
An Industrial Application of Mutation Testing:
Lessons, Challenges, and Research Directions

Goran Petrović Marko Ivanković
Google Switzerland GmbH

Zurich, Switzerland

{goranpetrovic, markoi}@google.com

Bob Kurtz Paul Ammann
George Mason University

Fairfax, VA, USA

{rkurtz2, pammann}@gmu.edu

René Just
University of Massachusetts

Amherst, MA, USA

rjust@cs.umass.edu

Abstract—Mutation analysis evaluates a testing or debugging
technique by measuring how well it detects mutants, which are
systematically seeded, artificial faults. Mutation analysis is inher-
ently expensive due to the large number of mutants it generates
and due to the fact that many of these generated mutants are not
effective; they are redundant, equivalent, or simply uninteresting
and waste computational resources. A large body of research
has focused on improving the scalability of mutation analysis
and proposed numerous optimizations to, e.g., select effective
mutants or efficiently execute a large number of tests against a
large number of mutants. However, comparatively little research
has focused on the costs and benefits of mutation testing, in
which mutants are presented as testing goals to a developer, in
the context of an industrial-scale software development process.

This paper draws on an industrial application of mutation
testing, involving 30,000+ developers and 1.9 million change sets,
written in 4 programming languages. It shows that mutation
testing with productive mutants does not add a significant
overhead to the software development process and reports on
mutation testing benefits perceived by developers. This paper
also quantifies the costs of unproductive mutants, and the results
suggest that achieving mutation adequacy is neither practical
nor desirable. Finally, this paper describes lessons learned from
these studies, highlights the current challenges of efficiently
and effectively applying mutation testing in an industrial-scale
software development process, and outlines research directions.

I. INTRODUCTION

Mutation testing offers a rigorous test efficacy criterion,

which subsumes many code coverage criteria [1], and there

is strong empirical evidence that mutants are a valid proxy

for real faults [2], [3]. Despite its effectiveness, there are

no indications that mutation testing is widely adopted as a

test efficacy criterion in practice, even after three decades of

research [4]. We conjecture that this is partially due to its

heavy computational footprint [5], but to a larger extent due

to disconnects between research and practice. For example,

even assuming that all generated mutants can be efficiently

evaluated, presenting the results to a developer in a meaningful

and actionable manner is virtually impossible given the large

number of mutants. A developer will not use a technique when

the time investment is large and the perceived gain is not

reciprocal, especially if non-standard tooling is required that

is not integrated into the existing developer’s workflow [6].

This paper draws three lessons from these disconnects, and

we hypothesize that resolving the disconnects will significantly

advance the adoption of mutation testing in practice.

Lesson 1: Some mutants shouldn’t be killed. The re-

search community has focused on identifying and eliminating

equivalent mutants, which are considered a major burden for

developers, and redundant mutants, which inflate the mutation

score. Non-equivalent and non-redundant mutants are consid-

ered useful. However, the case studies presented in this paper

suggest that there are a significant number of non-equivalent

and non-redundant mutants that are not useful in practice.

These are simply unproductive mutants, which represent futile

testing goals—and developer frustration.

Lesson 2: The unit of work matters. The research com-

munity typically considers mutation adequacy at the method or

file level in the context of a single language. However, the stan-

dard unit of work for a developer is the commit, which amounts

to lines of code added, deleted, or modified, often distributed

across multiple files and multiple languages. Mutation ade-

quacy at the method or file level would require a developer to

analyze mutants and write tests outside the scope of a commit,

an obligation inevitably viewed as an unwelcome diversion.

Lesson 3: Mutation adequacy is too expensive. The

research community has focused on mutation adequacy. How-

ever, a rational goal for a developer is to just make a test
suite better, but not mutation adequate. Philosophically, this
returns to the roots of mutation testing: providing hints for

the practicing programmer [7].

This paper reports on an industry-scale application of mu-

tation testing, identifies challenges to be solved, and proposes

research directions to ease future adoption. Specifically, the

paper’s contributions and organization are as follows:

• The development of the notion of productive mutants

(Lesson 1: Section II).

• A case study on using mutation testing in a commit-

oriented code-review process (Lesson 2: Section III).

• A case study on the costs of unproductive mutants and

mutation adequacy (Lesson 3: Section IV).

• A summary of lessons, current challenges, and future

research avenues (Section V).

II. PRODUCTIVE MUTANTS

The mutation testing literature generally considers killable

mutants desirable (since these mutants lead to tests) and

equivalent mutants undesirable (since these mutants don’t).

47

2018 IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5386-6352-3/18/$31.00 ©2018 IEEE
DOI 10.1109/ICSTW.2018.00027

One of the inescapable observations from the studies presented

in this paper is that this classification is unworkable in practice.

Specifically, there exist killable mutants for which developers

justifiably should not and, in practice, will not write tests.

Conversely, equivalent mutants sometimes reveal issues in the

program and lead developers to make useful changes such as

refactoring the code or removing redundancy1.

We argue that the two equivalence classes of killable mu-

tants and equivalent mutants are insufficient to capture the

notion of developer productivity and propose a new definition:

A mutant is productive if 1) the mutant is killable and

elicits an effective test, or 2) the mutant is equivalent but

its analysis advances knowledge and code quality.

It is important to emphasize that the notion of productive vs.

unproductive mutants is inherently qualitative: different devel-

opers may sometimes reach different conclusions as to whether

a test is effective or whether inspecting a mutant advances the

developer’s understanding of the code. Nonetheless, a devel-

oper, who just analyzed a mutant as part of a development task,

is well-placed to make this judgement call. The industrial study

in section III specifically collects developers’ judgement on

each surfaced mutant, and a negative assessment from a devel-

oper maps directly to the notion of an unproductive mutant.

Unproductive killable mutants For killable mutants, there

are many instances for which developers rarely, if ever, write

a unit test—nor should they. As an example, consider the

string message associated with an exception or logging output.

The string message provides potentially useful diagnostic

information, and replacing this message with an empty string

or a null reference usually results in a killable mutant. Yet,

adding a test that detects such a mutant arguably does not

improve the effectiveness of the test suite. Rather, it bloats the

test suite with a meaningless and hard-to-maintain test. Such a

mutant, while killable, is unproductive, and hence should not

be surfaced to the developer.

Figure 1 provides additional examples for unproductive

mutants. These examples are derived from our case studies

in Section III and IV:

• Figure 1a: Comparing floating points is a tricky business,

especially when not testing for zero. For most floating-

point comparisons, replacing > with => is meaningless

and results in an unproductive mutant—testing for equal-

ity of floating points is discouraged and bad practice.

• Figure 1b: In Python, mutating a del statement results

in an unproductive mutant. While this mutant is killable,

writing a test for it is a very involved task because that

test needs to access and inspect the Python runtime.

• Figure 1c: The preferred Google code style for Python

requires that if some code path of a function returns a

value, then all code paths in that function must explicitly

return instead of relying on default behavior (i.e., return

None. Removing a return None produces an equivalent

1Coles made a similar argument in his 2017 Mutation keynote talk, based
on developers’ feedback regarding the usefulness of some equivalent mutants.

1 − return resolved_confidence_value > 0.95
2 + return resolved_confidence_value >= 0.95

(a) Testing for equality of non-zero floating point numbers is dis-
couraged and mostly meaningless, and hence unproductive.

1 x = 5
2 ...
3 − d e l x

(b) While it is possible to test for a missing del statement by
inspecting Python’s runtime, it is unproductive to do so.

1 def returnIsLeaf():
2 if False:
3 return 15
4 else:
5 x = 4
6 − return None

(c) The deletion of a return None statement in Python is an
unproductive mutant as it breaks the code style guidelines.

1 − new ArrayList<>(x ∗ 2);
2 + new ArrayList<>(x + 2);

(d) Changing the initial capacity of a collection only affects perfor-
mance, which is out of scope for unit testing.

Fig. 1: Examples for unproductive mutants.

mutant or breaks the code style, which is enforced via

static analysis. The latter implies an unproductive mutant.

• Figure 1d: Constructors of many Java collections such

as HashMap or ArrayList take an initial capacity as

a parameter. Changing the initial capacity produces a

functionally equivalent mutant, which potentially impairs

program performance—a problem unit testing is not

concerned with. This mutant is technically killable by

asserting on the collection capacity or tracking memory

allocations, but it is unproductive to do so.

There are many other types and of language-agnostic unpro-

ductive mutants. For example, changing the duration of time

variables (e.g., sleep(1)) results in unproductive mutants.

Such time-related code constructs are commonly used for RPC

layers, which are usually mocked in testing, and otherwise

don’t change the functional behavior of the program under

normal operation. Likewise, mutants that remove calls to

Start and Stop functions on plentiful RPC servers and

corresponding Wait functions are unproductive because they

do not affect the behavior of the servers under unit tests.

The exhaustive list of identified unproductive mutants is

exorbitant, but these examples provide a good overview.

Productive equivalent mutants For equivalent mutants, the

distinction between productive and unproductive is murkier;

while productive killable mutants lead to immediate tangible

outcome in terms of effective tests, productive equivalent

mutants lead to a better understanding of the code and, in

turn, may lead to code improvements.

Examples of productive yet equivalent mutants tend to be

long and involved—the reason why they advance knowledge

about the code—so we describe some examples without pro-

viding source code. A mutant that is equivalent due to an

48

unexpectedly short propagation can pinpoint error masking

or redundancy in the code, where a result is discarded and

recomputed. Similarly, deleting an optimization results in an

equivalent mutant, but if the optimization is premature, the

equivalent mutant can draw the developer’s attention to that

fact. An equivalent mutant which indicates ambiguity in the

code can lead the developer to refactor that code so that the

mutant becomes, in fact, killable.

Section IV quantifies the number and costs of unproductive

mutants; simple-to-analyze equivalent mutants were generally

considered unproductive, but complex-to-analyze ones some-

times were actionable, and hence productive.

Unproductive redundant mutants Redundant mutants can

be unproductive if they are unrealistic or generally hard to

understand—compared to a simpler alternative mutant. While

a complex redundant mutant still forces the same valuable

test as the simpler alternative, we argue that in this case,

the developer would waste valuable time understanding the

mutant before writing that test. As an example, consider the

conditional statement if (x < a || x > b), which tests

whether a value x lies outside the (non-empty) range from a to

b. Two mutually redundant, killable mutants for this code are

if (x < a && x > b and if (false). Both mutants are

killable and elicit the same test, but the first mutant is harder

to understand, and hence less productive than the second.

III. MUTATION TESTING IN PRACTICE

This section reports on a large-scale case study of applying

mutation testing at Google. Specifically, it first describes the

implemented mutation testing approach and then evaluates the

costs and benefits of this approach.

A. Mutation Testing at Google

Mutation testing at Google is integrated in the code review

process, which requires approval from reviewers with own-

ership and expertise in the language to submit the change.

Aside from the comments from the human reviewers, Google’s

code review tool Critique surfaces analysis data on various

aspects of the change both to the author and reviewers. For

example, Google’s static analysis system Tricorder provides

data on code coverage, test results, and code formatting [8].

An author can only submit the change to the source tree when

all required approvals are granted by the reviewers.

Critique surfaces live mutants, pointing the author and

reviewers to a potential issue with the test suite or source

code itself. The author may choose to kill a mutant by adding

a test case, to change the code, or to ignore that mutant.

The reviewers can instruct the author to kill a mutant, unless

the author can provide a satisfying counterargument for why

it is not useful to do so. Additionally, the author and the

reviewers can indicate in Critique whether a surfaced mutant

was useful and provide qualitative feedback for why or why

not. The provided feedback informs mutant suppression for

future commits. Recall from section II that we consider a

mutant unproductive if the author and the reviewer indicated

that the mutant was not useful.

For any given commit, Critique surfaces at most one mutant

per changed or added line for two reasons: 1) it reduces the

visual intrusion into the developer’s workflow and 2) it is

a performance optimization to save computational resources

and provide timely analysis feedback. Additionally, the total

number of surfaced mutants per commit is capped. The se-

lection of mutants to surface is driven by historical mutant

survival rates and the feedback obtained from authors and

reviewers—unproductive mutants are suppressed and hard-to-

detect mutants are surfaced with a higher probability.

The combination of commit-level, selective mutation and

unproductive mutant suppression make mutation testing prac-

tical in a large-scale software development environment like

Google, where 400,000 mutants are evaluated every month and

the reported ratio of productive mutants is 80% and rising [9].

Considering a code repository of 2 billion lines of code

and 40,000 commits every day [8], we argue that aiming

at mutation adequacy is hopeless. Even driving statement

coverage improvements across some Google teams has proven

a challenging endeavor, and statement coverage is a much

simpler metric to measure, display, and improve. However,

commit-level, selective mutation testing with unproductive

mutant suppression is a viable approach.

B. Costs of Mutation Testing

We wished to study whether surfacing live mutants adds

a significant overhead to the review and revision process—

compared to surfacing only code coverage information. To that

end, we analyzed the size of commits, the time it took to

submit them, and whether or not mutants were surfaced during

the review. We identified relevant commits as follows:

1) Consider all commits submitted in 2017.

2) Discard types of commits to which code coverage

analysis and mutation testing is not applicable. This

includes commits that affect only binary files, tests,

documentation, or configuration files. This also includes

commits that only delete code.

3) Discard commits not written in Java, C++, Python, or

Go. While mutation testing at Google is supported for

nine languages, these four languages account for almost

85% of all relevant commits.

4) Discard commits written in more than one language.

Polyglot commits may introduce a bias due to a longer-

than-usual time to submit and uncertainty about the

review process. About 90% of the commits were written

in a single language.

5) Discard commits from third-party and experimental

projects. These commits may introduce a bias due to

different review requirements.

6) Discard rollback commits and cleanup commits.

Cleanup commits are automated commits for which code

metrics are usually ignored.

7) Discard outliers—that is, commits whose time to submit

is larger than one month.

Overall, we identified and analyzed 1.9 million commits,

written in 4 programming languages by 30,000+ developers.

49

Fig. 2: Distributions of time to submit for each quintile of commit size (Delta Bucket) and analysis category. Time to submit
(log) gives the ln-transformed time to submit, which is measured in seconds.

Both, the average size of a commit and the average time

to submit a commit vary significantly between programming

languages—some languages are more verbose than others.

Considering the set of 1.9 million commits, Python commits

tend to be half the size of Java and C++ commits, differences

in commit size between Java and C++ are negligible, and the

average size of Go commits falls in the middle between Python

and Java/C++. Therefore, we separately analyzed the data for

each programming language but compared overall trends.

For each programming language, we binned all commits

based on delta size (i.e., the total number of added, removed,

or changed lines). Specifically, we chose five bins based on

the quintiles of all commits for that language. For each bin,

we then computed and analyzed the distributions of time to

submit in three analysis categories:

1) No analysis: Only test results (pass/fail) are available.

2) Coverage: Test and code coverage results are available.

3) Coverage+Mutation: Test, code coverage, and mutation

results are available.

In all delta size bins, there are tens of thousands of commits

with only test results, hundreds of thousands of commits with

test and code coverage results, and thousands of commits with

test, code coverage, and mutation analysis results.

Note that we do not distinguish between commits for which

the surfaced mutants were deemed productive vs. unproductive

for two reasons. First, an unproductive mutant still requires hu-

man analysis to make this judgement call. Second, a developer

may also ignore information about an uncovered statement or

branch if it is unproductive or impossible to write a test that

covers it. Therefore, including all commits for code coverage

and mutation analysis enables a realistic and fair evaluation.

Figure 2 shows the distributions of time to submit for each

programming language, delta size bin, and analysis category.

Overall, the results show little variation between analysis cate-

gories for a given language and delta size bin. Additionally, the

average time to submit increases with delta size, which is ex-

pected. Figure 2 also shows similar trends for all programming

languages. Further analyzing the differences, we tested the

hypothesis that the difference for time to submit is not signifi-

cantly (statistically and practically) different between the anal-

ysis categories. We chose the non-parametric Mann-Whitney

U test and Vargha and Delaney’s A12 effect size [10].

The results show that all differences are statistically sig-

nificant, which is expected given the enormous sample size.

However, what matters is the effect size—that is, whether the

differences are practically significant. The results show little

to no effect, with a notable exception in the two smallest

bins. For these two bins, the differences between commits

with code coverage results and commits with mutation results

show a small to moderate effect (between .58 and .68); time

to submit is larger for commits with mutation results. For the

three largest bins, all effect sizes are negligible (between .53
and .55). Comparing commits with only tests and commits

with additional coverage information, the effect size is negli-

gible (between .48 and .52) across all bins and languages.

50

For better interpretation of these results, we offer insights

into the development and code review processes. While code

coverage is an important measure and projects generally

have good coverage metrics [9], small changes of only a

few lines, or larger automated changes like renames rarely

consider coverage or mutation as relevant metrics; in those

cases tests ensuring no breakages suffice. In case of features

accompanied by tests, coverage and mutation information is

much more useful. Many small changes will get submitted

without consuming the analysis results, some will even be

submitted before the analysis has completed. This is true

for coverage and for mutation testing, which requires the

completion of the coverage analysis. Larger feature changes

requiring thorough review will not be submitted by the time

coverage and mutation testing results are surfaced and they

are more likely to be picked out by the reviewers. We argue

that the non-negligible differences between commits with code

coverage results and commits with mutation results in the two

smallest bins (figure 2) are, in part, a consequence of this

particular development process. Moreover, human expert time

is a much scarcer resource—by orders of magnitude—than

CPU time spent on performing code coverage or mutation

analysis. Our study over-approximates the human time by

considering the overall analysis time—the actual human time,

in particular for mutation testing, is likely to be much lower.

Although our results stem from 1.9 million commits, 4 pro-

gramming languages, and 30,000+ developers, they may not be

representative of other developers or development processes.

Commit-level mutation testing does not add a significant

overhead compared to using code coverage analysis in

a commit-oriented code-review process. This observation

holds for all studied programming languages.

C. Benefits of Mutation Testing

Using developer feedback for identifying and suppressing

unproductive mutants, the perceived usefulness of surfaced

mutants in Critique improved from 20% to 80% [9]. Developer

feedback comes in other non-quantifiable ways too, and for

mutation testing it has been extensive. Developers have de-

cided to redesign large chunks of code to make them testable

just so a mutant could be killed, they have found bugs in

complex logical expressions looking at mutants, they have

decided to remove code with an equivalent mutant because

they deemed it a premature optimization, they’ve claimed the

mutant saved them hours of debugging and even production

outages because no test cases were covering the logic under

mutation properly. Mutation testing has been called one of the

best improvements in the code review verification in years.

While this feedback is hardly quantifiable, combined with the

sheer number of thousands of developers willing to inspect

surfaced mutants on their code changes makes a statement.

Developers report many perceived benefits of mutation

testing, including stronger tests, more effective debugging,

prevention of bugs, and improved code quality.

TABLE I: Number of mutants in selected subjects from Lang.
Mutants gives the total number of mutants, Live Dev gives the num-
ber of mutants not killed by the developer tests, Live Dev+Evo gives
the number of mutants not killed by the developer or EvoSuite tests,
and Equivalent gives the number of equivalent mutants.

Subject Mutants Live Dev Live Dev+Evo Equivalent

Lang-33 754 131 (17.4%) 108 (14.3%) 80 (10.6%)
Lang-44 1096 284 (25.9%) 207 (18.9%) 118 (10.8%)
Lang-49 1369 246 (18.0%) 229 (16.7%) 142 (10.5%)

Total 3219 661 (20.5%) 544 (16.9%) 340 (10.6%)

TABLE II: Number of examined and unproductive mutants in

selected subjects from Lang.

Lang-33 Lang-44 Lang-49 Total

mutants time mutants time mutants time mutants time

Examined 91 365 158 818 179 782 428 1965
+killed 11 67 40 387 37 322 88 776
+equivalent 80 298 118 431 142 460 340 1189

Unproductive 57 193 40 136 43 128 140 457
+killed 15 58 16 101 18 98 49 257
+equivalent 42 135 24 35 25 30 91 200

IV. THE COSTS OF UNPRODUCTIVE MUTANTS

To understand the amount of effort required to develop

a mutation-adequate test set, we used the Defects4J bench-

mark [11] (v1.1.0), which provides a set of 395 subjects from

six open-source projects, each accompanied by a thorough

developer-written test suite. For this effort we selected subjects

from the Lang project where the associated test suite achieved

at least 95% statement coverage, then randomly selected three

subjects (Lang-33, Lang-44, and Lang-49). All three are of

fairly typical size compared to other Lang subjects in De-

fects4J, and yielded 754, 1096, and 1369 mutants, respectively

(see table I). We used the Major mutation framework [12] to

generate mutants for the subjects (modified classes [11]) and

to perform the mutation analysis. The developer-written test

suites of the subjects killed all but 20.5% of the mutants.

In order to more closely approximate the mutants that

were actually equivalent, we used the EvoSuite tool [13] to

automatically generate additional tests. These tests killed a

modest number of additional mutants, reducing the number of

live mutants to 16.9% of the total number of mutants.

Finally, we performed mutation testing with the overall goal

of developing a mutation-adequate test set for each subject.

We manually examined the remaining live mutants to identify

which were truly equivalent, and wrote additional tests to

kill the others. This significantly reduced the number of live

mutants to 10.6%, showing that even with a high-quality test

suite with very high statement coverage, approximately half

of the remaining live mutants can in fact be killed.

Achieving a mutation-adequate test set, however, was not

a trivial task. Manual review of the mutants not killed by

developer or generated tests required an average of 4.6 minutes

per mutant, for a total time of 32.8 hours. This average time

is substantially shorter than the 15 minutes reported in prior

51

studies [14], [15], but those studies sampled mutants at random

from a variety of classes. In contrast, we examined many

mutants from a limited number of classes, which allowed for

increasing familiarity with the code and increased efficiency.

Overall, our results are consistent with prior work: the average

time to examine each of the first 10 equivalent mutants from

each subject (when familiarity with the code was not yet

established) was 11.7 minutes.

We identified 140 unproductive mutants (32.7%) from the

428 mutants that we examined, as shown in table II. Un-

productive killed mutants accounted for 35.0% of the 140

unproductive mutants, and required the most developer time

with an average of 5.2 minutes per mutant needed to kill

each one. This is more than the average of 4.6 minutes for

all mutants and nearly 50% more than the 3.5 minutes for

equivalent mutants, making these a particular waste of time.

Unproductive equivalent mutants were more plentiful, but were

easier to review, requiring only 2.2 minutes per mutant.

We also found 17 examples of redundant mutants, where

the mutants elicited a useful test, but a simpler mutant exists

that elicits the same test while being more easily understood.

Redundant mutants are not included in table II since they were

not strictly wasted effort. Similarly, many equivalent mutants

were not strictly unproductive. In many cases, mutants were

only equivalent because of the specific implementation of the

code; these mutants provided useful insights and a similar

mutation elsewhere in the code or in a different application

might well elicit a valuable test. Further, we found several

examples where equivalent mutants revealed code redundancy

that might lead a developer to refactor the code, improving its

clarity. Such equivalent mutants seem in fact quite productive.

A large ratio of mutants not killed by thorough, industrial-

strength test suites are unproductive mutants. The time to

write a test to kill an unproductive mutant is on average

higher than the time to determine mutant equivalence.

V. CHALLENGES AND RESEARCH DIRECTIONS

Based on the case studies reported in this paper, we iden-

tified the following challenges for widespread adoption of

mutation testing in practice:

• Unproductive mutants represent futile testing goals, and

developers are not willing to waste their time on writing

pointless tests just to satisfy mutation adequacy. This is

similar to code coverage: some lines or branches are more

important than others, and 100% code coverage is neither

the norm2 nor considered desirable in many cases [16].

• A developer’s workflow revolves around commits. Suc-

cessfully deploying mutation testing requires a smooth

integration into this workflow.

• There are far more mutants than developers can analyze

in a reasonable time frame. Since only very few mutants

should be surfaced, the challenge is to pick the most

productive ones.

2https://testing.googleblog.com/2014/07/measuring-coverage-at-google.html

To address these challenges, we propose the following

research directions and high-level research questions:

• The notion of a productive mutant is based on whether it

improves the test suite, the code base, or knowledge. Can

this inherently fuzzy notion be formally characterized,

independently of developer judgment?

• Surfacing only developer-preferred mutants may bias the

resulting test set with respect to faults in developer blind

spots. Can crowdsourcing avoid such a bias?

• Productive mutants cannot be identified in a program-

agnostic manner. Can mutation testing be customized to

the program under test to be context sensitive and surface

mostly productive mutants?

• Coupling between real faults and mutants is still far from

being perfect, and selecting fewer mutants decreases fault

coupling even further. Is it possible to achieve high fault

coupling with a very small set of mutants?

• Currently, mutation testing at Google surfaces at most

one mutant per line of code in a commit. Is this the

“right” number, and under what circumstances would it

be appropriate to surface fewer or more mutants?

• As successive commits revisit the same code over time,

does the resulting test set approach mutation adequacy?

VI. RELATED WORK

Mutation testing effectiveness and efficiency Fault-

coupling for state-of-the-art mutation systems, while impres-

sive with respect to other coverage criteria, still peaks well

short of what is possible. Increasing fault-coupling requires ad-

ditional mutation operators, and the number of mutants grows

very quickly with these mutation operators [17], [18], [19].

To combat cost, the research community has long explored

program-agnostic mutant selection strategies [4], [20]—none

outperform random selection [21], [22]. Recent work showed

that program context matters and explored rule-based and

probabilistic approaches to mutant selection [9], [23], [24].

Specifically, Petrović and Ivanković use developer feedback to

identify and suppress mutants in uninteresting AST nodes [9].

They summarized heuristics for both generic and language-

specific mutant suppression. Just et al. proposed an AST-

based program context model, suitable for predicting mutant

effectiveness [23]. Fernandez et al. developed 37 rules for

useless mutants in Java programs, where the term useless

covers both equivalent and redundant mutants [24]. The initial

results show promise for developing selection strategies that

do outperform random selection. Further, Zhang et al. used

machine learning to predict mutation scores both on successive

versions of a given project and across projects [25].

Mutation testing in practice Reports on large scale ap-

plication of mutation testing are still rare. Ahmed et al. [26]

reported on the experience of applying mutation testing to

parts of the Linux kernel. The PIT project aims to make

mutation testing usable by practicing developers and sees

adoption in industry [27].
Redundant and equivalent mutants A large fraction of

the mutation literature has focused on addressing the com-

52

putational costs and the equivalent mutant problem [4]. Re-

searchers search for techniques that avoid redundant mutants,

which not only increase costs but also inflate the mutation

score [28], and instead favor hard-to-detect mutants [29],

[30] or dominator mutants [31]. Even in the very recent

literature [32], effectiveness for mutants is primarily defined in

terms of redundancy and equivalence, and does not include the

notion that non-redundant mutants might be unproductive or

that equivalent mutants can be productive. In our experience,

redundant and equivalent mutants have been less problematic

than unproductive non-redundant and non-equivalent mutants.

VII. CONCLUSIONS

This paper draws lessons from an industry-scale application

of mutation testing, identifies challenges that need to be

addressed, and proposes research directions to advance the

adoption of mutation testing in practice.

Our long-term vision for mutation testing in an industrial

setting leverages fine-grained historical data on program con-

text, mutant survival rates, and developer feedback on the

usefulness of surfaced mutants. Machine learning classifiers

trained on this rich dataset can then predict highly productive

mutants to guide the testing effort of a developer.

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed.
Cambridge, UK: Cambridge University Press, 2017, ISBN 978-1-107-
17201-2.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in Proceedings of the International
Conference on Software Engineering (ICSE), May 2005, pp. 402–411.

[3] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?”
in Proceedings of the Symposium on the Foundations of Software
Engineering (FSE), November 18–20 2014, pp. 654–665.

[4] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering (TSE),
vol. 37, no. 5, pp. 649–678, 2011.

[5] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the International Conference on Software Engineering
(ICSE), May 2017, pp. 609–620.

[6] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-
ings of the International Conference on Software Engineering (ICSE),
May 2013, pp. 672–681.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer, vol. 11,
no. 4, pp. 34–41, April 1978.

[8] R. Potvin and J. Levenberg, “Why Google stores billions of lines of
code in a single repository,” Communications of the ACM, vol. 59, pp.
78–87, Jul. 2016.

[9] G. Petrović and M. Ivanković, “State of mutation testing at Google,” in
Proceedings of the International Conference on Software Engineering—
Software Engineering in Practice (ICSE SEIP), May 2018.

[10] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability (JSTVR), vol. 24, no. 3, pp. 219–250,
2014.

[11] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of exist-
ing faults to enable controlled testing studies for Java programs,” in
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), July 23–25 2014, pp. 437–440.

[12] R. Just, “The Major mutation framework: Efficient and scalable mutation
analysis for Java,” in Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), July 2014, pp. 433–436.

[13] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite generation for
object-oriented software,” in Proceedings of the Joint Meeting of the
European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering (ESEC/FSE), September 2011, pp.
416–419.

[14] B. J. Grün, D. Schuler, and A. Zeller, “The impact of equivalent
mutants,” in Proceedings of the International Workshop on Mutation
Analysis (Mutation), April 2009, pp. 192–199.

[15] D. Schuler and A. Zeller, “(un-)covering equivalent mutants,” in Pro-
ceedings of the International Conference on Software Testing, Verifica-
tion and Validation (ICST), April 2010, pp. 45–54.

[16] B. Marick, “How to misuse code coverage,” in Proceedings of the
Interational Conference on Testing Computer Software (ICTCS), June
1999, pp. 16–18.

[17] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An
experimental determination of sufficient mutant operators,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 5,
no. 2, pp. 99–118, 1996.

[18] D. B. Brown, M. Vaughn, B. Liblit, and T. Reps, “The care and
feeding of wild-caught mutants,” in Proceedings of the Symposium on
the Foundations of Software Engineering (FSE), September 2017, pp.
511–522.

[19] M. Allamanis, E. T. Barr, R. Just, and C. Sutton, “Tailored mutants fit
bugs better,” arXiv preprint arXiv:1611.02516, 2016.

[20] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid, “Operator-based
and random mutant selection: Better together,” in Proceedings of the
International Conference on Automated Software Engineering (ASE),
November 2013, pp. 92–102.

[21] R. Gopinath, M. A. Alipour, I. Ahmed, C. Jensen, and A. Groce,
“On the limits of mutation reduction strategies,” in Proceedings of the
International Conference on Software Engineering (ICSE), May 2016,
pp. 511–522.

[22] R. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and
N. Gökçe, “Analyzing the validity of selective mutation with dominator
mutants,” in Proceedings of the Symposium on the Foundations of
Software Engineering (FSE), November 2016, pp. 571–582.

[23] R. Just, R. J. Kurtz, and P. Ammann, “Inferring mutant utility from
program context,” in Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), July 2017, pp. 284–294.

[24] L. Fernandes, M. Ribeiro, L. Carvalho, R. Gheyi, M. Mongiovi, A. San-
tos, A. Cavalcanti, F. Ferrari, and J. C. Maldonado, “Avoiding useless
mutants,” in Proceedings of the International Conference on Generative
Programming: Concepts and Experiences (GPCE), October 2017, pp.
187–198.

[25] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, and L. Zhang,
“Predictive mutation testing,” in Proceedings of the International Sympo-
sium on Software Testing and Analysis (ISSTA), July 2016, pp. 342–353.

[26] I. Ahmed, R. Gopinath, C. Jensen, A. Groce, and P. E. McKenney,
“Applying mutation analysis on kernel test suites: An experience report,”
in Proceedings of the International Workshop on Mutation Analysis
(Mutation), March 2017, pp. 110–115.

[27] H. Coles, “Real world mutation testing,” http://pitest.org, last accessed
January 2018.

[28] R. Just and F. Schweiggert, “Higher accuracy and lower run time:
efficient mutation analysis using non-redundant mutation operators,”
Software Testing, Verification and Reliability (JSTVR), vol. 25, no. 5-
7, pp. 490–507, 2015.

[29] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn
mutation operators using human analysis of equivalence,” in Proceedings
of the International Conference on Software Engineering (ICSE), May
2014, pp. 919–930.

[30] W. Visser, “What makes killing a mutant hard,” in Proceedings of the
International Conference on Automated Software Engineering (ASE),
September 2016, pp. 39–44.

[31] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in Proceedings of the International Conference
on Software Testing, Verification and Validation (ICST), March 2014, pp.
21–31.

[32] P. McMinn, C. J. Wright, C. J. McCurdy, and G. Kapfhammer, “Au-
tomatic detection and removal of ineffective mutants for the mutation
analysis of relational database schemas,” IEEE Transactions on Software
Engineering (TSE), 2017.

53

