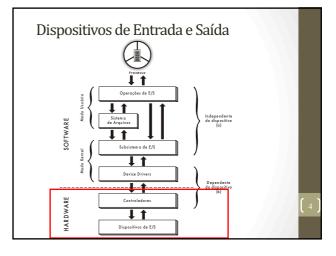
Sistemas Operacionais

Profa. Dra. Kalinka Regina Lucas Jaquie Castelo Branco kalinka@icmc.usp.br

> Apresentação baseada nos slides do Prof. Dr. Antônio Carlos Sementille e da Profa. Dra. Luciana A. F. Martimiano e nas transparências fornecidas no site de compra do livro "Sistemas Operacionais Modernos"


Dispositivos de Entrada e Saída

- SO pode atuar de duas maneiras diferentes:
 - Como <u>máquina estendida</u> (top-down) tornar uma tarefa de baixo nível mais fácil de ser realizada pelo usuário;
 - Como gerenciador de recursos (bottom-up) gerenciar os dispositivos que compõem o computador.

2

Dispositivos de Entrada e Saída

- Funções específicas:
 - · Enviar sinais para os dispositivos;
 - · Atender interrupções;
 - Gerenciar comandos aceitos e funcionalidades (serviços prestados);
 - Tratar possíveis erros;
 - Prover interface entre os dispositivos e o sistema.
- Princípios:
 - Hardware;
 - Software.

Dispositivos de E/S Princípios de Hardware

Uma das funções principais de um Sistema Operacional é controlar todos os dispositivos de entrada/saída do computador. Ele deve:

- · enviar comandos aos dispositivos;
- · atender interrupções;
- fornecer uma interface entre os dispositivos e o resto do sistema que seja simples e fácil de usar.

Geralmente, o código para tratamento da entrada e saída representa uma fração significativa do sistema operacional total

Dispositivos de E/S Princípios de Hardware

Módulos de E/S: Controladores de Dispositivos

As Unidades de E/S são geralmente compostas de dois componentes principais:

- Controlador de dispositivo: parte programável (Nos PCs é normalmente uma placa de circuito impresso);
- · Componente Mecânico
- Muitos controladores podem controlar vários dispositivos idênticos
- Órgãos de padronização: IEEE, ISO, ANSI, etc.

- O S.O. sempre trata com o controlador, n\u00e3o com os dispositivos.
- A Comunicação entre CPU e controladores é feita através de barramentos comuns (interface de alto nível)
- · Interface entre controlador e dispositivo: baixo nível
- Mainframes: múltiplos barramentos e processadores especializados em E/S (canais de E/S).

Dispositivos de E/S Princípios de Hardware

Classificação quanto ao tipo de transferência de E/S

•Podem ser divididos em 2 categorias:

- Dispositivos de Bloco armazenam informações em blocos de tamanhos fixos, cada um com seus próprios endereços. Os tamanhos dos blocos geralmente variam de 512 à 32.768 bytes.
- A principal característica dos dispositivos desta categoria, é a possibilidade de ler e escrever cada bloco de maneira independente e permitir operações de busca
- · Exemplos: Discos rígidos.

Dispositivos de E/S Princípios de Hardware

- Dispositivos de Caracter:
 - aceitam uma sequência de caracteres sem se importar com a estrutura do bloco;
 - Informação não é endereçável e não possuem qualquer operação de busca ("seek operation").
 - Exemplos: impressoras, interfaces de redes, placas de som e etc., fazem parte desta categoria.

Dispositivos de E/S Princípios de Hardware

- Este esquema de classificação não é perfeito, porém é genérico o suficiente (por ex., o timer não se encaixa). Clocks: provocam interrupções em intervalos definidos.
- O sistema de arquivos, por exemplo, trata com dispositivos de bloco abstratos.
- Entretanto a classificação auxilia na obtenção de independência de dispositivo
 - Parte dependente está a cargo dos drivers software que controla o acionamento dos dispositivos.

Dispositivos de E/S Princípios de Hardware

Os dispositivos de E/S podem apresentar uma grande

variedade de velocidade

ici ii api esci ita	ii uiiiu giu	liuc	
Device	Data rate		
Keyboard	10 bytes/sec		
Mouse	100 bytes/sec		
56K modem	7 KB/sec		
Scanner	400 KB/sec		
Digital camcorder	3.5 MB/sec		
802.11g Wireless	6.75 MB/sec		
52x CD-ROM	7.8 MB/sec		
Fast Ethernet	12.5 MB/sec		
Compact flash card	40 MB/sec		
FireWire (IEEE 1394)	50 MB/sec		
USB 2.0	60 MB/sec		
SONET OC-12 network	78 MB/sec		
SCSI Ultra 2 disk	80 MB/sec		7
Gigabit Ethernet	125 MB/sec		1
SATA disk drive	300 MB/sec		
Ultrium tape	320 MB/sec	7 / /	
PCI bus	528 MB/sec	7 / /	

- Dispositivos de E/S possuem basicamente dois componentes:
 - Mecânico \rightarrow o dispositivo propriamente dito;
 - Eletrônico → controladores ou adaptadores (placas);
- O dispositivo (periférico) e a controladora se comunicam por meio de uma <u>interface</u>:
 - Serial ou paralela;
 - Barramentos: IDE, ISA, SCSI, AGP, USB, PCI, etc.

Dispositivos de E/S Princípios de Hardware · Cada controladora possui um conjunto de

- Cada controladora possui um conjunto de registradores de controle, que são utilizados na comunicação com a CPU;
- Além dos registradores, alguns dispositivos possuem um buffer de dados:
 - Ex.: placa de vídeo; algumas impressoras;
- SO gerencia, utilizando os <u>drivers</u>, os dispositivos de E/S escrevendo/lendo nos/dos registradores/buffers;
 - Comunicação em baixo nível instruções em Assembler;
 - · Enviar comandos para os dispositivos;
 - Saber o estado dos dispositivos.

Dispositivos de E/S Princípios de Hardware

- Como a CPU se comunica com esses registradores de controle?
 - <u>Porta</u>: cada registrador de controle possui um número de porta (ou porto) de E/S de 8 ou 16 bits;
 - · Instrução em Assembler;
 - Mainframes IBM;
 - SOs atuais fazem uso dessa estratégia para a maioria dos dispositivos.

Dispositivos de E/S Princípios de Hardware

- <u>Memory-mapped</u>: mapear os registradores de controle em espaços de memória;
 - · Cada registrador possui um único endereço de memória;
 - Em geral, os endereços estão no topo da memória protegidos em endereços não utilizados por processos;
 - Uso de linguagem de alto nível, já que registradores são apenas variáveis na memória:
 - SOs utilizam essa estratégia para os dispositivos de vídeo;
- Estratégia híbrida:
- Registradores → Porta;
- Buffers → Memória;
 - Exemplo: Pentium endereços de 640k a 1M para os buffers e as portas de E/S de 0 a 64k para registradores.

Dispositivos de E/S Princípios de Hardware

- Como funciona a comunicação da CPU com os dispositivos?
- Quando a CPU deseja ler uma palavra, ela coloca o endereço que ela está desejando no barramento de endereço e manda um comando READ no barramento de controle;
- Essa comunicação pode ser controlada pela própria CPU ou pela

Dispositivos de E/S Princípios de Hardware Para Barramento Sinais de Sinais de Sinais de Status Controle Interno Dados Estrutura genérica Internos de um controlador (módulo de E/S) Lógica de Buffer Interna Sinais de Dados Controle Interno Externos Para Periférico

- Controlador de disco: converte o fluxo serial de bits em um bloco de bytes, executando qualquer correção necessária.
- Cada controlador possui registradores para a comunicação com a CPU.
- Em alguns computadores: estes registradores podem fazer parte do espaço de endereçamento da memória principal.

- O S.O.: executa E/S escrevendo comandos (e seus parâmetros, se existirem) nos registradores dos controladores.
- Quando um comando é aceito, a CPU pode deixar que o controlador trabalhe sozinho, indo executar outra tarefa.
- Quando o dispositivo termina, avisa a CPU através de uma interrupção.

Dispositivos de E/S Princípios de Hardware

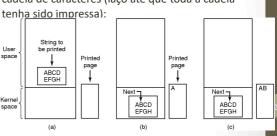
•Os módulos de E/S podem operar de 3 maneiras básicas:

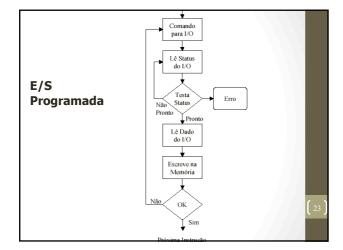
- E/S programada
 - Mais usada em sistemas embarcados
- E/S orientada à Interrupções
- E/S com uso da DMA (Acesso Direto à Memória)

•O que distingue as três formas: a participação da CPU e a utilização das interrupções

Dispositivos de E/S Princípios de Hardware

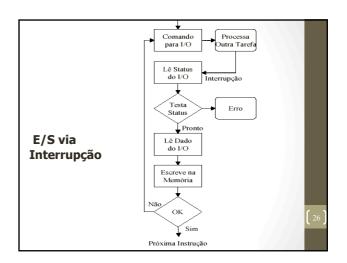
E/S Programada


•Na E/S programada: os dados são trocados entre a CPU e o Módulo de E/S


•A CPU executa um programa que:

- verifica o estado do módulo de E/S, preparando-o para a operação;
- se necessário, enviando o comando que deve ser executado; e
- aguardando o resultado do comando, para então, efetuar a transferência entre o módulo de E/S e algum registrador da CPU.

Dispositivos de E/S Princípios de Hardware


 E/S programada: passos para impressão de uma cadeia de caracteres (laço até que toda a cadeia tanha sida impressa);

- E/S programada:
 - Desvantagem:
 - CPU é ocupada o tempo todo até que a E/S seja feita;
 - CPU continuamente verifica se o dispositivo está pronto para aceitar outro caractere → espera ocupada.

Dispositivos de E/S Princípios de Hardware E/S via Interrupção •Na E/S via interrupção: o mecanismo de interrupções é utilizado para superar o problema da espera da CPU por operações nos •A interrupção permite que uma unidade ganhe a atenção imediata de outra, de forma que a primeira possa finalizar sua tarefa envia um comando para o módulo de E/S e passa a executar outra tarefa; quando a operação for concluída, o módulo de E/S interrompe a CPU; e a CPU executa a troca de dados, liberando o módulo de E/S e retomando o processamento anterior.

Dispositivos de E/S Princípios de Hardware

- E/S orientada à interrupção:
 - No caso da impressão, a impressora não armazena os caracteres;
 - Quando a impressora está pronta para receber outros caracteres, gera uma interrupção;
 - Processo é bloqueado.

Dispositivos de E/S Princípios de Hardware

E/S via Interrupção

•O maior problema no uso de interrupções: geralmente se dispõe de poucas linhas de interrupção diretamente ao processador

•Usualmente: são assinalados números para interrupções, onde o menor número tem prioridade sobre

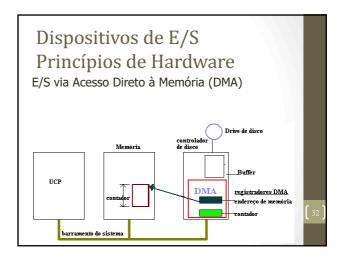
Dispositivos de E/S Princípios de Hardware E/S via Interrupção

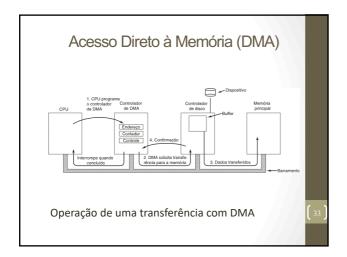
•Exemplo de mapeamento das interrupções em um sistema IBM compativel

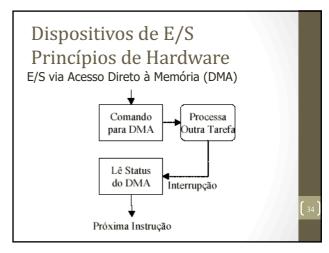
Int	Dispositivo	Int	Dispositivo
0	Cronômetro do sistema	9	Porta de comunicação COM3
1	Teclado	10	Porta de comunicação COM2
2	Controlador de interrupção	11	Ponte PCI (*)
4	Porta de comunicação COM1	12	Mouse porta PS/2 (*)
5	Placa de som (*)	13	Coprocessador numérico
6	Controlador de disco flexível	14	Controlador IDE/ESDI
7	Porta de Impressora LPT1	15	Controlador IDE/ESDI
8	CMOS/Relógio do sistema		(*) Opções não padronizadas

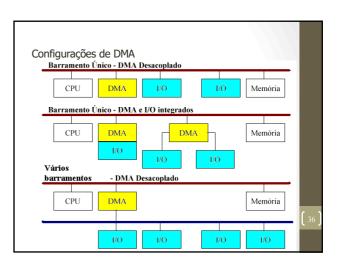
Mapa de Interrupções num IBM-PC compatível

Dispositivos de E/S Princípios de Hardware


E/S via Acesso Direto à Memória


·Inconvenientes das técnicas anteriores:


- · limitam a capacidade de transferência da CPU, entre o módulo de E/S e a Memória Principal uso de mais de uma instrução
- · CPU fica ocupada no gerenciamento
- se a quantidade de dados for grande, o desempenho do sistema será comprometido
- A solução deste problemas: permitir o acesso direto à memória
- método propõe o uso de uma única interrupção, para efetuar a transferência de um bloco de dados entre o periférico e a memória principal
- CPU tem envolvimento mínimo no gerenciamento


Dispositivos de E/S Princípios de Hardware E/S via Acesso Direto à Memória •Necessidade de um módulo adicional: o Controlador de DMA •Operação do Controlador de DMA: • CPU envia comando (leitura ou escrita) para o controlador de DMA • CPU continua seu trabalho • O controlador de DMA, para acessar memória, "rouba" ciclos da CPU, atrasando-a apenas • Ao final da operação, o controlador de DMA aciona a interrupção para sinalizar o término da operação • A CPU pode executar a rotina de tratamento da interrupção, processando os dados lidos ou produzindo novos dados para serem escritos

- E/S com uso da DMA:
 - DMA executa E/S programada → controladora de DMA faz todo o trabalho ao invés da CPU;
 - Redução do número de interrupções;
 - · Desvantagem:
 - DMA é mais lenta que a CPU.

Dispositivos de E/S Princípios de Hardware

- DMA (Direct Access Memory) → acesso direto à memória:
 - Presente principalmente em dispositivos baseados em bloco → discos;
 Controladora integrada à controladora dos discos;

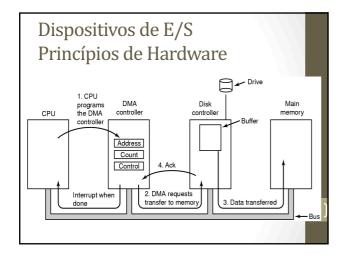
 - DMA tem acesso ao barramento do sistema independentemente da CPU.

Dispositivos de E/S Princípios de Hardware

- DMA contém vários registradores que podem ser lidos e escritos pela CPU:
 - Registrador de endereço de memória;
 - Registrador contador de bytes;
 - · Registrador (es) de controle;
 - Porta de E/S em uso;
 - Tipo da transferência (leitura ou escrita);
 - Unidade de transferência (byte ou palavra);
 - Número de bytes a ser transferido

Dispositivos de E/S Princípios de Hardware

- <u>Sem DMA</u>: Leitura de um bloco de dados em um disco:
- Controladora do dispositivo lê bloco (bit a bit) a partir do endereço fornecido pela CPU;
- Dados são armazenados no buffer da controladora do dispositivo;
- Controladora do dispositivo checa consistência dos dados;
- Controladora do dispositivo gera interrupção;
- SO lê (em um loop) os dados do buffer da controladora do dispositivo e armazena no endereço de memória fornecido pela CPU.


Dispositivos de E/S Princípios de Hardware

- Com DMA: Leitura de um bloco de dados em um disco: CPU controla
 - 1. Além do endereço a ser lido, a CPU fornece à controladora de DMA duas outras informações: endereço na RAM para onde transferir os dados e o número de bytes a ser transferido;
 - 2. Controladora de DMA envia dados para a controladora do dispositivo;
 - Controladora do dispositivo lê o bloco de dados e o armazena em seu buffer, verificando consistência;
 - 3. Controladora do dispositivo copia os dados para RAM no endereço especificado na DMA (modo direto);

- 4. Após confirmação de leitura, a controladora de DMA incrementa o endereço de memória na DMA e decrementa o contador da DMA com o número de bytes transferidos;
- Repete os passos de 2 a 4 até o contador da DMA chegar em 0. Assim que o contador chegar em zero (0), a controladora de DMA gera uma interrupção avisando a CPU;
- Quando o SO inicia o atendimento à interrupção, o bloco de dados já está na RAM.

- A DMA pode tratar múltiplas transferências simultaneamente:
 - · Possuir vários conjuntos de registradores;
- Decidir quais requisições devem ser atendidas → escalonamento (*Round-Robin* ou prioridades, por exemplo).

(44)

Dispositivos de E/S Princípios de Hardware

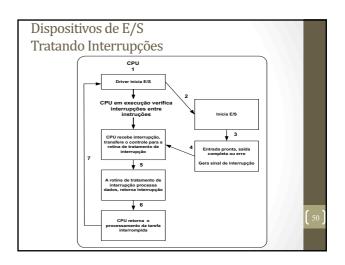
- Por que a DMA precisa de um *buffer* interno? Por que não escreve diretamente na RAM?
- Permite realizar consistência dos dados antes de iniciar alguma transferência;
- Dados (bits) são transferidos do disco a uma taxa constante, independentemente da controladora estar pronta ou não;
- Acesso à memória depende de acesso ao barramento, que pode estar ocupado com outra tarefa;
- Com o buffer, o barramento é usado apenas quando a DMA opera.

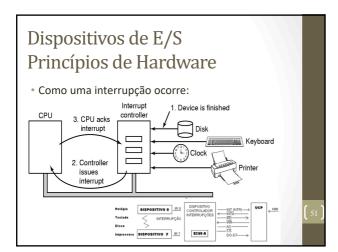
Dispositivos de E/S Princípios de Hardware

- Interrupções de E/S (interrupt-driven I/O):
- Sinais de interrupção são enviados (através dos barramentos) pelos dispositivos ao processador;
- Após uma interrupção, o controlador de interrupções decide o que fazer:
 - Envia para CPU;
 - Ignora no momento

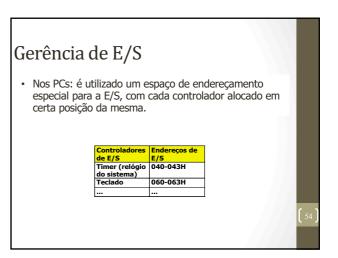
 dispositivos geram sinais de interrupção até serem atendidos.

Dispositivos de E/S Princípios de Hardware


- Controlador de Interrupções:
 - Está presente na placa-mãe;
- Possui vários manipuladores de interrupção;
- Diferentes tipos de interrupções → IRQs (Interrupt ReQuest);
- Manipuladores de interrupção:
- Gerenciam interrupções realizadas pelos dispositivos de E/S;
- Bloqueiam driver até dispositivo terminar a tarefa.


Dispositivos de E/S Tratando Interrupções

- Sinal (linha) de interrupção é amostrado dentro de cada ciclo de instrução do processador;
- Se sinal ativo → salva contexto e atende a interrupção.


Dispositivos de E/S Tratando Interrupções • Ciclo de instrução com interrupção: CPU • Busca; Decodificação e Execução • Verifica se existe interrupção • Se não → busca próxima instrução,... • Se existe interrupção pendente: • Suspende a execução do programa; • Salva contexto; • Atualiza PC (Program Counter) → apontar para ISR (rotina de atendimento de interrupção); • Executa interrupção; • Recarrega contexto e continua processo interrompido;

Gerência de E/S Tipos de E/S Os dispositivos de E/S podem ser classificados de forma ampla, sendo que as mais utilizadas são quanto ao: tipo de conexão tipo de transferência de dados tipo de compartilhamento de conexões Quanto ao tipo de conexão: Leva em consideração a natureza da conexão entre o módulo de E/S e o periférico Do ponto de vista dos dados, as conexões são projetadas para operação: Serial Paralela

Gerência de E/S

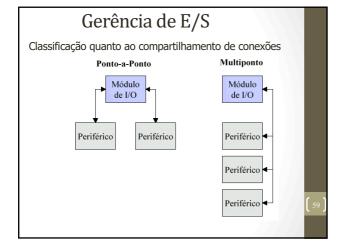
Conexão serial:

- Uma única linha de sinal é utilizada para o estabelecimento de toda a conexão, protocolo e transferência de dados, entre o módulo de E/S e o periférico
- Características principais:
 - · mais barata que a paralela
 - · mais lenta que a paralela
 - · relativamente confiáveis
 - usada em dispositivos mais baratos e lentos, como impressoras e terminais

Gerência de E/S

Conexão paralela:

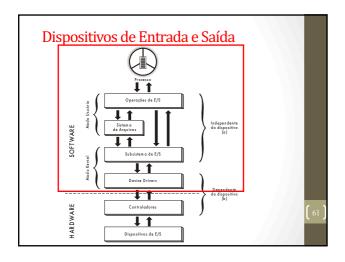
- Várias linhas de sinais são usadas, de forma que vários bits de dados possam ser transferidos em paralelo
- É comum que existam linhas independentes para tráfego de sinais de controle
- Características principais:
 - · mais complexa que a serial
 - mais cara
 - · mais rápida
 - · altamente confiável
 - usada em dispositivos mais velozes, como unidades de disco, fita ou impressoras rápidas


Gerência de E/S

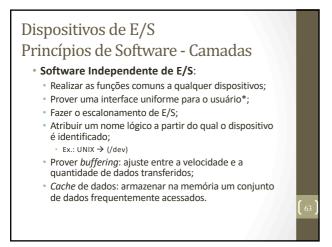
Classificação quanto ao compartilhamento de conexões

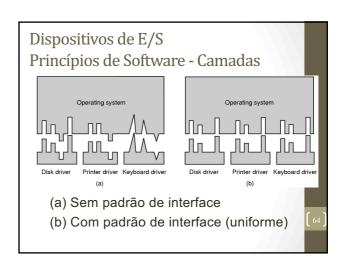
Podem ser divididos em 2 categorias:

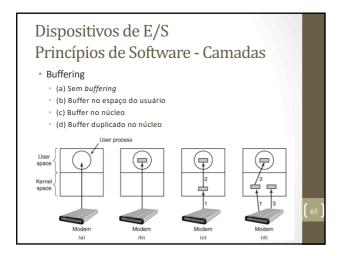
- Ponto-a-Ponto é a conexão mais simples, onde existe um conjunto de linhas dedicadas para a ligação entre o módulo de E/S e cada periférico.
- Multiponto neste tipo de conexão, um módulo de E/S compartilha um conjunto de linhas de sinais entre diversos periféricos.



Gerência de E/S

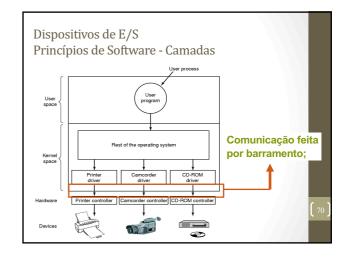

- · Conexões Ponto-a-Ponto:
 - oferecem maior confiabilidade
 - permite a operação simultânea de diversos dispositivos
 - é usada em dispositivos mais simples, tais como modens, teclado e impressora
- Tem-se os seguintes exemplos de conexões ponto-aponto padronizadas, usados em comunicação de curta distância, usualmente na interface padrão RS - 232C:
 - Protocolo RTS/CTS (Request to Send/Clear to Send)
 - Protocolo Xon/Xoff (*Transmission On/Transmission Off*)

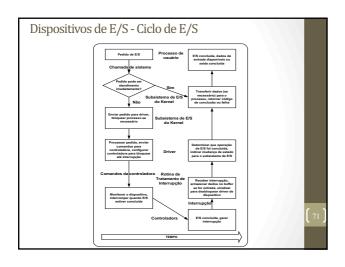


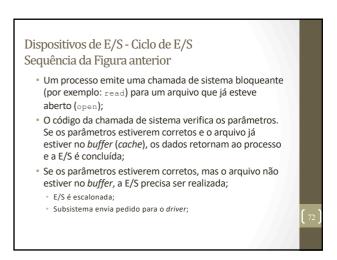


Dispositivos de E/S Princípios de Software • Organizar o software como uma série de camadas facilita a independência dos

- Organizar o software como uma série de camadas facilita a independência dos dispositivos:
 - Camadas mais baixas apresentam detalhes de hardware:
 - Drivers e manipuladores de interrupção;
 - Camadas mais altas apresentam interface para o usuário:
 - Aplicações de Usuário;
 - · Chamadas de Sistemas;
 - Software Independente de E/S ou Subsistema de Kernel de E/S.

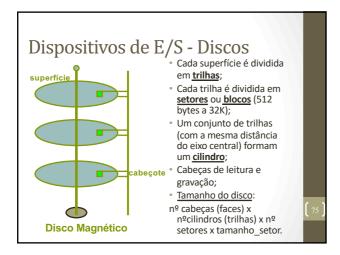


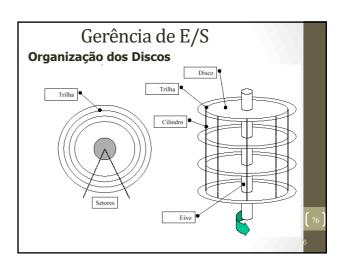



Dispositivos de E/S Princípios de Software • Software Independente de E/S: • Transferência de dados: • Síncrona (bloqueante): requer bloqueio até que os dados estejam prontos para transferência; • Assíncrona (não-bloqueante): transferências acionadas por interrupções; mais comuns; • Tipos de dispositivos: • Compartilháveis: podem ser utilizados por vários usuários ao mesmo tempo; Exemplo: disco rígido; • Dedicados: podem ser utilizados por apenas um usuário de cada vez; Exemplo: impressora, unidade de fita.

Dispositivos de E/S Princípios de Software • Software de E/S no nível Usuário: • Bibliotecas de E/S são utilizadas pelos programas dos usuários • Chamadas ao sistema (system calls).

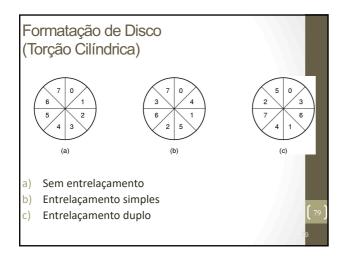
Dispositivos de E/S Princípios de Software - Camadas • Drivers: • São gerenciados pelo kernel do SO; • Contêm todo o código dependente do dispositivo; • Controlam o funcionamento dos dispositivos por meio de sequência de comandos escritos/lidos nos/dos registradores da controladora; • Dispositivos diferentes possuem drivers diferentes; • Classes de dispositivos podem ter o mesmo driver; • São dinamicamente carregados; • Drivers defeituosos podem causar problemas no kernel do SO;

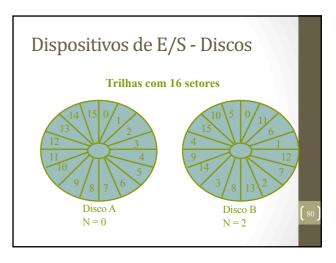

Dispositivos de E/S - Ciclo de E/S Sequência da Figura anterior

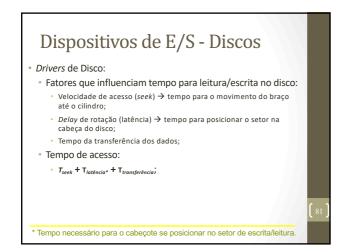

- Driver aloca espaço de buffer, escalona E/S e envia comando para a controladora do dispositivo escrevendo nos seus registradores de controle;
- Driver pode usar a DMA;
- A controladora do dispositivo opera o hardware, ou seja, o dispositivo propriamente dito;
- Após a conclusão da E/S, uma interrupção é gerada;
- A rotina de tratamento de interrupções apropriada recebe a interrupção via vetor de interrupção, armazena os dados, sinaliza o driver e retorna da interrupção;

Dispositivos de E/S - Ciclo de E/S Sequência da Figura anterior

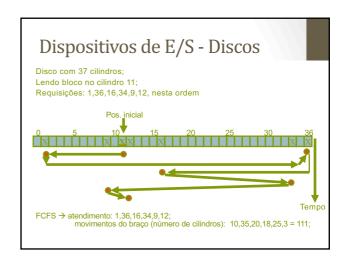
- Driver recebe o sinal, determina qual pedido de E/S foi concluído, determina o status e sinaliza que o pedido está concluído;
- Kernel transfere dados ou códigos de retorno para o espaço de endereçamento do processo que requisitou a E/S e move o processo da fila de bloqueados para a fila de prontos;
- Quando o escalonador escalona o processo para a CPU, ele retoma a execução na conclusão da chamada ao sistema.

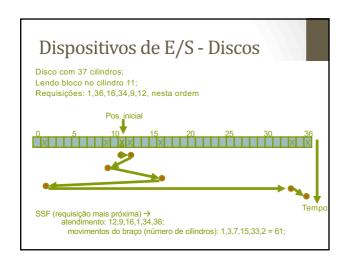

Dispositivos de E/S - Discos

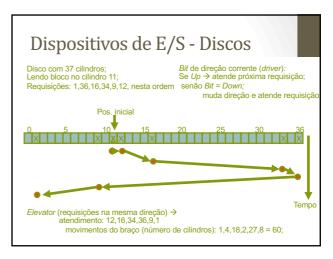

- · Discos Magnéticos:
 - · Grande evolução com relação
 - Velocidade de acesso (seek): tempo de deslocamento do cabeçote até o cilindro correspondente à trilha a ser acessada:
 - Transferências: tempo para transferência (leitura/escrita) dos dados;
 - Capacidade;
 - Preço.

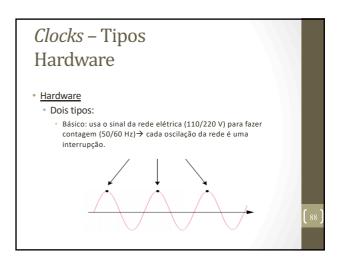

Dispositivos de E/S - Discos

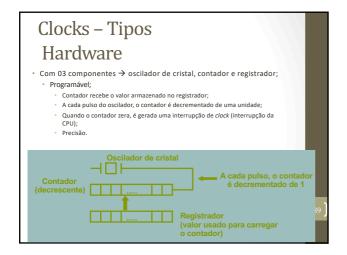
- Técnica para reduzir o tempo de acesso: entrelaçamento (*interleaving*):
 - Setores são numerados com um espaço entre eles;
 - Entre o setor K e o setor K+1 existem n (fator de entrelaçamento) setores;
 - Número n depende da velocidade do processador, do barramento, da controladora e da velocidade de rotação do disco.

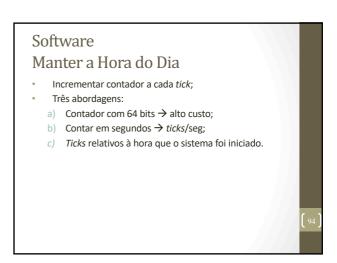


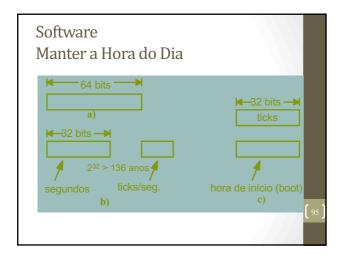


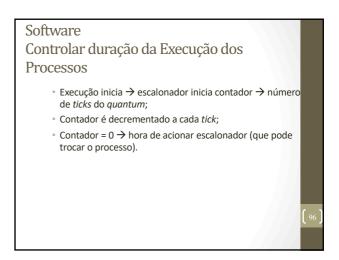



Dispositivos de E/S – Discos • Algoritmos de escalonamento no disco: • FCFS (FIFO) → First-Come First-Served; • SSF → Shortest Seek First; • Elevator (também conhecido como SCAN); • Escolha do algoritmo depende do número e do tipo de pedidos; • Driver mantém uma lista encadeada com as requisições para cada cilindro.



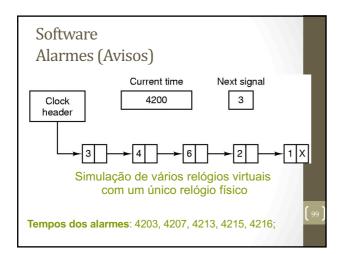


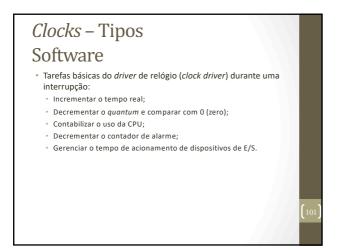



Clocks – Tipos Hardware • Square-wave mode • Repete o ciclo automaticamente, sem intervenção de software; • As periódicas interrupções geradas pela CPU são chamadas de clock ticks (pulsos do relógio).

Clocks - Tipos Software • Hardware → gera interrupções em intervalos conhecidos (clock ticks); • Tudo o mais é feito por Software: clock driver; • Funções do clock driver: • Manter a hora do dia; • Evitar que processos executem por mais tempo que o permitido; • Supervisionar o uso da CPU; • Cuidar da chamada de sistema alarm; • Fazer monitoração e estatísticas; • Prover temporizadores "guardiões" para os dispositivos de E/S.

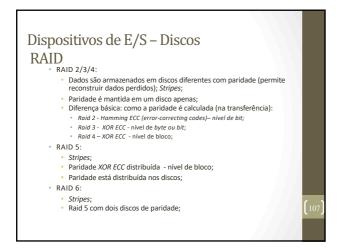
Software Manter a Hora do Dia • Hora e data correntes: • Checa a CMOS; • Uso de baterías para não perder as informações • Pergunta ao usuário; • Checa pela rede em algum host remoto; • Número de clock ticks: • Desde às 12 horas do dia 1º de janeiro de 1970 no UNIX; • Desde o dia 1º de janeiro de 1980 no Windows.

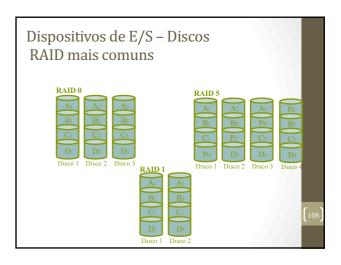




Software Supervisão do uso da CPU • Quanto tempo o processo já foi executado? • Processo inicia → novo clock (segundo relógio) é iniciado; • Processo é parado → clock é lido; • Durante interrupções → valor do clock é salvo e restaurado depois; • Possível usar a tabela de processos → variável global armazena o tempo (em ticks).

Software Alarmes (Avisos) Processos podem requerer "avisos" de tempos em tempos; Avisos podem ser: um sinal, uma interrupção ou uma mensagem; Exemplo: redes de computadores → pacotes não recebidos devem ser retransmitidos; Uma lista encadeada com os tempos dos alarmes pendentes é mantida: Simulação de vários relógios virtuais em um único relógio físico.


Dispositivos de E/S – Discos RAID RAID (Redundant Array of Independent Disks) → armazena grandes quantidades de dados; RAID combina diversos discos rígidos em uma estrutura lógica: Aumentar a confiabilidade, capacidade e o desempenho dos discos; Recuperação de dados → redundância dos dados; Armazenamento simultâneo em vários discos permite que os dados fiquem protegidos contra falha (não simultânea) dos discos; Performance de acesso, já que a leitura da informação é simultânea nos vários dispositivos.


Dispositivos de E/S – Discos RAID • Pode ser implementado por: • Hardware (controladora): • Instalação de uma placa RAID no servidor, o subsistema RAID é implementado totalmente em hardware; • Libera o processador para se dedicar exclusivamente a outras tarefas; • A segurança dos dados aumenta no caso de problemas devido à checagem da informação na placa RAID antes da gravação.

Dispositivos de E/S – Discos RAID Pode ser implementado por: Software (sistema operacional) Menor desempenho no acesso ao disco; Oferece um menor custo e flexibilidade; Sobrecarrega o processador com leitura/escrita nos discos; Para o SO existe um único disco.

Dispositivos de E/S – Discos RAID • A forma pela qual os dados são escritos e acessados define os níveis de RAID (até 9 níveis): • RAID 0: • Também conhecido como Stripping; • Arquivos são espalhados entre os discos em stripes; • Melhora desempenho das operações de E/S; • Sem controle ou correção de erros; • Todo o espaço do disco é utilizado para armazenamento; • Utilizam mesma controladora (controladora RAID); • Aplicações multimídia (alta taxa de transferência);

