods. The methods were tested for the segmentation of
female pelvic cavity, presenting their distinct characteris-
tics and presenting, in the end, the main observed guidelines
for the construction of segmentation algorithms. In [5], a
review of a total of 28 3D segmentation methods specifically
designed to determine the composition of atherosclerotic
plaques is presented. In this context, the morphology of
atherosclerotic plaques need to be measured, besides other
features such as echogenicity and texture found in images.
The methods are categorized according to its main concept
construction, such as image processing, clusterization, and
supervised classification, as well as its effectiveness and
drawbacks.

Different from the aforementioned studies, in this paper
we aim to investigate and highlight the most relevant works
over the literature, published within the range of 2006—
March 2018, related to 3D segmentation considering CT-
imaging as acquisition mean for general applications. Based
on this investigation, we found several applications for 3D
CT-imaging segmentation, as well as particular properties
and features, that when analyzed collectively, categories
of methods can be observed. This investigation has as
main contribution the use of the guidelines proposed by
Kitchenham [6], which is a well-established methodology
for systematic literature review, providing a reproducible
way to select relevant papers when the same keywords and
tags are used.

The remaining of this paper is organized as follows:
Section “Approach for Systematic Review of the Lite-
rature” describes a brief overview of the methodology app-
lied to execute the systematic review of the literature.
A general categorization of the 3D segmentation methods
found in the literature is presented in “3D Segmentation
Approaches”. The performance evaluation and a general
overview for 3D segmentation methods is described in
“Performance Evaluation Analysis”. Finally, discussion,
future prospects and conclusions are presented in the
“Discussion” and “Conclusion”, respectively.

Approach for Systematic Review
of the Literature

The Kitchenham’s approach designed for systematic review
has as main objective to provide a manner to evaluate
and interpret all available research which is relevant to a
particular research question, topic area, or phenomenon of
interest [6]. Kitchenham’s methodology is based on three
guidelines used by medical researchers [7–10] and its most

important feature is to keep the search reproducible when
the same keywords and tags are used.

The following steps are executed to perform a systematic
review of the literature as described by Kitchenham: first,
a research topic is defined in order to guide the review
process. In this paper, the research topic used was 3D
segmentation applied to tomographic images. After defining
the research topic, keywords and search tags are used
to search papers on scientific databases. The following
keywords and tags were used on the following scientific
databases:

– Science Direct: pub-date > 2005 and pub-date <

March 2018 and TITLE-ABSTR-KEY(3D segmentation)
and TITLE-ABSTR-KEY(computer tomography));

– IEEEXplore: ((“3D segmentation”) AND computer
tomography) and Year: 2006 - March 2018);

– ACM: ((+“3D segmentation” +computer +tomogra-
phy) and Published since: 2006 - March 2018);

– PubMed: ((“3D segmentation” AND full text[sb] AND
( “2006/01/01”[PDat] : “2018/01/31”[PDat] ))) AND
Computer tomography;

This search resulted on a total of 182 articles. The next
step, is the articles selection based on a selection criterion.
The following criterion was used in this work: articles
written in the English language; having 3D segmentation
algorithm as a main description, not only the use of a
software that performs 3D segmentation; and the work
was available for analysis, i.e., we had access to the
full paper. With the selection criterion application, and
removal of repeated works, 98 articles were selected, which
required a detailed inspection. The selected works were
categorized according to the main method used on the
segmentation process. Finally, the Table 1 was constructed
in chronological order, summarizing the highlighted works
key aspects.

3D Segmentation Approaches

In this section we present the categorization of the selected
works according to the main concept of construction
employed. For each group of methods, a general description
in terms of algorithmic functionality or strategy is provided.

The first group of methods are those based on simple
segmentation techniques such as thresholding and graph-
based approaches. As the input data is a volumetric
information, the requirements for those methods are
homogeneity and continuity verification based on voxel
similarity. The next group of methods are based on curve
or contour evolution, the so-called level set methods. These
methods take the advantage of using gradient information
to construct a vector field and then convolve a curve or
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spline to approximate the segmentation. They can be fully
automated or supervised, where an input seed information
is required to start the segmentation. Using a voxel-
merging strategy, the region growing-based methods are
also found in the literature. This category of methods are
generally based on a bottom-up strategy, starting from pixel-
level as initial regions and analyzing the neighborhood
areas searching for other regions that satisfy some
similarity criterion. Combining the aforementioned methods
associated with the use of prior knowledge, there are the
model-based segmentation techniques (deformable or not).
These methods guide the segmentation process based on a
known shape and spatial localization of the voxels/regions
on the volume, as well as the relationships among them.
Using a different paradigm, the use of Neural Networks are
also used for 3D segmentation. Neural Networks is a bio-
inspired computational model where a two-step procedure
composed of training and testing is used. For the training
step the input layer uses the information provided by other
segmentation methods aiming to learn a classifier and
perform segmentation on other images. There is also a
general category of segmentation methods named here as
Miscellaneous, grouped according to specific concepts not
included in the aforementioned categories. For this one,
the type of methods included are Association Rule mining,
Connected Component, Dynamic Programming, Genetic
algorithms, Fuzzy Connectedness, Hessian Matrix Based,
Histogram Based, Polynomial Fitting, Template-Matching,
and Tensor voting. This category also includes works
developed as a combination of the previously published
methods in some kind of hybridization.

Threshold Methods

Threshold-based methods were one of the first and simplest
segmentation techniques developed. The proposed method
basically use a threshold value to turn a grayscale image into
a binary output corresponding to the regions of the same.
The method runs through all the image pixels and if the pixel
value is above the determined threshold value, the pixel is
set to the maximum value from the scale used (minimum
otherwise).

Besides the scope of this paper should consider works
published over 2006 to 2018, one of the first approaches
using a threshold segmentation strategy, for the bi-dimen-
sional case, was proposed by Katz [11] in 1964, and the first
survey was published by the end of the 1970s by Weszka
[12]. After that, many surveys and techniques related to
threshold methods can be verified for the bi-dimensional
case.

For the three-dimensional case, three methods specifi-
cally applied to volumetric information, and found in our
literature review, are proposed.

The first is presented by Li Zhang et al. [13], where
a 3D method for segmentation of the choroidal vessels
and quantification of choroidal vasculature thickness and
choriocapillaris-equivalent thickness of the macula, in
spectral domain optical coherence tomography (SD-OCT),
is proposed. The proposed method has some pre-processing
steps such as a three-stage approach to change the contrast
of the silhouette regions in the choroidal layer and to reduce
the likelihood of incorrect segmentation due to retinal
vessel silhouettes; and using a graph-based multilayer
segmentation approach in the OCT volume to reduce the
geometric distortion of the choroidal layer and selected the
target region to use the choroidal vasculature segmentation
method; The choroidal vasculature segmentation consists of
two main steps: vessel detection and vessel segmentation.
For the vessel detection, the choroidal vessels were modeled
as 3D tube-like objects in a resampled subvolume and
multi-scale Hessian matrix analysis was executed to detect
the choroidal vessel voxels. For the vessel segmentation,
voxel groups with relatively high vesselness values, were
selected by thresholding of the vesselness map. Lastly,
a thin plate spline (TPS) approach was applied to the
flattened segmentation result and to envelop the upper and
lower surfaces of the choroidal vasculature segmentation
result. To evaluate the proposed method, a reproducibility
analysis was conducted in 43 SD-OCT scans using
three reproducibility indices: overlapping rate, skeletonized
overlapping rate, and Dice coefficient.

The second is presented by Javaid et al. [14], where
a method for detection of lung nodules in computerized
tomography (CT) images is presented. The proposed
process begins with the tomographic volumes pre-processed
through the application of contrast enhancement filter. After
that, the lung region extraction is performed from the lung
CTs with the use of a thresholding method associated to
a contour refinement with morphological operators. The
thresholding value is directly related to the segmentation
quality; therefore, this value is chosen based on the analyzed
volume histogram. The next step consists on the localization
and segmentation of potential nodule candidates. This stage
is composed of two steps: (i) all nodule candidates are
detected and segmented; (ii) a refinement is performed for
nodule stucked in blood vessels and bronchioles. For the
initial segmentation, the k-means method is used, assigning
the voxels to three classes (background, parenchyma tissue,
and nodule candidates). For the identification of nodules
bind to ramifications, the morphological opening operator
with a specific shape, to break the 2D connections between
ramification and nodules, is employed. To remove 3D
connections between them, a comparison strategy is used
by the 3D connected region area for each slice, i.e., if
the difference between the largest with the smaller areas
is greater than a given threshold, then the structures with
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Fig. 1 Representation of the method proposed by Javaid. Extracted
from [14]

smaller areas are removed. The potential nodule detection
is divided into six groups and for each group features are
extracted for classification and false positive removal. The
classification process is realized through the support vector
machine (SVM), for big nodules, and with a rule based
scheme for small nodules. Figure 1 shows a representation
of the proposed method. The proposed approach was
applied on a set of 110 tomographic volumes from the
Lung Image Database Consortium database and on the
clinical images from Mayo hospital [15]. For the evaluation
process, the resulting images were compared with manual
segmentation performed by two specialists in terms of
sensitivity, specificity, accuracy, and the number of false
positive values for each analyzed case.

The third method is presented by K. Y. Chang et al. [16],
where a vessel segmentation method in brain computed
tomography angiography (CTA) is shown. The proposed
method employs CT and CTA images using a simple
tresholding technique in both images, performing after a
comparison between the image pixels and removing bone
structures, based on their gray levels. Then, an erosion
process is applied to remove all the remaining bone
boundary pixels followed by a conditional dilatation. Lastly,
with the vessel regions isolated from its neighborhood,
a 2D or 3D region growing algorithm can be applied to
extract the vessel structure. The authors explain that several
experiments were performed, showing that the method
works quite well if vessels and bones are connected visually
in CTA images.

The fourth method is presented by Migliori et al.
[17], where a method for 3D reconstruction, applied to
optical coherence tomography (OCT), is explored. The
proposed 3D reconstruction method is composed of four

stages: image pre-processing, lumen contour detection, stent
struts detection, and alignment and orientation of detected
lumen contours and stent struts with the vessel centerline.
In the image pre-processing stage, the OCT frames are
converted to grayscale and the line dividing the two vessel
visualization modalities is used to isolate the vessel cross-
section. Then, pixels belonging to the OCT visualization
tools are removed by forcing their grayscale values to zero.
The processed images are converted in polar coordinates
aiming to express the position of each pixel through radial
and angular coordinates that are centered on the OCT
catheter. The catheter covers a region at the top of the
image in polar coordinates and it is deleted by image global
thresholding at a selected image portion. In the lumen
contour detection stage, regions with higher intensity pixels
are isolated, the salt-and-pepper noise is removed from each
image, by applying an intensity thresholding followed by
other morphological operations. The obtained binary mask
is convolved over the grayscale image. In the stent struts
detection stage, a fuzzy logic approach is applied, in the
first sets of high-intensity pixels, to identify strut pixel
and delete false positives. This procedure is possible due
to the peculiar characteristic of OCT images, where stent
struts appear as high reflecting elements followed by a
trailing shadow. At the end of the procedure, each image
is converted back to Cartesian coordinates. Lastly, is the
alignment and orientation of detected components, where
the detected lumen contours and stent struts are aligned
with the centerline of the artery phantom.The alignment
method includes the superimposition of lumen contours on
the corresponding vessel centerline point and, subsequently,
the orientation according to Frenet–Serret formulas, which
resemble the alignment of OCT frames perpendicularly to
the curve. Two point clouds are obtained from this last
stage, one for the lumen contours and one for the strut
centroids. The results from the proposed method were
evaluated against manual segmentation by two independent
expert image readers, through the computation of similarity
indexes (Jaccard, Dice, Sensitivity, and specificity).

The last method is presented by Farzaneh et al. [18],
where a method for segmenting CT liver images using atlas
information, adaptive threshold, and superpixel is proposed.
The proposed method starts by registering annotated images
and creating a Bayesian probability model that accounts
for location and intensity. Then, for each volume slice,
an adaptive threshold is applied based on the calculated
Bayesian model. Next, the anatomical information is
incorporated into the approximate liver region, generated
in the previous step, to create a new ROI. Lastly, the liver
is segmented using the determined ROI and the superpixel
generated by the Simple Linear Iterative Clustering (SLIC).
The experiments performed with the proposed method
where evaluated and compared with the authors’ previous



J Digit Imaging (2018) 31:799–850 819

approach, and with a version without the superpixel
generation, in terms of Dice, Jaccard, sensitivity, specificity
similarity values.

Graph-Based Approaches

Methods based on graph theory have a structure that can
be represented as a graph, where the graph cut method is
performed searching, on this structure, for the minimum
cut on the graph providing the segmentation result. The
seminal work using graph for segmentation process was
the study presented by Boykov et. al in 1998 [19]. On the
proposed work, the author used the graph theory to find
the global minimum of energy function through a minimum
multi-way cut on a graph using a greedy method for
computing a multi-way cut. After that, a variety of methods
emerged applied for bi-dimensional cases [20]. Due to the
practical representation and the wide variety of methods
for segmentation, the application of graph techniques for
volumetric data was inevitable. On the delimited range of
search, a total of 18 studies were found that explain how the
graph theory was used for 3D segmentation applied to CT
images.

In [21], a graph-based segmentation technique based
on the live-wire 2D method is presented with two
significant changes: the cost map based on wavelet and the
clusterization through Fuzzy C-Means (FCM). These two
modifications have increased the accuracy and reduced the
computational cost of the proposed solution. The live-wire
2D has as base a frontier analysis and can be described
on the follow steps: Image cost map calculation, which
reflects the pixel edge property; Image representation by a
graph wherein each vertex corresponds to a pixel associated
with one element in the cost map and the edges link
the vertex with each one of its eight neighbors; Optimal
paths localization on the graph; and the desired frontier
selection based on a seed point, a free point and an
interactive segmentation method. The segmentation process
ends when a closed contour is found, which extends the
contour to the rest of the volume for the 3D case. The
3D approach uses the same live-wire 2D notion including
the use of morphological operators, hole filling, clustering
through FCM, and the next slice contour detection. The
process is completed when there is no further appearance
to be processed on the segmented structures. The proposed
method was tested on CT and MRI images of the lungs and
knees joint, being evaluated based on the resistance-to-noise
approach.

In [22], Jiamin Liu et al. present 3D segmentation method
of the bones joints in MIR and CT. The proposed method
can be summarized in the following steps: Segmentation of
the bone in scene C1 corresponding to Position 1; Selection
of a Volume of interest (VOI) corresponding to the bone

in scenes C1 and C2; Registration of the VOI scenes C1
and C2; and matching the segmentation corresponding to
the VOI scene of C1 with the VOI scene of C2. For
the segmentation of the bone in scene 1 corresponding to
Position 1, the live wire method is employed. This method
uses an input from the user, selection of a boundary point,
to display in real time an optimum path from the initial
point to any current position of the cursor. In particular,
if the cursor is positioned near the boundary, the live wire
snaps onto the boundary. In live wire, pixel vertices are
considered to be the nodes of a directed graph, and each
pixel edge is considered to be oriented and represents two
directed arcs. The output of this first step is a binary scene
C1 representing a segmentation of B. For the VOI selection,
a rectangular box is determined, which the faces are parallel
to the coordinate planes of the scene coordinate system and
which encloses B with a gap of a few 5–10 voxels all around.
A VOI of the same size is determined for the scene C2,
with a manual adjust. For the registration of the VOI scenes
C1 and C2, different methods of registration while dealing
with MRI and CT scenes. For MRI the scenes are registered
by maximizing the mutual information between C1 and C2.
For CT scenes, a method based on landmarks is employed.
Lastly, for matching the segmentation corresponding to the
VOI scene of C1 with the VOI scene of C2, the result
obtained in the last step is used as model to search in C2 a
position and orientation of this model that best matches the
boundary and the intensity pattern and, subsequently, obtain
the final segmentation of B in C2. The proposed method
was tested in CT and MRI images and the performance was
evaluated in terms of qualitative and quantitative analysis.
Qualitative analysis via segmentation results display and
quantitative analysis via calculation of measures such as
precision, accuracy, and efficiency.

Another graph-based approach, proposed by Aslan et
al. [23], is a framework for 3D segmentation of trabecular
and cortical bones on CT images. This framework and
its posterior evolution [24], which has the adding of the
matched filter for the automatic localization of the vertebral
region, use the application of two methods separately: graph
cut and volume local growing, to segment the trabecular
and cortical bones. On the graph cut method, each vertex
on the graph represents a voxel and the weight of each
edge is defined based on the segment regional properties,
integrating the linear combination of Gaussian with the
Markov Gibbs Random Fields (MGRF). The segmentation
process, basically, consist on finding the min cut graph,
which is computed by the s-t Min-Cut/Max-flow algorithm.
The volume local growing uses a global criterion to segment
the image components. The criterion used has as base
the mean intensity and the standard deviation on the
26-neighborhood. The proposed framework results were
presented with an accuracy measurement and validation
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on 16 sets of computed tomography images with theirs
respective ground truth. Also, the European spine phantom,
which is a pattern accepted for the quality control on bones
densitometry, was taken in consideration.

The study presented by Kongkuo Lu et al. [25], also uses
a graph-based technique. In his work, two approaches for
segmentation of lymph nodes, from chest central part on CT
images, are proposed. On both approaches, the user gives
an initial information on a reference slice and, starting from
this initialization, the methods perform the segmentation.
The two proposed approaches, single-section live wire
and single-click live wire, have as base the 2D live-wire
algorithm, which is an edge detector method that defines
the segmentation problem as an optimal search in graph by
means of active contour analysis. Based on this algorithm,
the two approaches for 3D segmentation were proposed: On
the single-section live wire, the base algorithm is used to
define the desired region contour on the reference slice. This
contour is then projected for the remaining slices and the
initial seeds are defined based on the pixels that compose
the contour region. A set of adjusted seeds is then defined
based on the pixels within the marked region and the live
wire iterates until converges or reach the stop condition.
On the single-click live wire, the steps are similar to the
previously presented approach, changing only on the region
of interest (ROI) definition. This modification is so that
on the single-click, the user needs only to select a starting
pixel inside of the ROI and the limit region will be defined
automatically. The starting seeds are defined by the rays
propagation in several directions starting from the informed
pixel. The pixels with higher gradient of magnitude, along
their respective ray, will be the seeds and the remaining
processing steps are the same to the first approach. The
experiments with the proposed methods were performed
on a chest tomographies database, measuring the proposed
approaches accuracy, reproducibility, processing time and
success rate.

The approach proposed by X. Liu et al. [26] demonstrates
a method for segmentation of iceballs on CT and MRI
images. The proposed approach uses graph cuts adding
a prior knowledge about the objects shape, so that
each iceball segmentation is initialized with the modeled
shape tendency. This tendency comes from experimental
derived parameters and provides the iceball separation from
the surrounding anatomical structures even with similar
intensity values. The prior shape modeling is derived
directly from the iceball growing model, generating a series
of prior shape mask images for each specific point of the
cryoablation procedure. The masks are calculated through
an hyperbolic sine-shaped function and are embedded to the
graph cut algorithm through regional terms. The graph cut
algorithm uses the max-flow/min-cut theory applying the
algorithm proposed by Boykov and Kolmogory [27] to find

the max flow on the graph, which generates the min cut
graph. The proposed method validation occurred through
experiments on eight specific points of the cryoablation
procedure on two cases, one on real-time MRI-guided
and the other on monitored kidney tumor ablations. The
results were compared with manual segmentations using
the Dice Similarity Coefficient, which is an overlap
measure.

In [28], Reinhard Beichela et al. propose a method
to segment the liver in Computed Tomography images.
The presented approach is composed mainly of two
stages: initial graph cuts based segmentation and interactive
segmentation refinement. For the first stage, a initial
segmentation is generated using the graph cut algorithm.
The cost function employed refers to the cost of assigning a
voxel to a label based on its gray-value similarity to object
seed regions. For this purpose, user defined seed regions are
utilized. After obtaining the initial segmentation, a volume
based segmentation refinement, composed of two steps,
is applied. In the first step, a chunk-based refinement is
performed. The volume chunks are generated by utilizing
a distance transformation, a watershed segmentation and
the boundaries previously obtained. The process of adding
and remove chunks is performed by the user. The second
refinement step, is based on the conversion of the selected
chunks to a set of deformable mesh model which enables
surface-based segmentation refinement. The surface-based
segmentation refinement is an iterative process, user
performed, composed of three steps: surface inspection,
error marking and error correction. The proposed method
was tested in 20 CT images and, for performance assessment,
surface- and volume-based measures were used.

Also proposed by Reinhard Beichela et al. [29] is a
method for 3D segmentation of lymph nodes in CT images.
The method is composed of two stages: In the first stage,
initially, a pre-processing step is performed by truncating
the Hounsfield units between –100 and 150 (lymph nodes
approximately CT densities). Then, the user identifies the
lymph node by specifying the lymph node approximate
center and a directed spherical graph is constructed, so
that the local region around the lymph node is transformed
into a graph-based representation. This transforms the
segmentation problem in an optimization (graph search)
problem, which is solved by using a maximum flow
algorithm. In the second stage, the following developed
iterative algorithm, consisting of four major steps, is
applied: Extraction of gray-value information around the
user selected boundary point; utilizing a breadth-first-search
on the mesh structure, similar neighboring columns are
identified and added to the region set; All the node costs
of the user selected columns in the region set are updated;
and lastly, a new segmentation is calculated based on the
modified node costs. The proposed method was tested
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in 111 lymph nodes from 35 volumetric CT datasets.
For performance assessment, surface- and volume-based
measures were used, such as the Dice coefficient.

Next, a method for segmentation of fluids associated with
retina abnormalities on Optical Coherence Tomography
(OCT) images is presented by X. Chen et al. [30]. The
proposed method consists of two main parts: initialization
and segmentation. The initialization is composed of some
pre-processing step application on the OCT image. Initially,
the superior and inferior retina surfaces are determined
using an 11-surface segmentation algorithm. After, a
method of surface fitting, on the inferior layer, is applied
and an analysis of texture properties and layer thickness
is performed individually in order to find symptomatic
exudate-associated derangement (SEAD) footprints. Lastly,
the retinal images flattening according to thin-plate spline
identified occurs. After the pre-processing step, a voxel
classification is performed during the initialization step.
On the voxel classification, an initial segmentation of the
SEAD areas, filled with fluids, is generated through the
application of a supervised voxel classification approach
trained with the previously segmented superior and inferior
surface voxels. This process assigns to each voxel, between
the retina surfaces, a probability ranged from 0 to 1 that
the voxel is inside a SEAD region. At the end of the
initialization process, the probability of belonging to a
SEAD region is normalized. This normalized probability
map is used to restrict the graph-based segmentation
process. On the segmentation part, two methods were
combined, graph search and graph cut, to segment the
SEAD areas, formulating the segmentation problem as
an energy function minimization problem. The energy
functional built has as base the cost associated with the
segmentation of all surfaces, sum to the cost associated
with the segmented regions and added to the cost associated
with the restrictions between surfaces and regions. The
surface cost function uses the graph search method, the
cost function of the regions comes from the graph cut
method and the restriction cost is linked to the voxels
positioning related to the two defined surfaces. On this
step, the initialization previously executed is integrated to
the framework through the use of the probability values,
where voxels with high probability were used as font seeds
and voxels with low probability were used as sink seeds.
Based on those information, a graph is built, which can
be solved with a min-cut/max-flow algorithm, generating
than the final segmentation result. A general overview of
the proposed method can be visualized in Fig. 2. The
proposed method was evaluated in terms of accuracy,
measured through the true positive volume fraction (TPVF),
false positive volume fraction (FPVF), and relative volume
difference ratio. Also, a correlation statistic analysis using
linear regression and Bland-Altman plots was performed,

Fig. 2 Flow from the method proposed by X. Chen. Extracted from
[30]

evaluating the relationship and agreement between the
manual and automatic segmentation.

In [31], Pazokifard et al. present an automatic 3D
segmentation algorithm to segment the human sternum
in multi-detector computed tomography (MDCT) images.
The proposed algorithm is divided in four steps: bone
structure extraction in the lung MDCT dataset; Sternum
segmentation and isolation; Segmentation refinement; and
costal notches localization. To perform the bone structure
extraction, first, the MDCT images are converted to a
conventional image format. Then, extraneous pixels are
removed with a threshold technique. Lastly, the authors
employ a graph cut algorithm to remove the lungs and
extract high-contrast bone structure from the dataset. For
the sternum segmentation and isolation, the 3D result of
bone segmentation goes through a four-step procedure that
includes ignoring the half-back of the 3D bone segmentation
result; finding N number of bone cross sections in mid-
coronal plane; tracing all the N objects forward and
removing them at each step; and applying size constraint
to stop the tracing procedure for each N objects. With
the sternum isolated, a refinement process is applied to
remove undesired parts from the sternum, using a 2D
active contour algorithm. Lastly, to determine the costal
notches localization, the sternum mask is employed and the
authors manually mark and determine seven costal notches
in the z-direction, which are used to determine the costal
notches location. The proposed method was tested in 16
patient datasets and the proposed algorithm performance
was evaluated using Dice coefficient similarity, Sensitivity,
Specificity, and the rates of false negative and false positive.

In [32], Grosgeorge et al. proposed a method to 3D
segment the esophagus in thoracic CT scans using a
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skeleton-shape model to guide the segmentation. The
method has basically two main steps: 3D segmentation by
graph cut and 2D propagation. In the first step, the skeleton
model is constructed based on a principal component
analysis (PCA). Then, this model is used to guide the 3D
graph cut to segment the esophagus. In this process, the
3D segmentation overestimate from a certain slice, taking
aorta into esophagus segmentation. This slice is used as
breaking slice to stop the 3D graph cut and perform the 2D
segmentation (2D propagation) by graph cut with a skeleton
prior for the remaining slices. The proposed algorithm
evaluation was performed in six patients’ CTs, comparing
the obtained results to manual ground truth through the Dice
metric.

Different from the aforementioned graph-based
approaches is the method presented by El-Zehiry et al.
[33], where the obtained results, for segmentation on CT
and MRI images, were submitted to an edition process. His
proposal of an edition tool, has as objective to correct the
segmentation results using both 2D and 3D data through the
integration of all available data in one energy minimization
framework. The algorithm needs a simple input, a splice
2D, generating 3D updates from the segmented volume.
The edition using splice is formulated as an energy mini-
mization problem where a graph-based approach is used
for the energy optimization. Each voxel is associated with a
binary variable that represents the voxel label. Each binary
variable has one correspondent vertex on the graph and
each existent edge is used to link neighbor vertexes, where
each edge weight reflects in the energy function terms.
This function has two concurrent terms: the first term aims
the smoothness guided by the existent data and the second
term represents the pre-segmentation. The initial seeds are
provided based on an interaction via splice, which uses
a set of user-inputted points to add the seed to the set of
background or foreground seeds. To evaluate the proposed
approach, a quantitative analysis based on a dataset of 30
liver MRI images was performed, comparing the accuracy
of the edited segmentations with the segmentations per-
formed automatically. The error measurement used was the
mean point-to-surface with 2000 points.

In [34], Antony et al. present a graph-based approach
for segmenting multiple surfaces with a shared hole, aiming
the segmentation of the neural canal opening (NCO) in
spectral-domain optical coherence tomography (SD-OCT)
Volumes. In the iterative approach proposed, the original
formulation of the graph-theoretic approach is used to
segment the junction of the inner and outer segments of
the photoreceptors and the Bruch’s membrane (BM) in
the volumetric image. Next, the following two steps are
repeated until achieving convergence of the segmented
boundary B: In the first step, a projection image is created
by averaging 20 pixels above and below the BM surface.

Then, the estimate of the projected boundary column B of
the NCO is updated by finding a minimum closure in a
graph using a graph-theoretic approach that incorporated
shape priors. In the second step, the corresponding optimal
set of feasible surfaces that meet at the hole boundary in
the volumetric image is found by solving another single
minimum-closure problem in a constructed graph. The
proposed method was tested using 44 optic nerve head
SD-OCT scans and the results were compared against
manual delineations obtained from expert, and against two
other methods, in terms of unsigned difference between:
the 2D segmentation in the projection image and the
manual delineations, the z locations of the automated
segmentation and the manual delineations, and the 3D
Euclidean distance between the automated segmentation
and the manual delineations.

In [35], an iterative segmentation method based on graph
cuts for segmentation of the left ventricular wall, on images
of single-photon emission computed tomography (SPECT)
of the rat heart, is presented. The proposed method consists
of three steps: the input image conversion from Euclidean
space to the spherical-cylindrical (S-C) space, the search for
the myocardium center surface on the 3D S-C image and
the epicardial and endocardial boundaries localization. The
image conversion is given through the identification of the
apex and base from the left ventricle. The identification is
performed by the user input with a insertion of a T-shaped
target and the casting of perpendicular to the U-shaped
rays. From the T target, rays are created in cylindrical and
radial directions in the 3D space. Each ray is associated
with a radial angle, a height value or an elevation angle.
Therefore, each Euclidean voxel, within the cylindrical area,
has a ray, a radial angle, and a height or an elevation angle
assigned, resulting in a 3D S-C image. For the search for the
myocardium center surface, on the 3D S-C image, the graph
cut method was applied, where each vertex is associated
with an image voxel on the S-C space and is connected with
its six closest neighbors. For the epicardial and endocardial
boundary localization, the previously calculated central
line is used and the myocardium thickness is calculated
through the mean and variance calculation for each line,
thus obtaining the ventricular wall segmentation. The
proposed method results were compared against manually
segmentations performed by two specialists according to the
left ventricle systolic and diastolic volume calculation and
against other segmentation softwares.

Vasquez et al. [36] present a framework for extracting
and characterizing the dynamic shape of the 3D wetting
front and its propagation, based in the processing of a
tomographic image sequence. The proposed framework is
composed of two modules: extraction of the 3D wetting
front and characterization and description of the 3D wetting
front. The 3D wetting front extraction is performed initially
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via a 3D extension of the stochastic region merging, where
regions are sets of voxels with homogeneous properties
and grow iteratively by merging smaller regions with a
stochastic test to decide whether regions should be merged.
A graph is employed to structure the stochastic region
merging process. After this initial segmentation, the Multi-
Otsu thresholding and morphological operator applications
provide the wetting front detection. For the characterization
and description of the 3D wetting front, the absolute
curvature descriptor was used. The proposed framework
performance was demonstrated in four sequences of water
infiltration in dry soils, where the obtained results were
compared against estimated ground truth for the water
infiltration.

In [37], an approach presented by Kitrungrotsakul et al.,
where a segmentation method using graph cut associated
with the supervoxels, used as an optimization strategy
for organ segmentation on CT images, is proposed. The
segmentation using graph cut consists, initially, on the
representation of each volume voxel as a node, connecting
each node to its neighbors. Based on this structure,
a min cut is performed on the constructed graph to
discriminate the background and the foreground structures.
The proposed approach performs an optimization on this
structure using the supervoxel idea, which consists on the
voxels clustering to generate a supervoxel set, using this
set as of graph nodes and performing the segmentation on
this optimized structure. For the experiments and results,
evaluation of 10 CT images were used. For the proposed
approach, a quantitative evaluation was given through
the obtained results’ comparison against the segmentation
performed manually by a specialist using the Dice similarity
coefficient.

In [38], Gangsei et al. present a method for automatic
segmentation and identification of pig bones on CT images.
To perform this process, three principles were applied:
segmentation by connectivity, points and lines identification
(landmarks identification), and 3D expansion of Dijkstra
algorithm. For the segmentation by connectivity, a threshold
value was applied and the binary result was labeled. The
connected objects inside the binary image were identified
through the volumes or mass center ranking. To identify the
landmarks, 2D projections of the 2D skeleton were used
extensively. After that, a ROI definition process, based on
the landmark points and the prior knowledge about the
bones orientation, is performed. Inside the ROI, the volume
is seen as a stack of 2D layers and, for each layer, a virtual
cut is constructed in the cutting direction. Lastly, the 3D
expansion of Dijkstra is used to ensure that the resulting
divided surfaces minimized the total cost for separating
the bones, thus obtaining the segmentation surfaces. The
algorithm starts with the last layer, and after the path on one
layer was defined, a region of possible paths is identified

on the next layer. All the points outside these regions are
set with infinity cost and this process repeats for every
subsequent layers. The proposed approach was applied on
485 CT images of pigs and the results were evaluated by
visual inspection.

The last analyzed work, categorized here as graph-
based segmentation, is the method proposed by Jung won
Cha et al. [39]. The method is a modified version of
the conventional graph cuts, where the modification is
performed by adding shape prior and motion information.
The shape prior information is performed by adding active
shape model (ASM) with signed distance functions to the
graph cut energy calculation. The motion information is
added by the use of motion fields from optical flow, which
warp the refined mean shape from the current phase on a
point by point basis to the next phase. With the obtained
warped mean shape, the extended 4D segmentation is
performed via graph cuts and shape refinement using PCA
analysis through the respiratory phases. Summarizing, the
lung and liver boundary segmentation in 4D is accomplished
by using a graph cut, a trained shape model and estimation
of local motion. The proposed method was tested with
4D lung and liver segmentation using the Dice similarity
coefficient to validate the obtained results against expert
delineated ground truths.

Level Set Methods

The level set method was first proposed by [40] to track
moving interfaces and after was used in various imaging
domains. The level set general principle is to represent a
contour evolution through a signed function which the zero
corresponds to the actual contour. Then, according to the
equation evolution, it is possible to derive a similar flow for
the implicit surface that, when applied to the zero level, will
reflect the contour propagation. Later, some works applied
this method as an optimization framework and to computer
vision and medical image analysis problems. The level set
proposal had several works proposed along the years with
different methods and applications [41]. Some examples of
its use were found in our systematic review and are analyzed
hereafter.

The work presented by Jun-Wei et al. [42] is an example
of level set-based segmentation. The proposed method for
extracting a lung texture tree on high-resolution CT images
is described by the following steps: First, an implicit active
contour model guided by an energy model, called local
binary fitting (LBF), is used with dynamic parameters
and modeled by the image gradient information. Then,
a background painting technique based on a nonlinear
intensity map is used to remove the background influence
during the level set function evolution. The background
removal technique is based on the human vision system
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theory, where there is evidence that object recognition
depends not only from the object salience, but also from
the salience characteristics between the object and the
background. This fact indicates that intern object details
can be improved through the contrast reduction between
background and object. Lastly, a comparison between the
proposed method with region-based model and edge-based
model was performed using a lung CT image dataset, on
which the proposed approach showed a greater effectiveness
on the lung texture tree extraction.

An algorithm for 3D segmentation of colon tissue on CT
images and its posterior use for navigation is presented by
D. Chen et al. [43, 44]. The proposed method starts with
the opacified liquid removal through a threshold method
and with the intern colon image intensity equalization.
After that, four initial seeds are put within the colon
region. Then, closed contours focused on initial seed points
are propagated through the desired 3D region borders
with an iterative evolution from the adaptive level set
functions. During each iteration, the information on each
region is estimated by parameters from the probability
density function. On the presented work, a Gaussian
distribution for the points belonging to both classes (colon
and non-colon) was used. With the segmentation results,
an isosurface is generated through the marching cube
algorithm and the central line, used for navigation, is
extracted by a differential equation solution. The proposed
algorithm was tested on a set of 22 CT colonographies
with a varied number of pathologies and was evaluated
measuring its accuracy by the overlap calculation between
the obtained results using the proposed method and the
manual segmentation performed by a specialist.

In [45, 46], Hadjiiski et al. verified the feasibility
of automated segmentation of head and neck lesions on
CT scans. The method studied consists of three stages:
pre-processing, initial segmentation, and 3D level set
segmentation. The system uses as input an approximate
bounding box for the lesion of interest. In the pre-processing
stage, a set of 3D techniques, such as anisotropic diffusion
filter, gradient filtering and rank transform of the gradient
magnitude, are applied to the original CT images, obtaining
a set of smoothed images and a set of gradient images.
In the initial segmentation stage, a subset of pixels that
are relatively close to the center of the lesion and that
belong to smooth areas are automatically selected. The
preliminary lesion contour is obtained after applying a
threshold and selecting the set of pixels falling within
3.0 Standard Deviations of the mean and with values
greater than 400 HU. A set of 3D image-processing
techniques are subsequently applied to connect nearby
components and extract an initial segmentation surface.
Lastly, the initial segmentation surface is propagated using
a sequence of 3D and 2D level set method. The method

was tested in 26 CT scans from patients with head and
neck lesions and the results were evaluated based on three
measures: the intra-class correlation coefficient, the average
errors for the automatic percentage change estimates in
pre- to post-treatment volume and area, and the average
absolute (unsigned) errors for the automatic percentage
change estimates in 3D and 2D. This proposed automated
segmentation method was later tested for bladder cancer
segmentation in CT images [47].

A totally automatic 3D segmentation algorithm on non-
contrast-enhanced angiography MRI images was presented
by Hutter et al. [48]. It uses prior knowledge about irregular
blood flow patterns on the carotid bifurcation area to
solve susceptibility problems of the vessel affected by the
flow. The proposed algorithm is divided on three steps:
the first step starts with the maximum intensity projection
generation on the sagittal and transversal axis from the
scan slices. Then, the ROIs are identified through an
adaptive threshold and noise regions are removed from
the stack by searching connected areas on the slices
direction. The second step is the vessel tree skeleton and
the bifurcation detections. This step is performed by the
common carotid artery differentiation from the vertebral
artery in the first caudal slice through a pre-segmentation
by size and connectivity with the bifurcation. The skeleton
consists of the central point localization and the bifurcation
slices. The extraction procedure is performed as follows: the
threshold result from previous slice (k-1) is analyzed using
an ellipsoid fitting. This gives the major axis, the minor axis,
the area, and the center for each vessel segment detected.
Voxels on the major axis are used as seeds for the region
growing algorithm in the slice k. For each slice, a function
f(k) is calculated and the bifurcation slice is determined as
the slice with maximal f(k) value. Lastly, a 3D evolution
level set method is applied, using the pre-segmentation
process as initialization, to obtain the final segmentation
result. The obtained results from 12 datasets were evaluated
based on the ground truth generated by specialists in terms
of sensitivity, specificity, accuracy, the positive predictive
value (PPV), and the Dice similarity coefficient.

Also, in [49], an automatic lung segmentation method
on CT images is shown. An estimate framework called
maximum a posteriori (MAP) is used, which combines
previous neighbor and grayscale information to extract the
lung borders. To build the previous neighbor information
model, a principal component analysis (PCA) is used on
a set of training images. This model is formulated in
terms of level set functions and the surfaces evolve on
agreement with the associated Euler-Lagrange equations.
Finally, an algorithm to refine the borders roughly generated
by the MAP is used, which consist of two steps: the first
step is the automatic detection and the rough lung hilo
region adaptation. The second step is the rough adaptation
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refinement based on the combination of curvature and
probability information. The experiments with the proposed
method were conducted using real lung CT images collected
from a hospital.

The work proposed by Hemmat et al. [50] present a
method for carotid artery lumen segmentation on contrast-
enhanced computed tomography angiography (CTA)
images. Initially, a ROI selection is performed, to avoid
unnecessary computations, and a mean shift algorithm is
used to increase the lumen region intensity homogeneity
along the vessel path without any damage to edges of struc-
tures. After the mean shift, objects whose area are longer
or smaller than a specific parameter are removed with
morphological operators and holes are filled. Then, with
three informed seed points, the center lines are extracted
by a 3D Hessian-based fast-marching shortest path algo-
rithm. Lastly, the center lines associated with a 3D level
set function method are used to perform the carotid artery
lumen segmentation. The proposed method validation was
performed through the method application on 14 CTA vol-
umes and its subsequent obtained result comparison with a
ground truth (GT) generated by specialists. The comparison
with a GT occurred with the following metrics: number
of voxels, volume overlap (Jaccard and Percentage match)
and agreement level between the GT and the result (Dice
similarity coefficient).

Pawel Badura et al. [51] present a hybrid methodol-
ogy that combines granular computing with a level set
approach for image segmentation. Information granula-
tion establishes the base for the 3D segmentation scheme
employing the hybrid level set segmentation (HLS) algo-
rithm. The follow steps are performed by the algorithm:
First, the CT image data are subjected to information gran-
ulation in order to define the organ- and patient-specific
granule. Then, with the granule information influence, the
image fuzzification transforms the original HU intensities
and enhances the organ expected intensity range. Finally, a
HLS segmentation is performed over the fuzzified 3D image
yielding a binary volume as a segmentation result. The
proposed method has validated using 3Dircadb1 database
[52], in terms of sensitivity and dice index, and com-
pared against state-of-the-art abdominal organ segmentation
methods.

Model Based

Model-based techniques are defined as “the assignment
of labels to pixels or voxels by matching the a priori
known object model to the image data” [53]. These types
of methods try to use not only local features but also
their global geometry and semantic characteristics. The
next sections analyze some model-based methods with their
specific features and examples.

Markov Random Fields

In 1984, the application of Markov Random Fields (MRF)
was suggested to image processing (image analysis, de-
noising, and segmentation) [54]. The MRF is a stochastic
process that includes prior and posterior distribution on the
original image. For image segmentation, the MRF is used
to find a labeling scheme which has maximum probability
for a given set of features. In the present research, some
works that use the MRF to segment tomographic image
were found. Some of them are:

The work of Huang et al. [55], which presents a
framework for medical image segmentation on MRI images.
This hybrid framework combines 3D MRF, for the region-
based labeling restriction modeling, with a deformable
model for the shape-based restrictions. On the 3D MRF,
each volume voxel is an observable node which is connected
with hidden node representing the voxel region label. Each
hidden node is also connected with six or more neighbor
hidden nodes. Therefore, the segmentation can be seen as
problem of MRF solution estimation using a compatibility
function, between the hidden nodes, and an expectation
maximization (EM) function. To integrate the deformable
model part, each region label is harnessed to the 3D object
surface using a graphical model theory to strictly join the
two approaches. Instead of conditioning the image directly
to the deformable model, the conditioning is assumed
indirectly through the region labeling restriction. Based on
this way of coupling between the two models, a belief
propagation(BP) function is employed on the MRF part
and the finite-element method (FEM) is used to infer on
the deformable model part, smoothing the frontiers roughly
estimated with the MRF and introducing a prior shape on
the hybrid model proposed. The tests performed with the
hybrid framework were, initially, on synthetic images with
known objects and later on MRI medical images from a
head with the skull partially removed aiming to expose the
brain. The evaluation was performed qualitatively based on
expert opinions.

In [56], Juslin et al. proposed a method to extract heart
volume from cardiac positron emission tomography (PET)
images. The method is composed of two stages: Initial
segmentation using Markov Random Fields (MRFs) and
heart volume extraction using deformable models. A priori
knowledge about the heart positioning (anatomically the
heart is located between the lungs) is used due to the
fact that in PET image is possible only to identify the
soft tissue and the lungs, based on the intensity values.
Using this knowledge and employing the MRFs, the PET
image is segmented to four tissue class background (BG),
lungs (LU), soft tissue (ST), and region between thorax
and background including the bed. In the heart volume
extraction stage, the obtained segmentation result is used
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to define the initialization for the deformable model-
based surface extraction algorithm, DM-DSM (deformable
models with dual surface minimization). Thus, the surface
extraction is reformulated as an energy minimization
problem. For the proposed method, quantitative evaluation
was performed using Jaccard coefficient.

A 3D automatic segmentation for percutaneous implants
is proposed by Müller et al. [57]. Based on images generated
by a non-invasive optical coherence tomography (OCT)
technique, Müller proposed a segmentation approach that
uses MRF for skin surface estimation on the 3D space and a
distortion refraction model, associated with the skin surface
previously segmented, for the implant segmentation. For the
OCT image morphometric analysis there is the requirement
to perform the optical distortion correction induced by the
tissue refraction index. This correction is performed using
the percutaneous implants for the model-based estimation
of the refraction index using the generalized Hough
transformation. Several experiments were performed on the
non-distorted model including a quantitative evaluation,
with the root-mean-square deviation, aiming to show the
proposal competitiveness against manually segmentation
performed by specialists.

Bhole et al. [58] present an approach for 3D segmenta-
tion of abdominal CT images to identify the organs within
this region. To do so, different models and modeling strate-
gies are proposed to 3D segmentation based on MRF and
their discriminative counterparts known as conditional ran-
dom fields (CRF). In this work, the utility of features based
on histograms of oriented gradients or HOG features are
also evaluated. Aiming to segment five organs from the
background the proposed approach starts with the volumes
alignment with six manually selected landmarks. Then, a 3D
lattice of MRF and CRF is built. After that, the variational
message passing (VMP), for the HOG features learning, and
the max-product (MP) inference, for the prediction in the
models, are used to complete the segmentation process. The
proposed approach experiments were performed on 22 volumes
focused on segmenting abdominal organs and the quanti-
tative evaluation was conducted based on the segmentation
results accuracy against manually labeled volumes.

Deformable Models

The segmentation based on deformable models has as
principle an estimated initial shape represented as a curve.
Then, a sequence of shrinking/expansion operations are
executed, based on the internal and external forces, aiming
to minimize an associated energy function which ideally
reaches its optimum when the curve perfectly fits the
object boundaries [59]. The term deformable models was
first introduced by Terzopoulos et al. [60] in 1988, were
the deformable models were used for computer graphics

applications. From the first time used to nowadays, it
had many variations starting from how the forces were
calculated to the form of optimization/minimization used
[59]. In our systematic review we found some of the
different deformable model types applied on tomographic
data, mainly in the medical area. Some examples of these
applications are:

The work proposed by Saragaglia et al. [61] presents
an approach for airway wall volumetric quantification on
multi-detector computed tomography (MDCT), exploiting
a 3D segmentation based on patient-specific deformable
mesh. The proposed method starts with the 3D airway
lumen segmentation obtained by 2D method. This method
performs a bronchial quantification through a segmentation
method that combines mathematical morphology operators
and energy-based contour matching applied to each volume
slice independently. Based on this initial segmentation, the
inner airway wall mesh model is built. With the focus of
preserving topology and geometry of small bronchia, and
obtain a regular mesh, a restricted Delaunay triangulation is
applied with an adaptive distance criterion. The bronchial
wall external surface is then segmented through deforming
the inner wall mesh model conditionally to the image data
and the shape restrictions. An equation is assigned for each
mesh vertex allowing it to move in a force field governed by
internal and external forces resulting in a deformable mesh
model that allow a more precise region segmentation. The
proposed approach was evaluated using synthetic and real
data through a comparative study between the ground truth
and the 2D/3D surface quantification technique proposed.

The approach presented by Hong Zhang et al. [62],
aims to use a 3D segmentation method to reach the
liver segmentation on CT images. The proposed method
combines prior knowledge about intensity and shape to
generate forces which are applied to a deformable model.
The process begins with the volume codification into
octree structure, based on data entropy, and a octree node
classification, where each node is assigned into two groups
inside or outside the liver. After that, the deformation
gradient to the mean shape data depth is calculated, for each
vertex, and if the computed value is less than a threshold, the
force from shape is applied; otherwise, the force of intensity
is applied. After the force calculation for each vertex, all the
force field on each mesh vertex is smoothed and a free form
deformation, with 27 control points, is applied based on
the calculated forces, continuing the iteration until a stable
status is achieved. The tests for the proposed method were
performed with 10 real cases of CT data and were evaluated
through a golden standard built by a radiology specialist,
which performed the manual liver segmentation for all the
10 cases.

Ding et al. [63] work presents an organ segmentation
algorithm in medical CT images. Thus, a 3D segmentation
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algorithm based on deformable models to segment soft
organs such as the spleen and the liver is proposed. The
algorithm segments the input volume through the iterative
deformation of a 3D mesh model to register it to extracted
image features. In each iteration, the algorithm searches
for a possible match between the mesh vertex and the
image characteristics over long distances. The detected
correspondence is refined before the deformation process
to avoid flippings. For the deformation part, the Laplacian
method is used due to the facility to incorporate geometric
restrictions. In short, the algorithm can be summarized
in five steps: Image feature extraction, feature matching
search, detecting and preventing possible flippings, and
mesh deformation. The proposed algorithm was tested
in a dataset of eight CT images and compared against
other segmentation algorithms in terms of noise resilience,
accuracy, and execution time.

An aid system to find lung nodules on CT images is
proposed by Cascio et al. [64]. The complete system is
composed of six steps: isotropic interpolation, lung pa-
renchyma volume identification, seed choice, detection,
and ROI anatomic segmentation through the 3D mass-
spring model (MSM), feature extraction for each ROI,
and execution of classifier based on neural network. The
isotropic interpolation is used aiming to reduce the possible
errors due to the anisotropic grids representation. The lung
parenchyma volume identification is performed with a 3D
region growing algorithm and a morphological dilatation
process. For the seed selection, a voxel subtraction between
the binary results from the previous step and its posterior
multiplication with the input image is performed, which
generates the seed list. With the calculated seed list,
the anatomical region segmentation process through the
MSM is started. The deformable model, MSM, describes
the object shape aiming to perform the segmentation
and the anatomical object description. All the processes
of initialization, internal and external energy calculation,
and model representation and evolution are meticulously
described by the author. After obtaining the nodule shape
and volume, the feature extraction is performed for purposes
of using the features on the nodule classification process.
The obtained results were compared with other methods
through the application on the same database, comparing
in terms of efficiency and false positives. The validation
process occurred using 84 scans from the LIDC dataset.

A method for object segmentation in 3D images,
with initial user iteration, is presented by Delibasis et
al. [65]. The proposed approach describes an algorithm
for active/deformable surfaces, using an explicit scheme
for the active surface model equation evolution. This
model is built through a regular mesh that allows simple
arithmetic operations to calculate partial derivatives. The
user iteration can be performed in a number of ways,

but the most important iteration is on the active surface
initialization using simple shapes (e.g., cylinders), which
directly affects the convergence and segmentation accuracy.
For the external forces calculation, used in the equation
evolution, the vector field convolution (VFC) is employed,
which is generated using a k kernel containing vectors
that point through the k origin. The proposed method
results were presented through the method application in
3D synthetic data and anatomical object CT images. The
evaluation was performed based on object delineation by
expert users in terms of average positional error.

The study presented by C.Shi et al. [66] shows an
approach for 3D segmentation in CT medical images. This
approach combines the deformable simplex meshes (DSM),
a greedy algorithm and the generalized gradient vector flow
(GGVF) to perform the segmentation based on deformable
models. Initially, the object surface is modeled with the
DSM and, based on the geometric information, the internal
energy needed for the deformation part is calculated. Then,
the greedy algorithm is employed as an evolution method to
guide the DSM to the object of interest. On each iteration,
a cubic window is searched over a mesh vertex and, on this
window, the energy is calculated for each vertex. The cal-
culated energy is based on the internal energy, defined by
the mesh geometry, and in the external energy, calculated
by the GGVF application. The GGVF uses a variational
equation to propagate the input image gradient vectors in
homogeneous regions through an iterative optimization pro-
cess. The mesh deformation is repeated until the vertex
movements in one iteration are less than a specific value.
The proposed approach experiments were conducted in a
set of synthetic and real data and its quantitative evaluation
was performed through the medial radial error applica-
tion on the segmentation results according to a ground
truth.

In [67], Difei Lu et al. proposed a multi-resolution
mesh segmentation algorithm for 3D segmentation of
liver. This algorithm, named iterative mesh transformation,
deforms the mesh of a ROI by iteration between two
tasks: mesh transformation and contour optimization. The
mesh transformation deforms the 3D mesh based on
the deformation transfer model, searching for an optimal
mesh. The contour optimization searches the optimal
transversal contours of the ROI by applying the dynamic
programming algorithm to the intersection polylines of
the 3D mesh on 2D transversal image planes. The
initial constrains for mesh transformation are defined
by manually defined landmarks, which are progressively
updated by adding vertices calculated in the contour
optimization task. The proposed iterative mesh deformation
algorithm was employed in a segmentation scheme for
diseased livers with cancer on CT images. This scheme
is composed of seven steps: Constraint initialization,
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where five manually identified liver anatomical landmarks
and a set of chest wall points, detected automatically,
are used, Liver mesh initialization based on the used
constraints, Contour calculation, Contour optimization,
Constraint updating, Mesh transformation, and the last
step is the verification of the number of iterations, where
the scheme returns to the contour calculation step if the
number of iterations was not reached. The proposed scheme
was evaluated using 40 hepatic CT cases, which were
segmented manually by two radiologists. The proposed
scheme performance was assessed using five evaluation
criteria (OE: volumetric overlap error, RVD: relative
absolute volume difference, ASD: average symmetric
surface distance, RSD: root-mean-square of symmetric
surface distance, and MSD: maximum symmetric surface
distance) and was compared with five liver segmentation
methods selected from ITK-Snap (www.itksnap.org) and
Seg3D (www.sci.utah.edu/cibc-software/seg3d.html).

Active Contours

A specific type of deformable model technique is the active
contours, also know as snakes. It had its first appearance in
1988 introduced by Kass et al. [68] and it was described as a
method of energy minimization of spline guided by internal
and external forces. This method merged many vision
problems such as detection of edges, lines and subjective
contours, motion tracking, and stereo matching. Originally
developed for single images, this technique evolved, on the
last years, for its use on tomographic volumes, entering
on the scope of 3D segmentation algorithms. As an
example of its use on volumetric data, some works can be
refereed, for example: The work reported by H. Jiang et
al. [69] shows the application of a hybrid approach that
uses active contours for liver segmentation on computed
tomography images. First, a global threshold application
to split segments of the liver, stomach, spleen, and others,
from the background, is performed. With the obtained
binary result, the morphological operations of erosion, to
remove small tissues, and dilatation, to keep the original
liver shape, are applied. The next step is the use of the
Sobel operator to identify the previous resulting image
edges. Using the edge as a continuous and closed curve,
for the active contour algorithm initialization, the active
contour, for the liver on the current slice, is obtained. For the
remaining slices, the found active contour on the neighbor
slice is used for initialization, finding, for each slice, the
correspondent active contour and, consequently, obtaining
the liver segmentation. The experiments to test the proposed
approach were performed on five sets of abdominal
computed tomography and the validation occurred through
the method obtained results comparison with the liver
manual segmentation performed by specialist.

Other examples of works related to the active contours
use associated with other methods are: the work proposed
by Barbosa et al. [70] where a segmentation framework
enhancement based on active contours, for CT and
ultrasound images segmentation, is presented. The proposed
enhancement is based on the framework presented by Duan
[71], which shows the volume through an interface of
explicit representation called Active Geometric Functions
(AGF). The framework main concept is to model the
interface as an explicit function which implies that,
geometrically, one of the interface coordinates points is
expressed as a function of the remaining coordinates. The
proposed enhancement express the explicit functions as
linear combinations of b-spline base functions and the
problem of segmenting an object from the background
becomes a problem of energy function minimization
according to the b-spline coefficients, taking into account
the volume local and global characteristics. Aiming to
evaluate the proposed enhancement, some experiments
were performed using real and synthetic data. Initially,
the comparison against the framework proposed by Duan,
in terms of accuracy (measured with the root mean
square error) and execution time, were performed. Then,
a comparison of the approach against a level set method
in terms of DICE similarity coefficient, based on manual
segmentation, was realized. Lastly, the method was tested
on liver tumors segmentation on a set of computed
tomography, on which a comparison against the Duon
framework, based on overlap error, volume difference, mean
and max distance and execution time, was performed.

The approach proposed by Urschler et al. [72] pre-
sents a framework for forensic cases analysis, on which the
segmentation is an important process step. The segmenta-
tion algorithm used is an interactive foreground/background
algorithm formulated as an energy minimization problem,
called Geodesic Active Contour (GAC). The GAC is a
model that splits the background and foreground through
the definition of a hypersurface between the borders of the
planes. The GAC can include priori knowledge (grayscale
distribution, texture, shape restrictions) and, in the proposed
approach, was used a continuous energy minimization pro-
cess. Given an image, the binary representation of this
image, splitting between background and foreground, is
searched. This step is achieved by solving the minimization
problem through the derivation and resolution of Euler-
lagrange equations. The proposed approach results were
obtained through the framework use on two forensic case
analysis, the first with CT images and the second with MRI
images.

A segmentation method for the measurement of local
3D variables in the knees articular space, on CT images
with high peripheral resolution, is proposed by Mezlini et
al. [73]. The approach can be divided in a sequence of
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steps: the first step consists on the manual knee image
reorientation due to the variety of orientations present in the
images. After, a pre-processing step execution occurs, on
the cross-sectional images, where a mean filter algorithm is
applied to smooth the image and improve the edges. The
filter application allows to find a stable quantile of grayscale
levels and, consequently, split the bone segments from the
soft tissue. This quantile is used as a threshold value to
binarize the image. On the binary image the opening and
closing operations are applied to reconnect the bone regions,
fill the holes and remove soft tissue residues. The next step
is the coronal image 3D segmentation, which consist on
a 3D mask generation based on a 3D hysteresis threshold
and the morphological closing operator to remove residual
tissues and noises and extract the bone volume. The volume
of interest (VOI) selection, performed manually, and the
posterior labeling of different bone parts are the next steps.
Lastly, the articular space extraction, using an active contour
technique, and the articular space volume measurement
occurs. The propose method was validated based on the
reproducibility of different manual operations performed
by two users on a dataset of five knee volumes and the
method reliability was calculated by the root mean square
coefficient variation computation.

In [74], a semi-automated segmentation method to
segment low-grade gliomas from magnetic resonance
imaging is presented. The method consists of five main
steps: ROI creation, image registration, normal brain tissue
detection, abnormal brain tissue detection, and tumor
boundary detection. In the ROI creation step, for the 3D
case, the user selects the tumor mass center in the axial
view and, in the sagittal and coronal views, the user selects
a ROI that encloses the tumor. In the image registration
step, two image registration tasks are performed: intra-
patient image registration and normal brain anatomical
atlas to the patient’s T2 image registration, in order to
obtain prior normal tissue information. The normal brain
tissue detection stage is based on the deformation field
obtained in the second registration task followed by a mask
procedure to avoid contamination of normal brain tissue
with abnormal brain tissue. In the abnormal brain tissue
detection stage, abnormal brain tissue within the ROI is
detected by computing the posterior probability of each
voxel belonging to the normal brain tissue and abnormal
brain tissue. Lastly, the geodesic active contours is used to
detect the tumor by shrinking the initial user defined ROI
to the tumor boundary. The proposed method was tested in
30 pre-operative LGG patients and evaluated by comparing
the obtained result with segmentations performed manually
by three experts. From this comparison, several metrics
were generated such as Dice and Jaccard index, sensitivity,
specificity, positive predictive value, and negative predictive
value (NPV).

Shape-Based Models

Shape-based models are generally built from a training
dataset, where a mean shape and other features are
extracted, based on the model built, after a matching
between the model and the structure of interest on the new
images [75] is searched. One of the first works using shape
training models was the work proposed by Cootes et al. [76]
in 1992, where, based on collection of shapes, a statistic
of the points is determined producing a flexible point
distribution model, which can be used during the object
search into the image. One analyzed work that describes the
image based on the shape is the work presented by Nain
et al. [77]. In the proposed method, the authors determine
a parametric model of a surface using spherical wavelet
functions and learn a prior probability distribution over the
wavelet coefficients to model shape variations at different
scales and spatial locations in a training set. In order to
exploit the multi-scale prior, a parametric surface evolution
equation is derived by evolving the weights directly. As
the surface evolves to fit the image data, the weights are
constrained to remain within ±3 standard deviation of their
values observed in the training set. A region-based energy
is used to drive the evolution of the parametric deformable
surface for segmentation. The proposed algorithm was
applied to segment caudate nucleus shapes from MRI
scans and the Hausdorff distance was used to measure the
discrepancy between the segmented shape and the ground
truth. The proposed algorithm, called Mscale, was also
compared to standard active shape models algorithm using
the Hausdorff distance.

In [78], Moussavi et al. present a recursive algorithm
called BLASTED (Boundary Localization using Adaptive
Shape and Texture Discovery) to automatically extract the
cells boundaries in cryon-electron tomography (cyro-ET)
images. The BLASTED uses a conditional random field
(CRF) framework, on which the frontiers points and the
shape are inferred. The cell segmentation is performed
by treating the texture frontiers as variables non-locally
learned, proposing candidate points using physical features
that depend on the estimated shape as well as the learned
boundary texture, and classifying the candidate points using
the learned texture with local and global shape context.
The segmentation process begins with the slice manually
labeled aiming to find all subsequent contours and set
points that collectively are on the membrane cell. With this
initial contour, the candidate points that can belong to the
contour, on the next slice, can be predicted based on a
template updated in each step. On these candidate points,
an inference process that classifies which points belong to
the contour is applied. The algorithm recursive part comes
from the 3D inference partition of cell membrane boundary
in 2D organization slice by slice. The proposed method was
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compared with other segmentation algorithms and tested in
a set of 20 cyro-ET images, using two customized metrics
based on the used ground truth images.

Another work that describes a model using a training
data is shown by Badakhshannoory et al. [79], where a 3D
organ segmentation approach in CT images is proposed. The
model-based algorithm used has two phases, training and
test. In the training phase, using a ground truth given by a
set of training data, a space which describes the organ is
built. The organ space is a group of eigenvectors generated
by the PCA application on the training data. In the test
part, four main steps are executed: the first step is pre-
processing, where the volume alignment and the starting
point estimation are performed. The second step is the
possible candidate generation, which occurs through the
segmentation of each slice on a large number of overlapped
regions. The third step is the possible candidate refinement,
where the search space reduction, through the use of
restrictions that incorporate the relationship between the
organ regions on the volume consecutive slices, occurs. The
last step is the best candidate selection, where the quality
of all generated candidates is measured, in agreement
with the organ space built on the training phase, and the
best candidate is identified through the similarity measure
between the candidate and the organ. Figure 3 shows the
proposed approach flowchart. The validation and tests were
performed on a liver dataset, on which the organ space
was generated through 3D lung volume masks from twenty
MICCAI 2007 grand challenge workshop training volumes.
For the result validation, measures of sensitivity, error
(mean-square), and similarity (Dice coefficient), against
golden patterns, were used.

Fig. 3 Proposed method flow diagram. Extracted from [79]

The study proposed by Shaoting Zhang [80] covers some
existing challenges in inference and shape refinement of
image objects. Aiming to solve these challenges, Shaoting
Zhang proposed a modeling framework called sparse shape
composition (SSC). On this framework a set of sparse
shapes is selected from a shape repository, composing
them in a unique model with the purpose of inferring and
refining the input shape format. The model is formulated
as a learning problem using L1-norm relaxation and can
be solved efficiently with an expectation-maximization
(EM) method. The proposed method is independent of
the data dimensionality, i.e., works for both 2D contours
and 3D meshes. In the experimentation part, the method
was validated on some medical applications such as 2D
lung localization on X-ray images, 3D liver segmentation
on low dosage CT scans, 3D segmentation of multiple
brain structures of rodents on MRI images [81], and real-
time tracking of left ventricle on MRI images and on
tomographic reconstruction of high-resolution CT scans.
In these applications, the SSC showed more robustness
and accuracy when compared with some widely used
approaches.

In [82], Rüegsegger et al. present a statistical shape
model to precise eye modeling for treatment of intraocular
tumors. To perform this modeling, initially, an atlas
representing the mean shape composed only by the contour
obtained through the training shapes is built. This atlas
is marked with landmark points before its points are
propagated for each training shape. Based on the landmark
points, a statistical shape modeling can be computed using
PCA. To automatically fit the model eye to a new image
stack, the model is extended to use the active shape model
technique, which allows an automatic correspondence of
the statistical model in other image modalities. Given the
built model, an iterative process search for the best fit of
model profile points with patient CT images profile points
through the Mahalanobis distance minimization. After a
trustworthy number of matching points was found, for all
profile points, the model is fitted to these profile points
as close as possible. The obtained manual and automatic
segmentation results, i.e., the atlas and the proposed method
results, were compared in 17 CT images, measuring the
Dice coefficient similarity between them.

Yu Bing-Chang et al. present a segmentation approach
based on wavelet density model (WDM) applied in cone-
beam computed tomography (CBCT) images from the
maxilla, focusing the outer surface of anterior wall of
maxilla [83]. The proposed approach can be summarized
in four main steps: data acquisition and pre-processing,
shape customization and landmark annotation, statistical
models generation, and segmentation. In the first step,
nineteen patients were scanned using CBCT; a thresholding
segmentation was applied to each of these volumetric
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images to obtain bone images and several algorithms were
applied to obtain the bone surfaces, which were used as
ground truths. In the shape customization and landmark
annotation step, approaches to extract and customize a
shape from the ground truth of bone surfaces, previously
obtained, and generate its landmarks for statistical shape
model are applied. In the statistical model generation,
two statistical models are built using the training images
and their corresponding training shapes. The two models
built are WDM using training shapes and image feature
model created by using both training shapes and training
images. The last stage is the segmentation, where after
the statistical models construction, the outer surface of the
anterior wall of maxilla is obtained using statistical priors
of the statistical models. The proposed method to perform
the segmentation is the invariant wavelet active shape model
(BIWASM), which based on the WDM statistical model and
landmark points, performs the segmentation outer surface
of the anterior wall of maxilla. The proposed method was
validated using 19 sets of CBCT images and compared with
other segmentation algorithms in terms of execution time,
surface deviations, the closest distances, and Hausdorff
distance between the ground truths and the final shapes.

Region Growing

One of the first works related to the region-growing
approach was proposed by Brice et al. [84] in 1970. After
that, many other region-growing methods emerged and
gradually evolved this technique over the years until now
[85, 86]. The region-growing method start in general with
a pixel as an initial region and, basically, analyze the
neighborhood searching for pixels that satisfy a similarity
criterion with the region being analyzed. This process
continues until it reaches an established condition (e.g.,
minimum number of regions or the regions stopped
growing). Some analyzed works follow this principle
applied to tomographic images. The first example is the
approach presented by Davis et al. [87], where a method
to determine a relative threshold for rough tumor volume
delineation in PET images is proposed. The proposed
method starts with the definition of an absolute threshold.
This threshold is defined based on points belonging to the
ROI and to the background. The whole process begins
with a manual selection of one point inside the ROI and
a second point belonging to the background. Based on
these two points, an absolute threshold value is estimated.
Then, a region-growing algorithm starts from the selected
ROI point and a preliminary target volume based on the
absolute threshold value is produced. This preliminary
process may have included non-target structures; thus, to
remove this structure, a third point is informed inside of a
non-target structure. Two region-growing algorithms start

from the maximum signal point, previously calculated,
and the recently informed point. The two regions grow
simultaneously and the algorithm stops before the two
regions fuse into a unique region. The two-region split is
performed using a Voronoi algorithm to achieve geometric
separation of target and non-target volumes. Only the voxels
that are inside of the target region and lie within half of the
full-width at half-maximum of the PET image resolution
from the absolute threshold, are included in the true max
signal level final estimation. A similar process is adopted for
the background average signal final estimation. Then, based
on this two obtained values, the final absolute threshold,
used for determinate the target volume, is calculated. The
proposed method validation was performed through the use
of PET images with spheres of known diameter for the
automatic segmentation. Additionally, tests on images of
patients with breast cancer and thymus were also performed.

In [88], a study for automatic ribcage segmentation and
labeling in CT chest images is presented. The proposed
system consists of five stages. The first stage is the
application of a threshold, obtaining a binary image, and
use of a Hessian matrix with values originated from the
1D Gaussian kernel application on the image. This process
results in the detection of 1D rigid structures. These rigid
structures are employed on the construction of primitives in
the form of line elements on the second stage. To do so,
a region-growing process is used, taking into account the
rigid structure local orientation. The neighborhood around
the 1D rigid voxels is investigated and other voxels that
meet some requirements are added to the primitive. The
primitives that meet specific constraints are called convex
sets. Then, some seeds are randomly chosen from the
available ridge voxels, for this region-growing process.
After the convex set extraction a new seed is chosen
from the remaining ridge voxels. The third stage is the
primitive classification, where a classifier to differentiate
the ribs from background structures, is used. This classifier
maps a feature vector, extracted from the objects under
investigation, to class numbers or to a vector of probabilities
of belonging to a specific class. This mapping must be
learned through the training data, which were previously
labeled to their appropriate classes. The fourth stage is
the grouping of primitives, where the objective is to group
the rib primitives into specific rib centerlines and label
this centerline to rib side and number. Lastly, to complete
the segmentation process, a seeded-based region-growing
algorithm is used, where the seeds are determinate based
on the mean gray value for each centerline. The proposed
method was tested on twenty CT scans and the results were
evaluated qualitatively by human inspection.

In the method proposed by Monga [89], the volume
images are described as a set of primitive volume patches
(bowls, cylinders, cones...), aiming to optimize a criterion,
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assuring its stability and including its scale characterization.
This optimization occurs with a region-growing algorithm
applied to an adjacency graph, which represents the
primitive volumes and its adjacency relation. The proposed
approach can be summarized in three steps: The first step
is the data representation initialization based on Delaunay
triangulation. Then, a selection of initial primitives using
Delaunay spheres is performed. On the last step, the
fusion of initial primitive is realized, using a minimization
algorithm based on region growing. The proposed method
experiments were performed on CT soil images aiming to
represent the geometric porous space, which allows to join
geometrical and soil properties to better characterize some
application for soil science.

In [90], Bulu et al. presented a comparative study
between four segmentation algorithms applied to CT
medical images. The compared algorithms were two region-
growing algorithms (one with initial seed points and the
other without), Weibull E-SD Fields (WESDF), and an
automatic multiple level threshold using OTSU. Two are
fully automated (OTSU and region growing without seed
points) and the other two methods (WESDF and region
growing with seed points) need some user iteration level.
The region growing with seed point algorithm starts its
growing process from the informed seed points and, based
on a connectivity criterion, extract the connected region
from a 3D volume. The WESDF generates, initially, K-sized
volume cubes, which are called K-voxel. Each K-voxel
receives two values: expectancy and standard deviation (E-
SD). Then, the Weibull filter is used to remove the image
noise, making the E-SD values more precise. After the E-
SD calculation, the frequency of voxels having the same
E-SD is shown. The segmentation process assume that E-
SD values in the same region are relatively homogeneous
and they are different from those in other regions. The
thresholding using OTSU, consists in the basic idea of
automatically selecting a threshold value that splits objects
of interest in an image from its background based on a
grayscale value. The threshold value selection is based in
a choice of a value that maximize the variance between
histogram classes. The region growing without seed points
works similar to the region growing with seed points,
differentiating only in the initialization process. The region
growing without seed points initializes the process with one
region containing one pixel, generally in a starting slice,
and the working state consists in a set of identified regions
and a set of non-allocated pixels with frontiers with at least
one of these regions. Then, based on a similarity criterion,
the non-allocated pixels are assigned to the region with
the biggest similarity value. The four method evaluation
and comparison were performed in four different datasets,
one for test purposes and the others with real CT images.
Some measures, ranging from 1 to 4, 1 to 5, and 1 to 10,

were used for the algorithm comparison (implementation,
noise sensitivity, user iteration, execution time, obtained
result, and general result). These measures were empirically
assigned based on human observation.

Diciotti et al. [91] present other examples of region-
growing-based segmentation for 3D nodule segmentation
on lung CT images. The proposed method starts with the
selection of a volume of interest (VOI) that has as reference
a central voxel informed by the user, assuming that the
lung nodule is completely included on the VOI. After,
the voxel is supersampled with a trilinear interpolation
to obtain an isotropic voxel and to reduce the partial
volume effects. The next stage, identifies candidate markers
corresponding to blob structures in the scale space. All the
candidates are shown to the user for inspection and must
be approved as a marker (nodular or lung structure) or
object to be discarded. The region-growing algorithm use
the markers on the segmentation process, seeking to avoid
a possible merging between the nodule and different lung
structures. The region-growing method used joins the gray
level representation with the concept of geodesic distance.
At the end of the segmentation process, if the obtained
result is not satisfactory, it is possible to repeat the marker
supervision and the segmentation process. The segmented
nodule volume is extracted using a simple process of voxel
counting. The proposed method was evaluated on images
with small ghost nodules and on lung CT images from the
Lung Image Database Consortium [92] in terms of root-
mean-square error based on expert manual segmentations.

In [93], the author shows an adaptive segmentation
algorithm to segment the pulmonary airway tree on lung CT
images. The proposed approach consists of two steps: In
the first step, the volume is roughly segmented and divided
in several subvolumes through a region-growing algorithm
based in a VOI. These generated segmented subvolumes are
divided on three types according to their topologies. On the
second step, for each subvolume type, a specific method,
to find the seeds for the segmentation process, is applied.
For the first type one subvolume, the seed is the geometric
center of the bronchus slice on top and the initial threshold
is determined based on previous works. For other types, one
subvolume, the seed is the central line bifurcation on its
parent type two and the initial threshold is its parent’s final
threshold. When the region starts to grow, the final threshold
is assigned as being the initial and the final threshold is
gradually increased until a leakage occurs. For the type two
subvolumes, the seed is the central line of its parent type one
subvolume, the initial threshold is its parent final threshold
and the value adjustment is similar to the performed for
the type one subvolume. For the type three subvolume,
the seed is on the central line bifurcation in its parent
type two, the initial threshold is its parent final threshold
and the value adjustment is similar to the other subvolume
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types. To evaluate quantitatively the proposed approach
performance, a detection rate was defined, which take into
account the number of bifurcations found by the automatic
segmentation and the number of bifurcations found by the
manual segmentation performed by a specialist.

In [94], De Nuzio et al. propose a 3D lung segmentation
algorithm in computed tomography scans. The algorithm
is composed of six steps: The first step is the image
histogram analysis, aiming to find a threshold value for the
segmentation of the respiratory apparatus; In the second
step, a simple-threshold 3D region growing is applied to the
CT volume, where voxels that contain a value smaller than
the value found in the first step are included in the growing
region. This step results in a binary mask of the respiratory
system. In the next step, the external airways are extracted
and removed by a wavefront simulation model, resulting in
a mask containing only the lungs. In the fourth step, due
to partial volume effects, the lungs may appear as a single
object. If that happens, the fusion region is identified and
a separation surface is inserted into the mask to correctly
disjoin the lungs. Next, the simple-threshold 3D region
growing is used twice in the last step mask, to grow the left
and the right lung respectively. Lastly, morphological 3D
closing is separately applied to both masks (left and right)
for the inclusion of pleural and internal nodules, and to
patch the concavities corresponding to vessels. The overall
segmentation is the union of the two resulting masks. The
proposed algorithm was initially developed on a set of 130
thorax CT scans from the Italung-CT database and after
was tested in the ANODE09 (http://anode09.isi.uu.nl/) and
to the LIDC [92] databases. The evaluation was performed
by comparison against ground truths in terms of volume
overlap and distance between contours. The sensitivity for
nodule inclusion was also tested.

The work proposed by Bert et al. [95] presents another
example of region-growing segmentation method, which
has as purpose the colon wall segmentation on abdominal
CT images. The proposed method used an approach of
three stages employing a 3D adaptive region-growing
algorithm with adjustable growing condition. The first stage
is the external segmentation, which masks the air presented
outside of the body surface. This stage is performed by
using, initially, a threshold algorithm followed by a 3D
region-growing algorithm. The seeds for this first region
growing are resulted from the performed threshold process.
The second stage is the lung segmentation, which masks the
air inside the lung by using a 3D region-growing algorithm
based on seeds belonging to the range between lowest image
intensity value and the peak on the histogram. The third
stage is the colon segmentation, which extracts the colon
segments through the initial histogram generation on the
actual image stage aiming to define the seed points for
the region-growing process. If during the growing process

a voxel value bigger than the superior limit was found,
then a new value for the superior limit is calculated based
on colon wall local values (adaptive part). The proposed
method was evaluated comparing the obtained results with
manual segmentation results, performed by specialists in
30 abdominal CT images, in terms of true positives,
percentage of recognized colon surface, true negative, and
false positives.

In [96], an automatic 3D segmenting method for liver
segmentation in MRI images is presented. The proposed
method try to use all the available MRI channel information
to formulate a probabilistic framework. On this framework,
a discriminative multi-class linear analysis is applied as
a dimension reduction technique and a probabilistic map,
used on the segmentation process, is generated. The
proposed method can be divided on four stages:

– Preparation: on this stage the specialist knowledge is
integrated to the method through a training process
with the contour information of ten different types of
liver shape provided by a radiologist. Based on this
knowledge it is possible to categorize the MRI dataset
points on liver tissues, kidney tissues and background.

– Probability map generation: by using a region-growing
segmentation method it was noticed occasional hetero-
geneity on the intensity inside the liver between the left
and right side. Based on this observations, the probabil-
ity map generation was subdivided in three cases. The
first case was the probability map generation for three
classes (liver, kidney and background). The second case
was probability map generation for two classes (liver
and background) and the third case was the probabil-
ity map generation for two classes (left liver side and
background). These probability maps are determined
through the pixel coordinate distribution histogram and
the intensity distribution in the MRI datasets.

– Segmentation: the segmentation can be divided in three
steps. In the first step, a region-growing algorithm
is applied on lower resolution probability images. In
the second step occurs the segmentation refinement
through the region-growing algorithm application on
the original probability images. In the last step, only the
liver left side is segmented with a threshold technique
in the longitudinal direction of the body.

– Refinement: due to the probability similarity from the tis-
sues next to the liver it is difficult to avoid over-
segmentation. To correct this limitation, a border refine-
ment with Fourier descriptors is used, liver surface
curvature analysis and a linear discriminant analysis.

The proposed method tests were performed on MRI images
from patients between 21 to 79 with the most variate cases
of liver volumetry and the validation was based on ground
truths, manually generate by experts.

http://anode09.isi.uu.nl/
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In [97], a 3D segmentation technique is presented for
lung parenchyma detection on CT images. The proposed
method consists of four main steps: the first step is the
analyzed volume binarization through an adaptive threshold
technique, on which an optimal threshold is selected, aiming
to split voxels within the high-density trunk and chest
structures from low-density voxels in the lung and the
area outside the trunk. The second step is the application
of a 3D connected component method, which is applied
on the inverse image from the previous step, removing
the background and highlighting the lung parenchyma.
On the inverse image, only the lung parenchyma, trachea,
bronchus, and nodules were preserved. The third step
is the trachea and bronchus removal through a region-
growing algorithm, on which the anatomical knowledge
about the trachea is used to initialize the seed automatically.
The growing and stop condition criteria are established
based on a comparability criteria. Lastly, a sequence of
morphological operators is used to smooth the borders and
fill the holes caused by small vessels, trachea, and nodules.
The proposed method was evaluated based on a set of 20 CT
images from 20 patients using two performance measures
(average segmentation accuracy and speed).

In [98], an approach for 3D segmentation on CT human
brain is presented. The first part of the approach is the
pre-processing step, which consists in the application of
several filters (median, maximal, minimal, Gaussian, and
edge detector) and other operations such as histogram
equalization and normalization. The next step is the
segmentation, which consists in the generation of 3D
points, in the brain area, where each point is a seed for
the segmentation process. Given a tolerance value, the
maximum and minimum values are obtained by adding and
subtracting from the tolerance value, respectively, the voxel
value. Voxels in the neighborhood area with values between
the maximum and minimum are added to the segment and
its neighbors are analyzed repeating the process until is
not possible to add more voxels to the segment. Then, the
feature extraction is performed, using features such as edge,
relative size, segment volume, average, geometric average,
standard deviation, sum, sum of squares, min and maximum
values, asymmetry, variance, and curtose. After the feature
extraction step, a model is built based on the extracted
features, using a decision tree as learning algorithm. The
approach was tested in three sets of brain CT images and
evaluated based on its accuracy with the false positive, true
positive, and class precision values.

In [99], Andrä et al. show four benchmarks for physical
rock simulation which includes image acquisition via CT,
image processing, numerical experiments, and numerical
resolution of filed equations. One of the steps, in the
image processing part, is the segmentation, and on the
presented work, this part is reported through three different

segmentation approaches from three different research
groups. The first approach, from the VSG research group,
has as first part the removal of image artifacts such as noise,
brightness non-uniformity, and phase-contrast fringes in the
grain boundaries. Then, for better result in the labeling
part, a three-step process was used. In the first step, the
image magnitude gradient was calculated and threshold was
used to identify all the boundaries, which are marked for
exclusion in the next step. In the second step, the dark pixels
from the porous space and the mineral bright pixels suffer
an application of a threshold. All the pixels near or in the
interface grain-porous were excluded from the selection. In
the third step, each selected pixel is used as marker for
a marked based watershed algorithm and the magnitude
gradient is also used as input for the algorithm. The second
approach, from the Stanford research group, is based on
a three-step methodology. Initially, the input images are
laterally cropped to remove edge artifacts appearing in the
image corners. Then, a threshold value is chosen using the
OTSU method. Another threshold value is manually used
to distinguish ankerita and zircom minerals from quartz.
Lastly, the relabeling occurs , removing all regions that are
not connected with a volume less than 50 voxels. The third
approach, from the Kongju research group, consists in the
application of a smoothness filter to reduce the noise from
the reconstructed image and the use of a single threshold
value to differentiate mineral from the porous space. After
the application of each approach, a porosity calculation
was applied on each of the four datasets and the results
were compiled in a single table providing a comparison of
the influence of each segmentation approach on the rock
samples physical properties calculation.

In [100], a multi-level approach for segmentation of
different lung nodule types in CT images is presented. In
this approach, initially, a binary mask generation occurs
with functions related to some type of pre-defined nodules.
Depending of the nodule type, this rough segmentation
stage is performed following one or another path. The
volume is initially binarized using a threshold value with the
OTSU method, which allows a rough distinction between
nodules and the surrounding regions. For cases where lung
nodules were considered of low density, the segmentation is
performed based on diffuse connectivity analysis. For other
cases, the binary mask generation continues. The remaining
steps are performed over the OTSU resulting image. The
next step is a 26-connectivity analysis, where if the seed
manually informed is different from the component with
greater number of voxels, then the separation is complete
denoting cases of vascularized or well-restricted nodules.
If the connectivity analysis fails, then the nodule is some
way connected with the pleura, characterizing nodules type
3 or 4, and a slice by slice separation is indispensable. This
separation is performed with an 8-connected analysis for
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each slice and on every success on the separation of the
2D nodule with the biggest segment, the mask generation
stage is completed for the actual slice. The next two
steps on the mask generation process are the separation of
nodules type 3, with morphological operators, and type 4
through the lung edge reconstruction. The mask generation
scheme can be summarized by the Fig. 4. After the mask
generation, for each mask slice generated occurs the nodule
central point identification. Also, the generation of seeds
inside and outside the object is performed to make the
diffuse connectivity analysis more representative. With the
masks and the set of seed points, the robust segmentation
stage is started based on the diffuse connectivity. The
connectivity diffuse segmentation method belongs to the
region-growing methods and describe the relation between
the pair pixel/voxel in terms of a relevance function. Its
value is based on the fuzzy affinity of the relations between
pixels/voxels topologically adjacent, reunited using a graph
search algorithm and this value determines if they belong to
the same object. Lastly, the remaining vessels are removed
using a post-processing step that consists in the application
of morphological operators, distance transformation and the
connectivity with a central nodule. The proposed method
was evaluated, initially, using a set of 23 thoracic CT studies
and for the final evaluation a total of 551 cases from the
Lung Image Database Consortium were employed. Three
main evaluation measures (true positive rate with 50 and
100% of consistency and the number of certainly non-
nodule voxels) were defined based on a golden standard
manually delineated by human observers.

In [101], a particle tracking during the coarsening
process of the semisolid state of Al-5 wt.% Cu samples
in microtomography images is proposed. To perform the
tracking, a sequence of methods to remove noise, improve
the contrast and perform segmentation is applied. Initially,
to secure the watershed algorithm reliability, a sequence
of adaptive filter, called Wiener filter, and a top-hat
filter were applied to the volume slices. The next step,

Fig. 4 Mask generation method. Extracted from [100]

consists in the removal of spherical precipitates of the
matrix phase embedded within the coarsening particles.
The final step, before the watershed application, is the
3D Euclidean distance transformation application, which
assigns a number to each voxel that is proportional to
the voxel’s distance from the matrix phase. Lastly, the
watershed is applied, closing the voids in the matrix
phase reconstruction. Once the gaps inside the particle
boundaries were removed, an adjustment to the volume
fraction of the matrix phase was performed by uniformly
widening the particle boundaries. The result is a volume
where each remaining voxel belongs, without ambiguities,
to one particle, making possible to determinate the spatial
extension of each particle and to label them with a unique
number. To analyze the proposed method, the samples
were continuously captured to get different microstructural
evolution regimes during the Ostwald ripening process. The
data obtained on the resulting images from the proposed
method were compared with prior results obtained in
experimental studies and with computational simulation
from the Ostwald ripening process.

In [102], the author proposed a method to perform
segmentation and labeling of bone fragments in CT images.
The method is based on a 2D segmentation algorithm
by region growing and requires a minimum user iteration
to initialize seeds in the bone fragments in the first
slice that they appear. After the seed selection occurs
the segmentation process on slices that the seeds were
initialized such that, for each seed, the segmentation and
subsequent subtraction of overlapping regions is performed,
removing seeds that already belong to a segmented region.
After performing the segmentation for the actual slice,
all the seeds are propagated to the subsequent slice and
the segmentation process previously described is repeated.
To propagate the seeds, first they are inherited from the
previous slice and, if the seed fails, i.e., it cannot segment
a considerate bone area, its neighbors are considered seed
candidates. If all the neighbors also fail, then the seed
is removed. The process stops when all the seed were
removed. The proposed method was tested against methods
commonly used for healthy or fractured bone segmentation
in CT images.

Neural Network

Neural network (NN) methods applied to image segmenta-
tion had its first appearance based on Pal et al.’s review [103]
with the work proposed by Blanz et al. [104]. In this work,
a trainable classifier multilayer feed-forward network was
presented, with one hidden layer specifically designed to
perform the image segmentation process. After that, many
segmentation methods using NN were proposed over the
literature [105]. On the presented systematic research, four
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works were categorized as NN-based segmentation method
for 3D segmentation.

The first method discussed is the approach proposed
by Li et al. [106], where a sequence of algorithms for
segmentation of CT and X-Ray clinical images is presented.
The complete process is divided in two steps: training and
segmentation. In the training step, the manually selected
images are segmented using a variational level set method
guided by an energy function projected to delineate the
pathological features in the image. The energy function
project employed the aid of an expert to model the function
on agreement with the pathological features from different
image regions. The next step is the features extraction
through the application of a window-based method on the
previous segmented images. Over the extracted features
occurs the PCA application aiming to use the most relevant
features on the the support vector machine (SVM) training.
After the training step, the SVM is used whenever there is
the need to segment an image. To evaluate the proposed
method results, 2D and 3D chest CT images and X-ray
images from the dental arch were used. The results were
analyzed subjectively.

Another method using an NN approach is presented by
Chang et al. [107]. On this approach, an algorithm for
segmentation based on a model of pulse coupled neural
network (PCNN), on lung CT images, is presented. The
PCNN algorithm consists of tree modules: the receptive
field, the modular field, and the pulse generator. The
receptive field role is to receive inputs, from other neurons
and external sources, by two channels, feeding channel,
and linking channel. In the modular field, the inputs are
modulated and the result is sent to the pulse generator,
which is composed of a pulse generator and a comparator.
The result is compared with a dynamic threshold to decide
whether the neuron is activated or not and, in case it is
activated, the pulse generator will have as output 1 and
the dynamic threshold will be enlarged accordingly. This
model, applied for 2D images, is expanded for 3D images
with the following steps: first a 3D matrix is built with the
hole volume. Then, the VOI is selected and the parameters
are initialized. After, the lung volume is segmented with
3D improved version of the PCNN (the 3D I-PCNN),
to obtain the binary image. As next step, the lung field
is extracted from the binary image through the use of
morphological erosion and contour smoothness. Lastly, the
3D binary data is multiplied with original image to obtain
the lung field image, reconstructing the final volume result
with a rendering algorithm. The proposed algorithm was
evaluated using a dataset with five cases of CT images and
the evaluation was performed through the obtained result
comparison with GTs manually generated by specialists in
terms of mean distance, root means square distance, and
Tanimoto coefficient.

In [108] a methodology for automatic detection of small
lung nodules on low contrast CT is proposed. This method-
ology is represented by the Fig. 5, and it can be categorized
into four stages: CT image acquisition, nodule candidate
segmentation, characteristic extraction, and candidate clas-
sification on classes nodule and non-nodule. For the nodules
candidate segmentation, four steps were used: the first step
is the lung parenchyma segmentation using threshold and
region-growing algorithms. The second step consists in the
previous step complementation to remove the trachea and
the main bronchi through the selection, on each volume
slice, of the two biggest regions. The third step segments the
structures inside the lung using the Gaussian mixture mod-
els method to model the voxel intensity value distribution,
from the previous step resulting image, distinguishing them
into two classes: internal structures and lung parenchyma.
On the last step, only structures with shape and texture with
features similar to nodules are selected through the shape
structure found. As the nodules are spherical structures, a
Hessian matrix is used to find round structures differentiat-
ing from the others. After, on these possible candidates, a
texture feature extraction is performed with an entropy cal-
culation proposed by Shannon and Tsallis Q followed by
the classification from these characteristics with the support
vector machine (SVM), differentiating the nodules from
other structure candidates. The proposed method valida-
tion was given by the number of true positive nodules, rate
of false positives and false positives per exam, sensitivity,
specificity, and accuracy values.

In [109], Ye Zhan Zeng et al. proposed an algorithm
for liver vessel segmentation base on extreme machine
learning (EML). First, the anisotropic filter is applied to
remove noise and preserve the edges. Based on the shape
and geometric structures, knowledge, and tree filters (Saito,
Frangi, and offset medialness) associated with an energy of
deformation filter were used to extract vessel structures. In
this step, the filters Saito and Frangi were used to detect 3D
structure vessel, the offset medialness was used to extract
the vessel topology and the energy of deformation filter was
used to improve complex structures such as bifurcations
and branches. Lastly, with the previous extracted structures,
three process were applied (normalization, training, and
posterior classification using the EML) segmenting the
liver vessels from the background voxels. The experiments
with the proposed technique used six sets of abdomen CT
clinical images and the result evaluation was performed with
a specialist analysis through corrections on the obtained
results and three calculation measures (accuracy, sensitivity,
and specificity).

In [110], Shuo Wang et al. proposed a central focused
convolutional neural networks (CF-CNN), to segment lung
nodules from CT images. The CF-CNN model utilizes 3D
and 2D views of CT imaging for lung segmentation. Thus,
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Fig. 5 Flowchart from the methodology proposed by Santos. Extracted from [108]

given one voxel in CT images, the 3D and 2D patches
are extracted and used as input to the CNN model to
predict if the voxel belongs to the nodule or healthy tissue
classes. The author explains the model architecture, how
the training samples were selected and all steps involved in
the process. The test performed with the proposed approach
employed two datasets: publicly available dataset from the
Lung Image Database Consortium and Image Database
Resource Initiative (LIDC) and the independently collected
from Guangdong General Hospital (GDGH). The proposed
approach was tested against several segmentation methods
(Level Set, Graph Cut, U-Net, 3-D-Patch Branch, 2-D-Patch
Branch, CF-CNN-MP, CF-CNN) in terms of similarity
index (Dice similarity coefficient and symmetric average
surface distance ), sensitivity, and positive predictive value
compared against a ground truth segmentation.

In the last work, Gibson et al. [111] proposed an infras-
tructure that provides a modular deep-learning pipeline for
a range of medical imaging applications (segmentation,
regression, image generation, and representation learning).
This infrastructure, named NiftyNet, is built on tensor-
flow framework and has as main objective to address the
ideosyncracies of medical imaging and to lower the barrier
to adopting this technology in medical imaging applica-
tions. The author presents the infrastructure with com-
ponents optimized for medical imaging applications and
specific interfaces for medical image segmentation, classi-
fication, regression, image generation, and representation
learning applications. Lastly, the author shows illustra-
tive applications, such as abdominal organ segmentation,
using the NiftyNet discussing over the results obtained,
lessons learned, and future direction of this proposed
infrastructure.

Miscellaneous

In this section, we present the works that have particular
specifications and cannot be inserted into the above
categories. Due to its specificity, we summarize for each
work the algorithmic process employed as well as how the
approach was tested and validated.

Association Rule Mining

Chaves et al. [112] proposed an aid system for early Alzhe-
imer’s case diagnoses. The proposed system consists of
three steps: the first step is a mask generation and use, which
is built with the use of a threshold based on an average
control image histogram. Then, a discretization process
is applied, consisting of an equal-width-size histogram
applied to the intensity values inside the mask range,
splitting them into k bins of equal width, which are used
to define the intervals of the selected ROIs. These ROIs
are used as input for the association rule mining (AR
mining) algorithm, which, on its training phase, captures
co-occurrence patterns within the control data and has as
objective to use rules to classify images in two classes
(control and Alzheimer’s). A rule on this context is the
relation between transaction item with enough support and
confidence. The AR mining process employs an algorithm
for finding sets of confidence and support greater than
minimum support and minimum confidence defined by
the user. Figure 6 summarizes the described process. The
proposed system was evaluated with images from the
Alzheimer Disease Neuroimaging Initiative (ADNI), using
the receiver operating characteristic (ROC) curve based on
the accuracy, sensitivity, and specificity values as measures.
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Fig. 6 Flow diagram
summarizing the method
proposed by Chaves. Extracted
from [112]

Connected Component

Spampinato et al. [113] present a method for mandible
surface segmentation and measure in CT images. The
segmentation part is performed in two stages: The first
stage consists on the inferior mandible-arch extraction. This
step identifies a mask, which is applied to filter only the
inferior dental arch and can be described by the follow
steps: first step is an orientation phase, where for each
volume slice, starting from the the bottom one, a bit-plane
slice coding is performed. On the bit-plan slice coding,
the slice is divided in several images, where each image
represents the contribution of a specific bit to the total
image appearance. After that, the selection of the bit plane
with most significance is performed, the application of
morphological operators and largest connected component
identification in each slice. The mask is selected based on
the connected component with the lowest ratio, calculated
through the division between the connected component area
and the component convex hull area. The second stage
has as objective the upper mandible-arch extraction. In this
stage occurs the application of the first two steps used for
the lower mandible arc extraction starting from the slice
where the upper mandible arch begin. Then, the connected
components are computed and to be considered mandible
part, they must satisfy three restrictions (position, distance,
and shape). After the mandible region extraction, a surface
rendering algorithm is applied for 3D reconstruction and
posterior measuring between landmarks localized on the
reconstructed surface. The proposed method was evaluated
against measures performed by two specialists over 10
tomographic volumes: 5 from the control group and 5

from patients with facial asymmetry, in terms of mean and
standard deviation.

Diffusion Maps

Karvonen et al. [114] present method for 3D segmentation
of cochlear optical coherence tomography (OCT) images
that is based on superpixels and diffusion maps. The
proposed method has basically two steps: pre-processing
and clustering. In pre-processing step, the OCT images are
smoothed by a median filtering method and the superpixels
are created. Then, in the clustering step, the diffusion
maps are constructed using a Gaussian kernel with the
Euclidean distances between superpixel intensities as the
distance metric. After that, the k-means clustering method
with 2 clusters (background and foreground) is applied
to identify the superpixels that belong to the cochlea.
Finally, the labels assigned to each pixel are used to
expand the superpixels obtaining the original volume and,
consequently, the volumetric binary image. The proposed
method was applied in some experiments with guinea pig
and mice cochleas OCT images.

Dynamic Programming

The work presented by Qian Wang et al. [115] propose
a method for lung nodule segmentation in CT images.
The proposed approach can be divided in two stages: In
the first stage, the 2D dynamic programming model was
extended to a 3D dynamic programming model, on which
the slice center and the radial lines number and length were
adapted for each slice and an intern cost function between
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adjacent slices was introduced. Based on this model, a
slice by slice segmentation, starting from a middle slice
and progressing to the two extremities is performed. This
segmentation performs the transformation of each slice
into an image composed by a series of equally spaced
parallel vertical lines, transforming the nodules frontiers
in horizontal curves. With this transformed image, the
segmentation problem can be solved through the search
of an optimal path with minimum cost using the dynamic
programming algorithm. In the second stage, the segmented
parts near to the nodule center are combined, for each
direction, and an opening morphological operator is applied
to obtain the final segmentation. To evaluate the proposed
approach performance an overlap calculation was used
to quantify the segmentation results consistency with the
golden standard provided by the Lung Imaging Database
Consortium [92].

Fuzzy

Lloréns et al. [116] propose a method for segmentation of
jaw tissue in CT images. The presented method aims to
reconstruct the jaw tissue starting from a set of serial cross-
sections defined perpendicularly to the dental arch plane.
The mandible is divided in 5 regions according to the tissue
present on each region. The method scans each slice and
estimates to which region each cross section belongs to and
tries to segment the tissues present in the area. The hard
tissues are segmented using a threshold technique associated
with a boundary insertion in each cross-section. The
boundaries are estimated through morphological operations.
The nerve is segmented using Fuzzy Connectedness Object
Extraction (FCOE), which is a method that starts with seed
points and evaluate the affinity between seed and image
pixel and, based on this affinity map and threshold, delimits
the pixels that are connected to the same object. The seeds
are extracted based on the pseudo-orthopantomographic
projection and when all the cross-sections were segmented
the 3D volume is reconstructed. Figure 7 shows the
proposed algorithm flow. The method was tested on cross-
sectional sets of 20 different patients, with their respective
ground truth generated by a group of five experts, and the
results were evaluated using 4 similarity measure (Jaccard

index, Dice’s coefficient, Point-to-point distance and Point-
to-curve distance) showing their respective mean and also
standard deviation values.

In [117], Ziyue Xu et al. present 3D segmentation
algorithm to segment rib cage in chest CT scans. The
approach has four steps: high-intensity bone structures
segmentation; Multi-scale Hessian analysis; Detection of
bone structures other than rib cage; and separation from
detected structures from the rib cage. For high-intensity
bone structures segmentation the fuzzy connectedness
(FC) is employed. Then, Multi-scale Hessian analysis is
performed to calculate the plateness and vesselness aiming
to enhance the plate-like bones of sternum and scapula while
excluding tubular ribs. In the detection of bone structures
other than rib cage step, calculated plateness and vesselness
information are employed. Lastly, for the separation from
the detected structures from the rib cage, a thresholding,
using the plateness and vesselness information, was applied
to extract candidate plate voxels. Next, an iterative relative
fuzzy connectedness (IRFC) method was used to finish
removing voxels that belong to plate bone. This four steps
result in the final rib cage segmentation. To evaluate the
proposed algorithm performance the authors performed
initially a visual qualitative evaluation of the rib cage
segmentation results by two experts. Then, for a quantitative
evaluation, 50 slices were selected and experts were asked
to manually draw the separation curves between the rib
cage and other bones on the overlapping whole bone
segmentation. The Hausdorff distance, computed between
the proposed method and the reference, was employed for
quantification.

A method for kidney segmentation is presented by Hong
Song et al. [118]. The proposed method employs a strategy
of coarse-to-fine segmentation divided in two stages : rough
and refined segmentation. Before the execution of these two
stages, a median filter is applied to reduce the noise. In the
rough stage, a kernel fuzzy C-means algorithm with spatial
information (SKFCM) is used. Basically, the SKFCM
introduces a kernel function and spatial constraint into the
traditional FCM algorithm. In the refined stage, a improved
GrowCut algorithm is used, which, differently from the
GrowCut algorithm, can generate seed labels automatically.
Lastly, a a post-processing method based on morphological

Fig. 7 Flow of the algorithm proposed by Lloréns. Extracted from [116]
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operations is employed. The proposed method evaluation
was conducted on three groups of abdominal CT images.
The performance was assessed comparing the obtained
results from the proposed method and the traditional method
with a gold standard in terms of accuracy, overlap, the
number of interactions (NOI) and the time of generating
seed points by manual method or computer algorithm
method (TOGSP). The method also was compared in terms
of accuracy, sensitivity and specificity against other kidney
segmentation methods.

In [119], Weidong Zhang et al. proposed a 3D
segmentation method to segment the whole colon from
a computed tomography colonography (CTC) data. The
proposed method is basically composed of four steps: rough
colon localization; initial 3D segmentation; colon tagged
materials and non-colon regions classification; and final
3D segmentation generation. The rough colon localization
and, posterior, initial 3D segmentation are performed using
a pre-trained colon atlas probability map fit into the
region of interest with anatomy constraints. The colon
tagged materials and non-colon regions classification is
performed by extracting features (2D and 3D Haar features)
and generating a training set of positive and negative
samples. Then, a cascade of Adaboost classifiers are
adopted for feature selection and classification. Lastly,
for the final 3D segmentation generation, the fuzzy-
connectedness (FC) is used to segment the colon tagged
material from the intersection to the colon wall. To evaluate
the proposed method performance the false positive rate
(FPR), volume overlap (VO) and Dice coefficient were
employed, comparing the obtained results with ground truth
generated by automated segmentation and slice by slice
refinement performed by experts.

Geodesic Distance Segmentation

Yeonggul Jang et al. [120] present a method for 3D seg-
mentation of the ascending aorta from coronary computed
tomography angiography (CCTA). The method is composed
by three steps: seed points selection, ascending aorta seg-
mentation, seed points transfer. In the seed point selection,
first the most probable ascending aorta circle among the
axial-slices is found, using the circular Hough transform
and a correlation between ascending and descending aor-
tas. A volume of interest (VOI) is set based on the center
and radius of the detected circle. In the ascending aorta
segmentation step, the aorta in the detected circle is seg-
mented by the geodesic distance algorithm in VOI over the
axial slices, using the first segmented slice as basis for seg-
mentation seeding for adjacent slices (seed point transfer
step). The proposed method was evaluated by comparing
the results with ground truths and a commercially available
workstation in terms of Dice similarity coefficient.

Genetic Algorithms

Rusu et al. [121] describe a workflow to automatically
segment filaments on cryon-electron tomography (cryo-ET)
maps, which included all pre-segmentation part finalizing
with the segmentation and result comparison. The pre-
processing part is composed by the followings steps: The
first step consist on the test and use of two noise removal
filters, the Gaussian-weighted averaging and digital paths
supervised variance. The second step is the normalization,
aiming to improve the structure features appearance and
equalize an uneven density distribution on the maps.
The third step is the map edition, through the use of
polygon clipping tools and flood fill algorithm with multiple
points, aiming to assist on the regions without filaments
removal. The next step is the image degradation correction,
performing a mitigation dependent on the filaments
intensity orientation. After the pre-processing part, the
proper filament segmentation is performed using the
volume trace (VolTrac), which employs a genetic algorithm
for, initially, placing randomly cylindrical templates and,
with the mutation and crossover processes, perform the
search for the cylinders that maximize the fitness value.
Lastly, the workflow is finalized with the result validation,
comparing the obtained results for the automatic filaments
segmentation with a manual segmentation performed by
specialists.

Hessian Matrix Based

Gonçalves et al. [122] propose a method for lung nodule
segmentation in CT images. The method uses a process
of multiple-scale segmentation that employs the adaptive
central medialness principle. This adaptive principle,
consists in a strategy based on Hessian matrix, which
provide a good segmentation in structures with particle
shapes (blobs) as is the case on lung nodules. As the
focus of the proposed work is the nodule segmentation,
the strategy starts from a detected nodule localization
aiming to evaluate the proposed method on the nodule
volume extraction task. Therefore, initially, a multiple-scale
smoothness filter is used to reduce the noise level. After that,
the 3D Hessian matrix and its correspondent eigenvalues
are computed and combined to generate the segmentation
mask. In the combination for the mask generation, three
approaches were tested. The first one, calculates the shape
index and the curvedness from the biggest and the smallest
Hessian matrix eigenvalues. The second, uses the two
biggest eigenvalues to measure the structure force and their
ratio is applied to correct the deviation from the target
structure center. The third approach, uses a combination of
the two previously presented approaches through the union
of the detection provided by each one. After the structure
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enhancement, where nodules can be clearly identified,
the last step is the threshold application to select voxels
with a high response and, therefore, build the masks by
the final nodule segmentation connectivity. The different
approaches were evaluated in different lung nodule cases
present in the LIDC [92] database. Each tomographic
volume used was evaluated by four radiologists and only
nodules that had a strong consensus between the specialists
were considered. The Jaccard index was used as comparison
measure between the proposed approaches and the manual
segmentation ground truth performed by human specialists.

Histogram Based

Fabijanska et al. [123] propose a method for segmentation
of regions filled with the cerebrospinal fluid in brain
CT images. The method consists of the following steps:
Initially, the user indicates a seed with ellipsoidal shape
within the ROI. Then, the input data is normalized to
the range of intensities varying from [0, 255], highlighting
values corresponding to cerebral tissues and attenuating
values corresponding to the surrounding air and the dense
tissue. Next, a histogram Hsd that represents the voxel
intensity within the ellipsoidal region previously informed
as seed is calculated. This reference histogram is compared
with the local distribution intensity across the image in
order to identify voxels belonging to the segmented object.
In the fourth step, the local histogram Hxy in a circular
neighborhood is collected for each voxel in the same plane
and a similarity map between local histogram and the
reference histogram is calculated through the Bhattacharyya
distance, assigning a similarity level for each voxel. To
improve the brain desired region accuracy detection, the
similarity map is enhanced with the application of an
intensity reconstruction followed by morphological opening
with an appropriate ellipsoid structuring element. Lastly, a
thresholding method (OTSU) is applied on the similarity
map to produce the final segmentation. The proposed
method accuracy was measured through the DICE similarity
coefficient and the Jaccard index in five cases of brain CT
images.

Isosurface Manipulation

X. Wan et al. [124] present method which integrates the seg-
mentation and visualization together to generate meaningful
visualization results of multiple anatomical structures. The
method can be divided in three stages: feature locating,
structure extracting, and structure recombining. In the fea-
ture locating stage, the objective is to identify and visualize
a specific feature of interest, e.g., whole organ or a seg-
ment of an organ. Two process are executed in this stage:
appropriate isosurface selection (containing the structure)

and undesired structures removal. The isosurface selection
can be performed by the isovalue tuning and the crop-
ping and peeling operations are used to remove undesirable
structures. In the structure extracting stage, after locating
the feature it is possible that the feature is not completely
isolated; thus, to extract the structure of interest, an interac-
tive segmentation procedure is employed. The segmentation
procedure consists on the selection of foreground and back-
ground voxels, in the isosurface, that are used as seeds. This
seeds are used to perform a min-cut based optimization pro-
cedure to decide a geometrically shortest cut that divides
the two sets of seeds. This two stages can be applied to
each structure of interest and the results can be recombined
to generate a multi-valued mask volume in the structure
recombining stage. The proposed method was tested in a
thorax computed tomography angiography dataset to extract
the kidneys and the heart. It was also tested in an ear CT
dataset, where the surgeon is interested in a couple of dif-
ferent structures, i.e., the cochlea, the facial nerve, and the
chorda.

Polynomial Fitting

Biesdorf et al. [125] proposed a new approach for blood
vessel segmentation in computed tomography angiography
(CTA) images. This approach uses a local implicit
polynomial fitting and a convex optimization combined
with an incremental tracking scheme. The proposed method
can be summarized on three main steps: initialization, local
model parameter estimation, and tracking along the vessel
centerline. In the initialization part, a coarse estimation is
required for the starting point, the local orientation, and
the ROI radius for model fitting. These information are
needed only for the first vessel segment initialization, for
the other vessel segments the previous vessel segmentation
result is used. For the local model parameters estimation,
the convex objective function is minimized in a 3D ROI
around a vessel. For minimization, a projected gradient
descent approach is used and the parameter update is
computed iteratively. For the tracking along the vessel
centerline, a new 3D position is predicted based on the
estimate centerline position and on the local 3D current
vessel segment orientation. The proposed approach was
tested in more than 100 synthetic images and in 10 different
CTA clinical images, measuring the approach accuracy
based on relevant clinical parameters (minimum, mean, and
maximum vessel diameter) as well as the mean error for the
centerline position and the mean Dice similarity coefficient.

Tree Bagger Classifier

The work proposed by Farzaneh et al. [126] present
a method for 3D segmentation of convexity subdural



842 J Digit Imaging (2018) 31:799–850

hematomas in head CT images. The method initially
performs the skull segmentation and tissue intensity
normalization based on intensity parameters. Then, to find
the intracranial region where the convexity SDHs occur,
first the region contained by the skull has to be segmented.
If there is no fracture or the skull is closed, this process
is resumed to segment the area enclosed by the skull.
Otherwise, a customized version of the distance regularized
level set evolution (DRLSE) method is used to find the
brain border. After the ROI definition, a feature extraction
process is performed extracting statistical, textural, and
geometrical information. These features are used to classify
each voxel as hematoma or non-hematoma by means of a
Tree Bagger Classifier. After the classification process, a
3D post-processing method is applied to 3D representation
of the binary classification result to reduce the number
of false positives. The results obtained with the proposed
method were compared with a gold standard, calculating the
sensitivity and specificity similarity values and generating
the ROC curve for evaluation.

Template Matching

The work proposed by Czabaj et al. [127] combines imag-
ing, visualization, and numerical reconstruction of a fiber-
reinforced polymer in a 3D X-ray computed tomogra-
phy microscope images. The polymer under study is the
graphite/epoxy and the first step is the digitization on sub-
micron resolution. For a correct numerical reconstruction, a
segmentation algorithm is used to identify and estimate cor-
rectly the individual fiber positioning in the volume. The
segmentation algorithm employed is divided in two steps: in
the first step, a template-matching (TM) algorithm is used to
detect 2D coordinates of individual fiber centroids in each
cross-sectional image of the volume. Each template selec-
tion was performed through the trial and error. In the second
step, the multi-fiber assignment and tracking algorithm uses
the TM detection part to determine the 3D coordinate for
each individual fiber in the volume. After the fiber segmen-
tation, an algorithm to convert the resulting segmentation
data (coordinate and diameters) into a detailed 3D finite
element mesh of the composite is used. The described algo-
rithm was applied to sub-volumes of size 1693 and evaluated
qualitatively, based on the reconstruction visualization, and
quantitatively based on the fibers distribution and on the
fiber’s angles computation, which measures misorientation
of any given fiber relative to the global Z-Axis.

Tensor Voting

An approach for segmentation and quantification of object
filaments in 3D electron tomography images is proposed
by Loss et al. [128]. This approach consists of three steps:

The first step is the use of a Hessian filter for local
filaments enhancement; The second step is the detection and
completion of filamentous structures through tensor voting;
The third step is the filamentous networks delineation
through 3D tracking curves algorithm, which allows the
detection and labeling of filaments. The tracking curve
algorithm iterates between finding voxels to be used as
seed, for tracking, and linking adjacent voxels along a
consistent direction. The proposed method was initially
evaluated in synthetic data with noise insertion and for
its quantitative evaluation two variables were computed
(precision and recall). In other experiment, real cell wall
samples that suffer different chemical treatments were used,
aiming to quantify the plants cell walls compositional
and morphometric properties. This experiment results were
validated and compared against previously published works.

Swarm Intelligence

An approach for segmentation of structures in 3D and
2D images, using specification of the bacterium colony
segmentation (BCS) technique, is presented by Pawel
Badura [129]. This new swarm intelligence optimization
technique, represented in Fig. 8, is a heuristic tool provided
for certain parts of segmentation methods. The method starts
with the initialization of colony members and preparation of
any auxiliary data. The main loop is composed by five steps:
bacteria movements; calculation of new bacteria velocities;
deposition of pheromone trails; pheromone evaporation;
and bacteria sizes modification. This loop is executed
until a break condition is reached, using the pheromone
distribution to produce the binary segmentation result. The
experiments performed with the proposed method employed
several image types (2D and 3D synthetic and CT images,
CAD domains and 2D ultrasonography) and the results were
validated using sensitivity and Dice index metrics of spacial
overlap.

Several Algorithms

This section report works that have more than one
segmentation method being analyzed such as surveys and
comparative studies.

The work proposed by Ontiverosa et al. [130], for exam-
ple, performs an analysis of edge detection techniques
for application in metrology in CT images. Initially, the
author explains each of the common techniques used for
edge detection (Atlas-guided, deformable models, detection
of discontinuities, pattern classification, region-oriented,
threshold-based, trainable segmentation, Watershed trans-
formation) making reference to some methods for each
technique. Then, the author select two methods, justify-
ing the specific selection of these two and not the others,
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Fig. 8 Scheme of the BCS segmentation algorithm. Extracted from
[129]

detailed in Fig. 9. The two selected methods, threshold and
canny, were used in a comparative analysis through their
application on a reference volume. In this evaluation, both
methods were applied more then 10 times, comparing the
measures differences related to the model volume previ-
ously calibrated. The comparison analysis results showed
the canny method repeatability power and the local thresh-
old higher accuracy and lower repeatability rate, indicating
the possibility of the canny method being more corrected
than the threshold.

The work presented by Rudyanto et al. [131] shows
algorithms for automated vessel segmentation, aiming to
provide a platform to compare the segmentation algorithms
performance in lung vessel identification process applied
to CT images. A reference dataset containing annotations
about 20 CTs and the proposal of nine categories to perform
evaluation was elaborated. The developed study has all the
description about the data set acquisition (pathology, image
type, scanner and kernel, spacing, number of slices, voltage,
and amperage), the definition of evaluation categories,
the presented segmentation method categorization (author,
image type, if it is multi-scale or not and if it has a pre-
processing step) and all the score part with the results
statistical analysis. Based on the presented work, the author
claims that its main contribution are: the reference dataset

containing annotations, the quantitative system for scoring
and the segmentation methods comparison and evaluation,
highlighting the strong and weak points of each of them in
the presence of some lung diseases.

The next work was proposed by Valente et al. [132]
and presents a survey based on methods for automatic
identification of lung nodules in CT images. The performed
study shows the methodology used that goes from the
selection criterion for published works to a critical analysis
about them and the future prospects for the study area. The
works selected for evaluation were categorized according
to presence or not of the five principal stages, normally
presented on diagnostic aid systems. The five principal
stages are: (i) data acquisition, (ii) pre-processing, (iii) lung
segmentation, (iv) nodule detection, and (v) false positives
reduction. For each stage, there is a description about their
operation with the most used techniques and, for some of
these steps, a table is presented showing specifically the
method used by each work. In the survey is also described a
comparative table with the author’s name and the presence
or not of some features considered important for each
work individually. Some of these important features are the
method sensitivity, the number of false positive per exam,
the number of nodules used on the validation process, the
nodules size, the execution time, and the nodule type. Lastly,
the author makes a summary about the automatic nodule
identification area actual stage, based on the analyzed
works.

Performance Evaluation Analysis

One important aspect for the development of 3D segmen-
tation algorithms is its evaluation. To perform such evalu-
ation, the analyzed works focused on specific aspects such
as robustness, specificity, sensitivity, accuracy, precision,
recall, and others. Those aspects were measured, in general,
based on the number of false positives, false negatives, true
positives, and true negatives. Some of the analyzed works
used a qualitative evaluation associated with the quantita-
tive analysis and some used only qualitative evaluation. For
the qualitative evaluation, in the analyzed works’ scope, the
subjective analysis was predominant, e.g., visual analysis
of the obtained results; however, it is not commonly used
for a wide comparison between segmentation algorithms.
In general, the evaluation is performed based on the spe-
cialist knowledge, i.e., the obtained segmentation results
are compared to a manually performed segmentation, nor-
mally called by the names of ground-truths, golden pattern,
or golden standard, employing a specific metric or specific
characteristics for evaluation.

On the analyzed works that had a qualitative analysis,
the metrics most used were the DICE similarity coefficient
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Fig. 9 Table with the methods
analyzed by Ontiverosa.
Extracted from [130]

[133], the Jaccard index [134], and the commonly used
specificity, accuracy and sensitivity. Some works employed
custom metrics, but those were, in general, related to the
golden standard or an atlas. Herng-Hua Chang et al. [135]
present a detailed analysis of performance measures for
evaluation of neuroimage segmentation algorithms, where
DICE coefficient, Jaccard index, specificity, accuracy,
sensitivity, and other metrics such as Anderberg, Blanque
and Kulczynsk are further explained in their brain image
context. Although the authors present those metrics for
the brain images segmentation context, still the metrics
concepts and use are the same when compared with
other image types (2D images, computed tomography from
several areas and so on). Other metrics for 3D segmentation
method evaluation can be found on the work proposed by
Taha et al. [136]. In [136], 19 3D image segmentation
metrics were implemented in a tool used for validation. The
author presents a table with the 19 metrics referencing their
definition and articles that use the metric in medical images,
as well as a detailed analysis of those metrics.

Discussion

From a systematic point of view, we can highlight some
key aspects about 3D segmentation applied to tomographic
images:

– The use of 3D segmentation algorithms based on CT
images is still focused in the Human Healthy area,
as showed on the chart Fig. 10. However, there are

some areas demonstrating a growing tendency for 3D
segmentation as well, e.g., geology and general objects.

– There is a vast amount of 3D segmentation techniques
with different methodologies applied, which indicates a
constant and growing research in the 3D segmentation
area.

– The histogram, indicated in Fig. 11, shows the
main methods grouped according to its frequency
occurrences. From this graph, one can notice that the
model-based methods are the most used in the covered
period, which indicates that the use of models to
guide the segmentation process, in the 3D segmentation
scope, has obtained more positive results. Also, we
notice that the threshold methods were used with a
lower frequency. However, this category of methods
are frequently presented in several analyzed works
as supporting or as an initialization procedure for
other methods, demonstrating the importance of such
technique.

Also, we can point out that the proposed review,
following the Kitchenham’s methodology, demonstrates (i)
a reproducible search with a systematic methodology to
review 3D segmentation algorithms applied to tomographic
images on the period from 2006 to march of 2018. Figure 12
shows the analyzed works frequency by publication year;
(ii) a summary of all the analyzed works that match with
the established criteria, specifying the main segmentation
method, the image type used, the experiments performed,
and the performance evaluation methods employed by each
work, categorizing each work into its respective groups; (iii)
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Fig. 10 Pizza chart showing the
frequency of the main
application areas, based on the
analyzed works

a general overview analyzing, based on the selected works,
the 3D segmentation area with application in tomographic
images.

Limitations

In our review, some limitations aspects are present and
mainly refer to the systematic methodology procedure.
The systematic methodology key aspect of turning the
search reproducible, when the same key words and tags
are used, also produce a closed scope limited by the
keywords, tags and search strings employed. In our case,
we limited our review to 3D segmentation algorithms
applied to tomographic images. Thus, 3D segmentation
algorithms applied to other image modality would not be
contemplated in our review. Also, we delimited the year
range from 2006 to March 2018; thus, works published
outside this range were not evaluated. Another important
step of the systematic methodology is the exclusion criterion

application. In our review, we excluded works that were
not available for analysis, i.e., we did not have access
to the complete work. Additionally, we excluded works
that were not written in English and that only employed
the segmentation method, i.e., used a software for the
segmentation procedure; thus, the segmentation method was
not the main procedure being evaluated in some application
area.

Future Prospects

Based on the gathered information provided from the
analyzed works, it can be observed that 3D segmentation
methods (newer or existing ones) must take performance
aspects into account in order to obtain results with some
degree of efficiency. Real parallel execution is still explored
in a very subtle manner, opening a wide opportunity for
further research and development. Qualitatively speaking, a
unified methodology for evaluation is still required, once the

Fig. 11 Histogram showing the
frequency of the main method
used based on the analyzed
works grouping



846 J Digit Imaging (2018) 31:799–850

Fig. 12 Histogram showing the
frequency of the analyzed works
by year of publication.

arose methodologies use proper datasets whose images were
acquired under very controlled conditions and generally, if
not publicly available, cannot be reproduced and used as
a comparison benchmark for other segmentation methods.
Also, we can make some assumptions of the future direction
that the 3D segmentation area, applied to tomographic
images, is taking:

– an increase on the use of hybrid segmentation
methods, i.e., methods that use more than one type of
segmentation, seeking to produce more reliable results;

– employment of 3D segmentation methods in more
areas than Human Healthy area, driven by a large
popularization of 3D sensors;

– development of parallel segmentation methods, boosted
by the increase on the quantity of information available
and the GPU and multi-core processors development;

– validation and evaluation methodologies appearance,
providing a more unified form for segmentation
methods comparison;

– use of large datasets for 3D segmentation algorithms
evaluation;

– extension and application of 2D segmentation methods
that still were not evolved for 3D.

Conclusion

This systematic literature review presented a general
overview regarding 3D segmentation area applied to tomo-
graphic images. The research included articles published
between 2006 and March 2018 on Science Direct, IEE-
EXplore, ACM, and PubMed. Advances in qualitative and
quantitative evaluation and application in areas other than
the Human Healthy area, were demonstrated, but there are
still areas to be tested and methodologies to be formalized.

In general, several published studies showed their
potential in the Human Healthy area, however, the presented
method generalization power is still an open question.
An experiment testing this power would be a possible
experiment to compare the methods abilities in several areas
other than the medical one. This experiment would only
be possible through a joint effort between the authors, to
formalize a methodology for validation and evaluation in a
specific framework, which would test all the methods in the
same illumination, clutter, and resolution conditions, which
are constant problems in the segmentation area.

This review with the methods analysis, performed
experiments, performance evaluation analysis, and future
prospects, is useful for researches working with tomo-
graphic images that require a full 3D segmentation method
application for better image understanding and discretiza-
tion.
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cker C, Mir Fernando L, Naranjo V, Villanueva E, Staring
M, Xiao C, Stoel BC, Fabijanska Aa, Smistad Erik, Elster AC,
Lindseth F, Foruzan AH, Kiros R, Popuri K, Cobzas D, Jimenez-
Carretero D, Santos A, Ledesma-Carbayo MJ, Helmberger M,
Urschler M, Pienn M, Bosboom DGH, Campo A, Prokop M,
de Jong Pim A, de Solorzano CO, Barrutia AM, van Ginneken
B: Comparing algorithms for automated vessel segmentation in
computed tomography scans of the lung: the {VESSEL12} study.
Med Image Anal 18(7):1217–1232, 2014

132. Valente IRS, Cortez PC, Neto EC, Soares JM, de Albuquerque
VHC, Tavares JMRS: Automatic 3d pulmonary nodule detection in
ct images. Comput Methods Prog Biomed 124(C):91–107, 2016

133. Dice LR: Measures of the amount of ecologic association
between species. Ecology 26(3):297–302, 1945

134. Ben-Hur A, Elisseeff A, Guyon I: A stability based method
for discovering structure in clustered data Pacific Symposium
on Biocomputing Pacific Symposium on Biocomputing, 2002,
pp 6–17

135. Chang H-H, Zhuang AH, Valentino DJ, Chu W-C: Performance
measure characterization for evaluating neuroimage segmenta-
tion algorithms. NeuroImage 47(1):122–135, 2009

136. Taha AA, Hanbury A: Metrics for evaluating 3d medical image
segmentation: analysis, selection, and tool. BMC Med Imaging
15(1):29, 2015


	3D Segmentation Algorithms for Computerized Tomographic Imaging
	Abstract
	Introduction
	Approach for Systematic Review of the Literature
	3D Segmentation Approaches
	Threshold Methods
	Graph-Based Approaches
	Level Set Methods
	Model Based
	Markov Random Fields
	Deformable Models
	Active Contours
	Shape-Based Models

	Region Growing
	Neural Network
	Miscellaneous
	Association Rule Mining
	Connected Component
	Diffusion Maps
	Dynamic Programming
	Fuzzy
	Geodesic Distance Segmentation
	Genetic Algorithms
	Hessian Matrix Based
	Histogram Based
	Isosurface Manipulation
	Polynomial Fitting
	Tree Bagger Classifier
	Template Matching
	Tensor Voting
	Swarm Intelligence
	Several Algorithms


	Performance Evaluation Analysis
	Discussion
	Limitations
	Future Prospects

	Conclusion
	References


