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vations specific to medical datasets may be 
best suited to a biomedical engineering jour-
nal. The audience of a clinical journal is like-
ly to be more interested in articles showing 
new or improved applications of AI to clini-
cal problems and is likely to have the neces-
sary medical expertise to determine whether 
the proposed solutions are convincing. Ac-
cordingly, articles submitted to clinical jour-
nals should discuss research aimed at solving 
practical clinical issues and should present 
the research in a manner that is accessible to 
physicians and biomedical researchers.

Purpose
The purpose of an article on AI in bio-

medical imaging sets the expectations of the 
reader and the level of evidence needed to ac-
cept the conclusions of a study. Possible aims 
include proof of technical feasibility, expert-
level performance, or real-world clinical per-
formance (Tables 1 and 2).

Technical Feasibility
A study that aims to evaluate techni-

cal feasibility should present a system with 
promising performance despite suboptimal 
training data or computing power. Compel-
ling articles in this vein could include the 
first successful attempt to apply a type of al-
gorithm to a specific medical imaging task. 
Because collection of high-quality data is 
resource intensive, feasibility studies often 
have small or limited datasets and are used to 
explore whether committing more resources 
to data collection and algorithm refinement 
is worthwhile.
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R
emarkable strides have been 
made in artificial intelligence 
(AI), a subfield of computer sci-
ence devoted to creating systems 

to perform tasks ordinarily requiring human 
intelligence. The advent of large datasets has 
spurred advances in machine learning sys-
tems that can learn from patterns in data 
rather than from explicit rules. Breakthrough 
performance gains in machine learning for 
computer vision have led to reports of sys-
tems with expert or near-expert performance 
in medical imaging tasks, such as identifica-
tion of pulmonary tuberculosis, detection of 
hip fractures, and estimation of pediatric 
bone age [1–10]. The number and rate of AI 
manuscript submissions to clinical journals 
can only be expected to increase, and review-
ers need to know how to evaluate these man-
uscripts (Appendix 1). The purpose of this 
article is to present best practices for writing 
and reviewing articles on AI for medical im-
age analysis. The emphasis is on content and 
methods best suited for submission to a clini-
cal journal.

Content and Venue
A manuscript on the application of AI to 

medical imaging could be submitted to a 
computer science, biomedical engineering, 
or clinical journal. This choice should be 
guided by the topic and content of the study. 
Articles that show fundamental technical 
and methodologic advances in AI, general-
izable beyond medical imaging applications, 
are well suited to a computer science journal. 
Articles analyzing technical issues and inno-
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OBJECTIVE. The purpose of this article is to highlight best practices for writing and re-
viewing articles on artificial intelligence for medical image analysis. 

CONCLUSION. Artificial intelligence is in the early phases of application to medical 
imaging, and patient safety demands a commitment to sound methods and avoidance of rhe-
torical and overly optimistic claims. Adherence to best practices should elevate the quality of 
articles submitted to and published by clinical journals. 
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Human- or Expert-Level Performance
A study that aims to evaluate human- or 

expert-level performance must compare the 
performance of a system and the perfor-
mance of experts based on either a bench-
mark set of images (a test set) or previously 
reported metrics of expert performance. Per-
formance comparison on a large and robust 
dataset is typically required to justify a claim 
of expert-level performance.

Clinical Performance
Proof of real-world clinical performance 

involves testing a system on a large dataset 
that accurately and fully reflects the expect-
ed variability of images in the intended us-
age setting. With few exceptions, such a test 
set should be multiinstitutional and consist 
of images collected consecutively according 
to explicit eligibility criteria and including 
all relevant variations in patient demograph-
ics and disease state [11]. The highest-qual-
ity study would be a randomized controlled 
trial in which a large number of patients un-
dergoing imaging for a specific clinical in-
dication are randomized to have the images 
interpreted by a machine learning algorithm 
or a radiologist.

Image Analysis Task
Machine learning can be used to perform 

several types of image analysis tasks, includ-
ing classification, regression, localization, 
and segmentation.

Classification
Classification algorithms assign images to 

categories. The simplest example is a binary 
classification algorithm with exactly two cat-
egories, such as disease being present or dis-
ease being absent. Multiclass or multinomial 
classification algorithms categorize an image 
into one of three or more categories.

Regression
Regression algorithms assign a number to 

an image [12]. An example of a regression 
task in medical imaging is estimation of pe-
diatric bone age from hand radiographs [10].

Localization
Localization algorithms return the loca-

tion of a particular object in an image, either 
as the location of a center pixel or voxel or as 
a bounding box around the object [13].

Segmentation
Segmentation algorithms classify each 

pixel or voxel in an image as part of or not 
part of a particular object [14–16]. An exam-
ple of a segmentation task in medical imag-
ing is measurement of left ventricular vol-
ume on cardiac MR images [17].

Learning Approach
There are two general approaches to a ma-

chine learning problem: supervised learning 
and unsupervised learning.

Supervised Learning
In supervised learning, a machine learn-

ing algorithm is presented with data (imag-
es in the case of image analysis problems) 
and ground truth labels [18, 19]. The labels 
are the correct answers that an algorithm 
is intended to learn when confronted with 
certain data. For example, a labeled dataset 
of CT brain images may include the label 
“acute hemorrhage” or “no acute hemor-
rhage.” Training proceeds in iterations of 
three steps: first, the algorithm outputs an-
swers for each item in the training dataset; 
second, the answers and ground truth labels 
are used to compute a cost measurement of 
how wrong the algorithm is; and third, the 
cost is used as feedback to try to improve 
the algorithm so that the answers in the next 

iteration will be better. The learning is said 
to be supervised because ground truth la-
bels are available to correct the algorithm at 
each iteration.

Unsupervised Learning
In unsupervised learning, a machine 

learning algorithm is presented with unla-
beled data and learns to group the data by 
similarities and differences [18]. For ex-
ample, an algorithm presented with a set of 
brain CT and brain MR images may learn to 
assign these images into groups based sole-
ly on patterns in the pixel data without ref-
erence to any ground truth labels. Although 
both learning approaches are possible, super-
vised learning is much more commonly used 
for image analysis problems and is empha-
sized in this article.

Data Collection and Processing
Machine learning for image analysis typi-

cally requires a large quantity of image data. 
Researchers can use public datasets or col-
lect new data. Because public datasets may 
not adequately represent a target patient 
population, new data may be preferable for 
proving expert-level or clinical performance. 
When new data are used, articles should de-
scribe in detail how the images were collect-
ed, processed, and divided into subsets.

Collection
A description of data collection should 

include whether the collection was retro-
spective or prospective, the time period and 
geographic locations of sampling, whether 
sampling was consecutive or convenience, 
whether explicit inclusion or exclusion cri-
teria were used, the file types used for sav-
ing image data, and, if DICOM files were not 
used, the window settings used in the con-
version from DICOM to other file types [20].

TABLE 1: Summary of Possible Study Design Options Listed by Study Aim

Component Technical Feasibility Expert-Level Performance Real-World Clinical Performance

Learning approach Supervised learning or unsupervised 
learning

Supervised learning Supervised learning

Data collection

Cohort Retrospective or prospective Retrospective or prospective Retrospective or prospectivea

Sampling Convenience or consecutive Convenience or consecutivea Consecutive

Subsets Training and test or training, validation, and 
test

Training and test or training, validation, and 
testb

Training and test; training, validation, and 
testb; or test onlyb

Data labels Radiology reports or expert consensus or 
reference standard

Expert consensus or reference standard Expert consensus or reference standard

aPreferred.
bMost common.
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Processing
Image processing before model train-

ing can be as simple as windowing or crop-
ping or as complicated as using a separately 
trained segmentation algorithm to segment 
out parts of the images [10]. Authors should 
include sufficient detail to ensure that their 
work can be replicated.

Division Into Subsets
The simplest division of data is a training 

set for training the algorithm and a separate 
test set used only for final performance test-
ing. If there are sufficient data, an intermedi-
ate validation set is often used to fine-tune 
the training process. Most of the data are 
usually used for training, and the rest is used 
for validation and testing (e.g., a 70%, 15%, 
15% split of training, validation, and test 
sets). Authors should detail which data sub-
sets were used and how data were assigned 
to each subset.

Data Labels
Obtaining high-quality data labels is one 

of the most difficult aspects of developing any 
high-performance machine learning model. 

In medical imaging, this problem is com-
pounded by the limited availability of quali-
fied experts to provide accurate image labels. 
For this reason, data labeling efforts are often 
concentrated on the test set. Training high-
performance models is usually still possi-
ble with occasional mislabeled images in the 
training set, but even a few mislabeled images 
in the test set can lead to drastically different 
conclusions. For example, in a test set of 100 
images, if a single image is mislabeled, accu-
racy will be misrepresented by 1%. Possible 
methods of obtaining labels include radiolo-
gy reports, expert consensus, reference stan-
dard imaging or laboratory examinations, 
and surgical or pathologic confirmation.

Radiology Reports
The use of labels from radiology reports 

alone may be sufficient for the training da-
taset but should be discouraged in the test 
dataset for anything but feasibility studies. 
Radiology reports generally represent the in-
terpretation of a single radiologist. The radi-
ologist could have erred or been biased by 
additional clinical information or follow-up 
imaging when giving the interpretation.

Expert Consensus
Consensus by three or more experts who 

independently relabel the images partial-
ly solves labeling errors and biases and is a 
common method of labeling medical image 
test sets. Advantages of this method include 
a controlled context for interpretation and the 
feasibility of calculating a lower limit of label 
accuracy based on an assumption that agree-
ment implies accuracy [21]. The disadvantage 
is that expert labor is typically a scarce re-
source and may be impractical for application 
to large training sets. Some research groups 
have addressed this problem by developing 
methods for flagging a small percentage of the 
training set that is likely to be mislabeled [9]. 
Authors who use experts for image labeling 
or relabeling should report the level of exper-
tise for each expert reviewer (e.g., subspecialty 
training, years of clinical experience), which 
images were interpreted (e.g., test set only, test 
set and validation set, etc.), and measures of 
observer agreement among the experts.

Reference Standards
Reference standards such as follow-up im-

aging, surgical confirmation, and laboratory 

TABLE 2: Elements of an Artificial Intelligence Research Article With Example Language From Published Articles

Element Language

Purpose

Technical feasibility “The purpose of this pilot study is to determine whether a deep convolutional neural network can be trained with limited 
image data to detect high-grade small-bowel obstruction patterns on supine abdominal radiographs.” [44]

Expert-level performance “Here we.. present the first large scale study where a deep learning system achieves human-level performance on a common 
and important radiological task.” [9]

Image analysis task

Classification “The pneumonia detection task is a binary classification problem, where the input is a frontal frontal-view chest X-ray..and 
the output is a binary label..indicating the absence or presence of pneumonia, respectively.” [45]

Data collection and processing

Collection “A total of 4037 consecutive clinical gray-scale abdominal radiographs from 3270 examinations performed on 1346 distinct 
patients (764 male and 582 female) from January to June 2016 were retrospectively obtained.” [44]

Processing “Overall our preprocessing method includes binary image segmentation as a first step and then the analysis of connected 
components for the postprocessing of segmentation results.” [10]

Data labels

Radiology reports “Each study [in the training set] was manually labeled as normal or abnormal by board-certified radiologists from the 
Stanford Hospital at the time of clinical radiographic interpretation.” [46]

Expert consensus “We collected a test set of 420 frontal chest X-rays. Annotations were obtained independently from four practicing 
radiologists at Stanford University.. The radiologists had 4, 7, 25, and 28 years of experience, and one of the radiologists is a 
sub-specialty fellowship trained thoracic radiologist.” [45]

Model training “CheXNet is a 121-layer Dense Convolutional Network (DenseNet). The weights of the network are randomly initialized and 
trained end-to-end using Adam with standard parameters [and] an initial learning rate of 0.01..” [45]

Evaluation of performance “On the test datasets, ROC curves and AUCs were determined. Contingency tables, accuracy, sensitivity, and specificity 
were determined from the optimal threshold by the Youden index.” [8]

Visualization “Sample images from the test set with corresponding superimposed saliency maps [show that] the most sensitive regions 
[for prediction of pediatric bone age] corresponded to the proximal interphalangeal joints, the metacarpal-phalangeal joints, 
and the carpal bones.” [47]
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or pathologic diagnosis are ideal but can be 
difficult to obtain and standardize for large 
datasets. However, future work proving real-
world clinical performance in image analy-
sis tasks will likely require this level of la-
bel accuracy.

Model Training
Training machine learning algorithms 

from large volumes of image data requires 
computing power and optimization of hyper-
parameters [22]. This section of an article 
can easily become heavy with technical jar-
gon. For biomedical audiences, any technical 
aspects of model training that might confuse 
or detract from readability should be sum-
marized or deferred to a supplemental sec-
tion for interested readers.

Hardware and Software
Authors should provide a detailed descrip-

tion of the computer hardware and software 
used in the training process. Specific items to 
mention include the amount and type of ran-
dom access memory, processor type, graph-
ics card type if applicable, and machine 
learning libraries or software.

Hyperparameters
A machine learning algorithm specifies 

mathematic operations that will be performed 
on the input data to arrive at an output. These 
operations involve numeric parameters. An al-
gorithm can contain anywhere from a few to 
hundreds of millions of parameters, and train-
ing the algorithm is an automated iterative pro-
cess by which the parameters are gradually al-
tered to improve output accuracy. The training 
process itself may have many options, called 
hyperparameters to distinguish from parame-
ters, that specify how training proceeds but are 
not operative in the final trained model. Ex-
amples of hyperparameters include learning 
rate (i.e., the degree to which the parameters 
change during each iteration), regularization 
variables (used to prevent overfitting), and the 
number of total iterations. Hyperparameters 
can be optimized manually or systematically 
by means of grid search or random search [23, 
24]. Authors should include the basic methods 
used to select and optimize hyperparameters, 
but detailed explanation, if necessary, would 
be best suited to a supplemental section.

Evaluation of Performance
Performance testing is the most important 

step in assessing technical feasibility, expert-
level performance, and the real-world clini-

cal performance of an AI algorithm. To en-
sure that reported performance is not overly 
optimistic, testing should be performed with 
a test dataset that was separate from the 
training dataset during the training process. 
The best measures of performance differ by 
image analysis task. In this article we focus 
on classification, the most frequent task in 
published medical imaging AI work thus far.

Classification
The simplest measure of how well a classi-

fication algorithm performs is accuracy: the 
fraction of examples in the test set that it pre-
dicts correctly. But accuracy alone can mis-
lead because it depends on prevalence. For 
example, a binary classifier trained to diag-
nose a rare condition present on only 0.1% 
of images would achieve 99.9% accuracy if 
it always predicted disease not present. Phy-
sicians use a variety of statistics to under-
stand diagnostic tests, including the binary 
contingency table containing true-positive, 
true-negative, false-positive, and false-nega-
tive rates and derivatives of these measures, 
such as sensitivity, specificity, positive pre-
dictive value, negative predictive value, and 
likelihood ratio. These statistics are partial-
ly redundant and involve tradeoffs that make 
system optimization and comparison diffi-
cult. For direct comparison, a single summa-
ry measure may be desirable. Several com-
monly reported summary measures are the 
F1 score, Youden J index, and ROC AUC.

The F1 score is the harmonic mean of posi-
tive predictive value (also known as precision) 
and sensitivity (also known as recall) and can 
range between 1 (perfect classification) and 0 
[25]. It is calculated as follows:

F1score = 2 × PPV × sensitivity
PPV + sensitivity

.

An advantage of the F1 score is that it sum-
marizes the information in the binary contin-
gency table in one number. It assumes, how-
ever, that the number of true-negative results 
is not important and assigns an equal cost to 
false-negative and false-positive results [26].

The Youden J index [27] can also be used 
to summarize the performance of a binary 
classifier. It is calculated as follows:

J = sensitivity + specificity – 1.

The Youden index assumes that false-neg-
ative and false-positive classifications are 
equally undesirable. For instances in which in-
formation on pretest probability and the costs 

of false results is available, a method exists to 
weight the Youden index accordingly [28].

The ROC curve is useful when a binary 
classifier outputs a numeric value to which 
a threshold can be applied for determining a 
category. The ROC curve is a plot of sensi-
tivity versus false-positive rate (1 – specific-
ity) for each set of unique binary contingency 
tables possible with different thresholds for 
classifier output [28]. The ROC AUC can be 
used as a single metric to summarize perfor-
mance across the entire operating range of 
a classifier, not just at one threshold. There 
are established methods for comparing ROC 
curves between different diagnostic tests 
[29–32]. A disadvantage is that the entire 
operating range of a classifier or diagnostic 
test is rarely of interest, and the region where 
sensitivity and specificity are more balanced 
is often more useful. For this reason, contin-
gency table statistics such as sensitivity and 
specificity should still be reported for a cho-
sen classifier threshold. A common method 
for choosing an optimal threshold is to max-
imize the Youden index, though this entails 
the limitations of the Youden index described 
earlier. For systems that require an explicit 
threshold, authors should report the thresh-
old used and defend the use of this threshold 
in the discussion section of the article.

For multiclass classification, statistics can 
be reported for each separate class. Summary 
measures can be calculated by averaging the 
relevant statistic in each class, either as a mac-
roaverage (each class weighted equally) or as 
a microaverage (each class weighted by preva-
lence in the test set) [26]. In some multiclass 
problems certain errors will be more serious 
than others (e.g., misclassifying a malignan-
cy as a benign condition versus confusing two 
benign entities), and custom metrics may be 
needed to weigh errors appropriately.

Regression, Localization, Segmentation
Detailed discussion of metrics for nonclas-

sification machine learning tasks is beyond 
the scope of this article. Examples of evalu-
ation metrics for regression tasks are mean 
absolute error, mean squared error, and root-
mean-square error [10, 12, 33]. Evaluation 
metrics for localization and segmentation 
tasks include intersection-over-union, warp-
ing error, Rand error, pixel error, and the Dice 
similarity coefficient [13, 15, 16, 34–36].

Reporting Measures of Performance
Different evaluation methods have differ-

ent advantages and disadvantages. As a rule, 
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authors should provide as many metrics as 
necessary to describe strengths and weak-
nesses of a given algorithm, and reviewers 
should be alert to selective reporting of met-
rics that might give a biased portrayal of per-
formance. To assist reviewers, authors should 
cite prior studies using the same or similar 
performance measures and literature on the 
advantages and disadvantages of those mea-
sures. When possible, evaluation metrics 
should be reported with confidence inter-
vals. Comparisons between algorithms or 
between algorithms and humans should in-
clude either confidence intervals or measure-
ments of statistical significance.

Visualization
With potentially millions of parameters 

in a machine learning model, it can be diffi-
cult to understand what the model is seeing 
in an image. This black-box nature creates a 
challenge for validating AI algorithms. It is 
important to show that a high-performance 
machine learning model is actually detect-
ing the relevant region of an image and not 
overfitting to unimportant findings (see lat-
er, Overfitting). This is especially true for 
classification and regression tasks because 
the output of the algorithms in these cases 
is a label (i.e., answer) for what is in the im-
age without any supporting evidence. An 
in-depth discussion of visualization meth-
ods is beyond the scope of this article, but 
some commonly used examples include oc-
clusion maps, saliency maps, and class acti-
vation maps [37–39]. Localization and seg-
mentation algorithms may be inherently 
more understandable because the output is 
an image.

Pitfalls and Biases
Authors and reviewers should be aware of 

several common pitfalls and biases that may 
arise in AI research.

Overfitting
Overfitting occurs when an algorithm be-

comes so accurate on a limited dataset that 
its predictions are not well generalized to 
new examples. Most often the algorithm is 
overfitted to the training dataset, but overfit-
ting can also occur on a validation or test set 
if the investigators test the performance of so 
many different models that one performs ex-
tremely well by chance (see later, P-Hacking 
Bias). Overfitting can also occur when there 
are features in an image that are superficially 
related to a disease state but do not actually 

represent the disease. For example, one study 
[40] showed that algorithms trained to detect 
pneumonia sometimes rely on information in 
the corners of the image, such as radiopaque 
markers for left and right.

The importance of confounders is contex-
tual and open to interpretation because ra-
diologists also sometimes use other infor-
mation in an image to support a conclusion 
or change their degree of suspicion. For ex-
ample, an algorithm trained to detect acute 
fractures that is found to rely partially on the 
presence of a radiopaque marker of maxi-
mal tenderness may be legitimately fitted to 
the relevant evidence of fracture because ra-
diologists also look at these markers during 
routine interpretation. Authors and reviewers 
should attempt to imagine any common con-
founding factors that may lead to overfitting. 
Authors can either provide evidence against 
such overfitting by providing visualizations 
that include common confounders or can ex-
plain in the discussion section why fitting 
to a specific confounder may be acceptable 
when considered in context.

Data Snooping Bias
Data snooping bias occurs when the test 

set directly or indirectly influences the train-
ing process [41]. For example, if the training 
set contains some images identical or near-
ly identical to images in the test set, the al-
gorithm will appear to achieve high per-
formance on the test set when in fact it has 
merely memorized some images in the train-
ing set. Authors can defend against the pos-
sibility of data snooping by double-check-
ing their method of data collection and by 
considering any context-specific issues that 
might lead to a false appearance of high per-
formance on the test set.

Spectrum Bias
Spectrum bias occurs when the dataset 

does not appropriately represent the range of 
possible patients and disease manifestations 
for the image analysis task at hand [11]. This 
issue is most critical to identify in the test da-
taset because the conclusions of a study are 
drawn from performance on the test set and 
not from the training data. Authors should 
report all relevant clinical and demograph-
ic information necessary for thoughtful criti-
cism of their results and conclusions [42].

Straw Man Bias
Straw man bias occurs when authors claim 

expert-level performance but the standard of 

comparison does not represent real exper-
tise in the relevant image analysis task. Straw 
man bias can be difficult to identify because 
there are legitimate contexts in which the 
standard of comparison need not be an ex-
pert. For example, if an algorithm is proposed 
for rendering preliminary reports during off-
hour times, the use of radiology residents as 
a standard of comparison would be reason-
able. Because this is a contextual issue, au-
thors should qualify the strength of their con-
clusions and provide convincing support for 
the standard of comparison they used.

P-Hacking Bias
P-hacking bias occurs when investigators 

run a sufficient number of statistical tests 
that one is successful purely by chance. In 
AI research, a similar bias can occur if in-
vestigators train many algorithms using dif-
ferent hyperparameters, test them all against 
the test set, and selectively publish the best 
results. To avoid this, only a limited num-
ber of models should ever be tested against 
the test set, and the criteria for selecting 
which models are tested should be explicit. 
If investigators choose to fine-tune perfor-
mance by training many models with differ-
ent hyperparameters, then the data should 
be divided into three sets with training per-
formed by use of the training set, optimiza-
tion of hyperparameters by use of the vali-
dation set, and final performance evaluation 
on the test set.

Preprints and Open-Source Code
Clinical journals often require that ref-

erences come from peer-reviewed medical 
literature. However, the computer science 
research community embraces the use of ar-
chived preprints, and many breakthrough ar-
ticles are published as conference proceed-
ings and preprints [43]. Selective citation of 
these papers may improve the quality of an 
article. Authors should also cite any open-
source code that was used in their research 
so that others can reproduce their work if 
necessary. Submission of research code and 
datasets for publication or open access is es-
pecially welcome when possible.

Summary
AI is in the early phases of application to 

medical imaging, and patient safety demands 
a commitment to sound research methods. 
Clinical journals are well positioned to en-
sure that AI articles are held to a high stan-
dard. This guide is intended to help authors 

A
m

er
ic

an
 J

ou
rn

al
 o

f 
R

oe
nt

ge
no

lo
gy

 



6 AJR:212, March 2019

England and Cheng

and reviewers meet this standard and to serve 
as a basis for editorial boards or imaging so-
cieties seeking to create formal research re-
porting guidelines.
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Is the study aimed at solving a practical clinical issue?
Is the writing accessible to physicians and biomedical researchers?
Is the purpose of the study clearly stated?
Do the authors clearly explain data collection, processing, and division methods?
Do the data appropriately represent the range of possible patients and disease manifestations?
Are the data labels (if applicable) of sufficient quality to support the claimed performance of the algorithm or algorithms?
Do the authors report a sufficient number and type of performance measures to accurately represent strengths and weaknesses of the  algorithms?
Are performance measures reported with confidence intervals?
If expert-level performance is claimed, does the standard of comparison meet an appropriate level of expertise?
Are comparisons with human performance reported with confidence intervals or p values?
Do the authors provide graphics that show the algorithm is detecting the relevant regions of the images and not overfitting to unrelated features?
If performance measures require an explicit threshold, do the authors provide convincing support for the threshold used?
Do the authors appropriately qualify the strength of their conclusions and discuss limitations in their methods?
Do the authors discuss directions for future research?
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