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Abstract
Objective To distinguish benign from malignant pulmonary nodules using CT images is critical for their precise diagnosis
and treatment. A new Agile convolutional neural network (CNN) framework is proposed to conquer the challenges of a
small-scale medical image database and the small size of the nodules, and it improves the performance of pulmonary nodule
classification using CT images.
Methods A hybrid CNN of LeNet and AlexNet is constructed through combining the layer settings of LeNet and the
parameter settings of AlexNet. A dataset with 743 CT image nodule samples is built up based on the 1018 CT scans of LIDC
to train and evaluate the Agile CNN model. Through adjusting the parameters of the kernel size, learning rate, and other
factors, the effect of these parameters on the performance of the CNN model is investigated, and an optimized setting of the
CNN is obtained finally.
Results After finely optimizing the settings of the CNN, the estimation accuracy and the area under the curve can reach 0.822
and 0.877, respectively. The accuracy of the CNN is significantly dependent on the kernel size, learning rate, training batch
size, dropout, and weight initializations. The best performance is achieved when the kernel size is set to 7 × 7, the learning
rate is 0.005, the batch size is 32, and dropout and Gaussian initialization are used.
Conclusions This competitive performance demonstrates that our proposed CNN framework and the optimization strategy
of the CNN parameters are suitable for pulmonary nodule classification characterized by small medical datasets and small
targets. The classification model might help diagnose and treat pulmonary nodules effectively.
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Introduction

Lung cancer is the leading cause of cancer deaths in theworld
[1]. It has become the first killer among cancers in China,
partially due to the asymptomatic growth of this cancer [2,3].
In the majority of cases, it is too late for successful therapy
once the patient develops the first symptoms. However, there
is a survival rate of 47% if the lung cancer is detected early
according to the American Cancer Society. Therefore, early
determination of whether a pulmonary nodule is benign or
malignant is important.

Computed tomography (CT) scanners can provide contin-
uous high-resolution, near-isotropic thin sections throughout
the lungs in a single-breath hold. These CT images delineate
the location, size and shape of the suspicious pulmonary nod-
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ules [4]. Via imaging processing techniques, some computer
aided diagnosis (CAD) systems have been implemented to
estimate the malignance of the detected pulmonary nodules
[5]. In these systems, after the lung nodules are segmented,
various types of image features (e.g., intensity) are extracted
[6]. Then, machine-learning classifiers are used to predict the
malignance [7].However, several challenges have faced these
handcrafted feature-based CAD systems. First, the hand-
crafted features depend on the segmentation of the lung
nodule. However, this step is challenging and contentious
because whether there is ground truth is open to debate and
the reproducibility of the segmentation is contingent [8].
Second, the handcrafted features are based on prior knowl-
edge, which is dependent on the ability of the designers of
the CAD system. These challenges make the handcrafted
feature-basedCADsystems difficult for clinical applications.

Deep learning, especially the convolutional neural net-
work (CNN), might have the potential to address the afore-
mentioned challenges, considering its significant success in
object recognition and localization in nature images [9].
One of the advantages of the CNN is that it can be fed
raw images without previous image preprocessing, which
is highly amenable to image analysis. Deep learning consists
of increased numbers of layers, which permits higher levels
of abstraction and improved predictions from data [10].

Many deep learning networks with more layers and flexi-
ble structures have been proposed since LeNet-5 [11]. For
example, AlexNet [12] contains eight learned layers, and
VGG-VD [13] has 16-layer and 19-layer CNN structures.
GoogLeNet [14], a 22-layer deep network that contains
inception architectures, is proposed to manage the con-
tradiction between increasing the training parameters and
overfitting. ResNet [15] is approximately 20 times deeper
than AlexNet and 8 times deeper than VGGNet. By increas-
ing the depth, the network can better approximate the target
function with increased nonlinearity and achieve better fea-
ture representations.

The applications of the CNN to medical images are quite
different from those for nature images in several respects.
CNN requires a large number of labeled training data acting
as ImageNet. However, large datasets are not always avail-
able because of the extremely expensive expert annotations
and scarcity of the disease images [9]. Moreover, instead
of containing RGB channels as in natural images, medical
images are grayscale images.

These important differences between medical and nature
images have prompted investigators to study whether CNNs
can be used effectively for lung nodule classification. Hua
et al. [16] first introduced the CNN to nodule classification
in CT images and found that it outperforms the conven-
tional handcrafted feature-basedCAD frameworks. Sun et al.
[17] found that the deep belief networks (DBN) performed
best followed by CNNs and stacked denoising autoencoder

(SDAE). Cheng et al. [18] developed an SDAE CAD system
with an accuracy of 94.40%. Kumar et al. [19] utilized the
autoencoder to extract image features and used the decision
tree to realize classification. Wei et al. [20] utilized multi-
scale CNNs to capture features from raw nodule patches and
classified the nodules with SVM, achieving an accuracy of
86.84%. They further proposed amulti-cropCNN to increase
the accuracy to 87.14% [21].

To further increase the accuracy of classification of lung
nodules, the new CNN network architecture and optimiza-
tion strategy for the learning parameters are required. In this
paper, theAgileCNNarchitecture,which is suitable for small
datasets of lung nodule CT images, is proposed and imple-
mented. In the Agile CNN,which has only two convolutional
layers, a small number of kernels (20 kernels in C1 and 1000
kernels in C2) are adopted. Compared with those famous
deep or deeper structures, such as the GoogleNet, ResNet,
and VGGNet, the Agile structure has relatively fewer layers
(only 2 convolutional layers), and thus, it is called the “Agile”
CNN.Additionally, the number of parameters to calculate for
the training is determined by the number of the layers, the
number of the kernels, and the sizes of the kernels. In addi-
tion, more parameters for training require more input data,
which is not always feasible in medical applications. Thus,
the strategy for the optimization of learning parameters of
CNNs is clarified to increase the accuracy of the classification
and to avoid overfitting at the same time. Finally, a classifica-
tion model for classifying the malignant pulmonary nodules
from the others based on CT scan images is obtained.

Materials andmethods

Dataset of lung nodule CT images

The images in the current study are generated from the
Lung Image Database Consortium image collection (LIDC-
IDRI) [22–24]. So far, it contains 1018 cases. Each subject
includes images from a clinical thoracic CT scan and an asso-
ciated XML file that records the results of a two-phase image
annotation process performedby four radiologists. Each radi-
ologist independently reviewed each CT scan and marked
lesions that belonged to one of three categories (“nodule >

or = 3 mm”, “nodule < 3 mm” and “non-nodule >

or = 3 mm”). Then, the nodules are marked with 5 malig-
nancy levels, from 1 to 5.

To generate the training dataset, several steps are implied.
First, we select nodules that are larger than 3 mm for this
study. Since each nodule is labeled by four radiologists, those
that are recognized by fewer than three of the radiologists are
eliminated. At the same time, we label the nodules according
to their malignancy levels, i.e., the average rating of the four
radiologists. Levels 1 to 2.5 are considered to be benign, and
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Fig. 1 Schematic structure of
the proposed Agile CNN, LeNet
and AlexNet. a Presents the
schematic structure of the
proposed agile CNN. It is a
hybrid structure of LeNet and
AlexNet, combining the layer
settings of LeNet and the
parameter settings of AlexNet. b
Shows the schematic structure
of LeNet. LeNet has two
convolutional layers, two
pooling layers, and two fully
connected layers, and it is
designed for the image size of
28× 28. c AlexNet is designed
for the image size of 256× 256.
It has more convolutional layers,
with the layers of ReLU, LRN,
and dropout in this framework

levels 3.5 to 5 are denoted as malignant, and there is elimina-
tion of all of the intermediate cases (level 3). In total, there are
743 nodules left, with 375malignant nodules and 368 benign
nodules. Then, because of the varying image resolutions, the
nodules are resampled using spline interpolation with a fixed
resolution with 0.5 mm/voxel along two axes [25]. Third, the

nodule areas are annotated based on the union of the radiolo-
gists’ truth files, obtaining the minimum bounding rectangle
of each slice. The size of the cropped patch of slices is fixed at
53 by 53. Instead of centralizing the nodules, they are located
at random positions of the patch. To utilize the background
information, the surrounding pixels are preserved. Since the
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Table 1 Computer environment

Computer environment Detail

Computer HP Z840

GPU NVIDIA Quadro M2000 4GB

CPU Intel Xeon E5-2640v3 2.60GHz

Memory RAM 64G

Operating system Linux ubuntu 16.04 64-bit

CUDA CUDA 8.0

cuDNN cuDNN 5.1

CNN used in this paper is a 2D structure, each slice of a
nodule is cropped as a patch.

CNN experiment

CNN architecture

The CNN architecture consists of a number of convolutional
and pooling layers optionally followed by fully connected
layers. The convolutional layer is composed of several small
matrices or “kernels” that are convolved throughout the
whole input image, which work as filters. The output of this
convolution is called a “featuremap”. These featuremaps are
the input for the pooling layer, which aggregates contiguous
values to one scalar with functions such as mean or max [26].
In the following parts, the convolutional layers are labeled
Cx, the pooling layers Px, and the fully connected layers Fx,
where x is the layer index.

The Agile CNN framework is proposed in the current
study, as shown in Fig. 1. It is a hybrid structure of LeNet and
AlexNet, which combines the layer settings of LeNet and the
parameter settings of AlexNet. In other words, we start from
the LeNet framework, add the layers of ReLU, LRN, and
dropout into this framework, and construct the Agile CNN.
Inspired by LeNet, the proposed CNN has two convolutional
layers, two pooling layers, and two fully connected layers.
Layer C1 has 20 feature maps. Every unit in each feature
map is connected to a 7× 7 neighborhood in the input. The
size of the input patch is 53× 53, and the size of the feature
maps in C1 is 47 × 47, which prevents a connection from
the input from falling out of the boundary. In P1, every unit
in each feature map is connected to a 2× 2 neighborhood in
the corresponding feature map in C1. Then, layer C2 has 50
feature maps. The other settings are the same as the previous
layers. Finally, F1 and F2 follow after layer P2. The number
of neuron units in F1 and F2 is 500 and 2, respectively.

The experiment environment is listed in Table 1. The
platform that we work on is Caffe 1.0 (Convolutional Archi-
tecture for Fast Feature Embedding).

Inspired by AlexNet, two convolutional layers in our
framework are followed by a rectified linear unit (ReLU)
layer and a local response normalization (LRN) layer [27].
A deep CNN with ReLU trains several times faster than
those with sigmoid and other logistic functions. ReLU is a
non-saturating neuron, which avoids the problem of gradient
vanishing [12]. The non-saturating nonlinearity of ReLU can
be shown as

ϕ (x) = max (0, x) (1)

In addition to the ReLU layer, the LRN scheme aids the gen-
eralization of the network. The performance of LRN appears
to be a type of “lateral inhibition.” At the LRN layer, each
input aix,y is divided by an expression:

bix,y = aix,y/
(
1+

(α

n

) ∑
i
x2i

)β

(2)

Here, aix,y is the input neuron at position (x , y) applied by
kernel i , where the sum runs over the adjacent kernel maps at
the same spatial position. There are two modes of LRN [28]:
one is the in-channel mode and the other is the cross-channel
mode. Here, the cross-channel mode is selected with n = 5,
α = 0.0001 and β = 0.75 as in AlexNet’s set.

Motivated by Srivastava [29], the dropout is applied in F1,
while setting the output hidden neuron to zero with a proba-
bility of 0.5. The role is to reduce the complex coadaptations
of the neurons in F1.

Parameters for optimization

After determining the architecture of the CNN, another
important task is to optimize the parameters to improve the
performance of the proposed CNN for lung nodule classifi-
cation. There are four main parts: (1) kernel size; (2) learning
rate; (3) batch size; and (4) weight initialization.

A. Kernel size
The kernel size and the kernel number are two significant

parameters that affect the learning efficiency of the system.
The number of parameters to be learned is proportional to
the kernel size, the previous kernel number and the current
kernel number. In our architecture, the number of learned
parameters can be calculated as 7 × 7 × 20 × 50, which is
49,000. The number of learned parameters must adapt to the
number of training images, which not only guarantees the
richness of image features but also avoids overfitting.

B. Learning rate
Beyond choosing a single global learning rate, it is clear

that picking a different learning rate η can improve the con-
vergence. Whenever the loss function stops to decay, the
learning rate is multiplied by a factor γ . During the whole
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training experiment, the learning rate has decayed for several
times. In each instance of decay, the learning rate η must be
multiplied by γ . In Caffe, the decay time of the learning rate
is defined as a “step.”

C. Batch size
The ability to perform generalization by a network also

relates to the batch size [30].CNNswith large batch sizes tend
to make the training and testing functions converge to sharp
minimizers, which leads to the neural network to having poor
generalizability. In contrast, CNNs with small batch sizes
consistently converge to flat minimizers.

D. Weight initialization
The initial values of the weights have a significant effect

on the training process. If the randomly chosen weights are
all very large, then the ReLU will saturate, which results
in small gradients that make learning slow. If the randomly
chosen weights are very small, then the gradients will also
be very small. Intermediate weights with a Gaussian distri-
bution with a mean of 0 and a standard deviation of 0.01
have two advantages: (1) the gradients are sufficiently large
that learning can proceed, and (2) the network will learn the
linear part of the mapping before the more difficult nonlinear
part.

Training, testing, and parameter optimization

We train and evaluate CNNs using tenfold cross-validation.
The 743 nodules are split into training, validation, and testing
datasets. In each fold of the cross-validation, 10% patients
are used to test the architecture. To augment the training
and validating datasets, each slice is cropped four times ran-
domly and rotated three times with the angles of 90, 180,
and 270 degrees. Each of them is flipped horizontally and
vertically. Data augmentation is not applied to the testing
dataset. To evaluate the effect of each parameter on the per-
formance of the CNN, several groups of control experiments
were designed. During the experiments, the same conditions
were maintained except for in one particular factor, and then,
the effect of this varied factor was evaluated.

To study the effect of the kernel size on the performance
of the proposed CNN, it was varied from 3×3 to 9×9 while
freezing the other parameters. The variation of the kernel size
is described in detail in Table 2. This group of experiments
is used to observe the effect of different convolution kernel
sizes on the performance of our architecture.

The effect of the learning rate and the number of steps
is also investigated. The variation in the learning rate and
the decay times (steps) of the learning rate during the train
iteration process are exhibited in Table 2. The decay factor
γ is set to 0.1. Moreover, the effect of the batch size is also
studied while altering it from 32 to 64. Along with the batch
size, the influence of dropout is also checked.

Table 2 Summary of the optimized parameters

Parameter Variation

Kernel size C1 C2

3× 3 3× 3

5× 5 5× 5

7× 7 7× 7

9× 9 9× 9

9× 9 7× 7

7× 7 5× 5

5× 5 3× 3

Learning rate 0.01

0.005

0.001

0.0005

0.0001

Decay times (learning rate) 4

4.5

5

5.5

6

Batch size 32

64

Weight initialization Xavier

Gaussian 0.001

0.005

Bias initialization Constant 1

Constant 0

Dropout Yes

No

The bold indicates the optimized parameters which are adopted in the
current study

For the weights of C1, C2, and F1, an experiment is per-
formed to compare the Xavier and Gaussian initialization
methods. The standard deviation of the Gaussian is also
shifted from 0.001 to 0.005 for further experiments. In addi-
tion, a constant (0 or 1) is used to initialize the bias of C1,
C2, F1 and F2.

Results

CNN classification performance

After the comparison of the layers and parameter settings,
the Agile CNN structure was optimized. It contains two con-
volutional layers and two fully connected layers, all of which
are followed by ReLU and LRN. Finally, we set two convo-
lutional layer kernel sizes to be 7 × 7. Dropout is used in
the fully connected layer. The base learning rate is 0.0005,
with a 5.5 times reduction to diminish the learning speed.
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Fig. 2 Visualization of the 20 kernels in the C1. There are 20 kernels
with the size of 7 × 7 in the first convolutional layer. The kernels are
presented in 4 rows and 5 columns without any particular order

The batch size is 32. The weights of the C1, C2 and F2 are
initialized by Gaussian, with a standard deviation of 0.01.
For the initialization of the weights of the F1, the standard
deviation of the Gaussian is 0.001. The bias of the C2 and
F1 is initialized as the constant of 0.1, and the bias of the C1
and F2 is initialized as the constant of 0.0.

The CNN algorithm helps the computer learn its own fea-
tures, instead of using handcrafted features. The visualization
of the weights is one of the important methods of evaluating
the features. Figure 2 shows the visualization of the weights
in C1. These kernels not only present a noise pattern but
also exhibit a high correlation. Additionally, they also lack
structural patterns. These characteristics implicate under-
training. The features in C2, as shown in Fig. 3, obviously
perform better, displaying a smoother pattern, containing
more shape information, and demonstrating that C2 is well
trained.

After 50,000 iterations, 10% of the nodules are utilized
to evaluate the performance of our framework. We obtain
the final classification model with a test accuracy of 0.822
and an AUC of 0.877. Figure 4 shows the test accuracy of
the Agile CNN structure, LeNet, and AlexNet. The Agile
CNN has an accuracy of 0.822, which is higher than that

of LeNet, which is 0.648, and that of AlexNet, which is
0.782. The T -test and Wilcoxon signed ranks test are used
to compare the classification accuracy of the Agile CNN
structure with that of LeNet and AlexNet. The significance
test results are shown in Table 3. It was found that the test
accuracy of the Agile CNN structure is significantly higher
than that of LeNet (T -test, p < 0.05) and that of AlexNet
(Wilcoxon signed ranks test, p < 0.08). Figure 5 presents
the Receiver Operating Characteristic (ROC) curve of the
test result of the Agile CNN structure for nodule classifica-
tion.

Table 4 summarizes the methods and accuracy reported
in recently published papers using deep learning algorithms
based on the LIDC dataset. The accuracy of our method is
higher than that of Kumar et al. [19] and Sun et al. [17], but
lower than that of Wei et al. [20,21].

The effect of different parameter settings

Figure 6 shows the accuracy of validation with iterations for
seven structures with different kernel sizes. The kernel size
of 7× 7 for two convolutional layers is the best, as indicated
by the red crossline. The relationship between the accuracy
and kernel size is not monotonic: the accuracy increases with
the kernel size while it is smaller than 9 × 9, it reaches the
peak at the size of 7 × 7, and it decreases with increasing
size.

Table 5 shows the validation accuracy of the proposed
CNN with different learning rates and steps. On the left side
ofTable 5, the learning rate (Lr) remains unchanged (constant
learning speed) when the learning “step” equals zero during
one whole iteration. It is found that the validation accuracy
of the last row (Lr = 0.0001) is higher compared with the
former rows. However, the loss of the last row is also larger,
which indicates that the validation process starts overfitting.
The right side of Table 5 shows the performance of CNN
with different steps and a constant learning rate of 0.0005.

Fig. 3 Visualization of the 1000 kernels in the C2. There are 1000 kernels with the size of 7× 7 in the second convolutional layer. The kernels are
presented in 20 rows and 50 columns without any particular order
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Fig. 4 Test accuracy of the Agile CNN structure, LeNet and AlexNet.
The Agile CNN has an accuracy of 0.822, which is higher than that of
LeNet, which is 0.648, and AlexNet, which is 0.782

Table 3 Significance tests of the classification accuracy of the Agile
CNN structure, LeNet, and AlexNet

Model T test Wilcoxon signed ranks
test

Our CNN structure
versus LeNet

p = 5.52× e − 05 p = 2.45× e − 04

Our CNN structure
versus AlexNet

p = 0.135 p = 0.076

With each reduction step, the learning rate is multiplied by
0.1. Finally, the base learning rate of 0.0005 and step of 5.5
achieves the best result, which not only obtains the highest
accuracy but also reduces the loss value.

Figure 7 shows the validation accuracy of the experi-
mented CNNs with different validation batch sizes and with

Fig. 5 Receiver operating characteristic (ROC) curve of the test accu-
racy for the proposed nodule classification model

Table 4 Summary of the methods and accuracy of the recently pub-
lished papers using LIDC as a dataset

Experiments Year Method Accuracy (%)

Wei et al. [21] 2017 Multi-crop CNN 87.14

Multi-scale CNN 86.53

CNN 86.32

Sun et al. [17] 2016 CNN 79.76

CNN 81.19

SDAE 79.29

Wei et al. [20] 2015 Multi-scale CNN to
extract feature with
the SVM classifier

86.84

Kumar et al. [19] 2015 Autoencoder to
extract feature with
the decision tree
classifier

75.01

Our method CNN 82.23

orwithout dropout. There aremainly four observations. First,
it is shown that dropout can reduce the loss value and prevent
overfitting. Second, theCNNwith a batch size of 32 performs
better than that with a batch size of 64. Third, Xavier per-
forms worse than the Gaussian, and thus, a Gaussian with a
constant bias should be used to initialize the weights. Fourth,
for the initialization of the weight of F1, a standard devia-
tion of the Gaussian of 0.001 is better than 0.005, as set in
AlexNet. For the initialization of the bias of the C2 and F1,
the constant of 0 is better than 1, as set in ImageNet.

Discussion and future work

In this paper,weproposed theAgileCNNfor pulmonary nod-
ule malignancy classification using CT images. This Agile
CNN is designed to be a feature extractor and classifier. The
parameters of the CNN are optimized through a series of
experiments to obtain a high accuracy and low loss. The
results demonstrate that the Agile CNN presents competitive
performance. From our viewpoint, three main contributions
are included in the current work. First, a method is proposed
through combining LeNet and AlexNet into the Agile CNN.
Second, a strategy for optimizing the parameters in the CNN
is developed. Third, a model for classification is obtained for
discriminating the benign and malignant lung nodules using
CT images.

CNN framework and performance

For the CNN layer setting, the hybrid structure is based on
the improved LeNet [11] and AlexNet [12]. The LeNet CNN
model is applied to check the handwriting and is suitable
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Fig. 6 Validation accuracy of various kernel sizes in the proposed
nodule classification model. The red cross line achieves the highest
accuracy, which means that the kernel size of 7 × 7 is the best. Based
on all of the lines, there is a tendency that the accuracy increases with
the size of the kernel, and it reaches the highest accuracy. Furthermore,
by observing the red cross line, it is found that the accuracy increases
quickly at the beginning. After a small fluctuation, the accuracy tends
to be stable. With more iterations, the accuracy does not decrease. This
finding illustrates that the model does not overfit

Table 5 Validation accuracy of the proposed CNNwith different learn-
ing rates and steps

Learning rate (Step = 0) Accuracy Step Accuracy
(Learning rate = 0.0005)

0.01 0.7576 4 0.8424

0.005 0.7576 4.5 0.8462

0.001 0.8245 5 0.8404

0.0005 0.8408 5.5 0.8564

0.0001 0.8449 6 0.8503

The bold indicates the optimized parameters which are adopted in the
current study

for a small dataset and images with a small size, such as
our experimental dataset. However, the AlexNet model uti-
lizes a deeper CNN that is suitable for a large dataset with
large input images. For the CNN structure used in medical
image classification tasks, Sun et al. [17], Setio et al. [31],
and He et al. [15] have all built architectures with three con-
volutional layers. Based on our experiment with a two-layer
CNN, three layers are more likely to overfit. Additionally, a
structure with two convolutional layers followed by two fully
connected layers can obtain a higher accuracy. This proposed
structure performswell for a small-scale and small-sizemed-
ical dataset.

The deep learning framework can have an important
impact on the accuracy of the lung nodule classification. Our
results have shown that the proposed CNN achieves better
performance than the Autoencoder to extract features with
the Decision Tree classifier [19] and DBNs, as well as SDAE
[17]. Even using the CNNs, the framework of our model is
more suitable for lung nodule classification than that of Sun
et al. [17], which has three convolutional levels. However, it
is noted that our methods cannot reach the accuracy of Wei

Fig. 7 Validation accuracy of various batch sizes, dropout and weights
and bias initialization in the proposed nodule classificationmodel. Com-
paring the red cross line with the dark blue line, it is found that dropout
helps to increase the validation accuracy. The batch size of 64 (black
line) underperforms the batch size of 32 (dark blue). The pink line
presents the Xavier initialization, which underperforms that initialized
by the Gaussian method (the red cross line). The azure line (the stan-
dard deviation of the Gaussian is 0.001) and the green line (the standard
deviation of the Gaussian is 0.0.005) are used to show the influence of
the standard deviation of the Gaussian. It is proven that the standard
deviation of the Gaussian being 0.001 is better than 0.005

et al. [20,21]. There are three possible reasons: (1) The 3D
CNN and multi-scale strategy is used [20,21]; (2) The more
complicated network with a multi-crop strategy is adopted;
(3) more features, including histogram of oriented gradient
(HOG) and local binary patterns (LBP), are extracted and
combined with the features extracted using CNN.

CNN parameter settings

To further improve the performance, we optimized the
parameter settings of the CNN. For the kernel size, Sun et
al. [17] utilized kernel sizes of 12, 8, and 6. Setio et al. [31]
designed their structure with 5, 3, and 3. Compared with the
three-layerCNNstructure, our two-layer structure uses larger
kernels, which are 7 and 7. The large size of the kernels can
create a wider receptive field. It is also different from Shin et
al. [32], which set the batch size at 50, Sun et al. [17] at 100,
and Hinton et al. [33] and Setio et al. [31] at 128, and our
smaller batch size of 32, as demonstrated above, performs
better. For the initialization of the weights, Xavier does not
have an effect on the network convergence compared with
the Gaussian initialization, based on our observations.

Evaluation of themisclassified samples

Figure 8 gives some patches of true negative (TN), false pos-
itive (FP), true positive (TP), and false negative (FN) results.
The first row is TN, and the third row is TP. One general
feature can be found: the small-size nodules with regular
surroundings belong to the negative (or benign) class; the
large size nodules with irregular surroundings have a higher
probability of belonging to the positive (or malignant) class.
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Fig. 8 Examples for the lung
nodule classification results. The
first and the third rows are
examples of correctly classified
and the second and fourth rows
are misclassified

The nodules in the second row, which are labeled benign, are
classified as malignant by mistake. Except for the nodules in
the second and third columns, the other nodules in this row
are very small. The last row is for the FN samples. The com-
mon feature of these six images is that their nodule sizes are
all small, which is easily misidentified as benign nodules.

As seen in Fig. 8, the size of the nodule appears to be the
prime reason for misclassification. To validate this observa-
tion, the average sizes of the bounding rectangle of the four
classified categories are measured. The average size of the
bounding rectangle of TN, FP, TP, and FN is 10.9, 11.3, 22.3,
and 14.8. The difference in the average size of the bounding
rectangle between TN and FP is not very obvious, yet there
is a trend in that the larger size benign nodules have a greater
probability of being classified as malignant and the small-
size malignant nodules are more likely to be classified as
benign.

Limitations and future work

One of the limitations of this work is that the three chan-
nels of input are homogeneous. Both LeNet and AlexNet are
designed for color images, while ourmedical images are gray
scale images, which results in an inability to make full use
of all channels.

Another limitation is that the current CNN classifier uti-
lizes the independent 2D patch as the input.

Themisclassified patches shown in Fig. 8 are also difficult
for a radiologist to diagnose, because the candidate nodules
are diagnosed based on the information in the front and back
slices. As a result, 2.5D or 3D input will be used in the future.

Moreover, the original sample patients in theLIDCdataset
total to only 1018. Compared with the natural images in Ima-
geNet, it has too small a number to be calculated by deep

learning. Further research, such as transfer learning and fine-
tuning, is needed.

Finally, performing diagnosis based on only medical
images has its own limitations. Usually, doctors reach a con-
clusion based on many types of medical information. It is an
impossible mission to affirm whether the nodule is benign or
malignant solely based on medical images.

In addition to the methods mentioned above to conquer
the drawbacks, more innovative studies will be performed
for further research. First, we prefer to utilize the multi-
modality strategy, which combines the general CT scan with
the contrast-enhanced CT scan to determine the malignance
of a nodule. The contrast-enhanced images usually contain
more information about the vessel distribution and can dis-
tinguish tissues from lung effusion. These ample input data
contribute to a more accurate result. Second, instead of using
the CNN, many other supervised deep learning methods can
be utilized to classify a nodule or tumor, such as deep rein-
forcement learning, generative adversarial nets. These deep
learning models can be used to extract the features of medi-
cal images, which are significant for image analysis. Third,
features that are gathered from different training models can
be fused as input data to SVMs or other classifiers. Finally, if
data acquisition is available, then the medical imaging infor-
mation will combine genomic knowledge to contribute to
better diagnosis.

Conclusions

In this paper, we constructed one new Agile CNN for pul-
monary nodule classification using CT images, on which we
investigated the effects of kernel size, learning rate, training
batch size, dropout, and weight initialization on the accuracy
and loss of the proposed CNN model. This Agile structure
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achieves a relatively high accuracy of 0.822 and an AUC of
0.877, and it is less prone to overfitting, which is associated
with other redundantCNNstructures. The results have shown
that the proposedCNN framework and the optimization strat-
egy for the CNN parameters might be suitable for pulmonary
nodule classification when characterized by small medical
datasets and small targets. The classification model might
help to diagnose and treat pulmonary nodules effectively,
and the strategy of optimizing the CNN parameters should
be referential for other medical applications that could use
CNNs. Further research will explore the three-dimensional
input data, transfer learning and fine-tuning.
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