
Chapter 5 

THE ACOUSTIC WAVE 
EQUATION AND 
SIMPLE SOLUTIONS 

5.1INTRODUCTION 

Acoustic waves constitute one kind of pressure fluctuation that can exist in a 
compressible fluido In addition to the audible pressure fields of modera te intensity, 
the most familiar, there are also ultrasonic and infrasonic waves whose frequencies 
lie beyond the limits of hearing, high-intensity waves (such as those near jet engines 
and missiles) that may produce a sensation of pain rather than sound, nonlinear 
waves of still higher intensities, and shock waves generated by explosions and 
supersonic aircraft. 

lnviscid fluids exhibit fewer constraints to deformations than do solids. The 
restoring forces responsible for propagating a wave are the pressure changes that oc
cur when the fluid is compressed or expanded. Individual elements of the fluid move 
back and forth in the direction of the forces, producing adjacent regions of com
pression and rarefaction similar to those produced by longitudinal waves in a bar. 

The following terminology and symbols will be used: 

r = equilibrium position of a fluid element 

r = xx + yy + zz 

(x, y, and z are the unit vectors in the x, y, and z directions, respectively) 

g = particle displacement of a fluid element from its equilibrium position 

ü = particle velocity of a fluid element 

p = instantaneous density at (x, y, z) 

po = equilibrium density at (x, y, z) 

s = condensation at (x, y, z) 

(5.1.1) 

(5.1.2) 

(5.1.3) 
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s = (p - pO)/ pO 

p - PO = POS = acoustic density at (x, y, Z) 

i1f = instantaneous pressure at (x, y, Z) 

i1fO = equilibrium pressure at (x, y, Z) 

P = acoustic pressure at (x, y, Z) 

c = thermodynamic speed Of sound of the fluid 

<I> = velocity potential of the wave 

ü = V<I> . 

T K = temperature in kelvins (K) 

T = temperature in degrees Celsius (or centigrade) (0C) 

T + 273.15 = TK 

(5.1.4) 

(5.1.5) 

(5.1.6) 

(5.1.7) 

The terms fluid element and particle mean an infinitesimal volume of the fluid 
large enough to contain millions of molecules so that the fluid may be thought of 
as a continuous medium, yet smalI enough that alI acoustic variables are uniform 
throughout. 

The molecules of a fluid do not have fixed mean positions in the medium. 
Even without the presence of an acoustic wave, they are in constant random 
motion with average velocities far in excess of any particle velocity associated 
with the wave motion. However, a smalI volume may be treated as an unchanging 
unit since those molecules leaving its confines are replaced (on the average) by 
an equal number with identical properties. The macroscopic properties of the 
element remain unchanged. As a consequence, it is possible to speak of particle 
displacements and velocities when discussing acoustic waves in fluids, as was 
done for elastic waves in solids. The fluid is assumed to be lossless so there are 
no dissipative effects such as those arising from viscosity or heat conduction. The 
analysis will be limited to waves of relatively smalI amplitude, so changes in the 
density of the medium will be smalI compared with its equilibrium value. These 
assumptions are necessary to arrive at the simplest equations for sound in fluids. 
It is fortunate that experiments show these simplifications are successful and 
lead to an adequate description of most common acoustic phenomena. However, 
there are situations where these assumptions are violated and the theory must be 
modified. 

5.2 THE EQUATION OF STATE 

For fluid media, the equation of state must relate three physical quantities describ
ing the thermodynamic behavior of the fluido For example, the equation of state for 
a perfect gas 

i1f = prh (5.2.1) 
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gives the general relationship between the total pressure ÇJ in pascals (Pa), the 
density p in kilograms per cubic meter (kg/m3), and the absolute temperature 
T K in kelvins (K) for a large number of gases under equilibrium conditions. The 
quantity r is the specific gas constant and depends on the universal gas constant 
rzJt and the molecular weight M of the particular gas. See Appendix A9. For air, 
r = 287J/(kg·K). 

Greater simplification can be achieved if the thermodynamic process is re
stricted. For example, if the fluid is contained within a vessel whose walls are 
highly thermally conductive, then slow variations in the volume of the vessel will 
result in thermal energy being transferred between the walls and the fluido If the 
walls have sufficient thermal capacity, they and the fluid will remain at a constant 
temperature. In this case, the perfect gas is described by the isotherm 

ÇJ /ÇJo = p/ po (perfect gas isotherm) (5.2.2) 

In contrast, acoustic processes are nearly isentropic (adiabatic and reversible). The 
thermal conductivity of the fluid and the temperature gradients of the disturbance 
are small enough that no appreciable thermal energy transfer occurs between 
adjacent fluid elements. Under these conditions, the entropy of the fluid remains 
nearly constant. The acoustic behavior of the perfect gas under these conditions is 
described by the adiabat 

ÇJ /ÇJo = (p/ po)'Y (perfect gas adiabat) (5.2.3) 

where 'Y is the ratio of specific heats (or ratio of heat capacities). Finite thermal 
conductivity results in a conversion of acoustic energy into random thermal 
energy so that the acoustic disturbance attenuates slowly with time or distance. 
This and other dissipa tive effects will be considered in Chapter 8. 

For fluids other than a perfect gas, the adiabat is more complicated. In these 
cases it is preferable to determine experimentally the isentropic relationship 
between pressure and density fluctuations. This relationship can be represented 
by a Taylor's expansion 

(
aÇJ) I (a

2
ÇJ) 2 ÇJ = ÇJo + ap (p - po) + 2 a
p

2 (p - po) + ... 
PO po 

(5.2.4) 

wherein the partial derivatives are determined for the isentropic compression 
and expansion of the fluid about its equilibrium density. If the fluctuations are 
small, only the lowest order term in (p - po) need be retained. This gives a linear 
relationship between the pressure fluctuation and the change in density 

ÇJ - ÇJo = ~(p - Po)/ Po (5.2.5) 

with ~ = po(aÇJ/ap)po the adiabatic bulk modulus discussed in Appendix AIl. In 
terms of acoustic pressure p and condensation s, (5.2.5) can be rewritten as 

(5.2.6) 

The essential restriction is that the condensation is small. 



116 CHAPTER 5 THE ACOUSTIC WAVE EQUATION AND SIMPLE SOLUTIONS 

Another approach in expressing the adiabat of any fluid is to model it on the 
adiabat of the perfect gas. This is done by generalizing \l1>o and y to be empirically 
determined coefficients for the fluid in questiono Expanding (5.2.3) in a Taylor's 
series in s and rearranging to isolate the acoustic pressure p = \l1> - \lJb yields 

p = \l1>o[ys + h(y -1)s2 + ... ] (5.2.7) 

Comparing this with (5.2.4) and equating the coefficients through second order in 
s reveals that \l1>o and y can be expressed thermodynamically in general as 

(5.2.8) 

(5.2.9) 

[Both ~ and (a~/ap)po are evaluated under adiabatic conditions.] The quantity 
B / Ais the para meter of nonlinearity of the fluido Thus, knowing ~ and its derivative, 
we can determine \l1>o and y. The equality of coefficients fails for terms of third 
order and above in s, but it has been demonstrated that these higher order terms 
are completely negligible for situations of practical importance.1 Use of standard 
thermodynamic relationships allows the right sides of the above two equations 
to be expressed in terms of other thermodynamic properties of the fluid that are 
much more easily determined experimentally. 

For liquids like water, simple alcohols, liquid metaIs, and many organic com
pounds, y lies between about 4 and 12 and \l1>o between about 1 X 103 and 5 X 

103 atm. The constant \l1>o suggests a fictitious adiabatic internaI pressure, as if 
the liquid in its acoustic behavior were a gas under this hydrostatic pressure. 
The coefficient y is an empirical constant whose difference from unity measures 
the nonlinear relationship between acoustic pressure and condensation. (EIse
where, unless explicit1y stated otherwise, it is the ratio of specific heats.) 

5.3 THE EQUATION OF CONTINUITY 

To connect the motion of the fluid with its compression or expansion, we need 
a functional relationship between the particle velocity ü and the instantaneous 
density p. Consider a small rectangular parallelepiped volume element dV = 

dx dy dz, which is fixed in space and through which elements of the fluid traveI. The 
net rate with which mass flows into the volume through its surface must equal the 
rate with which the mass within the volume increases. Referring to Fig. 5.3.1, we 
see that the net influx of mass into this spatially fixed volume resulting from flow 
in the x direction is 

[pux - ~ux + a(:;x) dx )] dy dz = - a(:;x) dV (5.3.1) 

lBeyer, Nonlinear Acoustics, Naval Ship Systems Command (1974). 
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Figure 5.3.1 An elemental spatially fixed volume of 
fluid showing the rate of mass flow into and out of the 
volume resulting from fluid flowing in the x direction. 
A similar diagram can be drawn for fluid flowing in 
the y and z directions. 
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Similar expressions give the net influx for the y and z directions, so that the total 
influx must be 

_ (a(Pux) + a(puy ) + a(puz») dV = -V· (pu) dV 
ax ay az 

(5.3.2) 

The rate with which the mass increases in the volume is (ap/ at) dV. The net influx 
must equal the rate of increase, 

ap ~ - + V· (pu) = O 
at 

(5.3.3) 

This is the exact continuity equation. The second term on the left involves the 
product of particle velocity and instantaneous density, both of which are acoustic 
variables. However, if we write p = po(l + s), require po to be a sufficiently weak 
function of time, and assume that s is very small, (5.3.3) becomes 

as ~ 
po at + V . (pou) = O (5.3.4) 

the linear continuity equation. Furthermore, if po is only a weak function of space 

as ~ 
-+V'u=O 
at 

5.4 THE SIMPLE FORCE EQUATION: 
EULER'S EQUATION 

(5.3.5) 

In real fluids, the existence of viscosity and the failure of acoustic processes to be 
perfectly adiabatic introduce dissipative terms. As mentioned earlier, these effects 
will be investigated in Chapter 8. 
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Consider a fluid element dV = dx~dy dz, which moves with the fluid and contains 
a mass dm of fluido The net~ force d f on the element will accelerate it according 
to Newton's second law df = ãdm. In the absence of viscosity, the net force 
experienced by the element in the x direction is 

dfx = [r;; - (r;; + ~~ dx )] dy dz = - ~~ dV (5.4.1) 

There are analogous expressions for djy and dfz. The presence of the gravitational 
field introduces an additional force in the vertical direction of Sp dV, where 
Isl = 9.8 m/s2 is the acceleration of gravity. Combination of these terms results in 

(5.4.2) 

The expression for the acceleration of the fluid element is a little more com
plicated. The particle velocity ü is a function of both time and space. When the 
fluid element with velocity ü(x, y, z, t) at position (x, y, z) and time t moves to a new 
location (x + dx, y + dy, z + dz) at a later time t + dt, its new velocity is expressed 
by the leading terms of its Taylor expansion 

ü(x + uxdt,y + uydt,z + uzdt,t + dt) 

~ aü aü aü aü 
= u(x,y,z,t) + -uxdt + -uy dt + -uzdt + - dt 

ax ay az at 

Thus the acceleration of the chosen element is 

~ . ü(x + Ux dt, y + uy dt, z + Uz dt, t + dt) - ü(x, y, z, t) 
a = hm ------=-----=--------,--------:...--

~~O ~ 

or 

aü aü aü aü 
ã = - + Ux - + u - + Uz -

at ax Yay az 

If we define the vector operator (ü . V) as 

~ a a a 
(u· V) == ux- + u - + uz-

ax Yay az 

then ã can be written more conveniently as 

~ aü (~t'7)~ a=-+u'VU 
at 

Since the mass dm of the element is p dV, substitution into dJ = ã dm gives 

~ (aü (~ ~) -vr;; + gp = p ai + U· V)u 

(5.4.3) 

(5.4.4) 

(5.4.5) 

(5.4.6) 

(5.4.7) 

(5.4.8) 
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This nonlinear, inviscid force equation is Euler' 5 equation with gravity. In the case of 
no acoustic excitation,gpo = V(!Jlo, and thus V(!Jl = Vp + gpo so that (5.4.8) becomes 

1 ~ ~ (aü ~ ~)~) - - vp + gs = (1 + 5) - + (u . v U 
po at (5.4.9) 

If we now make the assumptions that Igsl « IVpl/ Po, that 151 « 1, and that 
I(ü· V)ül « laü/atl, then 

aü 
Po- = -Vp at (5.4.10) 

This is the linear Euler's equation, valid for acoustic processes of small amplitude. 

5.5 THE LINEAR WAVE EQUATION 

The linearized equations (5.2.6), (5.3.4), and (5.4.10) can be combined to yield a 
single differential equation with one dependent variable. First, take the divergence 
of (5.4.10), 

( aü) 2 V· po at = -V P (5.5.1) 

where V· V = V2 is the three-dimensional Laplacian. Next, take the time derivative 
of (5.3.4) and use the facts that space and time are independent and po is no more 
than a weak function of time, 

Po- +V· Po- = O a
2
s (aü) 

at2 at 

Elimination of the divergence term between these two equations gives 

a2s 
V2p = Po-at2 

(5.5.2) 

(5.5.3) 

Equation (5.2.6) allows the condensation to be expressed as 5 = p/W3, and with W3 
no more than a weak function of time, 

where c is the thermodynamic speed of sound defined by 

c2 = W3/ po 

(5.5.4) 

(5.5.5) 

Equation (5.5.4) is the linear, lossless wave equation for the propagation of sound in 
fluids with phase speed c. Since the above derivation never required a restriction 
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on ~ or PO with respect to space, (5.5.4) is valid for propagation in media with 
sound speeds that are functions of space, such as found in the atmosphere or the 
oceano 

Use of (5.5.5) shows that the adiabat can be written as 

(5.5.6) 

If po and c are only weak functions of space, then p and sare essentially proportional 
and the condensation satisfies the wave equation. 

Since the curl of the gradient of a function must vanish, V X Vf = O, (5.4.10) 
shows that the particle velocity is irrotational, V X Ü = O. This means that it can 
be expressed as the gradient of a scalar function <1>, 

ü = V<I> ' (5.5.7) 

which was previously identified as the velocity potential. The physical meaning 
of this useful result is that the acoustic excitation of an inviscid fluid involves 
no rotational flow. A real fluid has finite viscosity and the particle velocity is 
not curl-free everywhere. For most acoustic processes, rotational effects are small 
and confined to the vicinity of boundaries. They exert little influence on the 
propagation of sound, so that (5.5.7) can be assumed true to very high accuracy in 
acoustic propagation. 

Substitution of (5.5.7) into (5.4.10) and requiring po to be no more than a gradual 
function of space gives 

(5.5.8) 

The quantity in parentheses can be chosen to vanish identically if there is no 
acoustic excitation so that 

(5.5.9) 

Thus, <I> satisfies the wave equation within the same approximations. 

5.6 SPEED OF SOUND IN FLUIDS 

By combining (5.2.5) and (5.5.5), we get an expression for the thermodynamic 
speed of sound 

2 (a'!P) 
c = a P adiabal 

(5.6.1) 

This is a characteristic property of the fluid and depends on the equilibrium 
conditions. 

When a sound wave propagates through a perfect gas, the adiabat may be 
utilized to derive an important special form of (5.6.1). Direct differentiation of 
(5.2.3) leads to 
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(~:tiabat = y~ 
Evaluating this expression at Po and substituting into (5.6.1), we obtain 

c2 
= y'21>o/ po 

Substitution of the appropriate values for air from Appendix AIO gives 

Co = (1.402 X 1.01325 X 105 /1.293)1/2 = 331.5 m/s 
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(5.6.2) 

(5.6.3) 

(5.6.4) 

as the theoretical value for the speed of sound in air at O°C and 1 atm pressure. 
This is in excelIent agreement with measured values and supports the assumption 
that acoustic processes in a fluid are adiabatic. For most real gases at constant 
temperature, the ratio '21>0/ po is nearly independent of pressure so that the speed 
of sound is a function only of temperature. An alterna te expression for the speed 
of sound in a perfect gas is found from (5.2.1) and (5.6.3) to be 

(5.6.5) 

The speed is proportional to the square root of the absolute temperature. In terms 
of the speed Co at O°C, this becomes 

(5.6.6) 

Theoretical prediction of the speed of sound for liquids is considerably more 
difficult than for gases. However, it is possible to show theoreticalIy that ~ = Y~T, 
where ~T is the isothermal bulk modulus. Since ~T is much easier to measure 
experimentalIy than~, a convenient expression for the speed of sound in liquids 
is obtained from (5.5.5) and ~T, 

(5.6.7) 

where y, ~T, and po alI vary with the equilibrium temperature and pressure of 
the liquido Since no simple theory is available for predicting these variations, they 
must be measured experimentalIy and the resulting speed of sound expressed as 
a numerical formula. For example, ·in distilled water a simplified formula for C in 
m/s is 

c('21>, t) = 1402.7 + 488t - 482t2 + 135t3 + (15.9 + 2.8t + 2.4t2)('21>c/100) (5.6.8) 

where '21>c is the gauge pressure in bar (1 bar = 105 Pa) and t = T /100, with T in 
degrees Celsius. A gauge pressure '21>c of zero means an equilibrium pressure '21>0 of 
1 atm (1.01325 bar). This equation is accurate to within 0.05% for O < T < 100°C 
and O :5 '21>c :5 200 bar. 

5.7 HARMONIC PLANE WAVES 

In this and the next few sections, discussion will be restricted to homogeneous, 
isotropic fluids in which the speed of sound C is a constant throughout. Propagation 
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in fluids having spatially dependent sound speeds will be deferred until Section 
5.14. 

The characteristic property of a plane wave is that each acoustic variable has 
constant amplitude and phase on any plane perpendicular to the direction of 
propagation. Since the surfaces of constant phase for any diverging wave become 
nearly planar far from their source, we may expect that the properties of diverging 
waves will, at large distances, become very similar to those of plane waves. 

If the coordinate system is chosen so that the plane wave propagates along the 
x axis, the wave equation reduces to 

(5.7.1) 

where p = p(x, t). Direct comparison with (2.3.6) shows that the mathematical 
development of the solutions for transverse waves in Sections 2.4 and 2.5 can 
be applied here and need not be repeated. Let us therefore proceed directly to 
harmonic plane waves and the relationships among the acoustic variables. 

The complex form of the harmonic solution for the acoustic pressure of a plane 
wave is 

p = A~(wt-kx) + Bej(wt+kx) (5.7.2) 

and the associated particle velocity, from (5.4.10), 

li = ux = [(AI poc)ej(wt-kx) - (BI poc)ej(wt+kx)]x (5.7.3) 

is parallel to the direction of propagation. 
If we use a subscript 11 + " to designate a wave traveling in the + x direction and 

a subscript 11 -" for a wave traveling in the - x direction, then 

P+ = Aej(wt-kx) and p_ = Bej(wt+kx) (5.7.4) 

Uó:: = ±pó::1 poc (5.7.5) 

Só:: _ I 2 - pó:: poc (5.7.6) 

«I»ó:: = -pó::ljwpo (5.7.7) 

For a plane wave traveling in some arbitrary direction, it is plausible to try a 
solution of the form 

(5.7.8) 

Substitution into (5.5.4) shows that this is acceptable if 

(5.7.9) 

Definition of the propagation vector k, 

(5.7.10) 
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which has magnitude w I c, and a position vector r, 

r = xX+yY+zz (5.7.11) 

that gives the location of the point (x, y, z) with respect to the origin of the 
coordinate system, allows the trial solution (5.7.8) to be expressed as 

p = Aej(wt-k.r) (5.7.12) 

The surfaces of constant"phase ~are given by k . r = constant. Since, from the def
inition of the gr~adient, k = V(k· r) is a vector perpendicular to the surfilces of 
constant phase, k points in the direction of propagation. The magnitude of k is the 
wave numb!r (or propagation constant) k and kxlk, kylk, and kzlk are the direction 
cosines of k with respect to the x, y, and z axes. 

As a special case, let us examine a plane wave whose surfaces of constant phase 
are parallel to the z axis. Equation (5.7.8) reduces to 

(5.7.13) 

The surfaces of constant phase are given by 

y = -(kxlky)x + constant (5.7.14) 

which describes plane surfaces parallel to the z axis with a slope of -(kxlky) in the 
x-y plane. If we examine p as a function of x and t for y = 0, we have 

p(x, 0, t) = Aej(wt-kxx) (5.7.15) 

This oblique "slice" of the wave has an apparent wavelength Ax = 2'TT I kx measured 
in the x direction. From Fig. 5.7.1 we see that AI Ax = cos cP so that kx = kcos cP. 
The same argument applies in the y direction for fixed x and yields ky = k sin cP. 
Thus, 

k = kcoscPx + ksincPY (5.7.16) 

-+ 
k 

Figure 5.7.1 Surfaces of constant phase 
for a plane wave with wave number k 
traveling perpendicular to the z axis in 
a direction cP from the x axis. 
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and k is perpendicular to the z axis, pointing into the first quadrant of the x-y 
plane with an angle cf> measured counterclockwise from the x axis. Substitution of 
k into (5.7.12) yields the convenient form 

p = Aej(wt-kxcoscf>-kysincf» (5.7.17) 

5.8 ENERGY DENSITY 

The energy transported by acoustic waves through a fluid medium is of two 
forms: (1) the kinetic energy of the moving elements and (2) the potential energy of 
the compressed fluido Consider a small fluid element that moves with the fluid 
and occupies volume Vo of the undisturbed fluido The mass of the element is po Vo 
and its kinetic energy is 

E 1 V 2 
k = 'iPO OU (5.8.1) 

The change in potential energy associated with a volume change from Vo to Vis 

Ep = - IV pdV 
Vo 

(5.8.2) 

The nega tive sign indicates that the potential energy will increase (work is done 
on the element) when its volume is decreased by a positive acoustic pressure p. 
To carry this out, it is necessary to express all variables under the integral sign 
in terms of one variable-p, for example. From conservation of mass we have 
pV = poVo so that 

dV = -(Vlp)dp (5.8.3) 

Now, with the use of dp I dp = c2, 

(5.8.4) 

Substitution into (5.8.2) and integration of the acoustic pressure from O to p gives 

(5.8.5) 

within the linear approximations. The total acoustic energy of the volume element 
is then 

(5.8.6) 

and the instantaneous energy density "gi = EIVo in joules per cubic meter (J 1m3 ) is 

(5.8.7) 

Both the pressure p and the particle speed u must be the real quantities obtained 
from the superposition of all acoustic waves present. 
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The instantaneous particle speed and acoustic pressure are functions of both 
position and time, and consequently the instantaneous energy density ~i is not 
necessarily constant throughout the fluido The time average of ~i gives the energy 
density ~ at any point in the fluid: 

(5.8.8) 

where the time interval Tis one period of a harmonic wave. 
The above expressions apply to any linear acoustic wave. To proceed further, 

it is necessary to know the relationship between p and u. For a plane harmonic 
wave traveling in the ±x direction, reference to (5.7.5) shows that p = ±pocu so 
that (5.8.7) gives 

(5.8.9) 

and if P and U are the amplitudes of the acoustic pressure and particle speed, 

(5.8.10) 

In more complicated cases, there is no guarantee that p = ±pocu nor that the 
energy density is given by ~ = PU/2c. However, (5.8.10) is approximately correct 
for progressive waves when the radü of curvature of the surfaces of constant phase 
are much greater than a wavelength. This occurs, for example, for spherical or 
cylindrical waves at distances of many wavelengths from their sources. 

5.9 ACOUSTIC INTENSITY 

The instantaneous intensity I(t) of a sound wave is the instantaneous rate per unit 
area at which work is done by one element of fluid on an adjacent element. It is 
given by I(t) = pu in watts per square meter (W 1m2). The intensity I is the time 
average of I(t), the time-averaged rate of energy transmission through a unit area 
normal to the direction of propagation, 

ler 
I = (I(t»y·= (pu)y = T Jo pudt (5.9.1) 

where for a monofrequency wave T is the period. 
For a plane harmonic wave traveling in the ±x direction, p = ±Pocu, so that 

I = ±P2 /2poc (5.9.2) 

There is a similarity between (5.9.2) and corresponding equations for electro
magnetic waves and voltage waves on transmission lines. First, reexpress (5.9.2) 
in terms of effective (root-mean-square) amplitudes. If we define Fe as the effective 
amplitude of a periodic quantity f(t), then 

(5.9.3) 
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where T is the period of the motion. For harmonic waves this yields 

Pe = p/h and Ue = u/h (5.9.4) 

so that 

(5.9.5) 

for a plane wave traveling in either the + x or - x direction. It must be emphasized 
that, while (5.9.1) is completely general, I± = ±PeUe is exact only for plane 
harmonic waves and is approximately true for diverging waves at great distances 
from their sources. 

5.10 SPECIFIC ACOUSTIC IMPEDANCE 

The ratio of acoustic pressure to the associated particle speed in a medi um is the 
specific acoustic impedance 

z = p/u (5.10.1) 

For plane waves this ratio is 

z = ±poc (5.10.2) 

The choice of sign depends on whether propagation is in the plus or minus 
x direction. The MKS unit of specific acoustic impedance is the Pa's/m, often 
called the rayl (1 MKS rayl = 1 Pa' s/m) in honor of John William Strutt, Baron 
Rayleigh (1842-1919). The product poc often has greater acoustical significance as 
a characteristic property of the medium than does either po or c individually. For 
this reason poc is called the characteristic impedance of the medium. 

Although the specific acoustic impedance of the medium is a real quantity for 
progressive plane waves, this is not true for standing plane waves or for diverging 
waves. In general, z will be complex 

z = r + jx (5.10.3) 

where r is the specific acoustic resistance and x the specific acoustic reactance of the 
medium for the particular wave being considered. 

The characteristic imI'edance of a medium for acoustic waves is analogous to 
the wave impedance J J..L / e of a dielectric medi um for electromagnetic waves 
and to the characteristic impedance Zo of an electric transmission line. Numerical 
values of poC for some fluids and solids are given in Appendix AlO. 

For air at a temperature of 20°C and atmospheric pressure, the density is 1.21 
kg/m3 and the speed of sound is 343 m/s, giving 

poc = 415 Pa 's/m (air at 20°C) (5.10.4) 

In distilled water at 20°C and 1 atm, the speed of sound is 1482.1 m/s and its 
density is 998.2 kg/m3, resulting in a characteristic impedance of 

poc = 1.48 X 106 Pa 's/m (water at 20°C) (5.10.5) 
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5.11 SPHERICAL WAVES 

Expressed in spherical coordinates, the Laplacian operator is 

V = - + -- + ---- smO- + -2 a2 
2 a 1 a (. a ) 1 a2 

ar2 r ar r2 sin O ao ao r2 sin2 o a4>2 
(5.11.1) 

where x = r sin Ocos 4>, y = r sin O sin 4>, and z = r cos O (see Appendix A7). If the 
waves have spherical symmetry, the acoustic pressure p is a function of radial 
distance and time but not of the angular coordinates, and this equation simplifies 
to 

a2 2 a v2 = _ +--
ar2 r ar 

(5.11.2) 

The wave equation for spherically symmetric pressure fields is then 

(5.11.3) 

Conservation of energy and the relationship I = P2/2poc lead us to expect that 
the pressure amplitude might fall off as l/r, so that the quantity rp would have 
amplitude independent of r. Rewriting (5.11.3) with rp treated as the dependent 
variable results in 

(5.11.4) 

If the product rp in this equation is considered as a single variable, the equation is 
the same as the plane wave equation with the general solution 

1 1 
P = - fl(ct - r) + - h(ct + r) 

r r 
(5.11.5) 

for all r > O. The solution fails at r = O. The first term represents a spherical 
wave diverging fram the origin with speed c; the second term represents a wave 
converging on the origino For the outgoing wave, the solution fails at the origin 
because some source of sound is required to supply the energy carried away, and 
our wave equation does not contain any term representing this energy source. (See 
Sections 5.15 and 5.16.) In practice, this means that the medium must be excluded 
from some volume of space including the origin, and this volume must be occupied 
by whatever vibrating body serves as the sound source. For the incoming waves, 
energy is being focused at the origin and the small-amplitude appraximations 
will fail. This failure will manifest itself in a nonlinear wave equation and strang 
acoustic losses limiting the attainable amplitudes. 

The most important diverging spherical waves are harmonic. Such waves are 
represented in complex form by 

p = ~ej(wt-kr) 
r 

(5.11.6) 
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Use of the relationships developed in Section 5.5 for a general wave allows the 
other acoustic variables to be expressed in terms of the pressure 

<I> = -p/jwpo 

ü = V<I> = r(l - j/kr)p/ poc 

(5.11.7) 

(5.11.8) 

The observed acoustic variables are obtained by taking the real parts of (5.11.6)
(5.11.8). 

It is apparent from (5.11.8) that, in contrast with plane waves, the particle speed 
is not in phase with the pressure. The specific acoustic impedance is not Poc, but 
rather 

kr li (5.11.9) z = poC . eJ 

[1 + (kr)2]1/2 

or 

Z = poC cos e ejli (5.11.10) 

cote = kr (5.11.11) 

A geometric representation of eis given in Fig. 5.11.1. As is true with many other 
acoustic phenomena, the product kr is the determining factor, rather than k or r 
separately. Since kr = 21Tr / A, the angle e is a function of the ratio of the source 
distance to the wavelength. When the distance from the source is only a small 
fraction of a wavelength, the phase difference between the complex pressure and 
particle speed is large. At distances corresponding to a considerable number of 
wavelengths, p and u are very nearly in phase and the spherical wave assumes 
the characteristics of a plane wave. This is to be expected, since the wave fronts 
become essentially planar at great distances from the source. 

Separating (5.11.9) into real and imaginary parts, we have 

(krf . kr 
Z = poC 1 + (kr)2 + }POC 1 + (kr)2 (5.11.12) 

The first term is the specific acoustic resistance and the second term the specific 
acoustic reactance. Both approach zero for very small values of kr, but for very large 
values of kr the resistive term approaches poc and the reactive term approaches 
zero. 

The absolute magnitude Z of the specific acoustic impedance is equal to the ratio 
of the pressure amplitude P of the wave to its speed amplitude U, 

kr 

Z = P/U = poccose (5.11.13) 

Figure 5.11.1 The relationship between () and 
kr at a distance r from the source of a spherical 
wave of wave number k. 
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and the relationship between pressure and speed amplitude may be written as 

P = poC U cos fJ (5.11.14) 

For large values of kr, cos fJ approaches unity and the relationship between 
pressure and speed is that for a plane wave. As the distance from the source of 
a spherical acoustic wave to the point of observation is decreased, both kr and 
cos fJ decrease, so that larger and larger particle speeds are associated with a given 
pressure amplitude. For very small distances from a point source, the particle speed 
corresponding to even very low acoustic pressures becomes impossibly large: a 
source small compared to a wavelength is inherently incapable of generating 
waves of large intensity. 

Let us rewrite (5.11.6) as 

p = ~ej(wt-1cr) 
r 

(5.11.15) 

where we have chosen a new origin of time so that A is a real constant A. Then AI r 
is the pressure amplitude of the wave. The pressure amplitude in a spherical wave 
is not constant, as it is for a plane wave, but decreases inversely with the distance 
from the source. The actual pressure is the real part of (5.11.15), 

A 
P = - cos(wt - kr) 

r 
(5.11.16) 

Since u = p I z, the corresponding complex expression for the particle speed is 

u = A ej (wt-1cr) 

rz 
(5.11.17) 

Replacing z by (5.11.10) and then taking the real part of the resulting expression 
gives the actual particle speed, 

1 A 1 
u = ---- cos(wt - kr - fJ) 

poC r cos fJ 

It is apparent that, since fJ is a function of kr, the speed amplitude 

1 A 1 
U=--

poc r cos fJ 

is not inversely proportional to the distance from the source. 
For a harmonic spherical wave (5.9.1) yields 

1 (T PU cos fJ 
I = T Jo Pcos(wt - kr) U cos(wt - kr - fJ)dt = 2 

p2 

2poc 

(5.11.18) 

(5.11.19) 

(5.11.20) 

where the fador cos fJ is analogous to the power fador of an altemating-current 
circuit. Note that the formula I = P2/2poc is exactly true for both plane and 
spherical waves. 
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The average rate at which energy flows through a closed spherical surface of 
radius r surrounding a source of symmetric spherical waves is 

(5.11.21) 

or since p = Alr 

(5.11.22) 

The average rate of energy flow through any spherical surface surrounding 
the origin is independent of the radius of the surface, a statement of energy 
conservation in a lossless medium. 

5.12 DECIBEL SCALES 

It is customary to describe sound pressures and intensities using logarithmic scales 
known as sound levels. One reason for this is the very wide range of sound pressures 
and intensities encountered in the acoustic environrnent; audible intensities range 
from approximately 10-12 to 10 W 1m2

. Using a logarithmic scale compresses the 
range of numbers required to describe this wide range of intensities and is also 
consistent with the fact that humans judge the relative loudness of two sounds by 
the ratio of their intensities. 

The most generally used logarithmic scale for describing sound leveIs is the 
decibel (dB) scale. The intensity leveI IL of a sound of intensity I is defined by 

IL = 10 log(lj Ire!) (5.12.1) 

where Ire! is a reference intensity, IL is expressed in decibels referenced to Ire! (dB re Ire!), 
and "log" represents the logarithm to base 10. 

We have shown in Sections 5.9 and 5.11 that intensity and effective pressure of 
progressive plane and spherical waves are related by I = P; I poc. Consequently, 
the intensities in (5.12.1) may be replaced by expressions for pressure, leading to 
the sound pressure leveI 

(5.12.2) 

where SPL is expressed in dB re Pre! with Pe the measured effective pressure 
amplitude of the sound wave and Pre! the reference effective pressure amplitude. 
If we choose Ire! = P~e/ poc, then IL re Ire! = SPL re Pre!. 

Throughout the scientific disciplines a number of units are used to specify 
pressures, and many of these are found in acoustics. In addition, reference leveIs 
of various degrees of antiquity are encountered. Let us first catalog a few units: 

CGSunits 

1 dynel cm2 , also called the microbar (JLbar). (The microbar was originally 10-6 

atm but is now defined as 1 dyne/cm2
.) 

MKSunits 

1 pascal (Pa), defined as 1 N I m2 in the SI system of units 
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Others 

1 atmosphere (atm) = 1.01325 X 105 Pa = 1.01325 X 106 JLbar 
1 kilograml cm2 (kgf/ cm2) = 0.980665 X 105 Pa = 0.967841 atm 

Equivalents 

1 JLbar = 0.1 N/m2 = 105 JLPa 

The reference standard for airbome sounds is 10-12 W 1m2
, which is approxi

mately the intensity of a 1 kHz pure tone that is just barely audible to a person 
with unimpaired hearing. Substitution of this intensity into (5.9.2) shows that it 
corresponds to a peak pressure amplitude of 

P = (2pocI)1/2 = 2.89 X 10-5 Pa (5.12.3) 

or a corresponding effective (root-mean-square) pressure of 

(5.12.4) 

This latter pressure, rounded to 20 JLPa, is the reference for sound pressure lev
eIs in air. Essentially identical numerical results are obtained in air using either 
10-12 W 1m2 in (5.12.1) or 20 JLPa in (5.12.2) for plane or spherical progressive 
waves. However, in certain more complex sound fields, such as standing waves, 
intensity and pressure are no longer simply related by (5.9.5) and (5.11.20) and 
consequent1y (5.12.1) and (5.12.2) will not yield identical results. Since the voltage 
outputs of microphones and hydrophones commonly used in acoustic measure
ments are proportional to pressure, sound pressure leveIs are used more widely 
than intensity leveIs. 

Three different pressures are encountered as reference pressures in underwater 
acoustics. One is an effective pressure of 20 JLPa (the same as the reference pressure 
in air). The second reference pressure is 1 JLbar and the third is 1 JLPa. The last is 
now the standard. 

This abundance of reference pressures can lead to confusion unless care is taken 
to always specify the reference pressure being used: SPL re 20 JLPa, re 1 JLPa, or 
re 1 JLbar. Table 5.12.1 summarizes the various conventions. 

From the above discussion, note that a given acoustic pressure in air corresponds 
to a much higher intensity than does the same acoustic pressure in water. Since 
(5.9.5) or (5.11.20) shows that, for a given pressure amplitude, intensity is inversely 

Table 5.12.1 References and conversions for sound pressure leveIs 

Medium 

Air 

Water 

Reference 

10-12 W/m2 

20 ILPa = 0.0002 ILbar 

1 ILhar = 105 ILPa 
0.0002 ILbar = 20ILPa 
1 ILPa 

SPL re 1 ILhar + 100 = SPL re 1 ILPa 
SPL re 0.0002 ILbar - 74 = SPL re 1 ILhar 
SPL re 0.0002 ILbar + 26 = SPL re 1 ILPa 

Near/y equiva/ent to 

20 ILPa 
10-12 W/m2 

6.76 x 10-9 W 1m2 

2.70 X 10-16 W 1m2 

6.76 X 10-19 W 1m2 
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proportional to the characteristic impedance of the medium, the ratio of the 
intensity in air to that in water for the same acoustic pressure is (1.48 X 106) 1415 = 

3570. On the other hand, if we compare two acoustic waves of the same frequency 
and particle displacement, the ratio of the intensity in air to that in water is 1/3570. 

Because of the conveniences aHorded by decibel scales, electrical quantities are 
often specified in terms of leveIs. For example, the voltage leveI VL is defined as 

(5.12.5) 

where V is the eHective voltage and Vref is some convenient reference eHective 
voltage. 

By convention, the subscript "e" and the adjective "eHective" are omitted when 
specifying eHective amplitudes of electrical quantities. Two common reference 
voltages are 1 V and 0.775 V. (This latter stems from an old reference, the voltage 
required to dissipate 1 mW of electrical power in a 600 ohm resistor.) Comparison 
of voltage leveIs referenced to the two common reference voltages reveals that 

VL(re 0.775 V) = VL(re 1 V) + 2.21 (5.12.6) 

The abilities of electroacoustic sources and receivers to convert between electri
cal and acoustic quantities can be expressed in terms of sensitivities. For example, 
the open circuit receiving sensitivity .Mo of a microphone is defined as 

(5.12.7) 

where Vis the output voltage produced (with negligible output current I) when 
the microphone is placed at a point where the eHective pressure amplitude was Pe 
in the absence of the microphone. This is one of a number of sensitivities that can 
be defined for a microphone; more detail will be found in Chapter 14. A sensitivity 
.M is usually expressed in terms of the associated sensitivity leveI .M::E 

(5.12.8) 

where .Mref is a reference sensitivity such as 1 VI JLbar or 1 V IPa. 
Relationships among P, V, and .Mo can be expressed in terms of either the 

fundamental quantities or the associated leveIs. For example, assume that a 
microphone of known sensitivity leveI .M::E dB re Mref gives an output leveI 
VL dB re Vref, and we wish to know the sound pressure leveI SPL dB re Pref of the 
sound field. AIgebraic manipulation reveals 

(
VrefIPref ) SPL(re Pref) = VL(re Vref) - .M::e(re .Mref) + 20log .M 

ref 
(5.12.9) 

In complete analogy, an acoustic source is characterized by a source sensitivity 
9' = PelVand a source sensitivity level9'::E 

9' ::E (re 9',ef) = 20 log (p ~fV ) (5.12.10) 

where V is the voltage applied to the electrical input of the source, Pe is the 
eHective pressure at some specified location (usually on the acoustic axis of the 
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source extrapolated back from large distances to 1 m from the face of the source), 
and ;J,.ef is a reference sensitivity such as 1 J.LPa/V or 1 J.L bar IV. 

*5.13 CYLINDRICAL WAVES 

Three-dimensional cylindrical waves have significant applications in atmospheric and 
underwater propagation. The wave equation for cylindrical propagation is (5.5.4) with the 
Laplacian expressed in cylindrical coordinates, 

(5.13.1) 

Recal1 that the physical interpretation of r depends on the coordinates being used. In 
spherical coordinates, r denotes the radial distance from the origin to the field point in any 
direction. In cylindrical coordinates it refers to the perpendicular distance from the z axis to the 
field point. 

Assuming harmonic solutions and separation of variables, 

p(r, O, z, t) = R(r)€)(O)Z(z)éwt (5.13.2) 

allows (5.13.1) to be decomposed into three differential equations and provides a relationship 
for the separation constants, 

d2R 1 dR ( m2) 
dr2 + r dr + ( - Y2 R = o 

d2z 
dz2 + lÇZ = o 

d2€) 
- +m2€) = o 
d02 

(W/C)2 = l? = 1Ç + 1Ç 

(5.13.3) 

The equation for €) is the same as for the circular membrane. If we assume azimuthal 
symmetry, then m = O. The equation for Z is solved by sinusoidal or complex exponential 
functions and corresponds to oblique waves whose propagation vectors have a projection 
on the z axis of kz• The simplest case i~ kz = O, which describes waves whose surfaces of 
constant phase are cylinders concentric with the z axis. These two simplifications leave us 
with the z-independent, cylindrically symmetric solutions of the radial wave equation 

d2R 1 dR 2 - + -- +kR = O 
dr2 r dr 

(5.13.4) 

Reference to Section 4.4 and use of m = O gives the general solution 

p(r, t) = [AJo(kr) + BYo(kr)]éwt (5.13.5) 

Since Yo diverges as r ~ O, (5.13.5) fails at r = O unless B = O. The reasons for this failure 
are identical with those discussed for spherical waves in Section 5.11, so when B # O the 
z-axis must be excluded from the volume within which (5.13.5) can be applied. 

Examination of (5.13.5) reveals that if p is to be a traveling wave, it must be a complex 
function of space. Furthermore, assuming that I = p2 /2poc is at least approximately true at 
large distances and using conservation of energy suggests that the pressure p(r, t) should 
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be proportional to 

~ ej(wt±kr) 

jf 
(5.13.6) 

The ± sign in the exponent gives incoming or outgoing waves. The combinations of A 
and B that will produce (5.13.6) in the limit r ~ 00 can be found from the large-argument 
asymptotic forms of To and Yo, 

Jo(kr) ~ (21 7rkr)1/2 cos(kr - 7r I 4) 

Yo(kr) ~ (21 7rkr)1/2 sin(kr - 7r I 4) 
(5.13.7) 

Equation (5.13.5) will take on the form (5.13.6) if B = ±jA. These combinations are the 
Bessel functions of the third kind, or Hankel functions, 

H~l)(kr) = Jo(kr) + jYo(kr) 

H~2)(kr) = Jo(kr) - jYo(kr) 
(5.13.8) 

For an outgoing harmonic cylindrical wave with azimuthal symmetry and independent of 
2, the appropriate solution of (5.13.4) is 

p(r, t) = AH~2)(kr)eiwt (5.13.9) 

While (5.13.9) was developed by imposing the asymptotic behavior (5.13.6) and using the 
asymptotic form of the Hankel function for large kr, it is an exact solution of (5.13.4) for 
all r> o. (This is often referred to as imposing a radiation boundary condition at infinity.) For 
large kr this solution has asymptotic behavior 

p(r, t) ~ A(2/7rkr)1/2J(wHr+7r/4) (5.13.10) 

Generating the velocity potential ~ with (5.5.9), and then using (5.5.7) gives the particle 
speed 

(5.13.11) 

with the help of Appendix A4. The specific acoustic impedance z follows at once: 

(5.13.12) 

In the limit kr » 1, the asymptotic approximations of the Hankel functions show that 
z ~ poc at large distances. This is to be expected, since as kr increases beyond unity, the 
radii of curvature of the surfaces of constant phase become much larger than a wavelength 
and the waveform looks locally more and more like a plane wave. 

Calculation of the acoustic intensity is a little more complicated. The instantaneous 
intensity is I(r, t) = pu. This yields 

I(r, t) = (A2 I poc) [Jo(kr) coswt + Yo(kr) sinwt] [h(kr) sinwt - Y1(kr) coswt] (5.13.13) 

where for ease we have chosen time so that A = A. Taking the time average leaves us with 
the intensity 

I(r) = (A2/2poc) [h(kr)Yo(kr) - Jo(kr)Y1(kr)] (5.13.14) 

The quantity in square brackets is the Wronskian of Jo(kr) and Yo(kr) and has the known 
value 2/7rkr. Substitution gives us the result 



*5.14 RAYS AND WAVES 135 

(5.13.15) 

where Pas is the asymptotic amplitude 

Pas = A(2/1Tkr)1!2 (5.13.16) 

of p(r, t). The intensity falls off as l/r, as conservation of energy in a lossless fluid says it 
must for a cylindrically diverging wave, but the intensity is not simply p2 /2poc everywhere, 
as it was for plane and spherical waves. 

*5.14 RAYS AND WAVES 

Up to this point, we have considered the propagation of sound in a homogeneous medium 
having a constant speed of sound. The speed of sound is often a function of space and 
instead of plane, spherical, and cylindrical waves of infinite spatial extent we find waves 
whose directions of propagation change as they traverse the medium. One technique for 
studying this effect is based on the assumption that the energy is carried along reasonably 
well-defined paths through the medium, so that it is useful to think of rays rather than 
waves. In many cases, description in terms of rays is much easier than in terms of waves. 
However, rays are not exact replacements for waves, but only approximations that are valid 
under certain rather restrictive conditions. 

(a) The Eikonal and Transport Equations 

The wave equation with spatially dependent sound speed is 

( 
1 a

2 
) v2 

- c2(x, y, z) at2 p(x, y, z, t) = o (5.14.1) 

For sound traversing such a fluid, the amplitude varies with position and the surfaces of 
constant phase can be complicated. Assume a trial solution 

p(x, y, z, t) = A(x, y, z)eiw[t-r(x,y,z)!co] (5.14.2) 

where r has units of length and Co is a reference speed to be defined later. The quantity r/co 
is the eikonal.The values of (x, y, z) for which r is constant define the surfaces of constant 
phase. From the basic definition of the'gradient, vr is everywhere perpendicular to these 
surfaces. 

Substituting the trial solution into (5.14.1) and collecting real and imaginary parts gives 

(5.14.3) 

These equations are difficult to solve because they are coupled and nonlinear. However, if 
we require 

(5.14.4) 
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then the first of (5.14.3) assumes the simpler approximate form 

I vr ·vr = (COIC)2 = n21 (5.14.5) 

where n = colc is the index of refraction. Equation (5.14.5) is the eikonal equation. It is 
immediately clear that 

vr = n5 (5.14.6) 

where the unit vector 5 gives the local direction of propagation. Given 5 at a point in the 
sound field and then tracing how that specific 5 changes direction as it is advanced point 
to point within the fluid defines a ray path, the trajectory followed by the particular ray. 
Since according to (5.14.6) the local direction of propagation of the ray is perpendicular 
to the eikonal, in this approximation each ray is always perpendicular to the local surface 
of constant phase. Sufficient conditions for satisfying (5.14.4) are (1) the amplitude of the 
wave and (2) the speed of sound do not change significantly over distances comparable to 
a wavelength. If we consider a beam of sound with transverse dimensions much greater 
than a wavelength traveling through a fluid, (5.14.4) states that the eikonal equation may 
be applied over the central portion of the beam where A is not rapidly varying. At the 
edges of the beam, however, A may rapidly reduce to zero over distances on the order of 
a wavelength and the restriction (5.14.4) fails. The failure manifests itself in the diffraction 
of sound at the edges of the beam-analogous to the diffraction of light through a slit or 
pinhole. This means that (5.14.5) is accurate only in the limit of high frequencies-how 
high depends on the spatial variations of c and A. More rigorous necessary conditions 
can be stated, but their physical meanings are less direct. lndeed, there are propagating 
waves (Problem 5.14.10) that do not satisfy the sufficient conditions, but for which (5.14.5) 
is valido 

Analysis of the transport equation, the second of (5.14.3), will provide further justification 
for the concept of rays. Substitution of (5.14.6) into this equation and a little manipulation 
(Problem 5.14.4a) gives 

For distances more than a few wavelengths away from the source, the intensity is 

so that (5.14.7) becomes 

1 dI 
I ds 

-V'5 

(5.14.7) 

(5.14.8) 

(5.14.9) 

The left side is the fractional change of intensity per unit distance along a ray path and V . 5 
describes how the rays converge or diverge. Now apply Gauss's theorem to the volume 
defined by the bundle of rays shown in Fig. 5.14.1. The volume is chosen so that the rays 
pass only through the end caps. lntegrate (5.14.9) over the volume 5 ilh. On the left side 
the volume integral becomes (l!I)(dIlds)S ilh = S[d(lnI)lds] M. On the right side, use of 
Gauss's theorem converts the volume integral into a surface integral of 5' fi. Since the rays 
enter and leave the volume only through the end caps, this integral yields the incrementaI 
change - ilS in the cross-sectional area of the bundle of rays. Finally, recognize that ilS is 
obtained along the ray path, so that ilS = (dS I ds) ilh. This gives us d(ln I) I ds = -d(ln 5) I ds 
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ilh 

and the result 

137 

Figure 5.14.1 An elemental volume 
of a ray bundle with end caps of areas 
51 and 52 separated by a distance ilh 
along the rays. 

15 = constant (5.14.10) 

Thus, within the limitations of the eikonal equation, the energy within a ray bundle 
remains constant. This is the mathematical justification for the intuitive concept that energy 
in a sound wave travels along rays. Any mathematical or geometrical technique that allows 
a bundle of rays to be traced through space will allow calculation of the intensity throughout 
space. 

(b) The Equations for the Ray Path 

Solution of the eikonal equation (5.14.6) gives the direction s for each ray at every point 
along its path. The problem of obtaining the ray paths is equivalent to solving for the 
successive locations of s. First, express s in terms of its direction cosines, 

s = ax + f3y + -yz 

a 2 + f32 + -y2 = 1 
(5.14.11) 

where thedirectioncosines are a = dx/ds,f3 = dy/ds,and-y = dz/dswithdx, dy,anddz 
the coordinate changes resulting from a step ds in the s direction along the ray path. If the 
change in any scalar along the ray 

d a a a 
- = (r- + f3- +-y
ds ax ay az 

is applied to both sides of the first of (5.14.11), the components become 

d an 
-(na) = 

ax ds 

d an 
-(nf3) = 
ds ay 

d an 
-(n-y) = 

az ds 

(5.14.12) 

(5.14.13) 

(See Problem 5.14.4b for details.) The eikonal equation relates the changes in the direction 
of propagation of a ray to the gradient of the local index of refraction. Given n(x, y, z), it is 
possible to trace the trajectories of every element of a wave front through the medium. A 
simple example follows. 
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Raypath 

Figure 5.14.2 An element of a ray 
path in the x-z plane of length ds 
making an angle O with the x axis 
will have a radius of curvature R = 

Ic/(gcos 0)1, where c is the speed 
of sound and g is the sound speed 

x gradient. 

(c) The One-Dimensional Gradient 

The speed of sound can often be considered a function of only one spatial dimensiono In 
both the ocean and the atmosphere, for example, variations of the speed of sound with 
horizontal range are generally much weaker than the variations with depth or height. 

Let the index of refraction be a function of z alone, where z is the vertical coordinate. 
Then (5.14.13) becomes 

d 
-(na) = O 
ds 

d 
-(n{3) = O 
ds 

d dn 
-(ny) = -
ds dz 

(5.14.14) 

If the coordinate axes are oriented so that a ray starts off in the x-z plane and makes an angle 
O with the x axis (see Fig. 5.14.2), the initial value of {3 is zero and, according to the second 
of the above equations, (3 will remain zero and the ray path will stay in the x-z plane. We 
can then identify a = cosO and y = sinO, and the remaining equations in (5.14.14) become 

d 
ds (ncosO) = O 

d. dn 
ds(nsmO) = dz 

(5.14.15) 

The first of (5.14.15) reveals that ncosO must have the same value at every point along 
a particular ray path. If we specify the angle of elevation 00 where the ray path encounters 
the reference speed co, we then have a statement of Snell's law, 

cosO 
c 

cosOo 
Co 

(5.14.16) 
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From the definition of n = co/c we see that dc/dz has the opposite sign from dn/dz. 
Then, the second of (5.14.15) shows that when the sound speed increases in the z direction, O 
must decrease along the ray-the ray tums toward the lower sound speed. When the sound 
speed decreases in the z direction, O increases along the ray-the ray still tums toward the 
lower sound speed. A ray always bends toward the neighboring region of lower sound speed. 
While this equation cannot be solved without knowing the dependence of c on z, it can 
be put into a geometrical formo With reference to Fig. 5.14.2, dz = sin O ds and ds = (J" dO, 
where (J" is a measure of the amount and orientation of the curvature of the ray path. For 
Fig. 5.14.2, dO increases along the ray, so (J" is positive. If the ray path were to curve the 
other way (with negative second derivative), (J" would be negative. The magnitude of (J" is 
the radius of curvature R. Use of these geometrical relationships along with (5.14.15) and 
(5.14.16) gives 

1 Co 
(J"= 

g cosOo 
(5.14.17) 

dc 
g= 

dz 

where g is the gradient of the sound speed. The radius of curvature R of the ray is inversely 
proportional to Igl at each point along the path. Each ray path must be computed separately 
since each has its own value of the Snell's law constant (cosOo)/co. See Chapter 15 for 
examples of ray tracing when g is piecewise constant. 

(d) Phase and Intensity Considerations 

Let II be the acoustic intensity referred to a distance 1 meter from a source along a bundle 
of rays with initial angle of elevation 00. It is desired to know the intensity I of this bundle 
at some range x as shown in Fig. 5.14.3. For a lossless medium, the intensity multiplied by 
the cross-sectional area of the bundle must be constant. Let S1 be the cross section of the 
bundle at 1 meter from the source and S the cross section at range x, where the intensity is I. 
Examination of the geometry of the figure reveals S = x /14> sin O dx and S1 = /14> dOo cos 00 

Figure 5.14.3 A ray bundle in the 
x-z plane that is used to determine 
intensity from conservation of 
energy. At x = 1 m the cross
sectional area of the bundle is 

y /14> dOo cos 00 , where /14> is the 
horizontal angular width of the 
bundle, dOo its initial vertical 
angular width, and 00 the initial 
angle of elevation. The area at 
range x where the ray makes 
an angle O with the horizontal 
is x /14> sin O dx, where dx 
(ax/ aOo)z dOa. 
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so that conservation of energy provides Ix sin O dx = h cos 00 dOo. The element dx can be 
expressed by dx = (Jx/ JOo)z dOo, where the range x must be written as a function of 00 and 
z. Combination of the above equations results in 

1 cos 00 1 

x sinO (Jx/JOo)z 
(5.14.18) 

Whenneighboring rays from the source intersect at some field point, the partial derivative 
vanishes and the intensity becomes infinite. The lacus of such neighboring points may form 
a surface of infinite intensity, called a caustic. The intensity does not really become infinite 
on a caustic, of course, beca use the conditions necessary for the validity of the eikonal 
equation fail. Caustics do, however, identify regions of high intensity where there is strong 
focusing of acoustic energy. 

A different situation can occur when nanadjacent ray paths intersect at some point away 
from the source. An example would be reflection from a boundary, for which the direct 
and reflected ray paths intersect. For a continuous monofrequency signal generated by the 
source, there are two different approaches to this combination: 

1. Incoherent Summation. If spatial irregularities and fluctuations in the boundary or the 
speed of sound profile are sufficient to randomize the relative phases of the signals 
propagating over intersecting ray paths, then we can make a randam phase appraximatian. 
Under this approximation, a reasonable estimate of the average acoustic intensity where 
the different paths intersect is the sum of the intensities for the individual rays. The 
acoustic pressure amplitude is then the square root of the sum of the squares of the 
pressure amplitudes of the signals where they intersect. 

2. Coherent Summation. If, however, the irregularities in propagation do not appreciably 
affect the phases of the signals, phase caherence is retained and it is necessary to calculate 
the traveI time !lt of each signal along its path so that the relative phases can be obtained. 
The total pressure and phase of the combination is then obtained by adding the phasors 
with proper regard for the phases. 

A typical case of continuous wave propagation may lie somewhere between these two 
idealizations. Coherence is favored by short-range, low-frequency, smooth boundaries, few 
boundary reflections, and a stable and smooth speed of sound profile. Random phasing is 
favored by the converse conditions. The traveI time can be calculated in a number of ways, 
each simple to derive: 

!lt = -ds = --dx = --dz = --dO fs 1 JX 1 JZ 1 f o 1 
o c Xo C cos O Zo c sin O 00 g cos O 

(5.14.19) 

where each integrand must be expressed as a function of the variable of integration. 
For very short transient acoustic signals, the traveI times along the various ray paths 

may be so different that the individual arrivals do not overlap each other. This would then 
yield a combined signal in which each of the arrivals along a different ray path would be 
separate and distinct. As the transients become longer, however, partial overlapping would 
generate a complicated combination. 

*5.15 THE INHOMOGENEOUS WAVE EQUATION 

In previous sections we developed a wave equation that applied to regions of space devoid 
of any sources of acoustic energy. However, a source must be present to generate an 
acoustic field. Certain sources internaI to the region of interest can be taken into account 
by introducing time-dependent boundary conditions, as described for strings, bars, and 
membranes. In Chapter 7, this is the procedure that will be used to relate the motion of the 
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surface of a source to the sound field created by the source. However, there are times when 
it is more convenient to adopt an approach that builds the sources into the wave equation 
by modifying the fundamental equations to inc1ude source terms. 

1. If mass is injected (or appears to be) into the space at a rate per unit volume G(r, t), the 
linearized equation of continuity becomes 

po as + v . (pou) = G(r, t) 
at 

(5.15.1) 

This G(r, t) is generated by a c10sed surface that changes volume, such as the outer 
surface of an explosion, an imploding evacuated glass sphere, or a loudspeaker in an 
enc10sed cabinet. 

2. If there are body forces present in the fluid, a body force per unit volume F(r, t) must be 
inc1uded in Euler's equation. The linearized equation of motion becomes 

au ~ ~ 
Po- + Vp = F (r, t) 

at 
(5.15.2) 

Examples of this kind of force are those produced by a source that moves through the 
fluid without any change in volume, such as the cone of an unbaffled loudspeaker or a 
vibrating sphere of constant volume. 

If these two modifications are combined with the linearized equation of state, an 
inhomogeneous wave equation is obtained, 

aG ~ 
--+V·F 

at 
(5.15.3) 

3. A third type of sound source was first described by Lighthill2 in 1952. Lighthill's result 
inc1udes the effects of shear and bulk viscosity and its derivation is beyond the scope of 
this text. However, in virtually all cases of practical interest, the contributions from viscous 
forces are completely negligible and a simplified derivation can be made. The source of 
acoustic excitation lies in the convective term (u . V)u of the acceleration. Retaining this 
term and discarding the terms involving viscosity and gravity in (5.4.8) gives 

..., (au (~...,)~) a(pu) ~ ap (~...,)~ 
- vp = p - + U· v U = -- - u- + pU' v u 

at at at 
(5.15.4) 

Use the nonlinear continuity equation (5.3.3) to replace u(apj at) with -uV· (pu), take the 
time derivative of (5.3.3) and the divergence of (5.15.4), eliminate the common term, and 
use (5.5.6) to express p in terms of p in the linear termo The result is an inhomogeneous 
wave equation 

...,2 _ 1 a2p ~ ~ ~ ~ 
v p C2 at2 = -V· [uV· (pu) + p(u· V)u] 

The source term can be given direct physical meaning if it is rewritten 

a2 (pu;Uj) 

aXiaXj 

(5.15.5) 

(5.15.6) 

Tensor notation has been used for economy of notation. The subscripts i and j take on 
the values 1, 2, and 3 and represent the x, y, and z directions. A summation convention is 

2Lighthill, Proc. R. SOCo (London) A, 211, 564 (1952). 
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used, wherein if any subscript appears more than once, it is assumed that subscript is 
summed over all its values. For example, aUi / aXi is equivalent to V . ü and Uj(aUi / aXj) is 
equivalent to (ü . V)ü. Thus, there are nine quantities in the source termo This source term 
describes the spatial rates of change of momentum flux within the fluid, and Lighthill 
showed that it is responsible for the sounds produced by regions of turbulence, as in the 
exhaust of a jet engine. [See Problem 5.15.3 to show that the source term in (5.15.5) is 
equivalent to that in (5.15.6).] 

It can be seen that each of these three source terms [described separately in (1), (2), 
and (3) above] arises independent1y, so that the complete inhomogeneous lossless wave 
equation accounting for mass injection, body forces, and turbulence is 

(5.15.7) 

The effects of gravity could be included by adding a term V· (Pogs) to the left side of (5.15.7) 
and speed of sound profiles by considering c a function of position. The sources on the right 
side of (5.15.7) will be related to monopole, dipole, and quadrupole radiation in Section 7.10. 

*5.16 THE POINT SOURCE 

The monofrequency spherical wave given by (5.11.15) is a solution to the homogeneous 
wave equation (5.5.4) everywhere except at r = o. (This is consistent with the fact that 
there must be a source at r = O to generate the wave.) However, (5.11.15) does satisfy the 
inhomogeneous wave equation 

for all r. The three-dimensional delta function 8(r) is defined by 

Iv 8(r)dV = g r = o E v 
r = o $ v 

(5.16.1) 

(5.16.2) 

To prove this, multiply both sides of (5.16.1) by dV, integrate over a volume V that 
includes r = O, and use (5.16.2) to evaluate the delta function integral and Gauss's theorem 
to reduce the volume integral to a surface integral. This gives 

(5.16.3) 

where ft is the unit outward normal to the surface 5 of V. Now, substitute (5.11.15) forp and 
carry out the surface integration over a sphere centered on r = o. See Problem 5.16.1. 

To generalize to a point source located at r = ro, make the appropriate change of variable 
in (5.11.15): 

p = I~ A ~ I exp [j(wt - klr - rol)] 
r - ro 

(5.16.4) 

This is a solution of 

(5.16.5) 
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In the proper circumstances, incorporation of a point source directly into the wave 
equation provides considerable mathematical simplification. (See Sections 7.10 and 9.7-9.9 
as examples.) We will, however, use this formalism only when necessary, utilizing in most 
cases methods more c10sely related to elementary physical intuition. 

PROBLEMS 

5.2.1. (a) Linearize (5.2.3) by assuming s « 1. Then, by comparing this result with (5.2.5), 
obtain the adiabatic bulk modulus of a perfect gas in terms of '2Po and y. (b) With the 
help of (5.2.1) applied to equilibrium conditions, obtain the temperature dependence 
of 00 at constant volume. 

5.2.2. Another form of the perfect gas law is '2PV = nffiTK, where n is the number of moles 
and ffi = 8.3143 J/(mol·K) is the universal gas constant (the mole is the molecular 
weight M in grams). Obtain a relationship between r and ffi. Evaluate ffi in J I (kmol· K) 
(the kilomole is the molecular weight in kilograms). 

5.2.3. If the adiabat for a fluid is presented in the form '2P = '2Po + A[(p - Po)1 po] + ~ B[(p -
Po)1 PoF and is to be written as ('2P l'2Po) = (pl po)a, find an approximate expression 
for the exponent a. Hint: Expand (pl po)a about po through second order and equate 
coefficients. Relate the results to (5.2.9) and (5.2.7). 

5.2.4. The major constituents in standard air and the percentage and molecular weight in 
grams of each are: nitrogen (N2), 78.084, 28.0134; oxygen (02), 20.948, 31.9988; argon 
(Ar), 0.934, 39.948; carbon dioxide (C02), 0.031, 44.010. (a) Ca1culate the effective 
molecular weight of air. (b) Obtain the specific gas constant r = ffil M for air and 
compare with the value listed in Appendix AI. 

5.3.1. From the linear continuity equation (5.3.4), show that the condensation and partic1e 
displacement are related by s = - V . g. Hint: Assume po is independent of time. The 
integral of (5.3.4) over time must yield a constant independent of the forms of s and 
li. Evaluate the constant when there is no sound. 

5.4.1. Show that the change in the density of a particular fluid element moving with velocity 
li is given by (apl at) + li . V p. 

5.4.2. A flow is incompressible if a fluid element does not change its density as the element 
moves. From Problem 5.4.1, this means (apjat) + li . V p = o. (a) Show that for an 
incompressible fluid the equation of continuity reduces to V . li = o. (b) Write Euler's 
equation for the flow of an incompressible fluido (c) What is c for an incompressible 
fluid? 

5.5.1. Use the adiabat and the linearized equations of continuity and motion to show that 
all the scalar acoustic variables obey the wave equation V2 

- (11 c2) a2 1 at2 = O within 
the accuracy of the linearizing approximations and the near constancy of po and c. 

5.5.2. (a) Use the adiabat and the linearized equations of continuity and motion (and the 
near constancy of po and c) to show that V(V . li) = (11 c2) a2lijat2 . (b) Show that, 
since li is irrotational, this is equivalent to V2 li = (1/c2) a2lijat2. (c) Write the latter 
equation in spherical coordinates with spherical symmetry and compare it with 
the wave equation for the pressure in the same coordinates. (See Appendix A7 for 
V2 li.) 

5.6.1. (a) Find the speed of sound in hydrogen at 1 atm and O°C from its values of '2Po, Po, 
and y. (b) Compare with the result given in Appendix AIO. Is your agreement within 
the round-off of the tabulated values? (c) What error in temperature would give the 
same disagreement? 
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5.6.2. (a) By means of (5.6.8), determine the speed of sound in distilled water at atmospheric 
pressure and a temperature of 30°C. (b) What is the rate of change of the speed of 
sound in water with respect to temperature at this temperature? 

5.6.3. (a) For a perfect gas, does c vary with the equilibrium pressure? With the instantaneous 
pressure in an acoustic process? (b) Find c for a perfect gas that obeys the isotherm 
(5.2.2). (c) Compare the value of c from (b) to that for air at 20°C. 

5.7.1. If li = iU exp[j(wt - kx)], show that I(li· v)lil/lalijatl = Ulc, the acoustic Mach 
number. Relate this to the relevant assumption made to obtain the linear Euler's 
equation (5.4.10). 

5.7.2. For an acoustic wave with propagation constant k, show that the mathematical as
sumption made to obtain (5.5.8) is equivalent to requiring l{l I po)V po I « k. Physically, 
what does this mean? 

5.7.3. For a plane wave u = U exp[j(wt - kx)], find expressions for the acoustic Mach 
number Ulc (a) in terms of P, Po, and c and (b) in terms of s. 

5.7.4. Using (5.7.8) for an oblique wave, obtain the velocity potential and then the acoustic 
particle velocity, and show that the velocity is parallel to the propagation vector. 

5.7.5. (a) Show that if the density is not approximated by po in the gravity term in Euler's 
equation, the wave equation for acoustic pressure contains a term V . (gpos). (b) Show 
for a plane wave that this term is negligible as long as w » Ikl/c. Evaluate Ikl/c for 
water and air. 

5.7.6. For an acoustic wave of angular frequency w, find a condition justifying ignoring any 
time dependence in po in the linear equation of continuity. 

5.8.1. Two parallel traveling plane waves have different angular frequencies Wl and W2 and 
pressure amplitudes P1 and P2• (a) Show that the instantaneous energy density ~i at 
a point in space varies between (P1 + Pd I poc2 and (P1 - Pd I poc2

• (b) Show that 
the total energy density ~ at the point averages to the sum of the individual energy 
densities of each wave alone. Hint: Let the averaging time be much greater than 
21T/lwl - wJ 

5.9.1. If P = Pexp[j(wt - kx)], find (a) the acoustic density, (b) the particle speed, (c) the 
velocity potential, (d) the energy density, and (e) the intensity. 

5.9.2. (a) Derive an equation expressing the adiabatic temperature rise t:..T produced in a gas 
by an acoustic pressure p. (b) What is the amplitude of the temperature fluctuation 
produced by a sound of intensity 10 W 1m2 in air at 20°C and standard atmospheric 
pressure? 

5.9.3. Repeat Problem 5.9.1 for the standing wave p = Pcos(wt) cos(kx). 

5.10.1. For a wave consisting of two waves traveling in the + x direction but with different 
frequencies, show that the specific acoustic impedance is Poc. 

5.10.2. Show that for any plane wave traveling in the +x direction, the specific acoustic 
impedance is poc. Hint: Let 4» = f(ct - x) and generate p and u from 4». 

5.10.3. Find the specific acoustic impedance for a standing wave p = Psinkxexp(jwt). 

5.11.1C. For values of kr between 0.1 and 10, plot the specific acoustic resistance and 
reactance. In what range of kr do these quantities make transitions between low
and high-frequency behaviors? What are their maximum values? 

5.11.2. Given a small source of spherical waves in air, at a radial distance of 10 em compute 
the difference in phase angle between pressure and particle velocity for 10 Hz, 
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100 Hz, 1 kHz, and 10 kHz. Compute the magnitude of the specific acoustic 
impedance for each frequency at this location. 

5.11.3. For a spherical wave p = (Alr) cos(kr) exp(jwt), find (a) the partic1e speed, (b) the 
specific acoustic impedance, (c) the instantaneous intensity, and (d) the intensity. 

5.11.4. Show that the specific acoustic reactance of a spherical wave is a maximum for 
kr = 1. 

5.11.5. At some location, the pressure amplitude and partic1e speed of a 100 Hz sound wave 
in air are measured to be 2 Pa and 0.0100 m/s. Assuming that this is a spherical 
wave, find the distance from the source. What additional measurements could be 
made at this same place to determine the direction of the source? 

5.11.6C. Plot the magnitude and the phase of the specific acoustic impedance (normalized 
by dividing by poc) of a spherical wave as a function of kr. Above what value of kr 
does the spherical wave approximate the behavior of a plane wave within about 
1O%? 

5.12.1C. A spherical wave in air has a sound pressure amplitude of 100 dB re 20 1LPa at 1 m 
from the origino (a) Plot the ratio of amplitudes of the pressure P and the partic1e 
speed U as a function of r for various frequencies. (b) Is the distance at which the 
ratio P lU comes to within 10% of Poc independent of frequency? (c) If not, plot 
this distance as a function of frequency. 

5.12.2. For a 171 Hz plane traveling wave in air with a sound pressure leveI of 40 dB re 20 
1LPa, find (a) the acousticpressure amplitude, (b) the intensity, (c) the acoustic partic1e 
speed amplitude, (d) the acoustic density amplitude, (e) the partic1e displacement 
amplitude, and (f) the condensation amplitude. 

5.12.3. A plane sound wave in air of 100 Hz has a peak acoustic pressure amplitude of 
2 Pa. (a) What is its intensity and its intensity leveI? (b) What is its peak partic1e 
displacement amplitude? (c) What is its peak partic1e speed amplitude? (d) What is 
its effective or rms pressure? (e) What is its sound pressure leveI re 20 1LPa? 

5.12.4. An acoustic wave has a sound pressure leveI of 80 dB re 1 1Lbar. Find (a) the sound 
pressure leveI re l1LPa and (b) the sound pressure leveI re 20 1LPa. 

5.12.5. (a) Show that a plane wave having an effective acoustic pressure of l1Lbar in air has 
an intensity leveI of 74 dB re 10-12 W 1m2 • (b) Find the intensity (W 1m2 ) produced 
by an acoustic plane wave in water of SPL(1 1Lbar) = 120 dB. (c) What is the ratio 
of the acoustic pressure in water for a plane wave to that of a similar wave in air of 
equal intensity? 

5.12.6. (a) Determine the energy densiÍy and effective pressure amplitude of a plane wave 
in air of intensity leveI 70 dB re 10-12 W 1m2• (b) Determine the energy density and 
effective pressure amplitude of a plane wave in water if its sound pressure leveI is 
70 dB re l1Lbar. 

5.12.7. (a) Show that at constant 0'0 the characteristic impedance of a gas is inversely 
proportional to the square root of its absolute temperature TK• (b) What is the 
characteristic impedance of air at O°C? At 80°C? (c) If the pressure amplitude of 
a sound wave remains constant, what is its percent change in intensity as the 
temperature increases from O°C to 80°C? (d) What would be the corresponding 
change in intensity leveI? In pressure leveI? 

5.12.8. Cavitation may take place at the face of a sonar transducer when the sound pressure 
amplitude being produced exceeds the hydrostatic pressure in the water. (a) For a 
hydrostatic pressure of 200,000 Pa, what is the highest intensity that may be radiated 
without producing cavitation? (b) What is the sound pressure leveI of this sound 
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re 1 JLbar? (c) What is the condensation amplitude? (d) At what depth in the ocean 
would this hydrostatic pressure be found? 

5.12.9. A transmitter generates a sound pressure leveI at 1 m of 100 dB re 1 JLbar for a 
driving voltage of 100 V (rms). Find the sensitivity leveI in dB re 1 JLbar/V. 

5.12.10. A transmitter has a sensitivity leveI of 60 dB re 1 JLbar/V. Find its sensitivity leveI 
re 1 JLPa/V and re 20 JLPa/V. 

5.12.11. The receiving sensitivity leveI of a hydrophone is -80 dB re 1 V/ JLbar. (a) Express 
this leveI re 1 V/ JLPa. (b) What will be the (rms) output voltage if the pressure field 
is 80 dB re 1 JLbar? 

5.12.12. A microphone reads 1 mV for an incident effective pressure leveI of 120 dB re 20 
JLPa. Find the sensitivity leveI of the microphone re 1 V/ JLbar and 1 V /20 JLPa. 

5.13.1C. Compare the magnitude of H~2)(kr) with i,ts asymptotic expression and find the 
value of kr beyond which the disagreement is within 10%. 

5.13.2C. Find the value of kr beyond which Izl in (5.13.12) is within 10% of Poc. 

5.13.3. For various z, test the assertion that the Wronskian of /o(z) and Yo(z) is 2/1TZ. 

5.13.4. Find the fractional change in pressure amplitude for each doubling of the propagation 
distance for (a) spherical waves, (b) cylindrical waves for kr » 1, (c) plane waves. 

5.13.5. Assume that kz ,",O in (5.13.3). (a) Show that 

is a solution of (5.13.3). (b) Write sinkzz in terms of complex exponentials and show 
that p consists of two outward-traveling waves, each having conical surfaces of 
constant phase. (c) Find the angles of elevation and depression with respect to the 
z = O plane of the propagation vectors. 

5.14.1. (a) If c is a function only of z, show that dO / ds = - [(cos ( 0 )/ co] dc/ dz, with 00 the 
angle of elevationofthe ray where c = co. (b) If the gradientg = dc/dz is a constant, 
find the radius of curvature R of the ray in terms of g, c, and O. Is R a constant? 
(c) If the temperature of air decreases linearly with height z, verify that c(z) = Co - gz, 
where g > O. If the temperature decreases 5 CO /km, find the radius of curvature of 
a ray that is horizontal at z = O (assume Co = 340 m/s). At what horizontal range 
will this ray have risen to a height of 10 m? 

5.14.2. Assume the speed of sound is given by the quasi-parabolic profile c(z) = co[l -
(eZ)2]-l/2. Let the depth z = O, which defines the axis of the sound channel, lie 
well below the surface of the oceano (a) Find the equation z(x) for rays emitted by a 
source at (x,z) = (0,0) with angles of elevation or depression :tOo. Hint: use Snell's 
law, dz/dx = tanO, and f (a2 - U2)-1!2 du = sin-l(u/a). (b) For a given ray, find an 
expression for the average speed with which energy propagates out to a distance x 
lying on the channel axis. Explain why there is no dependence on the parameter e. 
For small angles, approximate your expression through the first nonzero term in 00 , 

(c) For 1001 ::s 1T/8, show that c(z) is a good approximation of the parabolic profile 
co[l + ~(eZ)2]. What is the percentage discrepancy at 22°? (d) A certain ocean channel 
with axis more than about 1 km below the ocean surface can be approximated by c(z) 
with Co = 1475 m/s and e = 1.5 X 10-4 m-l. Calculate the traveI speeds of (c) for 
00 = O, 1, 2, 5, and 10°. (e) For each of the angles in (d), determine the greatest height 
above the channel axis reached by the ray and the distance between successive axis 
crossings. (j) Explain why the results of (d) and (e) are not inconsistent. 

5.14.3. Assume the speed ofsound is given by the quasi-linearprofile c(z) = co[l- elzll-I !2. 

Let the depth z = O, which defines the axis of the sound channel, lie well below 
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the surface of the oceano (a) Find the equation z(x) for rays emitted by a source 
at (x,z) = (O, O) with angles of elevation or depression :tOo. Hint: use SnelI's law 
and dz 1 dx = tan O. (b) For a ray with initial angle 00 , find the distance Llx between 
x-axis intercepts and the maximum distance Llz it attains above or below z = O. 
(c) For a given ray, find an expression for the average speed with which energy 
propagates out to a distance x lying on the channel axis. Explain why there is no 
dependence on the parameter 8. For small angles, approximate your expression 
through the first nonzero term in 00 , (d) For 1001 ~ 7T 18, show that c(z) is a good 
approximation of the linear profile co(1 + ~8Izl). What is the percentage discrepancy 
at 22°? (d) A certain ocean channel with axis more than about 1 km below the ocean 
surface can be approximated by a quasi-bilinear profile with Co = 1467 m/s and 
81 = 4.0 X 10-5 m- I above the axis and 82 = 2.0 X 10-5 m- I below. Calculate the 
traveI speeds of (c) for 00 = O, 1, 2, 5, and 10°. (e) For each of the angles in (d), 
determine the greatest distances above and below the channel axis reached by the 
ray and the two distances between successive axis crossings. (j) Explain why the 
results of (d) and (e) are not inconsistent. 

5.14.4. (a) Verify (5.14.7). Hint: Substitute (5.14.6) into (5.14.3) and note that VA . (ns) = 
n(dAlds) and V· (ns) = dnlds + nV' s. (b) Obtain (5.14.13) from (5.14.12). Deal with 
this component by component. Show that the x component of d(Vf) 1 ds can be written 
as d(na)1 ds from (5.14.6) and as (a ai ax + f3 ai ay + ')I ai az)(ar 1 ax) from (5.14.12). 
In the latter expression, exchange orders of differentiation, use (5.14.6), expand the 
derivatives, and regroup using a 2 + f32 + ')12 = 1. 

5.14.5. If the speed of sound in water is 1500 m/s at the surface and increases linearly with 
depth at a rate of 0.017/s, find the range at which a ray emitted horizontalIy from a 
source at 100 m depth will reach the surface. 

5.14.6. For the conditions of Problem 5.14.5, calculate the ratio of the intensity when the ray 
reaches the surface to that at 1 meter from the source. Compare this to the intensity 
if the spreading were spherical. 

5.14.7. Plot, as a function of time, the phase coherent sum of two sinusoidal signals of equal 
frequency and amplitude for phase differences from 0° to 360° in steps of 45°. For 
each case, calculate the ratio of the intensity of the summed signal to the intensity of 
the individual signals and compare to results obtained from the plots. 

5.14.8. Sound from a single source arrives at some point over two separate paths. Let the 
two signals have pressures PI = PI cos(wt) and P2 = P2 cos(wt + 4» at the point. 
(a) Under the assumption that the waves are plane and essentially parallel, show that 
the intensity at that point is I = [(PI + P2 cos 4»2 + (P2 sin 4»2112poc. (b) If incoherence 
effects now cause 4> to be a slowly varying function of time compared to the period 
of the waves, show that the total intensity at the point is the sum of the individual 
intensities of the two waves. Hint: Let the accumulated values of 4> be distributed 
with equal probability over the interval O ~ 4> < 27T. 

5.14.9C. Plot, as a function of time, the sum of two quasi-random signals of about equal 
intensity. Verify that the intensity of the summed signals is the sum of the intensities 
of the individual signals. Hint: Construct the signals from sinusoids, each with its 
phase independently randomized at each time step. 

5.14.10. Show that a sphericalIy symmetric outward-traveling wave in an isospeed medium 
satisfies (5.14.5) identicalIy for alI r. 

5.14.nc. The sound speed in deep water can be approximated by two layers: an upper 
layer in which the sound speed decreases linearly from 1500 ml s at the surface 
to 1475 m/s at 1000 m, and an infinitely deep layer in which the sound speed 
increases at a constant rate of 0.017 S-I. For a source at the surface, (a) plot the 
distance at which a ray returns to the surface for depression angles between 0° 
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and 10°. (b) Find the depression angle and range of the ray that reaches the surface 
closest to the source. (c) The region where rays with different source angles reach 
the surface at the same range is the resweep zone. Find the width of this region. 
(d) Find the greatest depth attained by a ray that contributes to this region. 

5.14.12. The sound speed in air varies linearly from 343 m/s at the ground to 353 m/s at 
100 m altitude and then decreases above this. For a source at ground leveI, find 
(a) the maximum elevation angle for a ray that retums to ground leveI, and (b) the 
range at which this ray retums to ground leveI. 

5.14.13C. At the range found in Problem 5.14.12, find the difference in the times of arrival of 
the ray that leaves the source horizontally and the ray that leaves at the maximum 
elevation angle. 

5.14.14. (a) Show that, within the approximations yielding!.he eikonal equation, Vp = pkVr. 
(b) The intensity, written exelicit1y as a vector, is I = (puh. Using the relationship 
between p and u, show that I is parallel to the ray path. 

5.15.1. Express in vector notation: (a) UjVj, (b) au/ aXj' (c) Uj af fax;, (d) f au/ aXj + Uj af I aXj. 

5.15.2. Express in subscript (tensor) notation: (a) (u . V)f, (b) V . [(u . V)ul, (c) V . [u(V . u)]. 

5.15.3. Show that the right sides of (5.15.5) and (5.15.6) are equivalent. Hint: Take (a I aXj) of 
(pUj)Uj and convert to vector notation. 

5.16.1. Prove the equality given by (5.16.3). Hint: Use the indefinite integral relation 
f x exp( -jx) dx = exp( -jx) + jx exp( -jx). 

5.16.2. Show that in spherical coordinates with spherical symmetry the three-dimensional 
delta function can be written as 8(r) = (4m.2)-18(r), where 8(r) is the one
dimensional delta function. 

5.16.3. Show that in cylindrical coordinates with radial symmetry for a source lying on 
the z axis at z = zo, the three-dimensional delta function 8(r - rol can be written as 
8(r - rol = (21Tr)-18(r)8(z - zo). 

5.16.4. (a) Show that p = (AI r)f(t - r I c) is a solution of the inhomogeneous wave equation 
V2p - (1/c2)a2p/at2 = -41TA8(r)f(t). (b) Show that p = (1/r)8(t - rlc) is a solution 
ofthis equation whenf(t) = 8(t). 


