Automation in Construction 73 (2017) 102-119

journal homepage: www.elsevier.com/locate/autcon

= -
Contents lists available at ScienceDirect 23“’"‘”"’" IN |

Automation in Construction |
i

Multidisciplinary Design Optimization through process integration in the
AEC industry: Strategies and challenges

@ CrossMark

Héctor Diaz ®*, Luis F. Alarcén ¢, Claudio Mourgues ?, Salvador Garcia ®

@ School of Civil Engineering, Pontificia Universidad Catdlica de Chile, Vicuiia Mackenna 4860, Macul, Santiago, Chile
b School of Civil Engineering, Instituto Tecnolégico y de Estudios Superiores de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, Mexico

ARTICLE INFO

Article history:

Received 28 July 2015

Received in revised form 31 August 2016
Accepted 20 September 2016

Available online 8 November 2016

Keywords:

Building Information Modeling

Process Integration and Design Optimization
Multidisciplinary Design Optimization
Parametric Modeling

Component Interoperability
Architecture-Engineering-Construction
MDO requisites

ABSTRACT

Recently Multidisciplinary Design Optimization (MDO) has emerged in the Architecture-Engineering-Construc-
tion (AEC) industry to assist designers in making the design process more efficient, by achieving more design al-
ternatives in less time. Currently, MDO is developed with software tools that work together and automatically.
However, the technical requisites to develop MDO using Process Integration and Design Optimization (PIDO)
platforms are not clearly specified in the design optimization literature. There are many difficulties not covered
by the literature: especially the tools' behavior, and the strategies to deal with PIDO. To determine the technical
requirements, the tools' behavior, the challenges of interoperability and viable strategies, we reviewed the liter-
ature and tested five tools. This paper presents the main behavior of the tools we studied, and explains the chal-
lenges and strategies to develop MDO through PIDO. We observed three technical tool requisites: component
interoperability, tool automation, and model parameterization capabilities. We detected low openness levels of
the tool interfaces that did not always enable a full integration with PIDO or permit access to model properties.
The scarcity of commands and the presence of pop-up menus impeded performing analyses automatically. More-
over, most of the tools did not allow parametric associations among components, compatibility among them-
selves or the addition of custom components. The strategies proposed focused on testing the tool interfaces, to
validate that each computational process runs automatically, and to confirm that parametric relationships and
components are possible. The tools tested were not specifically designed to include full capability to work with
PIDO, therefore, enhancements would be needed to meet the three requisites: component interoperability, auto-
mation and parameterization. Technological, documentation and programming challenges also emerged when
working with tools. We demonstrated that only certain tools can be used with a PIDO platform. However,
there may be still other requisites for MDO using different methods that can become the focus of future work.
© 2016 Published by Elsevier B.V.

1. Introduction

One of the computing approaches to ameliorate this problem is the
Multidisciplinary Design Optimization (MDO) method [3-6]. MDO has

The design of a building is a creative and complex process that
involves multiple conflicting criteria. In addition, for traditional
methods of design optimization, the iterative and generative nature of
design can prove quite time-consuming [1]. These methods require te-
dious manual iterations that are wasteful and should be avoided or min-
imized [2]. Thus, the number of options and the exploration of the
design domain are limited because of the time and resources consumed
in these iterative cycles. This is why computing methods can provide a
partial solution for such a complex design process, specifically to be
used in activities related to the generation and assessment of design
options.

* Corresponding author.
E-mail address: hudiaz@uc.cl (H. Diaz).

http://dx.doi.org/10.1016/j.autcon.2016.09.007
0926-5805/© 2016 Published by Elsevier B.V.

been successfully used for several years by the aerospace and
automotive industries [7,8]. Multidisciplinary optimization is, however,
a more recent approach in the Architecture-Engineering-Construction
(AEC) industry and therefore, it cannot be appropriately used in
most stages of building design. After the initial creative part of the
design process, however, MDO can be applied to accelerate the
search and assessment of design options, two processes that would be
very difficult to achieve by human efforts. MDO starts from a model
previously resolved by designers and an optimization problem clearly
defined.

MDO is a formal methodology for the design of complex systems
that explores interaction of various disciplines. It is an optimization
method that addresses the design problem by decomposing it into
smaller multidisciplinary parts. MDO is based on a decomposition prin-
ciple that divides the main problem into several sub-problems. The de-
sign problem is then tackled by analyzing the inter-relationship,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2016.09.007&domain=pdf
http://dx.doi.org/10.1016/j.autcon.2016.09.007
mailto:hudiaz@uc.cl
http://dx.doi.org/10.1016/j.autcon.2016.09.007
http://www.sciencedirect.com/science/journal/09265805
www.elsevier.com/locate/autcon

H. Diaz et al. / Automation in Construction 73 (2017) 102-119 103

represented by variables, among the different sub-problems [4]. MDO
utilizes optimization algorithms and multidisciplinary analyses to ex-
plore the design domain by modifying a virtual model parametrically.
The aim of MDO is to find the optimal or near-optimal design that sat-
isfies the multidisciplinary objectives and meets the given constraints.

1.1. Main tools to perform MDO in the AEC industry

MDO is accomplished by several types of software tools. Some of
these types are optimization platforms, such as Process Integration
and Design Optimization (PIDO); modeling tools, such as Computer-
Aided Design (CAD); Building Information Modeling (BIM); Parametric
Modeling (PM) tools and analysis tools, such as structural analysis, en-
ergy simulation, cost analysis, and so on. This section describes these
tools.

PIDO is a software family that has been used in other domains, such
as the manufacturing and aerospace industries. Recently, it has also
been used by some AEC researchers aiming to achieve MDO. PIDO
helps to facilitate and automate the integration and interoperability of
software applications involved in simulation tasks. PIDO utilizes simula-
tion workflows [9] in order to optimize one or more aspects of a product
design. It is also a tool for the process modeling environment (PME) [10]
because it can integrate components to create a unique process model.

CAD is the use of computer systems and software to create, modify,
and analyze designs. CAD implements digital graphics in the system
along with an application to facilitate projects [11]. This type of software
works with both 2D and 3D representations and is broadly used in the
engineering and architecture domain. In the AEC industry, CAD is
used to create blueprints and 3D visualizations of a project (e.g., a
building).

BIM is a Parametric Modeling technology which includes a set of
processes to produce, communicate, analyze and manage building
models [12]. BIM contains building information and parametric links
as part of a 3D model that could be contained in a database, a spread-
sheet, a text file or a schedule [13]. The stored information covers the
whole life cycle of the building. The parametric rules are embedded in
elements. These rules deliver intelligence to the model because they re-
configure it and allow for modifying elements and updating the model
views automatically when a change occurs. The BIM approach works
with real building elements. These elements behave according to their
function in the building. For example, a wall has height, thickness,
finishing and other non-geometrical properties such as cost, fire-resis-
tance rating, compression strength, and so on, all of which are
established through its parameters.

Parametric Modeling tools, also called generative design tools or
semi-open platforms [14], are different from the CAD systems and BIM
tools and are quite flexible computational applications. Within them,
the user is able to create his own geometry with parametric rules
through scripts that are visually supported. Characteristically, paramet-
ric relations among the model's elements are shown in a symbolic dia-
gram. These tools are mostly used to work with conceptual design.
During this phase, they allow for the creation of extremely complex ge-
ometry. With these tools, the user initially spends more time establish-
ing the parametric rules in the model. However, once these rules are
captured, the model's manipulation and the creation of alternative de-
signs are easy and rapid. Parametric design relies on the ability to
change an object’s properties numerically without the need to redraw
[15].

Other analysis tools are used in the AEC industry; among them, the
structural, energy and cost analysis tools are used in MDO research.
These tools are very diverse and have evolved from isolated models to
analytical 3D models. Some of these tools allow the exchange of models
that hail from CAD or BIM tools, which is achieved through standards
such as the Industry Foundation Class (IFC), Drawing (DWG), and
Green Building Extensible Markup Language (gbXML).

1.2. Successful applications of MDO in the AEC industry

A way to improve the design process is by working with computing
tools that accelerate multi-disciplinary processes. In the literature, au-
thors consider the use of standard data schemes such as IFC, gbXML or
text files to transfer information from one tool to another during the de-
sign process. Examples of the use of these standards can be found in nu-
merous texts [16-20]. While the use of standard schemes is widely
used, it only solves the exploration of design alternatives with the de-
signer intervention to prepare files and geometric models and to oper-
ate calculation models [21]. In addition, an IFC schema is not sufficient
for interoperability [22] mainly because of the inconsistency among ap-
plications [21]. Moreover, the IFC standards do not support Parametric
Modeling according to Steel et al. [23], who explained that supporting
Parametric Modeling into the IFC language would entail significant re-
work of the IFC standard.

Beyond the data schemas, the MDO concept and its methodology
have been used in manufacturing and aerospace industries to optimize
product design [7,8]. Few examples of its application, however, have
been shown in the AEC industry because MDO is basically at the re-
search stage in this industry. One problem to implement MDO is the
complexity that involves skills such as programming and an advanced
use of information technologies. These skills are uncommon among ar-
chitects, engineers and tool users [3]. Recent studies in this field have
been carried out by other authors. For example, Marzouk and Abubakr
[24] proposed a model called TCrane_Opt that could optimize the loca-
tion of a group of tower cranes in construction sites, thus minimizing
the total cost of the tower crane and maximizing its utilization. They
also used a BIM model to extract information for the optimization and
clash detection processes. Ibrahim et al. [25] developed a model of site
facilities to ensure a realistic approach to construction site layout prob-
lems. They used optimization algorithms to work with static and dy-
namic shapes within Grasshopper® and Rhinoceros®. Faghihi et al.
[26] used a BIM model as an input to find the trade-off relationship be-
tween predefined objectives, such as time cost and job-site movements
of a construction project. Dino [27] presented a novel approach to the
3D space layout problem through an Evolutionary Architectural Space
Layout Explorer (EASE) tool that facilitates the optimization and explo-
ration of 3D space layouts to satisfy constraints of space overlaps and
empty areas: size, geometry placement and topology relations. Chardon
et al. [28] coupled a Non Sorting Genetic Algorithm (NASGA2) to an in-
tegrated design tool via data exchange. These authors implemented op-
timization to minimize global construction costs and energy
performance for dwellings. Ferrara et al. [29] coupled a generic optimi-
zation tool (GenOpt®) to a Transient System Simulation Tool
(TRNSYS®) to study how the energy system affects the technical and
economic optimal design solutions of the building in two different cli-
mate conditions.

MDO has been mainly performed through multidisciplinary process-
es that use heterogeneous computational tools, which are coupled to
each other or to optimizing platforms. These platforms generate a single
process environment, in which an optimization routine simulates anal-
yses on geometrical models. This single process environment is usually
called Process Integration and Design Optimization (PIDO), which con-
tains several optimization algorithms that allow rapidly exploring de-
sign alternatives and performing tradeoffs in order to select them.
Researchers have used PIDO for MDO research. For example, Welle et
al. [16] created an optimization methodology called ThermalOpt to per-
form MDO with BIM tools (Digital Project) focused on energy optimiza-
tion. This research coupled several simulation tools in an optimization
routine within PIDO to overcome the technical barriers of the applica-
tions' separated file formats. The barriers were the inconsistences and
interoperability issues among the architectural, structural and energy
models. The exchange of data was based on IFC files. Basbagill et al.
[30] presented a case study that integrated MDO with conceptual build-
ing design to feedback designers after decisions. They decreased the

Table 1
Summary of literature review on MDO research in the AEC industry.
Reference MDO Tools used Disciplines studied Coupling method Tool integration Detail of the MDO
BIM PIDO PM Structural Mathematical Energy Structural Energy Architecture Sustainable Cost MEP Urbanism z{lrzltl:;g:: and coupling requirements
tools tool tools tool Design

[3] X X X X X X X Macro input file, batch Experts for wrapping - Barely
file mentioned

[31] X X X X Plug-in to pass - - -
information

[32] X X X X DOS® batch file Customized codes - -

[16] X X X X X Plug-ins, wrappers Long time, - -

interoperability issues

[17] X X X X Interoperability features - - -
without wrapping

[18] X X X X Text file - - -

[33] X X X X X - - - -

[34] X X X X X - - - -

[35] X X X X - - - -

[36] X X X - - - -

[37] X X X - - - -

[38] X X X X - - - -

[20] X X X X X Script file, batch file - Generically -

mentioned

[19] X X X Text file - - -

[39] X X X - - - -

[40] X X X - - - -

[30] X X X X X X - - - -

[41] X X X X X X - - - -

[42] X X X X X X Plug-in Interoperability issues - -

[43] X X X X X X - - - -

[44] X X X X X - - - -

[45] X X X - Interoperability - -

challenges

[24] X X X - - - -

[25] X X X X - - - -

[26] X X X X - - - -

[27] X X X - - - -

[28] X X X X X Ontology rules for - - -
databases

[29] X X X X Manual editing of input Issues with the existing - -

text files

wrapper

¥01

611-201 (210Z) £2 U0NINISUOD U} UOPDWIOINY / D 32 ZDId “H

H. Diaz et al. / Automation in Construction 73 (2017) 102-119 105

carbon footprint and showed that the automated sequential feedback
method could accommodate multiple objectives. The optimization rou-
tine was implemented by integrating seven software components to a
PIDO platform.

A summary of our literature review on recent MDO research in the
AEC industry is shown in Table 1, which summarizes the tools used by
the authors, the disciplines involved in the optimization study, the cou-
pling method, the challenges and strategies for tool's integration, the
detail of the coupling and MDO requirements.

1.3. Research problem and objective

Tool integration is a crucial issue in MDO. As can be observed in
Table 1, it involves working with heterogeneous software that has
been developed by different people at different times, using different
methods, depending on the type of tool. Furthermore, these tools may
have different functionality, scope and mode of interaction with the
user. While these tools have been coupled in MDO research, only
some authors have mentioned some of the coupling methods such as
Batch Processing (BP), file scripting or the use of plug-ins to import
and export information. Several authors e.g., [3,16,31,42] used plug-
ins to couple the tools to a PIDO environment, while other authors
e.g., [3,20,32] used BP and text files as the coupling method. Negendahl
[45] mentioned three methods of coupling between tools: combined
model, central model and distributed model, of which only the distrib-
uted model method refers to the integration of computational tools.
Flager et al. [3] mentioned that the only requirement is that the tool
runs in Batch Mode, however, this is only one method for coupling
tools. The authors did not explain what happened during the coupling
process in terms of the technological implications of the integration,
the tool's behavior and their requisites for coupling or the best strategies
and challenges experienced in integration. Although various authors
e.g., [16,42,45] faced interoperability challenges when exchanging
data and format issues, these challenges referred to an imprecise data
conversion and the long time spent preparing models, but not to tool in-
tegration. There may be additional technical requisites for MDO, other
than coupling, that have not been studied in the literature.

In fact, the basic requisites to develop MDO using PIDO platforms
and the challenges that designers can face during its implementation
are not clear. Finally, design optimization literature has revealed only
few strategies to develop MDO, which provide little help for its use
and implementation by AEC companies. Therefore, if MDO is to be im-
plemented in the AEC industry, these challenges and strategies need
to be elaborated.

In summary, while there are significant contributions to MDO re-
search; there is only a limited description of the technical requisites to
perform it through PIDO. There is no clear explanation of tool capabili-
ties compared to these requisites, the coupling methods for these
tools with PIDO, the general considerations, the challenges faced, or
the strategies to follow.

The specific findings obtained by the MDO literature review were as
follows:

 The basic requisites for developing MDO using PIDO are scarcely men-
tioned. Although both part of the technical requisites for MDO and
other requisites regarding the optimization process have been men-
tioned, further research is necessary to understand how MDO func-
tions in PIDO platforms

Only some researchers have utilized optimization platforms, while
other researchers integrate the design process by exchanging data
through standard files such as IFC or gbXML

The coupling strategies among ITs are not explained in most articles
nor are the capabilities of the software tools

The researchers have failed to explain the challenges faced and the ca-
pabilities that tools must have.

 In some cases, there is a lack of tool integration in the optimization
processes

The current literature does not solve these issues and still leaves
these questions: What are the technical requisites for basic tools to per-
form MDO using PIDO? Could any AEC tool work with a PIDO platform?
What challenges will be faced when working with PIDO? What strate-
gies should be used in order to work with PIDO?

The contribution of our work is to answer the above questions and
test our hypothesis: that any AEC tool can work within PIDO to develop
MDO. First, our findings should help design researchers to simplify the
process of tool selection and second, they also will help researchers to
be aware of the basic aspects to consider when working on an MDO
framework.

This paper is structured as follows: first, it describes the methodolo-
gy employed to determine basic tool requisites to perform MDO using
PIDO, evaluate the AEC tools against the technical requisites and simu-
late a design process within PIDO. Later, it presents the main results di-
vided into five sections: the tool requisites to develop MDO with PIDO,
the behavior, strengths and weaknesses of the AEC tools versus the
technical requisites, the challenges faced, and general successful strate-
gies to develop work with PIDO. Finally, it offers a conclusion and rec-
ommendations for future work.

2. Research methodology

One way to develop MDO is through the use of PIDO tools linked to
other conventional tools. However, in the literature, the technical tool
requisites to work with PIDO are not clear. The main purpose of this re-
search is to determine these requisites, demonstrate the tool capabili-
ties with respect to these requisites, and demonstrate that tools work
in a design simulation routine within PIDO before performing optimiza-
tion. Consequently, a three-phase methodology was designed and is ex-
plained in this section (Fig. 1).

2.1. Phase one

In order to work from PIDO, it was necessary to know the capabilities
of the tools. One way to meet these requirements was by directly

Phase 1: Research of MDO requisites
RM: Literature re xploration

Phase 3: Case study of process simulation
within PIDO

RM: Model process testing

1 Preliminary selection of
ITs
¥
Determination of tool
2 requisites for PIDO
and MDO

Phase 2: Tool testing basgd on PIDO and MDO
requisites RM: Explotatior), individual testing 6

Testing of design
—= process simulation
within PIDO

Component

4 Interoperability testing

I
v

4 Automation testing

&

Parameterization
testing

Fig. 1. Three-phase research methodology. RM: Research methods.

106 H. Diaz et al. / Automation in Construction 73 (2017) 102-119

selecting and exploring the tools and also reviewing literature. There-
fore, this phase consisted of two steps: preliminary selection of AEC
tools and determination of tool requisites for PIDO and MDO. For the
preliminary selection, we sought and initially selected five tools based
on two criteria: initial features and academic availability. There were
three types of tools: two of them belonged to BIM: Autodesk® Revit®
and Bentley® AECOsim Building Designer™; two belonged to structural
analysis tools: Bentley® StaadPro® and Autodesk® Robot™, and the
last of them was a PM tool: Bentley® GenerativeComponents®. The
PIDO platform was ModelCenter® from Phoenix Integration®. Our se-
lection was based on the tool features that were grouped according
the type of tool. These features are shown in Table 2. Fortunately,
these tools were readily available them by means of academic agree-
ments. Once the tools were selected, we could fully explore them. Addi-
tionally, the determination of tool requisites for PIDO and MDO
permitted the evaluation of the pre-selected tools according to these
requisites. The results of this phase are explained further in the results
section.

2.2. Phase two

The second phase was not determined until the MDO requisites —
component interoperability, automation of tool tasks, and model pa-
rameterization - were identified at the end of the first phase. The second
phase was designed to individually test each of the five AEC tools in
order to discover their capabilities based on these three requisites and
to test the initial hypothesis of this research. We developed testing of
component interoperability, automation and parameterization for the
five preselected tools. After the testing, we finally were able to select
the best tools, those that met all the requisites.

2.3. Phase three

The purpose of this phase was not to develop MDO yet, but to show
that the tools finally selected worked together in a design simulation
routine within PIDO. For this purpose, a process model was created
within PIDO in order to observe and validate that the process started;
the tools performed their corresponding analysis; data were transferred
from one tool to another; tools interpreted the data transferred and
used them correctly; and finally, the expected outputs were produced
by the simulation. This process involved working with three tools in
one environment: one design tool, one structural tool and a PIDO tool.
The process was applied to a concrete frame involving architectural di-
mensions of the frame, structural analysis and cost disciplines. Then a

Table 2
Features for initial selection according to tool type.

Type of tool Features considered for initial selection

BIM tools (Revit® and AECOsim * contain architectural, structural, mechanical
Building Designer™) and electrical disciplines

* can create IFC files

* have APIs

* have embedded analyses such as clash

detection

* have links with structural analysis tools

* converts own models to IFC and CAD formats

* has an API

* can integrate with AECOsim Building Designer
™

PM tool
(GenerativeComponents®)

Structural tools (Robot®, * have direct links with their corresponding BIM

StaadPro®) tools (Revit®-Robot™; AECOsim Building
Designer™-StaadPro®)
* have APIs
PIDO platform (ModelCenter®) * has a variety of optimization algorithms for
MDO

*is supported by a technical team
* has different wrapping methods available
* has an API

change on the frame's dimensions was applied in order to observe the
coordination of these disciplines within the process model.

3. Results and discussion

MDO is important in the AEC industry. However, the lack of explicit
technical requisites has made it difficult to implement through PIDO by
integrating modeling and analysis tools. This challenge motivated us to
complete the three-phase methodology and obtain results on MDO req-
uisites and tool evaluation. This section will present these results in five
parts. First, there is a description of the tools' required capabilities to
achieve MDO: component interoperability, tool automation, and
model parameterization. Second, there is a summary of the behavior,
the strengths and weaknesses of AEC tools studied according to the
MDO requisites in the methodology's second phase. Third, a design pro-
cess model within a PIDO platform to simulate the multidisciplinary in-
teractions among the architectural, structural and costing disciplines is
shown. Fourth, the challenges to meet the requisites of MDO are clari-
fied. And finally, we propose some strategies to successfully prepare a
workable environment for MDO.

3.1. Results of phase one: description of the tools required capabilities for
MDO

Working with PIDO requires its integration with different tools
through a means of communication that is not clear in the MDO litera-
ture. In fact, tool exploration was often necessary to discover the other
requisites to perform MDO; and we also needed to examine more liter-
ature from computing science. For the literature review, we studied ar-
ticles on interoperability; we also searched for tool integration and
modes of interaction with the tools in their official forums, and searched
for wrapping methods in the documentation of PIDO. From these
searches, we could finally summarize fragmented information regard-
ing interoperability and tool integration. In addition, in order to explore
the AEC tools, we searched for manipulation methods of their elements
in 3D models and learned how to perform specific analyses, how to
work with associative relationships among elements of a model, and fi-
nally, how to control the tools without human intervention. As a result
of this step, we defined three technical requisites for the tools: compo-
nent interoperability, tasks and analyses automation, and model param-
eterization: capabilities that the tools must meet. This section discusses
these capabilities in detail.

3.1.1. Component interoperability

After reviewing the interoperability literature, as the first result, we
found that the term “integration” has a technical synonym: “component
interoperability”. This concept is one of the key elements for MDO and is
essential for integrating software components with PIDO platforms. It
could be understood as the ability of two or more entities to communi-
cate and cooperate with each other without considering the imple-
mented language, execution environment, and model abstraction
differences [46]. For us in the AEC context, it is the integration of sepa-
rately developed software components so that they can interact. PIDO
platforms work within a component interoperability framework to inte-
grate computational tools such as modeling and analysis tools. Compo-
nent interoperability is developed through the applications' interfaces:
Application Programming Interface (API) and/or BP but they must be
controlled externally: from within third-party applications and/or Win-
dows® Command Line Interface (CLI), respectively. These two types of
interfaces are discussed in this section.

3.1.1.1. Component Interoperability through APL The tools are developed
by different people and have different API types. Each API type depends
on the middleware technology used. Middleware is based on various
standards that allow component interoperability. These standards
have given rise to open APIs. This subsection is divided into five

H. Diaz et al. / Automation in Construction 73 (2017) 102-119

paragraphs that explain the concept of middleware, its purpose and el-
ements, types of middleware and architecture technologies, and its
interfaces.

Middleware is a key element that makes component interoperability
possible through an API[10,45]. Middleware has been defined in at least
three ways. According to Madiajagan and Vijayakumar [46], it is a uni-
versal communication bus and the “glue” of any information system. It
also refers to a software set that allows communication and information
exchange between client and server components, as well as organizing
such exchange [46]. Additionally, it is a software layer that is located be-
tween the operating system and the application. It provides reusable
well known solutions to frequently occurring problems such as hetero-
geneity, interoperability, security, and dependence.

The main purpose of middleware is to overcome the heterogeneity
of distributed infrastructure by a well-defined and structured program-
ming model [45,47] (Fig. 2). This structured programming model de-
fines five elements [46,47]:

O An Interface Description Language (IDL) that is used for specifying
data types and interfaces of networked software resources

O A high-level addressing scheme based on the underlying network
addressing scheme for locating resources.

O An interaction paradigm and semantics for achieving coordination

O A transport/session protocol for achieving communication among
components

O Anaming/discovery protocol, naming/description convention, regis-
try structure, and matching relation for publishing and discovering
the resources available in the given network.

Issarny et al. [47] mentioned five types of middleware: transactional,
tuplespace-based, remote procedure calls, object-oriented and service-
oriented. According to these authors, object-oriented and service-orient-
ed middleware apply to component interoperability. These types of
middleware have evolved from remote procedure calls (RPC) to the Ob-
ject-Oriented Programming (OOP). They permit the user to reference re-
mote objects and call operations in them [48]. We focused on these two
types of middleware. They rely on standards that are the foundation of in-
teroperability. According to these standards, there are several types of ar-
chitecture technologies that define Object-Oriented Middleware [49]:

B COM™, DCOM™, COM™+: The Component Object Model (COM™)
[50] from Microsoft® is strongly relied on the Microsoft®'s operat-
ing systems. COM™ components are declared using a Microsoft®
IDL (MIDL®) that supports the description of COM™ components
classes and interfaces. Unlike CORBA®, the interfaces only define
methods. Properties are declared using get and set methods. These
methods define special attached attributes. MIDL utilizes its own
type of system based on C system. Components are usually imple-
mented by C++ classes or by another language that supports
COM™,

Parametric
modeling tools

CAD .Energy
simulators
Structural
Analysis

S Middleware <

107

B CORBA®: Common Object Request Broker Architecture (CORBA®)
[51] provides objects' infrastructure that can interoperate among
different software and hardware products. A CORBA® object is de-
clared by writing an IDL file. This file contains the object's interface
definition. This interface takes the definitions of an object's opera-
tions and attributes. The IDL file is compiled by an IDL compiler
that generates client stubs and server skeletons for a given language.
IDL has its own system which is broadly based on C++-. The model
communication of CORBA® is based on object invocation. These ob-
jects can be local or remote.

B EJB™: The Enterprise JavaBeans™ (EJB™) [52] is a server-side com-
ponent architecture. The purpose of EJB™ is to simplify the creation
of distributed component applications in Java. These applications
can be coded without writing a complex distributed component
framework. EJB™ supports portability and reusability of applications
across any middleware services. The EJB™ implementation consists
of Java classes that are deployed in a container on an application
server. Clients use an enterprise bean's home and remote interface
to invoke its methods. The home interface defines methods to create
or to look up component instances. The remote interface provides
access to a given instance.

An interface is a collection of possible functions to specify a software
unit's services through its operations [46] and is a key element for
middleware technology. Depending on this technology, the interfaces
are developed with a specific IDL such as OMG® IDL for CORBA®,
Microsoft® IDL for COM™, Java™ interface for Remote Method Invoca-
tion (RMI), and Web Services Description Language (WSDL) for web
services, and all interfaces have distinct degrees of openness: closed
and opened. Closed APIs are limited only to certain functionality. This
functionality depends upon the developer. In some cases, they do not
allow external control of their application. In contrast, the development
of open APIs is based on open standards that permit access to greater
application functionality which can be externally controlled. Comput-
er-aided process engineering (CAPE)-OPEN is a key example of an
open interface and standard technology for interoperability and engi-
neering process integration with software components. CAPE is an ab-
stract specification that can be subsequently implemented in COM™,
CORBA®, and NET™ to bridge tools. It allows one to achieve interoper-
ability and to wrap tools with third party software. This is a standardiza-
tion effort to achieve actual connections (plug & play) among software
components of processes simulation and environments [53].

3.1.1.2. Component Interoperability through Batch Processing. Batch Pro-
cessing (BP) is another type of interface to achieve component interop-
erability. It is still active in many applications and is the execution of a
tool without human intervention for repetitive and large amounts of in-
formation. BP is developed through scripts. The next two paragraphs ex-
plain the BP concept and its functionality.

Process Integration and
Design Optimization
(PIDO)

Data model

Modeling and Analysis
Components

> bidirectional links

Fig. 2. Middleware overcomes heterogeneity among tools (Adapted from [45,47]).

108 H. Diaz et al. / Automation in Construction 73 (2017) 102-119

BP or Batch Mode (BM) means executing an application with mini-
mal or no Graphic User Interface (GUI). Hence, when running, it does
not request data entry or directions from the user. BP is used to auto-
matically develop repetitive tasks and to process large amounts of infor-
mation in order to avoid human errors and save time. Repetitive tasks
are usually tedious, time consuming, and performed on several steps.
Conversely, large amounts of information become unmanageable if per-
formed manually.

The functionality of BP depends on the tool. In some tools, it is used
to print and update file versions; but in others, it executes scripts of
commands and macros. Scripts are generally text files that contain in-
structions and can be run from within other applications. These instruc-
tions can be predefined lists of commands or complex macros.
Sometimes, scripts are text files that contain recorded user actions
that create the geometric model and can be modified and then run via
BP to perform an analysis or implement a change in a model. They
also can be run from within other applications to perform component
interoperability.

3.1.2. Tool Automation

In many computing tools, the user needs to click icons and enter data
manually to perform tasks using the GUI. In an MDO context, in contrast,
there is no human intervention when developing a repetitive workflow
to create and analyze design scenarios. Hence, we found that tool auto-
mation was another requisite for working in a MDO framework. For
some authors, component interoperability and automation were part
of the concept “integration”. This research, however, considered them
as independent concepts because a tool can be automated but, at
times, this automation cannot be controlled externally. Automation
can be achieved using a workflow executed automatically; in which
the tools must be automated separately by distinct methods: a com-
mand line, text files and/or macros. These methods are tightly related
to the tools' interfaces and this section explains them in the following
three paragraphs.

Tools that have a command line interface at times can execute chains
of commands simultaneously. It permits the performance of specific ac-
tions on certain components in a model or triggers a general analysis
such as: 4D, clash detection, structural and so on by pressing only one
key. It avoids use of the GUI and allows commands to be manipulated
using BP or an APL

Some tools do not have a command line interface but they possess
text files that record all or most of the user actions. These files can be
modified in a text editor and then run via BP as arguments after the ex-
ecution path of the application. This method permits making modifica-
tions on a 3D model and performing analyses.

Additionally, there are tools with a macro editor. The macro editor
permits the application to perform analysis and execute repetitive ac-
tions automatically. The macro editor allows writing and/or recording
a sequence of actions performed by the user with the GUL. This sequence
can be adapted programmatically to meet specific functions. At times a
macro can run, and arguments can be passed to the macro through the
command line interface.

3.1.3. Model Parameterization

After experimenting with tools and reviewing the literature, we
found that parameterization is another key requisite to develop MDO,
and it can be achieved through Parametric Modeling. Parametric Model-
ing implies change [15]. It enables the designers to create complex
forms and designs with precise control by establishing hierarchical as-
sociations among discrete parts [15] and to create and explore design
options from a “parametric model”. In MDO, the design options must
be made coherent by means of the relationships and connections
among all of their parts because no human intervention is present to ad-
just the relationships of a model when the optimization routine is exe-
cuted. For coherence in design options, tools must have four Parametric
Modeling capabilities: parameters' creation and modification, inclusion

of complex logic and rules in parameters, creation of associations
among components by their parameters, and creation of custom para-
metric components. These capabilities are explained in this section.

Tools should allow the creation of both general and specific param-
eters that represent a model's information. General parameters belong
to the whole model and can represent a general behavior. In contrast,
specific parameters belong to a particular model's components and
can affect both the overall model as well as other component parame-
ters. These two types of parameters can store geometrical or non-geo-
metrical information. Geometrical information refers to dimensions of
components and their parts. Non-geometrical information refers to
characteristics such as strength, cost, specifications, and insulation rate.

Parameters should permit the user to store not only a single value
but also complex logic to determine a series of values depending upon
input values of other parameters. This logic is referred to programmatic
decision rules. These rules help determine a parameter's value and auto-
matically coordinate model changes.

The creation of parametric associations among elements is crucial to
maintain model coherence. Coherence refers to the logical, well-orga-
nized and harmonic associations among a model's components. It is
necessary when an optimization algorithm modifies the value of some
parameters that directly affect the geometry or other properties of par-
ticular components and when they are associated with others. For ex-
ample, if a wall is connected to a slab, when the wall's length changes,
the slab's span must change as well.

Finally, the creation of custom parametric content is required be-
cause there can be many components and building parts not included
in the parametric families of the tools. Moreover, the existing compo-
nents might not contain all of the parameters and behavior required
by the designers.

3.2. Results of phase two: behavior of the five AEC tools in achieving MDO

Upon concluding phase two, we discovered that the five tools tested
behaved differently and had strengths and weaknesses in terms of the
three requisites established for MDO: component interoperability, tool
automation, and parameterization. Some AEC tools did not possess full
capabilities to work within PIDO. This section explains the behavior,
strengths and weaknesses of these tools.

3.2.1. Behavior of the AEC tools tested against MDO requisites using PIDO

Of the five tools studied - AECOsim Building Designer™, Revit®,
GenerativeComponents®, StaadPro®, and Robot™ - we selected only
two tools for working with ModelCenter®: GenerativeComponents®
and Robot™, This selection was based on the different behavior and dis-
tinct strengths (Section 3.2.2) of these tools in terms of component in-
teroperability, tool automation and parameterization. Some had a
broader scope than others because they had more capabilities in each
of the three categories. Others had limited or no capabilities in some
of the categories such as tool automation and parameterization, respec-
tively. These differences are explained in each following testing.

3.2.1.1. Component Interoperability testing. There were four tests applied
to the tools in order to know whether they could be integrated into the
MC. These tests included searching for the type of non-graphical inter-
face and programming language, verifying the external control of the
tool, evaluation of the degree of openness of the tool interfaces and
seeking the most efficient wrapping method for each tool. Table 3 states
the purpose of these tests.

The tools had different interfaces and programming languages,
degrees of interface openness and integration methods with PIDO.
Each tool had an API, however, these APIs were based on different
programming languages: Visual Basic for Applications® (VBA®),
Visual Basic® (VB®) and C#®. Only AECOsim Building Designer™
and GenerativeComponents® consisted of a supported BP interface.
Revit® included a Journal mode similar to BP but it was not

H. Diaz et al. / Automation in Construction 73 (2017) 102-119 109

Table 3
Purpose of the type of tests for Component Interoperability.

Type of testing for Component Purpose of the testing
Interoperability

Search and exploration of
non-graphical interfaces

Interface openness degree

Control of the tools from
outside

To explore the non-graphical interfaces, their
documentation

To know the scope of the tool interfaces

To control tools from within third-party
applications by means of the use of scripts, macros
or Batch Processing

To seek the best method for coupling each tool to
PIDO

Wrapping method for PIDO

supported by Autodesk®. These interfaces differed in their degree of
openness, meaning that the greater the openness, the greater the ex-
ternal control of the tool. For example, it was possible to control
AECOsim Building Designer™, StaadPro® and Robot™ from within
Microsoft® Excel ® (Excel®) because they had open APIs that en-
abled communication with third party applications. However, it
was not possible to fully control externally either Revit® or AECOsim
Building Designer™ through BP because these interfaces were al-
most closed and did not allow access to much of their functionality.
Finally, the tools enabled wrapping to PIDO by different methods.
AECOsim Building Designer™, StaadPro® and Robot™ were
wrapped by a script written in Excel® or in the ModelCenter®'s com-
ponent script. However, GenerativeComponents® was wrapped by
BP because its API was closed (Table 6).

3.2.1.2. Automation testing. To automate actions and commands, six au-
tomation tests were identified by exploring the tools or by studying
tools' documentation. The tools were evaluated with respect to these
tests: the existence of command line interface, the possibility of running
silently, the execution of tasks with only one action, the existence of text
scripts, the existence of macro editors and the possibility of passing ar-
guments from the command line to a macro. The purpose of these tests
is shown in Table 4.

The tools studied were automated by different methods, some of
which were more complex than others, and were built by assorted capa-
bilities such as command line interface (CLI), chains of commands,
script text files, macro editors and the quality of passing arguments
via CLI to macros. Only AECOsim Building Designer™ and StaadPro®
had a CLI. AECOsim Building Designer™'s CLI was internal and explicit
while StaadPro®'s CLI was externally used through Windows® CLIL
From the five tools, AECOsim Building Designer™ allowed writing
chains of commands, which aided in the concatenation of commands
to automatically perform several actions on components simultaneous-
ly. For example, moving a component and changing its properties

Table 4
Purpose of the type of tests for Automation.

Type of testing for Automation Purpose of the testing

Existence of Command Line
Interface
Possibility of running silently

To run preset commands without using icons

To run a tool with its GUI closed and avoid
pop-up windows which ask for user data
input

To perform actions using chains of
commands whose inputs are given
simultaneously and avoid pop-up windows
To automatically run script text files which
can contain a series of commands

To automate commands and actions by
means of writing or recording a macro that
executes them

To pass input data as arguments to macros
and use them within the macros' code

Execution of tasks with only one
action

Existence of text scripts
Existence of macro editors
Possibility of passing arguments

from the command line to
macros

simultaneously could be performed by joining commands. Another ca-
pability was the use of the script text files, which stored a series of com-
mands and actions and were run via BP. They appeared in different
forms according to the tool. For instance, in AECOsim Building Design-
er™, they were batch files; in Revit®, they were journal files; and in
GenerativeComponents®, they were transaction scripts. Sometimes,
they stored and translated a complete user session via the GUI of a
tool into written actions that recreated the whole session. Most of tested
tools had a macro editor, which was the most standardized method to
automate a tool. Macros were used to design and execute custom ac-
tions that did not exist in a tool via preset commands. These macros
were written in VBA® or C#® programming languages. Finally, values
were able to be passed to macros as arguments when macros ran from
CLIL These values served as input parameters, conditioned the outputs
of a macro's process, and were only present in AECOsim Building
Designer™ (Table 6).

3.2.1.3. Parameterization testing. Parameterization is essential so that
both PIDO accesses to a model's parameters to manipulate it and design
options are coherent when generated automatically. These parameters
can be input or output variables that show a result. Parameterization
consisted of five tests that were mainly applied to BIM and PM tools.
These tests were the creation of general parameters, the creation of spe-
cific parameters, the possibility of embedding complex rules within pa-
rameters, the possibility of parametrically associating components and
the creation of customized parametric components. The purpose of
these tests is shown in Table 5.

The five tools had distinct capabilities of parameterization. As for the
creation of general parameters, GenerativeComponents® was the most
powerful tool for creating them because it enabled the creation of global
variables. Structural analysis tools allowed the creation of these param-
eters programmatically. BIM tools did not work with general parame-
ters. Generally, all of the tools made possible the creation of
component-specific parameters. These parameters determined the
properties and behavior of specific project's components. In addition,
GenerativeComponents® supported embedding a complex logic in pa-
rameters to determine their value. These parameters were calculated
according to their rules and made a dynamic model for changes. Struc-
tural analysis tools allowed embedding complex rules and logic through
programming as well. In BIM tools, embedded rules were possible in the
creation of component families. Parametric associations among compo-
nents were enabled in GenerativeComponents®, StaadPro® and Robot
™, These associations helped to maintain coherence when changes
were applied to models. Finally, in GenerativeComponents®, it was pos-
sible to create bespoke parametric content either graphically or pro-
grammatically. BIM tools permitted the creation of certain types of
families of accessories but not system families such as walls, beams,

Table 5
Purpose of the type of tests for Parameterization.

Type of testing for
parametrization

Purpose of the testing

Creation of general parameters To create general parameters that belong to the
whole model

To add new parameters to components in order
to manipulate them in a 3D model

To incorporate complex mathematical
expressions into the parameters of components
in a 3D model

To parametrically link components to maintain
coherence in a 3D model when implementing
changes to it

To create new customized parametric
components that are not included in
commercial tools

Creation of specific parameters

Possibility of embedding
complex rules within
parameters

Possibility of parametrically
associating components

Creation of customized
parametric components

110

Table 6

Behavior of AEC tools tested against the technical requisites of MDO through PIDO * Through Excel® and VBA® programming.

Parameterization

Model

Tool Automation

Component Interoperability

Tool

Custom

Complex rules Parametric

Specific

Command Silent Chainsof Script Macro Arguments

Wrapping

Interface

Type of interfaces
and programming

language

associations among parametric

component embedded in
parameters

general

editor passed by CLI

line interface mode commands text

method for
PIDO

openness

families

components

No

parameters

parameters

No

to Macros

Yes

files
Yes

(CLD)
Yes

Partial

Partial

Partial

Yes

Yes

No

Open Component

API (VBA®) Batch

Processing

AECOsim Building

Script, Excel
plug-in

Semi-open Plug-in

Closed

Designer™

Partial

No

No Partial Partial Partial

Yes

Yes

No

No

No

API (VB®, C#)
Journal mode

Revit®

Semi-open (tested by

other authors)
QuickWrap™

Yes

Yes

Yes

No No Yes Yes

Yes

No

No

No

Closed
Open

GenerativeComponents® API Batch

Processing
API Batch

H. Diaz et al. / Automation in Construction 73 (2017) 102-119

Not

*Yes

“Yes

No *Yes “Yes

Yes

No

No

No

Yes

Component

Open

StaadPro®

applicable

Script, Excel
plug-in

Open

Processing

Not

*Yes

“Yes “Yes

*Yes

Yes No

No

No

Yes

Component

Open

API

Robot™

applicable

Script, Excel
plug-in

columns, slabs, doors, windows, Mechanical-Electrical-Plumbing com-
ponents and others (Table 6).

3.2.2. Strengths and weaknesses of the AEC tools tested according to MDO
requisites

Since AEC tools tested did not fully meet the requisites to work within
a PIDO platform and therefore to develop MDO, GenerativeComponents®
and Robot™ were selected because they met most of these requisites.
This research identified some strengths and weaknesses concerning the
five tools studied so that future researchers may consider them. This sub-
section discusses these advantages and disadvantages divided into Com-
ponent Interoperability, tool Automation and Parameterization
categories.

Most of the tools worked well when coupled to ModelCenter® and
when their models' variables were accessed from within the
ModelCenter®'s GUI through either API or BP. Those tools that had an
open interface, allowed full control from within PIDO. Nevertheless, a
common weakness was the lack of official documentation about driving
the tools from outside. Although BIM tools had two interfaces, only their
APIs worked appropriately because BP was deficient in one of the tools
and unsupported in the other tool (Table 7).

Automation was performed in different ways depending on the tools'
characteristics. AECOsim Building Designer™, for example, had many re-
sources for automation: CLI, macros, arguments passed to macros via CLI
and complex sequences of commands. GenerativeComponents® includ-
ed a transaction text file that contained all of the actions to recreate the
geometry and the model's parameters. However, for Revit®, StaadPro®
and AECOsim Building Designer™, automation was not possible because
both tools entered their interactive mode and requested user entries
through pop-up windows. This impeded a continuous workflow and
demanded user interaction with the process. Overall, this failure was be-
cause these tools were not able to run silently. In other cases, it was not
possible to automate all of the commands necessary to perform tasks
and analyses. (Table 8).

With regards to parameterization, the tools had very different capa-
bilities. PM and structural tools were able to fully parameterize models
by creating general and specific parameters, embedding complex rules
in them and associating the parameters' values. However, BIM tools pre-
sented some disadvantages because their parametric functionality var-
ied from one tool to another. For example, some components in
certain BIM tools behaved differently than those similar components
in another BIM tool because they had dissimilar embedded parametric
rules. Additionally, some embedded preset rules made the relations
among some components incompatible. In AECOsim Building Designer
™ there were no associative rules among certain components and
therefore they remained unlinked. In these components, it was not pos-
sible to create general project parameters such as general dimensions,
total cost, and it only was possible to obtain 2D parametric drawings. Fi-
nally, Revit® and AECOsim Building Designer™ did not enable the cre-
ation of system families of components (Table 9).

3.3. Results of phase three: the case study of tool integration and the simu-
lation process model within PIDO

The simulation of the process model within PIDO with tools that met
the requirements in the case study gave significant results. This section
presents the criteria for the final selection of tested tools. Later, the inte-
gration of the two selected tools with PIDO and a diagram of the design
process simulation are presented. Finally, the results of the execution of
this simulation process are shown.

Only four of the five tools studied could be integrated
to ModelCenter® through their interfaces. AECOsim Building De-
signer™, StaadPro® and Robot™ were integrated via their API.
GenerativeComponents® was integrated through BP. Revit® could
not be integrated to ModelCenter® because it was not possible to
externally control the tool via any interface. However, although

H. Diaz et al. / Automation in Construction 73 (2017) 102-119 111

Table 7
Tool capabilities in Component Interoperability.

Component Interoperability capabilities

Tested tools Strengths

Weaknesses

BIM tools AECOsim Building *Open API facilitated external control *There was little documentation on external control
Designer™ *Batch Processing ran each command internally *Batch Processing only worked internally but not from Windows
*Variables or parameters were accessed from the API CLI
*GUI had to be open all the time
Revit® *Text script files (Journal files) ran externally from Windows CLI *Journal files did not enable running all of the functions or provide
*Semi-open API allowed controlling certain Revit's actions access to the parameters
externally *Batch Processing was officially unsupported
*Allowed accessing the DataBase from API *API did not allow running all of the functions and actions
*There was little official documentation on external control
*Access to the database was needed to manipulate a model
PM Tools GenerativeComponents® *Batch Processing was implemented externally *There was very little and poor documentation on its API
*Text files allowed accessing to any parameter * There was no official documentation on external control of
*Windows Communication Foundation® (WCF®) interface interfaces
allowed external control *Batch Processing was time-consuming when opening and closing
GUI
*If controlled with WCF®, GUI had be open all the time
Structural StaadPro® *Open API facilitated external control *The GUI had to be open while the tool was controlled from outside
Tools *Command line interface controlled the tool externally *There was an API documentation but it was incomplete
Robot™ *Open API facilitated external control Great complexity of the classes and the excessive amount of code

*GUI was closed when Robot was controlled from outside
*Sufficient documentation on its APl was available

four tools were successfully integrated with ModelCenter®, other
problems related to automation and parameterization arose. These
problems impeded the use of StaadPro® and AECOsim Building De-
signer™ with ModelCenter®. In StaadPro®, for example, an inevita-
ble pop-up window appeared. This window asked for user data
input to obtain the structural analysis results and interrupted the
process automation. AECOsim Building Designer™ was not able to
generate parametric association rules for model components; so
when making a change to the model, the components disassociated
each other (i.e. a slab became disassociated from its supporting
walls) and the model lost coherence (Table 10).

Finally, GenerativeComponents® and Robot™ were the two
tools selected to create a process model in ModelCenter®, which illus-
trated that the tools can be integrated to work together within PIDO
(Fig. 3).

Table 8
Tool capabilities in Automation.

To work with this diagram, individual work with tools was devel-
oped according to their type and a process model was created within
ModelCenter®, which included the two tools.

The following tasks were performed with GenerativeComponents®
(PM tool):

B Parametric components were created

W Cost design and structural analysis intelligence were embedded
within components, respectively

B A model of a structural frame consisting of a beam and two columns
was created

B Parametric associations for the beam and the columns were
established

B A general parameter called “Total Direct Cost” for the model was
created

Automation capabilities

Tested tools Strengths

Weaknesses

BIM tools AECOsim Building

Designer™

*Enabled to automate many commands and
macros via CLI

*Command sequences could be generated to
manage compound commands

*Macros could be created to automate tasks for
previously inexistent commands

*Arguments could be passed from a command line

to a macro
Revit®
a database
*Some actions could be performed by running
journal files
*Used a text file that contained transactions
manipulated for automation
*Only certain tasks could be automated by
managing compound commands and macros

PM tools GenerativeComponents®

Structural StaadPro®

tools automate actions

*Commands ran from Windows® CLI

*It contained commands and functions to
automate actions

*Commands ran from Windows® CLI

*It ran silently and did not request the user
interface

Robot™

*Manipulation of elements was performed through

*SP possessed its own commands and functions to

*Limited CLI only activated the command but did not execute the subsequent
actions and requested user interaction

*Pop-up menus impeded the automation of some important actions such as: “save
as” and “export”

*The tool was not able to run silently

*Journal files did not automate all of the actions performed or manipulate the
parameters' value

*The tool did not have a CLI

*The tool was not able to run silently

*The tool did not contain a CLI

*Text files did not automate all of the actions

*When running automatically, pop-up windows appeared, stopped the automatic
process and the application returned to the interactive mode
*The tool was not able to run silently

112 H. Diaz et al. / Automation in Construction 73 (2017) 102-119

Table 9
Tool capabilities in Parameterization.

Parameterization capabilities

Tested tools Strengths

Weaknesses

BIM Tools AECOsim Building

Designer™

arguments through the CLI
Revit®

PM Tools GenerativeComponents® *Had great flexibility for Parametric Modeling

*Had a symbolic diagram that showed parametric relations among

components
*Enabled complex intelligence rules

*Allowed geometric and non-geometric parameters

*Allowed enumerations as parameters' values

*Allowed highly complex parametric geometry
*Enabled the creation of custom BIM elements both graphically and

programmatically

Structural ~ StaadPro®
Tools

Robot™

*Coordinates model changed and updated views without redrawing
*Allowed adding parameters to elements in a model

*Contained parametric embedded rules in elements

*Some parameters were able to be created programmatically and passed as

*Coordinated model changes and updated views without redrawing
*Allowed adding parameters to elements in a model
*Contained a lot of parametrically embedded rules in elements

*Lacked flexibility to create general project parameters
*Lacked capabilities to create system families

*Allowed only the creation of parameters in 2D
*Contained few embedded parametric rules in its
components

*Some parametric rules impeded the combination of
certain elements

*Lacked capabilities to create system families

*Lacked flexibility to create general project parameters
*Did not contain preset building elements

*The symbolic diagram became extremely complex
sometimes

*There was little official documentation to program the
creation of components

*Programming added visual representation to elements
was complex

*Solving elements unions and intersections with
customized BIM elements were complex
*Multidisciplinary analyses of models were complex to
program

*It was possible to programmatically create parameters
*It was possible to access the parameters via its API
*It was possible to programmatically create parameters

*It was possible to access the parameters via its API

W A script text file that contained all the commands and model infor-
mation was created

The following tasks were performed with Robot™ (structural analy-
sis tool)

B A VBA® macro was created. This macro contained all the frame
model information and the commands for the structural analysis ex-
ecution

B Input and output data were linked to the macro through its corre-
sponding spreadsheet

The following tasks were performed within ModelCenter® (PIDO
platform):

W A wrapper to integrate
ModelCenter® was created
B A wrapper to integrate Robot™ with ModelCenter® was performed

GenerativeComponents® with

The wrapper of GenerativeComponents® made it possible to write
or record a script text file which contained all the transactions to create
and modify the components of a 3D model. This file was externally run
from DOS® command line interface as an argument after the

Table 10
Main reasons for tool rejection after phase two in the research methodology.

Tool studied Wrapped to Reason for rejection
ModelCenter?

Revit® No Impossibility of creating system
components
Impossibility of controlling the tool
externally
Impossibility of parameterizing 3D
models

AECOsim Building Yes Impossibility of parameterizing 3D

Designer™ models

GenerativeComponents® Yes None

StaadPro® Yes Automation problem prevented
results of structural analysis

Robot™ Yes None

application execution. When the file was executed, the application's
GUI was opened, all the actions and the 3D geometry were recreated,
and the application was closed. This BP could be integrated to
ModelCenter® through an instance of the QuickWrap™ component.
Within QuickWrap™, input and output files were generated, which in-
cluded input and output variables. These variables were manipulated
from within ModelCenter® (Fig. 4).

Robot™ allows integration by an open API which enables access to
many actions and functionality. One important advantage of the Robot
™'s API is that the application can run silently without keeping its GUI
open. Therefore, a VBA® macro was written within Excel® to control
the tool externally. This macro contained all the commands to create
the frame's structural model that included the geometry, loads and sup-
ports, needed to develop the structural analysis and to obtain results
(bending moments, shear force, and reactions) as outputs. Later, this
macro was integrated to ModelCenter® through an instance of the
existing Excel® plug-in, in which the macro code was integrated and fi-
nally input variables and output variables were created and related to
the spreadsheet in the same file (Fig. 5).

After tool integration was performed within ModelCenter®, an auto-
matic process model for design simulation was created (Figs. 6 and 7).
This process simulated the multidisciplinary interactions among the ar-
chitectural, structural and costing disciplines. Within ModelCenter®,
choosing the model process allowed tools to be executed sequentially,
linking them to each other via their input and output variables. In Fig.
7, the process begins with an architectural model consisting of a
frame, the direct cost and the structural design rules embedded in the
frame's components within GenerativeComponents®. This initial
model feeds both the structural model within Robot™ and a final archi-
tectural model within GenerativeComponents® with geometric and
structural data (dimensions and structural load). Finally, the structural

Parametric

Structural
Modeling tool

Analysis tool

PIDO Plaftform

(Architectural, Costing,

Structural Design) (Structural analysis)

Fig. 3. Tool integration in a PIDO platform to simulate a design process.

o Form—.

H. Diaz et al. / Automation in Construction 73 (2017) 102-119

113

B QuickWrap Nlegeww

General | B Ejecutar| 4=] InitialFileGC.gct

Archivo Ver Wrapper Ayuda

Archivo de Plantilla:

C:\Users\Hector\Desktop\UsoPIDOPaper1\InitialFileGC.gct.template

® [@'ﬂ Bl > Archivo para Generar: C:\Users\Hector\Desktop\UsoPIDOPaper1\InitialFileGC.gct
I — Encoding: UTF-8 -
-+ XTranslation] vista de Archivo | [77] vista de Tabla| ' Vista de Datos|
=+ YTranslation S
|+ ZTranslation P [vMI}[KJ Delimitadores | Automdtico v‘
|+ XTranslation_1 -
=% YTranslation_1 10 -
[+ ZTranslation_1 lltransaction graphChange 'Add codigoColumna0l, codigoColumnal2, codigoViga0l, FrameTotalDirect|
= XTranslation_2 124
=+ YTranslation_2
| - 13 feature User.Objects.point0l Bentley.GC.Features.Point
\=+= ZTranslation_2 14 (. e ¥ =
|+ XTranslation_3 !
il YTranslnﬂon:B 1s CoordinateSystem = baseCS ;
|- ZTranslation_3 16 XTranslation = ;
|--+= Load 17 YTranslation =
l-<Pulse para afadir un variable> 18 ZTranslation =8
19 }
20 feature User.Objects.point02 Bentley.GC.Features.Point
21 {
22 CoordinateSystem = baseCS ;
23 XTranslation =i ;
24 Y¥TIranslation = ;
25 2Translation LR
26 }
27 feature User.Objects.point03 Bentley.GC.Features.Point
Tipo: [double 28 {
Unidades: | < 11 i 9115
Fig. 4. Wrapper for GenerativeComponents® via Batch Processing.
] Excel Plug-In 1.4.8: Robot] Microsoft Visual Basic for Applications - MacroRobotxlsm - [Modulel (Code)] s L T
File Component Excel Help 4 Eile Edit View [Insert Format Debug Run JTools Add-Ins Window Help
= REvd s D@a®2 0> 0 ak¥SF »| 020l B
Excel File: C\Users\Hector\Desktop\UsoPIDOPepeProject - VBAProject %] [(Generan + RobotMacro2
ModelCenter Variables o= @ ! Dim sopor_data As IRobotNodeSupportData
= %] Robot - & vBAProject (MacroRobot.xism) 5'59\'- sopor_data = soporte.data
PR 5] {55 Microsoft Excel Objects Bloquea la d:.mlacuon UX y RY en el soporte
_wmyi Sheetl (Sheet1) sopor_data.SetFixed I_NSFD UX, 1
w2l ThisWorkbook sopor_data.SetFixed I_NSFD RY, 1
— ()-485 Modules ‘Define el support uplift UZ+ direccion
ez 2 &% Module1 sopor_data.SetOneDir I_NSFD_UZ, I_NSODFT_PLUS
s 72 'Define el angulo de rotacion de soporte alrededor del ¢
PRI sopor_data.Beta = 0
vavyl 'Guarda etiqueta en la estructura
PR robapp.Project.Structure.Labels.Store soporte
X 'Declara la variable que define un solo nodo
Dim Nodo As IRobotNode
- & p
’:\'z’: [Properties - Sheetl -’-‘J Dim Nedo2 As IRobotNode
Rl Sheet1 Worksheet d 'Obtiene el nodo 1 y 2 de la estructura
m Risacdcnl w Set Nodo = robapp.Project.Structure.Nodes.Get (1)
= Reacion? (ome) Sheetl ?er_‘Nodozl= robapp.Prijec:.csitruc:uxe.uodes.set(ﬂ
= MmaxPas DisplayPageBreaks False Asigna el soporte a los nodos
4 Mmaxeg DisplayRightToLeft False Nodo.SetLabel I_LT_ SUPPORT, "Soporl"
o Vi EnableAutoFilter False Nodo2.SetLabel I_LT_SUPPORT, "Soporl"
" EnableCalculation True
B <cickio acdveristle.> R Ly R —
g e g EnableOutlining False 'Crea la variable responsable para la etiqueta del sopo:
[Edit Variabl EnablePivotTable False Dim lab_serv As IRobotLabelServer
- EnableSelection 0 - iNoRestrictions Set lab_serv = robapp.Project.Structure.Labels
Type: | double v ‘Crea la etiqueta del tipo de seccion llamada VALUE
Units: Dim sec As IRobotLabel
ah Standardwidth 8.11 Set sec = lab_serv.Create(I_LT_BAR SECTION, "VALUE")
Description: Visible -1 - MSheetvisible 'Declara y crea el objeto que da acceso a parametros de
Lower Bound: Dim data As IRobotBarSectionData
Set data = sec.data
Upper Bound: . : 2
i 'Define el tipo de seccion y el tipo de forma de seccior
Enum Valugs: data.Type = I_BST_STANDARD
Enum Aliases: data.ShapeType = I_BSST_UNKNOWN
N Format 'Define las propiedades de la seccion
: data.SetValue I_BSDV_AX, 0.00103
enge _ =) < i

Fig. 5. Wrapper for Robot™ via its API (with a VBA® macro).

114 H. Diaz et al. / Automation in Construction 73 (2017) 102-119

Initial model

GenerativeComponents®

Structural design)

(Architectural, Costing,

Transferred data:

T

Frame’s length
Frame’s load

Transferred data:
Robot™

Frame’s length

(Structural analysis)

——

Transferred data:

Final model

Beam’s méaximum bending moment
Beam’s méximum shear force

(Architectural, Costing,

Structural design)

GenerativeComponents®

Beams's supportreactions

<—
Model updates on cost
and sfructural design

Fig. 6. Simulation process with selected tools to be executed within ModelCenter®.

model within Robot™ feeds the final architectural model with data from
the structural analysis such as maximum bending moment, maximum
shear force and beam support reactions (Table 11).

The process model worked appropriately after running in
ModelCenter®. To begin, the initial file of GenerativeComponents®
was opened, a change of the frame length was implemented, the file
was saved and the application closed. Immediately, the updated frame
length and the design load of the frame were transferred to Robot™ as
input variables. These variables were introduced to the VBA® macro
code from the corresponding cells in its spreadsheet. Within Robot™,
a silent process was run that updated the structural frame geometry
with its new length value, performed structural analysis and obtained

its results. The results (maximum bending moment, maximum shear
force, beam support reactions) were transferred from the macro code
to their corresponding output cells in a spreadsheet, from which were
extracted and transferred to a final GenerativeComponents® file.
Then, this file was opened; the change of the frame length was imple-
mented in this file as well, and the model was fed with the results of
the structural analysis. Finally, the cross sections of the frame elements
were internally designed in GenerativeComponents®. Therefore, every
frame element was quantified and costed and the total frame direct
cost was updated (Figs. 8 and 9).

The design exercise developed in this phase demonstrated that it is
possible to work from PIDO with tools if they have the three previous

@ Link Editor =
HE &8 & &
| Wire View | Table View | Query View|
Link:
SR Viode! 5 & Robot = ——
--'¢ GClnitialFile o X1 ge
+4 XTranslation o+ Y1 ? \
+4 YTranslation o+ 71 - .
+4 ZTranslation o X2 GC“"IIEIE!FI
+4 XTranslation_1 o+ Y2
+4 YTranslation_1 o+ 22 A
+a ZTranslation_1 o X3 =
+4 XTranslation_2 o Y3
+4 YTranslation_2 o+ Z3
+4 ZTranslation_2 o+ X4
+4 XTranslation_3 o Y4
+4 YTranslation_3 o 74
=4 ZTranslation_3 o+ Load - 4
+4 Load + Reactionl GCFII"I8|FI|E
+ & Robot ~ Reaction2 ~
% & GCFinalFile « i N @
Help

Fig. 7. Links among the tool variables to transfer data through the process model within ModelCenter®.

H. Diaz et al. / Automation in Construction 73 (2017) 102-119 115

Table 11
Summary of the inputs and output variables to be used in the simulation process among tools.
Tool What was modeled or Inputs
performed

Outputs Purpose of outputs

GenerativeComponents® (initial Architectural model

model) Design of structural elements
Total direct cost
Robot™ Structural model

Structural analysis

Architectural model
Design of structural elements
Total direct cost

GenerativeComponents® (final model)
moment

Dimension of components
Frame load

Maximum bending

Dimensions of components Update the structural model
Frame load

Maximum bending
moment

Maximum shear force
Reactions of the frame
beam

Total direct cost

Update the final architectural model

Update the total direct cost of the
model

Maximum shear force

Reactions of the frame

beam

capabilities. However, the purpose of this simulation design exercise
was not to develop MDO yet. Therefore, more design alternatives were
not obtained through an optimization process in this case.

3.4. Challenges found in tools working with PIDO

There were several challenges to working with PIDO when
experimenting with tools, and according to the literature, with respect
to computing programming. This section first explains some program-
matic challenges and considerations. Then, it summarizes the chal-
lenges found into three categories: technology, documentation and
programming for each previous requisite: component interoperability,
tool automation, and parameterization.

Some of the challenges related to programming were, of course,
mentioned in the literature. Kelleher and Pausch [54] stated that if the
user needed to customize software for personal use in order to explore
ideas, such challenges would arise. In this case, the designers would
need to explore non-conventional design ideas or work more efficiently.
To accomplish this, designers would require computational program-
ming in order to have better capabilities and freedom to explore [15,
55]. However, the change from working with a 3D model to work
with a programming environment would introduce cognitive
challenges. These cognitive challenges would be related to an under-
standing of the syntax of programming languages, the necessary expe-
rience, and the use of independent APIs to control the tool GUIs.

The challenges found in this research to prepare an environment for
MDO included three aspects: technology, documentation, and program-
ming. These were studied for each MDO requirement in each type of
tool. Technologically, component interoperability challenges implied
much experimentation and time spent studying the tool APIs and/or
BP to achieve integration to PIDO. Technological automation challenges
included trial and error methods to manipulate models' components

.

and run analyses without human intervention or dealing with pop-up
windows. To achieve parameterization, many hours of trial and
error were required to create parameters and associations among
them. Full parameterization was not achieved in BIM tools. In terms of
documentation, the largest challenge was to investigate and collect all
disperse information due to the lack of official documentation regarding
APIs, automation and parameterization methods for BIM and PM tools.
With regards to programming challenges, it was necessary to become
familiar with several programming languages and tool APIs. The ob-
ject-oriented programming included VB.NET®, VBA®, VBScript®, C#®
and Bentley® GCScript™ according to the tool architectures. In addition,
we needed to review the scope of the tool APIs, the methods, properties
and behavior of their objects and, in some cases, to correct the methods'
errors and bugs by programming (Tables 12, 13 and 14).

3.5. Successful strategies for working with PIDO platforms

After finishing the methodology, we detected some successful strat-
egies that can help the design optimization researchers to save time, by
taking into account some important considerations. These strategies
were grouped into three categories: component Interoperability, tool
automation, and parameterization. This section lists the main strategies
for every requisite category.

3.5.1. Component Interoperability strategies

The strategies for component interoperability would depend on the
interface utilized for tool integration. This interface would be the API or
the Batch Processing. They are explained further in this subsection.

3.5.1.1. For an APL The strategies for component interoperability
between a tool and a PIDO platform would depend upon the type of
API and the desired degree of sophistication for the wrapper. However,

Fig. 8. The frame's length and the cross sections of the structural elements were automatically fed with Robot™ data and updated in GenerativeComponents® within ModelCenter®.

116

H. Diaz et al. / Automation in Construction 73 (2017) 102-119

Edit Feature w p 1) EditFeature w3 1 X
[] Show settings properties [| Show settings properties
Feature Type / Feature Type /
=| GraphVariable :|Graph\lariable
| Update Method / |Update Method /
» ={EvaluateExpression 4 =+ EvaluateExpression
Property Expression Property Expression |
Value: object FrameTotalDirectCost (4687.561) Value: object FrameTotalDirectCost (47226.870)
~{LimitValueToRanqe: bool true LimitValueToRange: bool true
RangeMinimum: double 0.0 ~| RangeMinimum: double 0.0
| RangeMaximum: double 200000 'RangeMaximum: double 200000
RangeStepSize: double 0.0 RanqgeStepSize: double 0.0
| Success: bool true 5 true
Type: GraphVariable Type: GraphVariable
Jpdate method: EvaluateExpression Jpdate method: EvaluateExpression

Name of feature: TotalCost

Rename

Name of feature: TotalCost

Rename

Fig. 9. The total direct cost of the frame was automatically updated by the simulation process in GenerativeComponents® within ModelCenter®.

some general strategies would consist of inquiring and working with
the API characteristics and defining the wrapper type, by considering:

B The type of architecture and technology of the tool APL. It could be
object-oriented or service-oriented. Some types are COM™,
CORBA®, Enterprise JavaBeans™, and Windows Communication
Foundation® (WCF®)

B The possibility of controlling the tool externally through its APL This
could be achieved using Excel® or another tool

W The API's degree of openness

B Documentation of classes, methods and properties of the tool APIs'
objects and technical support

B Examples of object's and/or database manipulation from outside

B Type of method and functionality for the wrapper to be developed
within PIDO

Some tools have an API based on COM™ objects that allows the tool
to be controlled from within another application. This was the case for
AECOsim Building Designer™, StaadPro® and Robot™, which were
first communicated and controlled from within Excel®.

3.5.1.2. For Batch Processing. Integrating a tool with PIDO via BP was sim-
pler than integrating it via its API, because there was no programming
involved. PIDO platforms offered several methods to quickly integrate
a tool. These methods included creating input and output files.

Table 12
Main challenges found in BIM tools to work with PIDO.

Additionally, it was possible to define some types of variables such as:
string, integer, double, and enumeration. It permitted representing
any type of parameter in an optimization routine. However, it was im-
portant to inquire if the tool possessed the following:

B The existence of BP within the tool

B The BP capabilities and scope: printing, updating files, running com-
mands, running macros, and so on

W BP capability to run from Windows® CLI (some BP interfaces only
ran internally)

B The creation of command scripts and its syntax or the text file
structure

B Documentation examples of controlling the tool from the
Windows® CLI

As the first option, researchers should try this method before wrap-
ping tools via their API because BP is much simpler than working with
an APIL. This was the case of GenerativeComponents® that did allow
writing a text file. This file was able to be run via Batch Mode.

3.5.2. Tool Automation strategies

Tool Automation could be performed by several methods depending
on the tool's design and functionality. These methods were the com-
mand line interface, macros, text files and/or databases. This section

Challenges found in BIM tools

Technology Documentation

Programming

In Component
Interoperability

*Experimentation and time spent to
achieve external control via the API
*Experimentation and time spent when
working with Batch Processing that did
not work properly

*Manipulation of specific elements in a
model due to lack of preset commands

manuals)

In Automation

*Completing actions due to pop-up
menus that appeared when running the
tools automatically

In model
Parameterization work with parametric associations that
were not possible

parameterization

*Research and collection of disperse information due to lack of official
documentation on tool API (books, official forums, training and web

Too much experimentation time trying to Research and collection of disperse and limited information on

*Learning and experience of
several object-oriented languages
*Familiarity with each tool's API

*Research and collection of disperse information on commands, chains of ~*Familiarity and creativity with
commands, macros and capabilities of command line because automation command chains and the creation
for it methods were not explicit or clear

of macros

*Much experimentation when
passing arguments to macros via
the command line

*Familiarity with each tool's API
Familiarity with parameterization
programming (for certain
elements)

H. Diaz et al. / Automation in Construction 73 (2017) 102-119

Table 13
Main challenges found in PM tools to work with PIDO.

117

Challenges found in Parametric Modeling tools

Technology

Documentation Programming

In Component
Interoperability

*Experimentation and time spent with Batch Processing because
there were no command scripts or an externally controlled API
In Automation *Manipulation of virtual models' specific elements due to lack of a
command line interface and macros

In model
Parameterization

*Experimentation and time spent in the creation of custom
parametric BIM content that included intelligence, behavior and
specific parameters to carry out the optimization and analyses
both visually and programmatically

Batch Processing experience with
the tool's script file and GCScript™
syntax

*Familiarity with script text files
that recorded user actions and
recreated the models

*Familiarity with C#®, Script
languages and the tool's API
*Familiarity and training with the
tool's GUI to create parametric
content by visual programming

*Research and collection of disperse
information about interfaces and alternative
methods of external control

*Research on methods to run the tool
automatically

*Research of scarce API information to create
custom parametric content to allow building
systems and changes of materials

explains the first three strategic methods, since this work limited itself
to their study.

When the command line method was used, tools were automated by
executing them without a GUIL This execution was triggered by only
pressing the enter key. Some command lines allowed combining several
commands in one action, forming more complex commands. This helped
when the user needed to create custom actions. For example, selecting
and moving a specific wall in a model could be performed by combining
the selection and move commands of the application in just one action.

However, at times, the activation of a command only triggered an
initial action, and the user had to manually enter the rest of the data
and choose the next command's options. In other cases, there was no
command to perform a specific action in a tool. In this case, macros
could be created or recorded to automate these actions in a desired se-
quence. Occasionally, macros were able to run and arguments were
passed to them from the command line.

Text files were another method to automate a tool when there was
no command line or a macro editor. These files contained all of the pre-
viously created user actions to regenerate the model. They could be
modified in a text editor and then run via BP. This was the least flexible
method because the recorded text files only contained the actions creat-
ed by the user and, in some cases, other unrecorded actions could not be
incorporated.

3.5.3. Parameterization strategies

Parameterization capabilities were crucial but were the least com-
mon in the tools. Therefore, we had to carefully consider three strate-
gies: to select the appropriate PM tool, to become familiar with
parameterization methods, and to embed behavior and analyses within
the specific components of the tool. This subsection explains these gen-
eral strategies.

First, the authors selected a tool that contained parametric capabili-
ties by inquiring about the following:

B The existence and functionality of existing relationships among
building elements

B The creation of custom parameters both general and component-
specific

Table 14
Main challenges found in structural analysis tools to work with PIDO.

B The incorporation of parameters with complex logic
W The creation of custom associations among parameters
B The creation of custom parametric components

It was necessary to become acquainted with the tool parameteriza-
tion methods, with the tool APIs, and with their programming
languages, which varied from tool to tool. Familiarity with parameteri-
zation methods included four concerns: reviewing the scope of the be-
havior of preset components to know what would be required
according to the model needs, adding parameters to the existing
model's components, incorporating rules into the model's parameters
and associating these rules among themselves to make the model
more dynamic either by preset commands or by visual programming,
and creating new components either graphically or programmatically
using the APIs. This implied knowing the scope, the elements, and the
programming language of the APIs.

Finally, a useful strategy was to embed multidisciplinary behavior in
the parametric components themselves such as structural design and
costing. Embedding part of these analyses in components enabled us
to take advantage of Parametric Modeling and perform them internally
and quickly rather than needing to redirect the information and per-
form them within third-party applications. Third-party applications
were able to complete the other part of the analyses in an optimization
routine. For example, when performing structural analysis and structur-
al design, the calculation of components' internal forces was performed
by a structural third-party application and the rules to design the struc-
tural components were programmed within the components
themselves.

4. Conclusions

This research provides a solid foundation to help researchers devel-
op MDO by integrating applications to PIDO platforms in order to create
a design and optimization workflow with the tools involved. According
to our findings, this development involves four issues. First, the evalua-
tion of computing applications in order to understand their behavior,
advantages and disadvantages regarding component interoperability,

Challenges found in Structural tools

Technology

Documentation Programming

In Component
Interoperability

In Automation
processes to validate the results programmatically

In model

Parameterization ~ programmatically

Experimentation and time spent when interfacing the tools with PIDO

Experimentation and time spent when automating every step of modeling and structural analysis

*Familiarity with tool API

*Familiarity with tool
commands and special
functions

Experimentation and time spent when parameterizing some variables to validate the results

118 H. Diaz et al. / Automation in Construction 73 (2017) 102-119

automation of tools, and parameterization of models. Second, knowl-
edge of the possible challenges with respect to technology, lack of doc-
umentation, and programming issues. Third, the awareness of strategies
that can be implemented to help develop MDO. And finally, the simula-
tion of an automatic design process that involved two applications inte-
grated to a PIDO platform.

Our hypothesis is false, since not any tool can be totally used with a
PIDO platform. These tools have been principally designed to be operat-
ed by the graphical user interface. Although they are very useful tools in
the AEC industry, their developers have not fully included capabilities in
their design regarding the three requirements described: component
interoperability, automation and parameterization. For example, the
majority of them caused concerns principally with respect to automa-
tion and parameterization capabilities. Regarding component interop-
erability, the main issues detected were a low openness level of the
tool interfaces that did not enable a full integration with PIDO nor per-
mit access to a models' properties, as well as the high computational
time to control the tools via Batch Processing. In automation, the scarci-
ty of available preset commands to perform tasks impeded manipula-
tion of analyses and modification of models. Another problem was the
presence of pop-up menus enquiring user data entries. Lastly, the
tools showed problems in parameterization capabilities because the
majority did not permit the creation of real parametric associations
among components, the compatibility among certain existing compo-
nents, or the creation of parametric components, which are limited in
the current BIM and PM tools.

The difficulty to parameterize was mainly due to two things: the
way classes were encapsulated and the way Parametric Modeling algo-
rithms were implemented in modeling tools. Regarding encapsulation,
although all the modeling tools tested were object oriented, their ob-
jects had different behavior since their classes were encapsulated differ-
ently. For example, in Revit, system components (walls, slabs, beams
and so on) are instanced by public classes whose constructor methods
are internal, and that contain private methods and properties, which
cannot be accessed programmatically. Additionally, classes are limited
only to the assembly in which they were declared. This is also why
new custom system families in Revit cannot be created, it is only possi-
ble to access to certain properties and methods like the “duplicate”
method in Revit families. However, unlike Revit® or AECOsim Building
Designer™, GenerativeComponents® contains public classes with pub-
lic methods and properties to create custom parametric content pro-
grammatically. Regarding Parametric Modeling, it is based on three
types of algorithms: a node-sort algorithm, a propagation algorithm
and a graph algorithm. The functionality of these algorithms is quite ex-
plicit in PM tools such as GenerativeComponents®. However, although
the BIM tools are based on Parametric Modeling, these algorithms work
on a preset and internal way to automatically sort BIM components and
propagate changes according to their predesigned relationships, which
are not displayed. Therefore, these parametric relationships cannot be
known or edited. GenerativeComponents®, as opposed to Revit or
AECOsim Building Designer™, allows the user to create custom para-
metric relationships providing flexibility in the model.

However, the increasing use of MDO through PIDO platforms in
the AEC industry will require tools that can interact in a single pro-
cess. To achieve this, tools should include additional capabilities
with respect to the three requirements already described. There is
an area of opportunity for tool developers to improve future tool
capabilities.

Challenges can be expected when developing component interoper-
ability, automation and parameterization. This research grouped these
changes into three categories: technology, documentation, and pro-
gramming. The main technological difficulties were time consuming ex-
perimentation needed to couple each tool with PIDO, automate their
processes and parameterize their models. Other principal difficulties
were working with limited official documentation on the tools' non-
graphical interfaces, commands, automation, and parameterization

methods as well as to become familiar with each tool's API and their
script programming languages.

To address the tools' identified behavior, we suggest some general
strategies. For component interoperability, seek tools whose interfaces
are open. This provides sufficient freedom to integrate tools into PIDO
by controlling them from within third-party applications or from
Windows® CLI, in the case of Batch Processing. For automation, test
and validate sequentially that each action or process flows without
user intervention through the tool's GUI so that these processes finish
and generate outputs. Lastly, for parameterization, test the creation of
parameters, relationships among them, and parametric components
with embedded multidisciplinary behavior.

The design process created within PIDO in phase three worked ap-
propriately. After the tools were wrapped, it was possible to create a de-
sign process model within PIDO and perform simulations in only one
environment. This simulation automatically controlled the tools in the
desired sequence. Data were transferred from one tool to another suc-
cessfully, producing the correct outputs for the frame example, in
terms of the frame's dimensions, sections of structural elements, and di-
rect cost. This exercise demonstrated that it is possible to work from
PIDO if the tools have the three previous capabilities. However, the pur-
pose of this simulation was not to develop MDO for this article. MDO ex-
ercises for the production of multiple design alternatives dealing with
multiple conflicting objectives will be addressed in future research.

Because the tools are still undeveloped, developing MDO continues
to be a research topic. For future work, authors should test new tools
by interfacing them with optimization environments such as PIDO.
These methods would need to include integrating tools via Windows
Communication Foundation®.

On the other hand, PM tools can be useful to automatically explore
design space from conceptual design to overcome some current limita-
tions of MDO. Further research is necessary to formalize part of the com-
plex design process.

Acknowledgements

We gratefully acknowledge Instituto Tecnolégico y de Estudios
Superiores de Monterrey and Pontificia Universidad Catélica de Chile
who provided all the academic software licenses used in this research.
Additionally, we acknowledge Dr. Socorro Marcos, Dr. Celia Ann
Durboraw and the reviewers of this journal for their invaluable techni-
cal revision of this work. Finally, we acknowledge to CONICYT and
CONACYT for their economical support of this research.

References

[1] W. Wang, H. Rivard, R. Zmeureanu, An object-oriented framework for simulation-
based green building design optimization with genetic algorithms, Advanced Engi-
neering Informatics. 19 (2005) 5-23, http://dx.doi.org/10.1016/j.aei.2005.03.002.

[2] JK. Liker, D. Meier, The Toyota Way Fieldbook: A Practical Guide for Implementing

Toyota's 4Ps, 1st ed McGraw-Hill Companies, United States of America, 2006

(ISBN: 978-0071448932).

F. Flager, G. Soremekun, B. Welle, J. Haymaker, P. Bansal, Multidisciplinary process

integration and design optimization of a classroom building, Electron. J. Inf. Technol.

Constr. 14 (2009) 595-612http://www.itcon.org/2009/38.

Z. Ren, F. Yang, N.M. Bouchlaghem, CJ. Anumba, Multi-disciplinary collaborative

building design—a comparative study between multi-agent systems and multi-dis-

ciplinary optimisation approaches, Automation in Construction. 20 (2011) 537-549,

http://dx.doi.org/10.1016/j.autcon.2010.11.020.

Y. Fan, D. Bouchlaghem, Genetic Algorithm-Based Multiobjective Optimization for

Building design, Arc. Eng. Des. Manage. 6 (2010) 68-82, http://dx.doi.org/10.3763/

aedm.2008.0077.

M. Fragiadakis, N.D. Lagaros, An overview to structural seismic design optimisation

frameworks, Computers & Structures. 89 (2011) 1155-1165, http://dx.doi.org/10.

1016/j.compstruc.2010.10.021.

[7] C. Chen, M. Usman, Design optimisation for automotive applications, International
Journal of Vehicle Design. 25 (2001) 126-141, http://dx.doi.org/10.1504/1JVD.
2001.001912.

[8] J. Sobieszczanski-Sobieski, R.T. Haftka, Multidisciplinary aerospace design optimiza-
tion: survey of recent developments, Struct. Opt. 14 (1997) 1-23, http://dx.doi.org/
10.1007/BF01197554.

3

[4

[5

6

http://dx.doi.org/10.1016/j.aei.2005.03.002
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0010
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0010
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0010
http://www.itcon.org/2009/38
http://dx.doi.org/10.1016/j.autcon.2010.11.020
http://dx.doi.org/10.3763/aedm.2008.0077
http://dx.doi.org/10.3763/aedm.2008.0077
http://dx.doi.org/10.1016/j.compstruc.2010.10.021
http://dx.doi.org/10.1016/j.compstruc.2010.10.021
http://dx.doi.org/10.1504/IJVD.2001.001912
http://dx.doi.org/10.1504/IJVD.2001.001912
http://dx.doi.org/10.1007/BF01197554

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

H. Diaz et al. / Automation in Construction 73 (2017) 102-119

M. D'Auria, R. D'Ippolito, Process integration and design optimization ontologies for
next generation engineering, in: Y. Tang, H. Panetto (Eds.), On the Move to Mean-
ingful Internet Systems: OTM 2013 Workshops, Springer, Berlin Heidelberg 2013,
pp. 228-237 (ISBN: 978-3-642-41032-1).

R. Morales-Rodriguez, R. Gani, S. Déchelotte, A. Vacher, O. Baudouin, Use of CAPE-
OPEN standards in the interoperability between modelling tools (MoT) and process
simulators (Simulis® Thermodynamics and ProSimPlus), Chemical Engineering
Research and Design. 86 (2008) 823-833, http://dx.doi.org/10.1016/j.cherd.2008.
02.022.

M. Groover, E. Zimmers, CAD/CAM: Computer-Aided Design and Manufacturing, 1st
ed Prentice Hall, United States of America, 1984 (ISBN: 978-0131101302).

C. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM Handbook: A Guide to Building Infor-
mation Modeling for Owners, Managers, Designers, Engineers and Contractors, 2nd
ed. Wiley, 2011 (ISBN: 978-0470541371).

W. Kymmell, Building Information Modeling: Planning and Managing Construction
Projects with 4D CAD and Simulations, 1st ed. United States of America, McGraw-
Hill Education, 2008 (ISBN: 978-0071494533).

C. Derix, In-Between Architecture Computation, International Journal of Architectur-
al Computing. 7 (2009) 565-586, http://dx.doi.org/10.1260/1478-0771.7.4.565.

R. Woodbury, Elements of Parametric Design, 1st ed Routledge, USA and Canada,
2010 (ISBN: 978-0-415-77987-6).

B. Welle, J. Haymaker, Z. Rogers, ThermalOpt: A methodology for automated BIM-
based multidisciplinary thermal simulation for use in optimization environments,
Building Simulation. 4 (2011) 293-313, http://dx.doi.org/10.1007/s12273-011-
0052-5.

E. Mark, Optimizing solar insolation in transformable fabric architecture: a paramet-
ric search design process, Automation in Construction. 22 (2012) 2-11, http://dx.
doi.org/10.1016/j.autcon.2011.11.001.

D. Tuhus-Dubrow, M. Krarti, Genetic-algorithm based approach to optimize building
envelope design for residential buildings, Building and Environment. 45 (2010)
1574-1581, http://dx.doi.org/10.1016/j.buildenv.2010.01.005.

V. Granadeiro,].P. Duarte,].R. Correia, V.M.S. Leal, Building envelope shape design in
early stages of the design process: Integrating architectural design systems and en-
ergy simulation, Automation in Construction. 32 (2013) 196-209, http://dx.doi.org/
10.1016/j.autcon.2012.12.003.

X. Shi, W. Yang, Performance-driven architectural design and optimization tech-
nique from a perspective of architects, Automation in Construction. 32 (2013)
125-135, http://dx.doi.org/10.1016/j.autcon.2013.01.015.

J. Plume,]. Mitchell, Collaborative design using a shared IFC building
model—Learning from experience, Automation in Construction. 16 (2007) 28-36,
http://dx.doi.org/10.1016/j.autcon.2005.10.003.

R. Sacks, I. Kaner, C.M. Eastman, Y. Jeong, The Rosewood experiment — Building in-
formation modeling and interoperability for architectural precast facades, Automa-
tion in Construction. 19 (2010) 419-432, http://dx.doi.org/10.1016/j.autcon.2009.
11.012.

J. Steel, R. Drogemuller, B. Toth, Model interoperability in building information
modelling, Software & Systems Modeling. 11 (2012) 99-109, http://dx.doi.org/10.
1007/s10270-010-0178-4.

M. Marzouk, A. Abubakr, Decision support for tower crane selection with building
information models and genetic algorithms, Automation in Construction. 61
(2016) 1-15, http://dx.doi.org/10.1016/j.autcon.2015.09.008.

I. Abotaleb, K. Nassar, O. Hosny, Layout optimization of construction site facilities
with dynamic freeform geometric representations, Automation in Construction. 66
(2016) 15-28, http://dx.doi.org/10.1016/j.autcon.2016.02.007.

V. Faghihi, K.F. Reinschmidt, J.H. Kang, Objective-driven and Pareto Front analysis:
Optimizing time, cost, and job-site movements, Automation in Construction. 69
(2016) 79-88, http://dx.doi.org/10.1016/j.autcon.2016.06.003.

I.G. Dino, An evolutionary approach for 3D architectural space layout design explo-
ration, Automation in Construction. 69 (2016) 131-150, http://dx.doi.org/10.1016/j.
autcon.2016.05.020.

S. Chardon, B. Brangeon, E. Bozonnet, C. Inard, Construction cost and energy perfor-
mance of single family houses: From integrated design to automated optimization,
Automation in Construction. 70 (2016) 1-13, http://dx.doi.org/10.1016/j.autcon.
2016.06.011.

M. Ferrara, E. Fabrizio, . Virgone, M. Filippi, Energy systems in cost-optimized design
of nearly zero-energy buildings, Autom. Constr. 70 (2016) 109-127 (doi:
j.autcon.2016.06.007).

J.P. Basbagill, F.L. Flager, M. Lepech, A multi-objective feedback approach for evalu-
ating sequential conceptual building design decisions, Automation in Construction.
45 (2014) 136-150, http://dx.doi.org/10.1016/j.autcon.2014.04.015.

J. van Hellenberg Hubar, Design concept for optimizing the renewable micro gener-
ation technologies to supply an off-grid community energy demand: A case study
with simulation model in the Netherlands, Eindhoven University of Technology,
2011.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

119

X. Shi, Design optimization of insulation usage and space conditioning load using
energy simulation and genetic algorithm, Energy 36 (2011) 1659-1667, http://dx.
doi.org/10.1016/j.energy.2010.12.064.

B. Lee, M. Trcka, J.L.M. Hensen, Rooftop photovoltaic (PV) systems for industrial
halls: Achieving economic benefit vial lowering energy demand, Front. Architec.
Res. 1 (2012) 326-333, http://dx.doi.org/10.1016/j.foar.2012.09.003.

A. Chronis, KA. Liapi, 1. Sibetheros, A parametric approach to the bioclimatic design
of large scale projects: The case of a student housing complex, Automation in Con-
struction. 22 (2012) 24-35, http://dx.doi.org/10.1016/j.autcon.2011.09.007.

M. Turrin, P. von Buelow, A. Kilian, R. Stouffs, Performative skins for passive climatic
comfort. A parametric design process, Automation in Construction. 22 (2012)
36-50, http://dx.doi.org/10.1016/j.autcon.2011.08.001.

A. Albertin, P.G. Malerba, N. Pollini, M. Quagliaroli, Prestress optimization of hybrid
tensile structures, in: F. Biondini, D.M. Frangopol (Eds.),Bridge Maintenance, Safety,
Management, Resilience and Sustainability: Proceedings of the Sixth International
IABMAS Conference 2012, pp. 1750-1757, http://dx.doi.org/10.1201/b12352-256.
P. Geyer, M. Buchholz, Parametric systems modeling for sustainable energy and re-
source flows in buildings and their urban environment, Automation in Construction.
22 (2012) 70-80, http://dx.doi.org/10.1016/j.autcon.2011.07.002.

S. Attia, M. Hamdy, W. O'Brien, S. Carlucci, Assessing gaps and needs for integrating
building performance optimization tools in net zero energy buildings design, Energy
Build. 60 (2013) 110-124, http://dx.doi.org/10.1016/j.enbuild.2013.01.016.

V. Granadeiro, L. Pina,].P. Duarte,].R. Correia, V.M.S. Leal, A general indirect repre-
sentation for optimization of generative design systems by genetic algorithms: Ap-
plication to a shape grammar-based design system, Automation in Construction. 35
(2013) 374-382, http://dx.doi.org/10.1016/j.autcon.2013.05.012.

J:N. Richardson, G. Nordenson, R. Laberenne, R. Filomeno Coelho, S. Adriaenssens,
Flexible optimum design of a bracing system for fagade design using multiobjective
Genetic Algorithms, Automation in Construction. 32 (2013) 80-87, http://dx.doi.
org/10.1016/j.autcon.2012.12.018.

F. Flager, DJ. Gerber, B. Kallman, Measuring the impact of scale and coupling on so-
lution quality for building design problems, Design Studies. 35 (2014) 180-199,
http://dx.doi.org/10.1016/j.destud.2013.11.001.

S.E. Lin, D.J. Gerber, Designing-in performance: A framework for evolutionary ener-
gy performance feedback in early stage design, Automation in Construction. 38
(2014) 59-73, http://dx.doi.org/10.1016/j.autcon.2013.10.007.

A. Karatas, K. El-Rayes, Optimizing tradeoffs among housing sustainability objec-
tives, Automation in Construction. 53 (2015) 83-94, http://dx.doi.org/10.1016/].
autcon.2015.02.010.

C.T. Mueller, J.A. Ochsendorf, Combining structural performance and designer pref-
erences in evolutionary design space exploration, Automation in Construction. 52
(2015) 70-82, http://dx.doi.org/10.1016/j.autcon.2015.02.011.

K. Negendahl, Building performance simulation in the early design stage: An intro-
duction to integrated dynamic models, Automation in Construction. 54 (2015)
39-53, http://dx.doi.org/10.1016/j.autcon.2015.03.002.

M. Madiajagan, B. Vijayakumar, Interoperability in Component Based Software De-
velopment, International Journal of Computer, Electrical, Automation, Cont. Info.
Eng. 2 (2008) 3507-3515http://www.waset.org/publications/10105.

V. Issarny, M. Caporuscio, N. Georgantas, A perspective on the Future of
Middleware-based Software Engineering, Future Software Eng. 2007 (2007)
244-258, http://dx.doi.org/10.1109/FOSE.2007.2.

W. Emmerich, in: A. Finkelstein (Ed.), Software engineering and middleware: a
roadmapProceedings of the Conference on The Future of Software (ICSE ‘00)
2000, pp. 117-129, http://dx.doi.org/10.1145/336512.336542.

J. Oberleitner, T. Gschwind, M. Jazayeri, in: H. Hart (Ed.), The Vienna Component
Framework enabling composition across component modelsProceedings of the
25th International Conference on Software Engineering (ICSE ‘03) 2003,
pp. 25-35, http://dx.doi.org/10.1109/ICSE.2003.1201185.

G. Eddon, H. Eddon, Inside Distributed COM, Microsoft Press, Redmond, Washing-
ton, 1998 (ISBN:1-57231-849-X).

M. Henning, S. Vinoski, Advanced CORBA Programming with C++, 1st ed Addison
Wesley Longman, Inc., United States of America, 2008 (ISBN: 978-0201379273).

E. Roman, R.P. Sriganesh, G. Brose, Mastering Enterprise JavaBeans, Third ed Wiley,
United States of America, 2005 (ISBN: 978-0764576829).

J- Koller, A. Kuckelberg, CAPE-OPEN (CO) standards: implementation and mainte-
nance, Standardization and Innovation in Information Technology, 2001 2nd IEEE
Conference 2001, pp. 335-338, http://dx.doi.org/10.1109/SIIT.2001.968582.

C. Kelleher, R. Pausch, Lowering the barriers to programming: A taxonomy of pro-
gramming environments and languages for novice programmers, ACM Computing
Surveys. 37 (2005) 83-137, http://dx.doi.org/10.1145/1089733.1089734.

R. Aish, Extensible computational design tools for exploratory architecture, in: B.
Kolarevic (Ed.), Architecture in the Digital Age: Design and Manufacturing, Spon
Press, New York, NY 2003, pp. 243-252 (ISBN:9780203634561).

http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0045
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0045
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0045
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0045
http://dx.doi.org/10.1016/j.cherd.2008.02.022
http://dx.doi.org/10.1016/j.cherd.2008.02.022
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0055
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0055
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0060
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0060
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0060
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0065
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0065
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0065
http://dx.doi.org/10.1260/1478-0771.7.4.565
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0075
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0075
http://dx.doi.org/10.1007/s12273-011-0052-5
http://dx.doi.org/10.1007/s12273-011-0052-5
http://dx.doi.org/10.1016/j.autcon.2011.11.001
http://dx.doi.org/10.1016/j.buildenv.2010.01.005
http://dx.doi.org/10.1016/j.autcon.2012.12.003
http://dx.doi.org/10.1016/j.autcon.2013.01.015
http://dx.doi.org/10.1016/j.autcon.2005.10.003
http://dx.doi.org/10.1016/j.autcon.2009.11.012
http://dx.doi.org/10.1016/j.autcon.2009.11.012
http://dx.doi.org/10.1007/s10270-010-0178-4
http://dx.doi.org/10.1007/s10270-010-0178-4
http://dx.doi.org/10.1016/j.autcon.2015.09.008
http://dx.doi.org/10.1016/j.autcon.2016.02.007
http://dx.doi.org/10.1016/j.autcon.2016.06.003
http://dx.doi.org/10.1016/j.autcon.2016.05.020
http://dx.doi.org/10.1016/j.autcon.2016.05.020
http://dx.doi.org/10.1016/j.autcon.2016.06.011
http://dx.doi.org/10.1016/j.autcon.2016.06.011
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0145
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0145
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0145
http://dx.doi.org/10.1016/j.autcon.2014.04.015
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0155
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0155
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0155
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0155
http://dx.doi.org/10.1016/j.energy.2010.12.064
http://dx.doi.org/10.1016/j.foar.2012.09.003
http://dx.doi.org/10.1016/j.autcon.2011.09.007
http://dx.doi.org/10.1016/j.autcon.2011.08.001
http://dx.doi.org/10.1201/b12352-256
http://dx.doi.org/10.1016/j.autcon.2011.07.002
http://dx.doi.org/10.1016/j.enbuild.2013.01.016
http://dx.doi.org/10.1016/j.autcon.2013.05.012
http://dx.doi.org/10.1016/j.autcon.2012.12.018
http://dx.doi.org/10.1016/j.destud.2013.11.001
http://dx.doi.org/10.1016/j.autcon.2013.10.007
http://dx.doi.org/10.1016/j.autcon.2015.02.010
http://dx.doi.org/10.1016/j.autcon.2015.02.010
http://dx.doi.org/10.1016/j.autcon.2015.02.011
http://dx.doi.org/10.1016/j.autcon.2015.03.002
http://www.waset.org/publications/10105
http://dx.doi.org/10.1109/FOSE.2007.2
http://dx.doi.org/10.1145/336512.336542
http://dx.doi.org/10.1109/ICSE.2003.1201185
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0250
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0250
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0255
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0255
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0255
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0255
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0260
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0260
http://dx.doi.org/10.1109/SIIT.2001.968582
http://dx.doi.org/10.1145/1089733.1089734
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0275
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0275
http://refhub.elsevier.com/S0926-5805(16)30226-6/rf0275

	Multidisciplinary Design Optimization through process integration in the AEC industry: Strategies and challenges
	1. Introduction
	1.1. Main tools to perform MDO in the AEC industry
	1.2. Successful applications of MDO in the AEC industry
	1.3. Research problem and objective

	2. Research methodology
	2.1. Phase one
	2.2. Phase two
	2.3. Phase three

	3. Results and discussion
	3.1. Results of phase one: description of the tools required capabilities for MDO
	3.1.1. Component interoperability
	3.1.1.1. Component Interoperability through API
	3.1.1.2. Component Interoperability through Batch Processing

	3.1.2. Tool Automation
	3.1.3. Model Parameterization

	3.2. Results of phase two: behavior of the five AEC tools in achieving MDO
	3.2.1. Behavior of the AEC tools tested against MDO requisites using PIDO
	3.2.1.1. Component Interoperability testing
	3.2.1.2. Automation testing
	3.2.1.3. Parameterization testing

	3.2.2. Strengths and weaknesses of the AEC tools tested according to MDO requisites

	3.3. Results of phase three: the case study of tool integration and the simulation process model within PIDO
	3.4. Challenges found in tools working with PIDO
	3.5. Successful strategies for working with PIDO platforms
	3.5.1. Component Interoperability strategies
	3.5.1.1. For an API
	3.5.1.2. For Batch Processing

	3.5.2. Tool Automation strategies
	3.5.3. Parameterization strategies

	4. Conclusions
	Acknowledgements
	References

