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The application of deep neural networks to medical 
imaging is an evolving research field (1,2). An artifi-

cial neural network consists of a set of simple process-
ing units, artificial neurons, connected in a network, 
organized in layers, and trained with a backpropagation 
algorithm (3). The resulting computational model is 
able to learn representations of data with a high level of 
abstraction (4).

Deep neural networks have been shown to achieve 
excellent performance on many natural computer vi-
sion tasks, which is advantageous for medical special-
ties such as radiology and dermatology (4,5). Previous 
work has indicated that the performance of deep learn-
ing algorithms is comparable to or even exceeds the 
performance of radiologists in detecting consolidation 
on chest radiographs (6), segmenting cysts in polycystic 
kidney disease on CT scans (7), and detecting pulmo-
nary nodules on CT scans (8).

Artificial intelligence (AI)–led independent reporting of 
imaging remains a controversial topic; however, many ra-
diologists would agree that deep learning technology could 
be a valuable tool in improving workflow and workforce 
efficiency (9–11). The increasing clinical demands on ra-
diology departments worldwide have challenged current 
service delivery models, particularly in publicly funded 
health care systems. In some settings, it may not be fea-
sible to report all acquired radiographs in a timely manner, 
leading to large backlogs of unreported studies (12,13). For 
example, the United Kingdom estimates that, at any time, 
330 000 patients are waiting more than 30 days for their 
reports (14). Therefore, alternative models of care should 
be explored, particularly for chest radiographs, which ac-
count for 40% of all diagnostic images worldwide (15).

Better mechanisms for triaging abnormal versus 
normal chest radiographs and prioritization of abnormal 
radiographs (eg, according to the “criticality” of the 
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Purpose: To develop and test an artificial intelligence (AI) system, bas ed on deep convolutional neural networks (CNNs), for auto-
mated real-time triaging of adult chest radiographs on the basis of the urgency of imaging appearances.

Materials and Methods: An AI system was developed by using 470 388 fully anonymized institutional adult chest radiographs ac-
quired from 2007 to 2017. The free-text radiology reports were preprocessed by using an in-house natural language processing 
(NLP) system modeling radiologic language. The NLP system analyzed the free-text report to prioritize each radiograph as critical, 
urgent, nonurgent, or normal. An AI system for computer vision using an ensemble of two deep CNNs was then trained by using 
labeled radiographs to predict the clinical priority from radiologic appearances only. The system’s performance in radiograph priori-
tization was tested in a simulation by using an independent set of 15 887 radiographs. Prediction performance was assessed with the 
area under the receiver operating characteristic curve; sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) were also determined. Nonparametric testing of the improvement in time to final report was determined at a nominal 
significance level of 5%.

Results: Normal chest radiographs were detected by our AI system with a sensitivity of 71%, specificity of 95%, PPV of 73%, and 
NPV of 94%. The average reporting delay was reduced from 11.2 to 2.7 days for critical imaging findings (P , .001) and from 7.6 
to 4.1 days for urgent imaging findings (P , .001) in the simulation compared with historical data.

Conclusion: Automated real-time triaging of adult chest radiographs with use of an artificial intelligence system is feasible, with 
clinically acceptable performance.
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findings) for reporting are key to improving workflow. We 
hypothesized that an AI-based system, powered by deep 
learning algorithms for computer vision, might be able to 
identify key findings on chest radiographs. With use of this 
information, real-time prioritization of abnormal radiographs 
for reporting, based on the criticality of findings, may be 
possible within current picture archiving and communication 
systems. Therefore, we aimed to develop and test an AI system, 
based on deep convolutional neural networks (CNNs), for 
automated real-time triaging of adult chest radiographs on the 
basis of the urgency of imaging appearances.

Materials and Methods
The institutional review board waived the requirement to ob-
tain informed consent for our retrospective study, which used 
fully anonymized reports and radiographs.

Data Set
A total of 832 265 frontal chest radiographs were obtained from 
January 2005 to May 2017 at our institution, a publicly funded 
university hospital network consisting of three hospitals. All 
832 265 radiograph reports in digital format from our radiology 
information system were included for natural language process-
ing (NLP). Of the 832 265 original resolution chest radiographs 
acquired since picture archiving and communication system 
implementation in 2007, 677 030 (81.3%) were available in 
Digital Imaging and Communications in Medicine format. Pe-
diatric radiographs (obtained in patients ,16 years, 206 642 of 
677 030 radiographs [30.5%]) were excluded, leaving a final data 
set of 470 388 (69.5%) consecutive adult chest radiographs for 
deep learning with no further exclusions. The 413 403 consecu-
tive radiographs acquired before April 1, 2016, were separated 
into training (n = 329 698, 79.7%), testing (n = 41 407, 10%), 
and internal validation (n = 42 298, 10.2%) sets, ensuring that the 
distribution of age and abnormalities within each subset matched 
the entire data set. Radiographs obtained after April 1, 2016, were 
used to assess the prioritization system performance in a simula-
tion study. Figure 1 summarizes this.

NLP-generated Radiograph Annotation and Labeling
Annotation of the radiographs was automated by develop-
ing an NLP system that was able to process and map the 
language used in each radiology report (16). The architec-
ture of our NLP system was somewhat similar to the archi-
tecture described by Cornegruta et al (17) and Pesce et al 
(18). Figure 2 shows an example of how terminology (“enti-
ties”) including negation attributes and interrelationships was 
extracted from the radiology report and processed by a rule-
based system, producing a list of confirmed findings. These 
were then mapped onto 15 radiologic “labels” (Table 1).  
These labels reflected the most common and clinically im-
portant radiographic findings within our data set. These were 
then mapped onto four clinical prioritization levels selected to  
reflect our current reporting practice, as follows: (a) critical, 
requiring an immediate report due to a clinically critical find-
ing (eg, pneumothorax); (b) urgent, requiring a report within 
48 hours due to a clinically important but not critical finding 
(eg, consolidation); (c) nonurgent, requiring a report within 
the standard departmental turnaround time due to nonclini-
cally important findings (eg, hiatus hernia); and (d) normal (ie, 
no abnormalities on radiograph) (Table 1). A reference stan-
dard data set was initially generated for testing purposes by ran-
domly extracting 4551 chest radiographs from the whole data 
set. The labels in this data set were manually validated by two 
radiologists-in-training (S.J.W., R.J.B., with 3 years of experi-
ence) independently, with any disagreements resolved in con-
sensus with staff radiologist review (.10 years of experience).

Deep Learning Architecture for Criticality Prediction 
from Image Data
The computer vision system was implemented on the basis 
of ordinal regression models, making use of two deep CNNs 
for the automatic extraction of imaging patterns directly from 
pixel values. All 329 698 images in the training set were used 
for end-to-end training of the convolutional networks (Ap-
pendix E1 [online]). A reduced reference standard data set was 
generated for testing purposes by randomly sampling a subset 
of 3299 examinations (72.5%) from the 4551 examinations 
contained in the reference standard data set.

Automated Image Prioritization: Simulation Study
The computer vision algorithms were used to build an au-
tomated radiograph prioritization system, as illustrated in  
Figure 3. The system operates in real time: When a radiograph 
is acquired, it is processed by the deep CNN and assigned a 
predicted priority level. It is then inserted into a “dynamic re-
porting queue” on the basis of its predicted urgency and the 
waiting time of other already queued radiographs. To quantify 
the potential benefits that can be achieved by our AI system 
in a real clinical setting, a simulation study was performed on 
data collected after April 1, 2016. We simulated what would 
have happened if our AI system was used to order radiographs 
for reporting. To introduce a level of “clinical” realism, we also 
generated “noisy" versions of the queuing process. Each exami-
nation had a small, fixed probability (either 0.1 or 0.2) of not 
being reported according to our automated queuing system, 

Abbreviations
AI = artificial intelligence, CNN = convolutional neural network, NLP = 
natural language processing, NPV = negative predictive value, PPV = 
positive predictive value

Summary
An artificial intelligence system, developed on a data set of 470 388 
adult chest radiographs, is able to interpret and prioritize abnormal 
radiographs with critical or urgent findings.

Implications for Patient Care
 n Our artificial intelligence (AI)–based system detected abnormal 

from normal adult chest radiographs with a high positive predic-
tive value of 94%.

 n This AI system can be used to triage radiographs for reporting.
 n Our simulations show abnormal radiographs with critical findings 

receive an expert radiologist opinion sooner (2.7 vs 11.2 days on 
average) with use of AI prioritization compared with our actual 
practice.
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lation study, a nonparametric, randomization-based statistical 
test was performed. A null distribution for the average reporting 
delay within each priority class was obtained by running the pri-
oritization process 500 000 times under the null hypothesis that 
all four classes are prioritized in the same way. Hence, in each 
run, a priority class was assigned to each radiograph at random, 
unrelated to the image, with equal probability of each class. The 
statistical significance of the prioritization results was assessed by 
comparing the observed values against the null distribution. Sig-
nificance was at the 5% level.

Results

NLP-generated Radiograph Annotation and Labeling
Table 2 summarizes the performance of the NLP system, as-
sessed on the standard of reference data set. NLP performance 
was very good, achieving a sensitivity of 98%, specificity of 

99%, PPV of 97%, and NPV of 99% for normal 
radiographs and a sensitivity of 96%, specificity of 
97%, PPV of 84%, and NPV of 99% for critical 
radiographs. The NLP system was able to extract 
the presence or absence of almost all the radiologic 
findings within the free-text reports with a high de-
gree of accuracy (F1 score, 0.81–0.99) (Appendix 
E1 [online]). The most challenging label was “pa-
renchymal lesion,” which had the lowest accuracy. 
This was likely related to the ambiguity of language 
used within the reports; varying terminology, in-
cluding “shadow” and “opacity,” was used when 
alluding to a possible cancer. Other categories, for 
example, “pleural effusion” and “cardiomegaly,” 
were referred to far more specifically in the text and, 
consequently, resulted in a better NLP performance 
(F1 score, 0.94 and 0.99, respectively) (Appendix 
E1 [online]).

Deep Learning Architecture for Criticality 
Prediction from Image Data
Table 3 summarizes the performance of the AI pri-
oritization system, assessed on the standard of ref-
erence data set. AI performance was good, with a 
sensitivity of 71%, specificity of 95%, PPV of 73%, 
and NPV of 94% for normal radiographs (Fig 4) 
and a sensitivity of 65%, specificity of 94%, PPV of 

that is, the original reporting time stamp was left unchanged. 
This was to mimic a clinical scenario where radiographs would 
be reported out of order, for example, at the request of a re-
ferrer or due to chance (Appendix E1 [online]). The Python 
code (version 1.0) implementing the deep CNN and simu-
lation algorithms can be found online at: https://github.com/
WMGDataScience/chest_xrays_triaging.

Statistical Analysis
The predictive performance of the NLP and AI system was as-
sessed by using the area under the receiver operating characteris-
tic curve. Sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and F1 score (a measure of accu-
racy, reflecting the harmonic mean of PPV and sensitivity, where 
1 represents perfect PPV and sensitivity) were determined. To 
assess the effect of the prioritization system on reporting delay 
(time from acquisition to final report completion) in the simu-

Figure 1: Flowchart shows different data sets used for training, learning, and test-
ing. Approximately 8% of radiographs were critical, 40% urgent, 26% nonurgent, 
and 26% normal across the training, test, and validation data sets.

Figure 2: Example of radiologic report annotated by natural language processing system. “Entities” are highlighted 
with different colors, one for each semantic class. Arrows represent relationships between entities. Final annotation ex-
tracted by the rule-based system was “airspace opacification; pleural effusion/abnormality.”
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critical would have been reported within the first 
day with our system, compared with 60% of the 
critical examinations reported from the historical 
data. As expected, the time to report for normal 
examinations introduced by the AI system also 
changed and would have been longer.

Discussion
Our NLP system was able to extract out the pres-
ence or absence of radiologic findings within the 
free-text reports with a high degree of accuracy, 
as demonstrated by an F1 score of 0.81–0.99. 
It was also able to assign a priority level with a  
sensitivity of greater than 90% and specificity of 
greater than 96%, as assessed with the reference 
standard data set. Similarly, our deep CNN–based 
computer vision system was able to separate nor-
mal from abnormal chest radiographs with a sen-
sitivity of 71%, specificity of 95%, and NPV of 
94%. In assigning a priority level, performance 
was lower, with a sensitivity of more than 65% 
and a specificity of more than 76% for critical 
and urgent radiographs, respectively. In terms of 
misclassifications, of the 545 radiographs classi-
fied as normal by our AI system, five (1%) had 
critical and 95 (17%) had urgent findings de-
tailed within the reports. On rereview of these 
five critical radiographs, the AI interpretation of 
normal was unanimously believed to be correct in 
four instances. Similarly, for the 95 urgent radio-
graphs, 36 (38%) were normal on rereview.

Previously published studies have investigated 
the potential of NLP and computer vision tech-
niques in the classification of radiographs (6,19,20) 
but not for real-time prioritization, which was our 
primary aim. One simple study was able to classify 
chest radiographs as either frontal or lateral pro-

jections with high fidelity (100% correctly classified) (19). 
Another study classifying chest radiographs as normal or as 
showing cardiomegaly, consolidation, pleural effusion, pul-
monary edema, or pneumothorax found a sensitivity and 
specificity of 91% for normal radiographs (20). However, 
anteroposterior radiographs were excluded, and it should be 
stressed that any radiograph with “minor” findings outside 
of the five abnormalities were considered as normal—a clear 
limitation (20). Another study of the detection of pneumonia 
found that the performance of the CheXNet algorithm (6), 
which was tested against four radiologists by using consensus 
as the ground truth, was substantially better, with an F1 score 
of 0.435 for the AI system. However, F1 scores remained low 
(6). The performance of our AI system surpassed the perfor-
mance in these studies, but further work is required to im-
prove the misclassification rate.

In our study, we observed that averaging the predictions 
from two different CNNs operating at two different spatial 
resolutions yielded the best performance. One reason for this 
may be that the two networks are complementary, that is, the 

61%, and NPV of 95% for critical radiographs. Of note, five 
of the 385 “critical” radiographs (1%) were labeled as normal. 
On rereview of these five critical radiographs, the AI interpreta-
tion of normal was unanimously believed to be correct in four 
of five instances. Figure 5 illustrates some cases in which the AI 
system made correct and incorrect predictions.

Automated Image Prioritization: Simulation Study
Table 4 presents the results of our simulation study for our 
triaging system and the original observed historical data. 
Our AI triaging system substantially reduced the mean (6 
standard deviation) delays for the examinations reported 
as critical, from 11.2 days 6 17.84 to 2.7 days 6 11.88; 
the median delay was reduced from 7.2 hours to 43 min-
utes (Appendix E1 [online], Fig 6). Even in the simulations 
with additional noise, to simulate some radiographs being 
reported out of order, it was still possible to see the ben-
efits of our proposed triaging system. We were still able to 
greatly reduce the average “time to report” for critical and 
urgent examinations: 85% of the examinations labeled as 

Table 1: List of Selected Radiologic Labels and Corresponding  
Priority Levels

Radiologic Label Priority Level
Abnormal–other Nonurgent
Airspace opacification/consolidation Urgent
Bone lesion/abnormality Urgent
Cardiomegaly Nonurgent
Collapse Urgent
Hiatus hernia Nonurgent
Interstitial shadowing Urgent
Intra-abdominal pathology Critical
Medical device Nonurgent
Paratracheal/hilar enlargement Urgent
Parenchymal lesion Urgent
Pleural effusion/abnormality Urgent
Pneumomediastinum Critical
Pneumothorax Critical
Subcutaneous emphysema Critical

Note.—An additional “normal” label was used for radiographs with no abnor-
malities.

Figure 3: Artificial intelligence prioritization system: When a chest radiograph is 
acquired, the deep learning architecture (consisting of two different deep convolu-
tional neural networks [DCNs] operating at different input sizes) processes the image 
in real time and predicts its priority level (eg, urgent, in this example). Given the pre-
dicted priority, the image is then automatically inserted in a dynamic priority-based 
reporting queue. C = critical, N = normal, NU = nonurgent, U = urgent.
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even in simulations where 10% or 20% of radio-
graphs would be reported out of order; most critical 
radiographs would have been reported within 24 
hours of acquisition irrespective of referrer or clini-
cal information. However, mean delays remained at 
2.7 and 4.1 days for critical and urgent radiographs, 
respectively, which would remain unacceptable 
for North American practice. We would also have 
increased reporting turnaround times for normal 
radiographs, with less than 40% of examinations 
being reported within 24 hours with our proposed 
AI system. These results belie the variance of report-
ing turnaround times of our historical data set and, 
more important, highlight that our organizational 
behaviors and clinical pathways have a substantial 
effect on reporting turnaround (eg, when in the 
24-hour day the chest radiographs were requested, 
which department and/or referrer they came from, 
and the radiology staffing levels for reporting radio-
graphs at different times of the day, week, or month 
within our hospital network). These must be taken 
into account in future prospective work in the field.

Our study had some limitations. First, our current 
system still has a potential clinical risk from delayed reporting of 
cases falsely classified as normal, although reassuringly, the false-
negative rate was low in our study. Nevertheless, further work is 
required to reduce this likelihood to a minimum. Second, each 
radiologic label reflects a spectrum of pathologic characteristics. 
For example, “collapse” ranges from segmental atelectasis to full 
lobar collapse, with very different levels of urgency in their man-
agement. Third, as imaging findings have been grouped into pri-
oritization categories, the performance of the AI system could 
appear exaggerated; for example, some studies may be added 

Inception v3 network, acting on smaller images—which have 
lower complexity—is able to better recognize abnormal pat-
terns that are still visible at a low resolution, whereas the net-
work operating on the 1211 3 1083 images is better suited to 
detecting visual patterns that are otherwise missed at a lower 
resolution. Further work will be directed toward developing a 
multiresolution architecture whereby the optimal image sizes 
are automatically selected.

In our simulation using real historical data, our prioritiza-
tion system had a positive effect on reporting turnaround times, 

Table 2: Performance of the Natural Language Processing System

Actual Priority  
Level

No. of  
Radiographs

Predicted Priority Level
Sensitivity  
(%)

Specificity  
(%) PPV (%) NPV (%) F1 ScoreNormal Nonurgent Urgent Critical

Normal 600 585 1 11 3 98 99 97 99 0.97
Nonurgent 747 5 671 47 24 90 97 86 98 0.88
Urgent 2602 13 103 2412 74 93 96 97 91 0.95
Critical 568 0 6 15 547 96 97 84 99 0.90

Note.—Performance was evaluated with use of the reference standard data set. Rows represent the ground truth and columns represent 
prediction. NPV = negative predictive value, PPV = positive predictive value.

Table 3: Performance of the Artificial Intelligence System for Examination Prioritization 

Actual Priority  
Level

No. of  
Radiographs

Predicted Priority Level
Sensitivity  
(%)

Specificity  
(%) PPV (%) NPV (%) F1 ScoreNormal Nonurgent Urgent Critical

Normal 558 398 107 49 4 71 95 73 94 0.72
Nonurgent 507 47 244 194 22 48 88 42 90 0.45
Urgent 1779 95 202 1349 133 76 76 80 72 0.78
Critical 385 5 27 103 250 65 94 61 95 0.63

Note.—Prioritization was implemented as an ordinal classifier assessed on the reference standard data set. Rows represent ground truth, 
columns represent prediction. NPV = negative predictive value, PPV = positive predictive value.

Figure 4: Receiver operating characteristic curve for normality prediction obtained 
by the artificial intelligence system. The system achieved an area under the receiver 
operating characteristic curve (AUC ) of 0.94.
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Figure 5: Examples of correctly and incorrectly prioritized radiographs. (a) Radiograph was reported as showing large 
right pleural effusion (arrow). This was correctly prioritized as urgent. (b) Radiograph reported as showing “lucency at the left 
apex suspicious for pneumothorax.” This was prioritized as normal. On review by three independent radiologists, the radio-
graph was unanimously considered to be normal. (c) Radiograph reported as showing consolidation projected behind heart 
(arrow). The finding was missed by the artificial intelligence system, and the study was incorrectly prioritized as normal.

Table 4: Effect of Triaging 

Priority Level Critical Urgent Nonurgent Normal
Historical 11.2 6 17.8 7.6 6 14.9 11.9 6 18.8 7.5 6 14.2
Simulated 2.7 6 11.9 4.1 6 15.8 4.4 6 18.8 13.0 6 24.2
Simulated 0.1 noise 3.4 6 12.7 4.5 6 15.6 5.0 6 18.3 12.6 6 23.6
Simulated 0.2 noise 3.9 6 10.6 5.1 6 16.3 6.1 6 19.3 12.0 6 22.5
Improvement* 4.2 1.9 2.7 0.6

Note.—Except where indicated, data are mean reporting delays 6 standard deviations. Reporting delay is 
the time from acquisition to final report, in days. Simulated 0.1 noise and Simulated 0.2 noise are simula-
tions with 10% or 20% of radiographs being reported out of order (ie, lower-priority radiographs were 
reported sooner due to clinician request or an upcoming appointment).
* Improvement was calculated by dividing historical mean delay by the simulated mean delay.

Figure 6: Mean reporting time from acquisition with artificial intelligence (AI ) prioriti-
zation system compared with observed mean for critical radiographs. P values were ob-
tained nonparametrically by using a null distribution (shown here), that is, a distribution 
of mean reporting time obtained under null hypothesis that order in which examinations 
are reported is not dependent on criticality class. The null distribution is generated by 
simulating 500 000 realizations of a randomized prioritization process, that is, the prior-
ity class in each realization is randomly assigned irrespective of image content.

to the correct priority class 
but for the wrong reasons. 
Fourth, our prioritization 
system can only take into 
account findings from a 
single image that is viewed 
in isolation and without 
its clinical context. For ex-
ample, in a patient with 
lobar consolidation, if the 
request form states they are 
already being treated with 
antibiotics, this becomes 
much less urgent as clinical 
management will not necessarily change. Fifth, error 
is inherent in radiology, due to perception, cogni-
tive, or even typographical errors. Over such a large 
data set, approximately 3%–5% of labels extracted 
can be expected to contain an error (21). Sixth, we 
excluded in-patient radiographs in our simulation 
because our institutional practice is to report these 
nonurgently, weeks to months after acquisition, pri-
marily to exclude other nonacute diagnoses. If these 
patients were incorporated into our simulation, these 
radiographs would have given the erroneous impres-
sion that patients with critical radiographs were being 
treated with little radiologic input and would have 
falsely overstated the benefits of our algorithm. Fi-
nally, a modeling assumption is that all radiographs 
take the same amount of time to report; this may not 
be the case.

In conclusion, we have demonstrated the fea-
sibility of AI for triaging chest radiographs. Our 
deep learning system developed on our institutional data set of 
470 388 adult chest radiographs was able to interpret and pri-
oritize chest radiographs such that abnormal radiographs with 
critical or urgent findings could be queued for real-time report-
ing and completed sooner than with our current system. This is 
promising for future clinical implementation.
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There were some errors in an early online version.
In the abstract Results: “Normal chest radiographs were de-

tected by our AI system with a sensitivity of 71%, specificity of 
95%, PPV of 73%, and NPV of 99%” should read “ Normal 
chest radiographs were detected by our AI system with a sensitiv-
ity of 71%, specificity of 95%, PPV of 73%, and NPV of 94%.”

In Results, third line under “Deep Learning Architecture 
for Criticality Prediction from Image Data,” the sentence “AI 
performance was good, with a sensitivity of 71%, specificity 
of 95%, PPV of 73%, and NPV of 99% for normal radio-

graphs (Fig 4) and a sensitivity of 65%, specificity of 94%, 
PPV of 61%, and NPV Automated Triaging of Adult Chest 
Radiographs with Deep Artificial Neural Networks

Mauro Annarumma, Samuel J. Withey, Robert J. Bakewell, 
Emanuele Pesce, Vicky Goh, Giovanni Montana of 99% for 
critical radiographs” should read “AI performance was good, 
with a sensitivity of 71%, specificity of 95%, PPV of 73%, 
and NPV of 94% for normal radiographs (Fig 4) and a sensi-
tivity of 65%, specificity of 94%, PPV of 61%, and NPV of 
95% for critical radiographs.”

In Discussion, third line, the sentence “Similarly, our 
deep CNN–based computer vision system was able to sepa-
rate normal from abnormal chest radiographs with a sensi-
tivity of 71%, specificity of 95%, and NPV of 99%” should 
read “Similarly, our deep CNN–based computer vision 
system was able to separate normal from abnormal chest 
radiographs with a sensitivity of 71%, specificity of 95%, 
and NPV of 94%.”

In table 3, the data for NPV should read as follows: 94, 90, 
72, and 95.
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