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Abstract Tumor volume estimation, as well as accurate and
reproducible borders segmentation in medical images, are im-
portant in the diagnosis, staging, and assessment of response to
cancer therapy. The goal of this study was to demonstrate the
feasibility of a multi-institutional effort to assess the repeatability
and reproducibility of nodule borders and volume estimate bias
of computerized segmentation algorithms in CT images of lung
cancer, and to provide results from such a study. The dataset used
for this evaluation consisted of 52 tumors in 41 CT volumes (40
patient datasets and 1 dataset containing scans of 12 phantom
nodules of known volume) from five collections available in The
Cancer Imaging Archive. Three academic institutions develop-
ing lung nodule segmentation algorithms submitted results for
three repeat runs for each of the nodules. We compared the
performance of lung nodule segmentation algorithms by
assessing several measurements of spatial overlap and volume
measurement. Nodule sizes varied from 29 μl to 66 ml and
demonstrated a diversity of shapes. Agreement in spatial overlap

of segmentationswas significantly higher formultiple runs of the
same algorithm than between segmentations generated by differ-
ent algorithms (p<0.05) and was significantly higher on the
phantom dataset compared to the other datasets (p<0.05). Algo-
rithms differed significantly in the bias of the measured volumes
of the phantom nodules (p<0.05) underscoring the need for
assessing performance on clinical data in addition to phantoms.
Algorithms that most accurately estimated nodule volumes were
not the most repeatable, emphasizing the need to evaluate both
their accuracy and precision. There were considerable differ-
ences between algorithms, especially in a subset of heteroge-
neous nodules, underscoring the recommendation that the same
software be used at all time points in longitudinal studies.
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Introduction

Globally, lung cancer is the leading cause of cancer-related
deaths in males and the second leading cause of cancer-
related deaths in females [1]. Imaging plays a key role in patient
care during all stages of the disease including diagnosis, stag-
ing, management, and assessing response to therapy [2, 3].
More recently, a number of trials [4] including the National
Lung Screening Trial (NLST) [5] have provided compelling
evidence that in some populations, themortality associated with
lung cancer can be reduced by screening using low-dose CT
(LDCT) [6], thus adding screening to the list of imaging roles.

When pulmonary nodules are identified on CTscans, criteria
developed by the Fleischner Society [7] and others call for a
follow-up scan in 3–12 months to assess its growth rate. Tumor
doubling time has been proposed as a marker for malignancy
[8–10], and the current standard for measuring tumor response,
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Response Evaluation Criteria in Solid Tumors (RECIST) [11],
is based on uni-dimensional, linear measurements of tumor
diameter. Measurements are made manually, and significant
inter-observer variability exists [12–14]. For response assess-
ment, as well as diagnosis and staging, there is considerable
interest in developing accurate and precise segmentations of
lung tumors, which can in turn provide both linear and volu-
metric assessments of tumor size and change rates. Indeed, The
Nederlands Leuvens Longkanker Screenings Onderzoek
(NELSON) trial, the largest European lung cancer screening
trial, uses volumetric measurements and volume doubling times
(VDT) as criteria for assessing the risk ofmalignancy. Although
automatic and semi-automatic segmentation algorithms can fa-
cilitate these tasks, analysis of three software packages using
data from the NELSON study indicated that they Byield signif-
icant differences in volumetric measurements and VDT^ and
that Bthis variation affects the classification of lung nodules^
[15]. It has also been reported that, in nodules detected during
screening, three segmentation algorithms within the same soft-
ware package could not be used interchangeably, as different
algorithms delivered significantly different volumes [16].

Various commercial entities offer systems for lung tumor size
determination, and new ones are introduced periodically. While
accuracy of lung nodule segmentation can only be assessed in
phantoms, it is important to be able to assess reproducibility
under changes in operator input and inter-algorithm agreement
in human-subject datasets from an appropriate cohort.

In this study, we conducted a lung nodule Bsegmentation
challenge^ among three academic institutions with an interest
in developing segmentation algorithms and evaluated their
repeatability, reproducibility, and bias utilizing a previously
developed software platform [17–19] that facilitates compari-
son of segmentation algorithms.

Materials and Methods

Datasets

All image data used in this studywere collected by the respective
institutions following approval by their respective Institutional
Review Boards and de-identified for HIPAA compliance. These

datasets were then deposited in The Cancer Imaging Archive
(TCIA: http://cancerimagingarchive.net/) and are available to
the public through a shared list for easy download [20]. They
consisted of 52 tumors in 41 CT volumes from 5 sub-collections:
(A) one CT study of a phantom containing 12 synthetic nodules
scanned at Columbia University Medical Center (CUMC) [21],
(B) 10 CT studies selected from the publicly available Lung
Imaging Database Consortium (LIDC) [22–24], (C) 10 CT stud-
ies from the Reference Image Database to Evaluate Response
(RIDER) [21] to therapy in cancer collections, (D) 10 CTstudies
fromMoffitt Cancer Center (MCC), and (E) 10 CT studies from
Stanford University (SU) [25]. Table 1 contains demographic
and key scanning parameters for all the sub-collections.

While all 41 CT volumes have been used in prior studies
[21–23, 25–27], they have never been used as a set for the
comparison of segmentation algorithms, as we present here,
and there therefore is no scientific overlap between the work
described here and prior publications.

Algorithms

Three academic institutions developing lung nodule segmen-
tation algorithms submitted results for three repeat runs on
each nodule. Thus, data from a total of 3×3×52=468 seg-
mentations were analyzed for this study. These segmentations
have also been deposited in TCIA and are available to the
public through a shared list [20]. The following is a brief
description of each algorithm used.

Algorithm 1

This algorithm is based on the image processing techniques of
marker-controlled watershed, geometric active contours and
Markov random field [28]. It requires manual initialization of
a region of interest (ROI) that encloses the lesion on a single
image, as seen in Fig. 1. Then the entire tumor volume can be
automatically obtained. In this study, two additional segmen-
tation runs were initiated by randomly changing the long axis,
the short axis, and the central point of the ellipsoid ROI drawn
in the first run. The allowed range for the two axes and the
center’s x and y coordinates was 10 % of either the long or
short axis.

Table 1 Demographics and selected scanner parameters for the five collections used in our study

Collection Scanned at site No. (males, females) Mean age (range) kVp mA range Slice thickness
range (mm)

Number of slices
per study range

Acquisition
year (range)

A CUMC N/A (phantom) N/A (phantom) 120 195 1.25 237 2011

B LIDC 10 (gender not available) not available 120 80–360 1.0–2.5 166–481 Not available

C RIDER 10 (genders unknown) 58 (44–71) 120 Auto (238–439) 1.25 47–186 2006–2007

D MCC 10 (4, 6) 67.7 (49, 78) 120 (280–545) 3 103–150 2000–2009

E SU 10 (7, 3) 65.4 (46, 80) 120 Auto (123–751) 0.625–1.25 69–307 2008–2010
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Algorithm 2

A single click ensemble segmentation (SCES) algorithm using
a proprietary platform [27] was used for lung nodule segmen-
tation as seen in Fig. 1. In brief, the algorithm is based on
using multiple seed points with region growing. It makes
use of the BClick and Grow^ algorithm by using a manually
selected initial seed point to define an area, within which mul-
tiple seed points are automatically generated. Ensemble seg-
mentation can be obtained from the multiple regions that were
grown. In this algorithm, ensemble segmentation refers to a
set of different input segmentations (multiple runs using same
segmentation technique but different initializations) that are
combined in order to generate consensus segmentation. Re-
peat runs started with an independently selected seed point.

Algorithm 3

This algorithm begins with a completely automated lung segmen-
tation, which establishes a 3D boundary beyond which tumors
cannot exist. This lung segmentation algorithm employs a

smoothness constraint so that tumors in contact with the chest
wall and/or mediastinum are not falsely excluded from the lung
field, although large tumors may be problematic. However, this
was not a problem in the dataset used for this study. A manually
placed seed Bcircle^ supplied location and gray-value statistics
that were used to initialize the nodule segmentation algorithm as
seen in Fig. 1. Two-dimensional region growing was then initiat-
ed starting at the centroid of the seed circle using thresholds
computed from the gray values in the seed circle. Gray-value
statistics were then updated based on the region grown, and the
points included in the grown region were then projected into the
adjacent superior and inferior sections and used as seeds for re-
gion growing in those sections using thresholds computed from
the updated statistics. This proceeded iteratively until points
projected into adjacent sections were outside of the computed
thresholds. In all sections, morphological operations prevented
growth into attached blood vessels, and growth beyond the com-
puted lung segmentation boundary was not allowed. Repeat runs
started with independently placed seed circles on different though
representative sections and positioned to include solid and
ground-glass components if the nodules were part-solid.

Fig. 1 Example initializations for
each of the runs for each
algorithm for one of the nodules
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Imaging informatics platform

We extended a previously developed imaging informat-
ics platform [17–19] for the task of evaluating segmen-
tations in the context of a lung nodule segmentation
challenge. The platform was already capable of the
following:

1. Automated quantitative inter-observer and intra-observer
volume of interest (VOI) analyses and comparisons

2. A collection of pilot data to develop and validate quality
metrics for institutional and cooperative group quality as-
surance efforts

We extended this platform to support a number of addition-
al formats for the lung nodule segmentation challenge includ-
ing Portable Network Graphics (PNG), Annotation and Image
Markup (AIM) [29], and DICOM Segmentation Object
(DSO) [30] as these were the formats generated by the three
software tools being evaluated. Converters were written to
convert all formats into common formats in order to be able
to compare segmentations generated by the various
algorithms.

The platform has analytical and statistical libraries to
calculate a number of commonly used metrics to sup-
port segmentation evaluations, as described below and
in Table 2.

Statistical Analyses and Metrics

The goal of this study was to evaluate the performance of the
algorithms in terms of their bias, repeatability, and reproduc-
ibility [31–33] as well as to obtain insights into the underlying
reasons for differences between algorithms on a voxel level.

Bias

The bias of the volume measurement was calculated for the
nodules for which the ground truth was available (the 12 nod-
ules in the phantom dataset) as the difference between estimat-
ed and true volume. As described [31–33], we estimated the
population bias utilizing a repeated measures analysis to esti-
mate the sample mean difference. Proportional bias was com-
puted as the bias divided by the true value [31–33]. Two-way
ANOVA (algorithm, nodule) was used to test the null hypoth-
esis that there is no difference in bias between algorithms.

Volume repeatabilitywas measured based on the computed
volumes of repeat segmentations provided by a given algo-
rithm for each nodule. This was performed considering all 52
nodules. Commonly used measures for repeatability include
the repeatability coefficient (RC), the within-subject coeffi-
cient of variation (wCV), and the concordance correlation
coefficient (CCC) [31–33]. The RC is defined as:

RC ¼ 1:96
ffiffiffiffiffiffiffiffi

2σ2
∈

q

¼ 2:77σ∈

Table 2 Statistical measures used in this study

Metric Definition References

Volume Number of voxels in object multiplied by the voxel size in mm3

Bias An estimate of systematic measurement error; it is the difference
between the mean of measurements made on the same object
and the measurement’s true value. Percent bias is bias divided
by the true value times 100 %.

Kessler [21]

Dice coefficient (Volume of the intersection of regions A and B divided by the
volume of their union)

Dice [30]

Repeatability/reproducibility BPrecision under a set of repeatability (reproducibility) conditions
of measurement^

Raunig [20]

Kessler [21]

Precision BCloseness of agreement between measured quantity values obtained
by replicate measurements on the same or similar experimental units
under specified conditions^; can be estimated using wSD, wCV,
RC, ICC, CCC (see below)

Raunig [20]

Kessler [21]

Barnhart [26]

Within-subject standard deviation (wSD) σ Kessler [21]

Within-subject coefficient of variation (wCV) σ/μ Obuchowski (19 )

Repeatability coefficient (RC) BThe least significant difference between two repeated measurements
on a case taken under the same conditions^

Kessler [21]

Obuchowski [19]

Bland [27]

Intra-class correlation coefficient (ICC) Consistency of repeated measures relative to the total variability in the
population (assumes independent normally distributed samples)

Raunig [20]

Shrout [24]

Concordance correlation coefficient (CCC) Consistency of repeated measures relative to the total variability in
the population

Lin [23]
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where σ∈
2 is the within-subject variance.This RC is understood

as Bthe least significant difference between two repeated mea-
surements taken under identical conditions at a two-sided sig-
nificance of α=0.05^ [32].

The wCV is defined as:

wCV¼σ∈

μ

whereμ is themean of the volumemeasurements. The CCC [34,
35] has been proposed to address some deficiencies of the intra-
class correlation coefficient (ICC) [36], another commonly used
measure [36–38]. ICC requires the assumptions of ANOVA
while CCC does not. However, when normality is assumed, the

CCC equals the ICC [34, 36, 37]. Although we report the CCC
here, this measure does suffer from notable deficiencies common
to many of these correlation measures [39–41] in that they are
very sensitive to sample heterogeneity and that they are aggregate
measures (thus making it difficult to separate systematic bias
from issues in precision or large random errors). Thus, it would
not be valid to compare our CCCmeasures to those measured on
a different set of nodules with a different range of volumes.

Volume reproducibility was measured based on the com-
puted volumes of segmentations provided by all three algo-
rithms for each nodule, using the reproducibility coefficient
RDC (analogous to RC [32, 33]), wCV, and CCC as defined
above for repeatability.

Fig. 3 Box plot of nodule
volumes by collection displays
the range of nodule sizes

Fig. 2 Distribution of nodule
sizes as estimated by the median
over all segmentations for each
nodule
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Spatial Overlap

Dice scores [42] were used to estimate the spatial overlap
between segmentations within algorithms (i.e., pairwise
comparisons between repeat segmentations provided by
each algorithm) and between algorithms (all pairwise
comparisons between segmentations provided by different
algorithms). A novel use of intra-algorithm Dice scores is
as measures of repeatability and reproducibility. This
metric would detect differences between segmentations
having the same volume but different locations/surfaces.
Dice scores are not normally distributed as they have an
upper bound of 1 and are typically skewed left. We used
non-parametric statistics for the comparison of Dice
scores.

Table 2 summarizes the metrics used in this study. For more
details, readers are referred to a series of papers published on
statistical methods for quantitative imaging biomarkers
[31–33, 41].

Results

Datasets

The image data used for this study, consisting of CT scans of
52 lesions, demonstrated large diversity in the size and shape
of the nodules. Figure 2 shows the distribution of the estimat-
ed nodule sizes of all 468 segmentation; the median of volume
measurements for each nodule over all three runs of three
segmentation algorithms varied over three orders of magni-
tude from 0.029 to 66.53 ml. Figure 3 shows that the phantom
data (collection A) and LIDC (collection B) typically had
smaller nodules (p<0.05) compared to collections C, D, and
E while collection E had the largest variation in nodule sizes.

Bias in estimated volumes

Figure 4 plots the bias in the volume estimate for the phantom
nodules compared to known truth and shows that algorithm 3 has

Table 3 Pairwise differences in
bias and proportional bias
between algorithms on phantom
nodules

Bias Comparison Difference (ml) (95% confidence interval) p Value

Alg 2 vs alg 1 0.068 (−0.010–0.147) 0.097

Alg 3 vs alg 1 0.184 (0.106–0.263) 0.0000006

Alg 3 vs alg 2 0.116 (0.037–0.194) 0.0019782

Proportional bias comparison Difference (%) (95 % confidence interval) p Value

Alg 2 vs alg 1 0.079 (0.027–0.131) 0.0013742

Alg 3 vs alg 1 0.045 (−0.007–0.097) 0.1066724

Alg 3 vs alg 2 −0.034 (−0.086–0.018) 0.2667675

Fig. 4 Volume measurement bias
by algorithm demonstrating that
algorithm 3 has the least negative
bias while algorithm 1 has the
most
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the least negative bias while algorithm 1 has the most. ANOVA
revealed a statistically significant difference in bias between
algorithms, with the mean bias for algorithms 1, 2, and 3 being
−0.138, −0.069, and 0.046 ml, respectively (p<0.05).

Additionally, Table 3 shows the results of a post hoc com-
parison using the Tukey HSD method [43], indicating that
pairwise differences in bias between algorithms 1 and 3 and
2 and 3 are significant while the difference between algo-
rithms 1 and 2 is not significant. When comparing the propor-
tional biases, algorithm 2 had the least negative bias while
algorithm 1 had the most negative bias. However, only the

difference in proportional bias between algorithms 1 and 2
was significant.

The 12 nodules in this collection can be grouped into
two size categories: small (0.57–0.71 ml) and large
(4.21–4.4 ml). Figure 5 suggests that the patterns of
bias for the algorithms appear to be different for the
large nodules compared to the smaller nodules. Algo-
rithm 3 has negative bias for smaller nodules and gen-
erally positive bias for larger nodules while the pattern
is flipped for algorithm 2. Algorithm 1 tends to have a
negative bias for all nodule sizes.

Fig. 5 Volume measurement bias
in a small and b large nodules
suggests that the patterns of bias
for the algorithms are different for
the large nodules compared to the
smaller nodules
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Spatial Overlap Between Segmentations as a Function
of Collection

Figure 6 compares the distribution of all pairwise Dice scores for
the different collections. This allows us to explore if there are
differences in agreement between algorithms as a function of the
collection. The Kruskal-Wallis non-parametric ANOVA, used
because the Dice scores were not normally distributed and had
unequal variances, indicated that the phantom nodules (collec-
tion A) had statistically significantly higher agreement between
segmentations produced by the different algorithms compared to
the other collections (p< .05). Post hoc tests, adjusting for mul-
tiple comparisons, further indicated that there was no significant
difference in agreement among algorithms between the three
diagnostic collections (C–E) (p< .05), while the LIDC collection
(collection B) had the least agreement between algorithms and
the difference was significant (p< .05). The LIDC (collection B)
was from a screening trial and had the smallest nodules (as seen
in Fig. 3). Thus, even small variations in the segmentations
generated by the algorithms can result in lower Dice scores. In
fact, previous studies with human expert annotators and the
LIDC dataset had already demonstrated the lack of consensus
in locating and segmenting nodules in this collection [24].

Repeatability and Reproducibility

The upper section of Table 4 shows the results of our volume
repeatability (i.e., the agreement over multiple initializations
of a given algorithm over all samples) analysis by the tradi-
tional measures of wCV, RC, and the CCC. Algorithm 2 was
the most repeatable while algorithm 3 was the least, but, in all
cases, the estimate of wCV was less than 10 %. As was
discussed earlier, although the CCCs are very high for all three

algorithms, this is primarily an artifact of the heterogeneity of
the samples (large range of tumor volumes) and not really a
good measure of the repeatability of the algorithms.

The lower section of Table 4 shows results of our volume
reproducibility (i.e., the agreement of all of the algorithms over
all samples) using the same measures as above (but with RC
replaced by the RDC). Not surprisingly, the CCC, which in this
analysis considered all nine results per nodule (three each from
three algorithms), was considerably lower than results from the
repeatability analysis, which considered each algorithm sepa-
rately. This was also true for RC (vs RDC) and wCV.

For each nodule, we also calculated all pairwise Dice
scores for all nine segmentations available for that nodule.
We grouped these into intra-algorithm (i.e., repeatability)
and inter-algorithm (i.e., reproducibility) sets. Figure 7 shows
the distribution of the pairwise Dice scores for each nodule.
As is expected, there is greater spatial overlap between

Table 4 Repeatability and reproducibility of algorithmic determination
of nodule volume

Repeatability

Algorithm RC (ml) wCV CCC (95 % confidence interval)

Alg 1 1.830 6.29 % 0.997 (0.981–0.999)

Alg 2 1.266 4.64 % 0.999 (0.995–0.999)

Alg 3 2.626 7.92 % 0.996 (0.970–0.999)

Reproducibility

Nodules RDC (ml) wCV CCC (95 % confidence interval)

52 10.34 36.65 % 0.836 (0.752–0.893)

RC repeatability coefficient, RDC reproducibility coefficient, wCV
within-subject coefficient of variation, CCC concordance correlation
coefficient

Fig. 6 Distribution of Dice
scores by collection highlighting
better agreement between
segmentations on phantom data
(collection A) compared to
clinical data (collections B–E)
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multiple runs of a single algorithm than between algorithms.
The intra-algorithm agreement (repeatability) was significant-
ly higher than the inter-algorithm agreement (reproducibility);
the average Dice score was 0.95 versus 0.81 (p< 0.001;
Wilcoxon rank sum test) and was typically higher for larger
volumes, though this was not statistically significant.

Figure 8 demonstrates the intra-algorithm distribution
of Dice scores, a measure of the repeatability of the algo-
rithms. The Kruskal-Wallis multiple comparison test [44]
indicated that algorithms 1 and 2 had significantly higher
Dice scores than algorithm 3 (p< .05), suggesting their
higher repeatability.

Exploring Causes of Variability

In order to further understand the underlying causes of vari-
ability between the segmentations produced by the different
algorithms, we studied the Dice coefficients by nodule for all
nodules in collection E, which had a range of Dice coeffi-
cients. We could immediately see that two nodules have high
variability. We then compared the estimated volumes for the
different algorithms for the nodule with the highest variability
and observed very large differences in estimated volumes be-
tween segmentations produced by the three algorithms. Visu-
alizing segmentations from each algorithm for this nodule

Fig. 8 Box plot comparing intra-
algorithm Dice coefficients
between algorithms, demonstrat-
ing that algorithms 1 and 2 were
more repeatable than algorithm 3

Fig. 7 Histograms of Dice scores
of (top) inter- and (bottom) intra-
algorithm pairwise comparisons.
Intra-algorithm Dice scores are
significantly higher than inter-
algorithm Dice scores indicating
better robustness to user
initializations than to choice of
algorithm
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(Fig. 9) allows us to see the nodule that results in the differ-
ence in boundaries generated by the algorithms.

Discussion

This study evaluated the repeatability and reproducibility of
semi-automatic segmentation algorithms developed at three
academic institutions on 52 lung nodules in lung CT scans
from five different collections of images. We were able to
demonstrate statistically significant differences in bias as well
as repeatability and reproducibility between the algorithms
and to explore some of the reasons for these differences.

The repeatability of algorithms, measured both using Dice
scores between segmentations generated by the same algo-
rithms and the concordance of volumes estimated by these
segmentations, was significantly higher than the reproducibil-
ity (inter-algorithm comparisons). This underscores the rec-
ommendation that the same software be used at all time points
in longitudinal studies and in measurement of parameters such
as tumor doubling time.

We found better agreement between the segmentations
generated for the algorithms on the phantom data compared
to the clinical scans, highlighting the need for evaluating the
performance of algorithms on clinical data in addition to phan-
toms. In addition, the agreement was quite poor on the

screening data (collection B, LIDC), suggesting the need for
continuing development of algorithms for use with the smaller
nodules typically seen in screening settings.

Limitations and Conclusions

This study was primarily aimed at demonstrating the feasibility
of a performing multi-institutional algorithm comparison study,
specifically of segmentation algorithms, using an informatics
platform developed for the purpose. Because we used a small
number of nodules, we cannot draw conclusions about the rel-
ative performance of the algorithms tested. However, we have
demonstrated a general paradigm and precise methods for com-
paring segmentations of medical images and for exploring the
sources of variability and their manifestations. Despite the fact
that we limited our study to segmentations of lung nodules in
CT scans, these methods are perfectly generalizable to any mo-
dality generating 2D images or 3D volumes and can be easily
adapted for assessments of nodule growth over time.

Acknowledgements U.S. Department of Health and Human Services,
National Institutes of Health, National Cancer Institute (R01 CA160251),
(R01 CA149490), (U01 CA140207), (U01 CA143062), (U01
CA154601), (U24 CA180927) and (U24 CA180918).

Fig. 9 Variability in the results of
three segmentation algorithms for
a nodule with low inter-algorithm
Dice coefficients illustrated on a
single cross-section
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