

escola politécnica da USP Programa de Pós-Graduação ENGENHARIA CIVIL PCC-5729 Compósitos de Matrizes Cimentícias para a Construção Civil

Controle e análise experimental do CRF

Antonio Figueiredo

Renata Monte

Luís Bitencourt

Para utilizar o CRF como material estrutural devemos compreender:

 Como abordamos um material estrutural (princípios básicos)

- Como parametrizamos o seu comportamento: a análise experimental
- Como modelamos seu comportamento (modelo de projeto – modelo de previsão de comportamento)
- Como garantimos sua qualidade (modelo de controle)

✓ Como executamos a estrutura (modelo de controle de execução da estrutura)

Modelo básico

Novo Código Modelo fib

Classificação do comportamento

- Não há definições específicas para trabalhabilidade e durabilidade
 - Há que se desenvolver modelos específicos de controle (o abatimento é adequado?)
 - Há que se parametrizar a durabilidade da estrutura com CRF (parâmetros adotados para o CA são aplicáveis?)
- Para a resistência à compressão não se adota nenhuma alteração de classificação quando baixos teores de fibras são utilizados (Vf ≤1%)

Classificação do comportamento

- As principais alterações de classe comportamental vão para o comportamento à tração e pós-fissuração
- As classificações são normalmente baseadas nos ensaios de flexão devido às dificuldades associadas ao ensaio de tração direta

Como avaliar os métodos de ensaio

- Principais aspectos que determinam a qualidade de um ensaio de caracterização de CRF:
 - A complexidade do método (dimensões de CP e trabalho para preparação do mesmo, configuração e execução do ensaio).
 - A reprodutibilidade, confiabilidade e dispersão dos resultados.
 - ≻Os custos associados a sua realização.
 - A complexidade para o tratamento dos dados para chegar a uma relação uniaxial do material.
 - ≻A aplicabilidade e nível de aceitação.

Leis constitutivas para tração uniaxial

- O ideal é verificar em ensaios de tração direta:
 - Dog-bone e outros formatos
 Presença ou não de entalhe
 Obter a relação σ-ε
- Alternativa: DEWS

> Avalia diretamente na abertura de fissura

São ensaios difíceis

http://www.kz.tsukuba.ac.jp/~rclab/2frc-e.htm

Diferenças de resposta em função da solicitação durante o ensaio

Fonte: fib Model Code 2010

Diferentes métodos de ensaio

Test	Standard / Reference	Setup	Dimensions ¹ [mm]
3-point bending test	EN 14651:2005		600 x 150 x 150
4-point bending test	NBN B 15-238		600 x 150 x 150
Uniaxial tensile test	RILEM TC 162-TDF recommendations		$\Phi150\mathrm{x}150$
Wedge-splitting test	Tschegg and Linsbauer (1986)	←]→	150 x 150 x 150
Barcelona test	UNE 83515:2010		$\Phi150 \ge 150$
Double-edge wedge splitting test	di Prisco <i>et al.</i> (2010)		150 x 150 x 150
EFNARC panel test	EFNARC European Specification for Sprayed Concrete		600 x 600 x 10
Round panel test	ASTM C1550 - 10a		Ф800 x 75

Fonte: Blanco (2013)

Equações constitutivas

Diagrama	Parámetros	Ensayo		Diagrama	Parámetros	Ensayo	
	$\sigma_{I} = f_{ctRd} = 0,33 f_{R,3,d}$ $\varepsilon_{I} = \varepsilon_{u} = [20\%_{0} \text{ flexión}; 10\%_{0} \text{ tracción}]$	3-point bending test. UNE EN 14651 \checkmark F 25 550 25 150 150	EHE	$\sigma_{1} = f_{ctd} = \alpha^{t} c^{t} c_{tk,ll} / \gamma^{t} c_{t}$ $\sigma_{2} = f_{eq,ctd,l} = f_{eq,ctk,ll} \alpha^{t} c^{t} \alpha_{sys} / \gamma_{ct}$ $\sigma_{3} = f_{eq,ctd,ll} = f_{eq,ctk,ll} \alpha^{t} c^{t} \alpha_{sys} / \gamma_{ct} \leq d$ $\varepsilon_{l} = \sigma_{l} / E_{HBF}$		4-point bending test NBN B 15-238	
	$\sigma_1 = f_{Ftu} = f_{eq2}/3$ $\varepsilon_1 = \varepsilon_u = [20\% \text{ reblandecimiento ;}$	4-point bending test UNI 11039 F/2 ↓ ↓ F/2	R-DT 204		$\varepsilon_{2} = \varepsilon_{1} + 0,1\%_{0}$ $\varepsilon_{3} = \varepsilon_{u} = 10\%_{0}$		
	10‰ endurecimiento]			σ	$\sigma_1 = 0.7 f_{ctm,fl} (1,6-d)$	3-point bending test	
	$\sigma_{I} = f_{eq,ctd,II} = f_{eq,ctk,II'} \alpha_{c} \cdot \alpha_{sys} / \gamma_{ct} \leq f_{eq,ctd,I}$ $\varepsilon_{I} = \varepsilon_{u} = 10\%_{0}$	4-point bending test NBN B 15-238 $F/2 \downarrow \downarrow F/2$ 25 550 25 150 150	DBV		$\sigma_{2} = 0,45 \cdot \kappa_{lr} f_{R,1}$ $\sigma_{3} = 0,37 \cdot \kappa_{lr} f_{R,4}$ $\varepsilon_{1} = \sigma_{1} / E_{HRF}$ $\varepsilon_{2} = \varepsilon_{1} + 0,1\%_{0}$	$\downarrow F$ $\downarrow F$ $\downarrow F$ $\downarrow F$ $\downarrow F$ $\downarrow I = 150$ $\downarrow I = 150$	
	$\sigma_I = f_{eq,ctd,l} = f_{eq,ctk,l} \alpha_c f \cdot \alpha_{sys} / \gamma_{ct} f$	4-point bending test NBN B 15-238			$\varepsilon_3 = \varepsilon_u = 25\%_0$	25 500 25 150	
$\sigma \bullet$ σ_1 σ_2 ε_1 ε_2 ε_2	$\sigma_{Z} = f_{eq,ctd,II} = f_{eq,ctd,II} \cdot \alpha_{c} f \cdot \alpha_{sys} / \gamma_{c} f \leq f_{eq,ctd,I}$ $\varepsilon_{Z} = \varepsilon_{u} = 10\%_{0}$	$ \begin{array}{c} \mathbf{F/2} & \mathbf{\psi} & \mathbf{F/2} \\ \hline & & \\ \mathbf{F/2} & \mathbf{F/2} \\ \hline & \\ \mathbf{F/2} & \mathbf{F/2} \\ \mathbf{F/2} & \mathbf{F/2} \\ \mathbf{F/2} & \mathbf{F/2} \\ \mathbf{F/2} & \mathbf{F/2} \\ \hline & \\ \mathbf{F/2} & \mathbf{F/2} \\ \mathbf{F/2} & F/$	DBV	$\sigma \land \sigma_{I} \to B$	$\sigma_{I} = f_{ct,d} = 0,6 f_{ct,fl,d}$ $\sigma_{Z} = f_{ctR1,d} = 0,45 f_{R1,d}$ $\sigma_{Z} = f_{ctP2,d} = k_{1}(0.5 f_{P2,d} - 0.2 f_{P1,d})$	3-point bending test. UNE EN 14651	
	$\sigma_{I} = f_{Fls} = 0.45 f_{eq1}$ $\sigma_{2} = f_{Flu} = k[f_{Fls} - (w_{u}/w_{i2})(f_{Fls} - 0.5f_{eq2} + 0.2f_{eq1})]$ $k = [0,7 \ tracción \ pura, 1 \ resto \ de \ casos]$ $\varepsilon_{2} = \varepsilon_{u} = [20\% \ reblandecimiento;$ $10\% \ o \ endurecimiento]$	4-point bending test. UNI 11039 $F/2 \downarrow \downarrow F/2$ I = 1 75 450 75 150 150	CNR-DT 204	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\varepsilon_{z} = 0.1 + 1000 \cdot f_{ctd} / E_{c,0}$ $\varepsilon_{3} = 2.5 / I_{cs} (l_{cs}; long, critica)$ $\varepsilon_{u} = [20\% \text{ flexión; } 10\% \text{ tracción}]$	$ \begin{array}{c} $	

Norma Alemã DBV 1992 (2001), Italiana CNR-DT 204 (2006), Espanhola EHE-08 (2008)

Fonte: Blanco et al. (2013)

fib Model Code 2010 – Equação constitutiva

$$f_{ctm} = 0.30(f_{ck})^{2/3}$$

$$f_{Fts} = 0.45f_{R1}$$

$$f_{Ftu} = k[f_{Fts} - (w_u/CMOD_3)(f_{Fts} - 0.5f_{R3} + 0.2f_{R1})]$$

$$\varepsilon_{SLS} = CMOD_1 / l_{cs}$$

$$\varepsilon_{SLU} = w_u / l_{cs} = \min(\varepsilon_{Fu}, 2.5/l_{cs} = 2.5/y)$$

$$\varepsilon_{Fu} = [20\% \text{ softening; } 10\% \text{ hardening}]$$

EN 14651

Fonte: Blanco et al. (2013)

Controle básico da resistência residual

 EN 14651 (2007): ensaio de tração na flexão em três pontos realizado em viga com entalhe e controle de deformação através de CMOD ou δ.

fib Model Code

Comportamento pós-fissuração do CRF

Novo Código Modelo fib - classificação

• 2 Parâmetros: f_{R1k} e a relação f_{R3k}/f_{R1k}

$$\label{eq:relation} \begin{array}{l} \mbox{``a" se } 0.5 \leq \mbox{f}_{\rm R3k}/\mbox{f}_{\rm R1k} \leq 0.7 \\ \mbox{``b" se } 0.7 \leq \mbox{f}_{\rm R3k}/\mbox{f}_{\rm R1k} \leq 0.9 \\ \mbox{``c" se } 0.9 \leq \mbox{f}_{\rm R3k}/\mbox{f}_{\rm R1k} \leq 1.1 \\ \mbox{``d" se } 1.1 \leq \mbox{f}_{\rm R3k}/\mbox{f}_{\rm R1k} \leq 1.3 \\ \mbox{``e" se } 1.3 \leq \mbox{f}_{\rm R3k}/\mbox{f}_{\rm R1k} \end{array}$$

Condições básicas

- Para o CRF ser considerado como material de reforço as seguintes *mínimas* relações devem ser atendidas:
 - f_{R1k}/f_{Lk} ≥ 0,4
 - f_{R3k}/f_{R1k} ≥ 0,5

Primeiro problema

- O próprio *fib* Model Code afirma que não é aplicável para pavimentos e concreto projetado
- Não afirma explicitamente, mas também não se aplica a tubos
- Porém, o enfoque do *fib* Model Code pode ser aplicado a várias concepções

Segundo problema: como controlar?

- O ensaio EN14651 é executado em pouquíssimos laboratórios
 - O próprio fib Model Code admite o uso de ensaios "alternativos"
- No Brasil nós mal controlamos a resistência à compressão (CARROMEU et al., 2012 e BAUER, 2017; MAGALHÃES et al., 2013).

O controle do CRF

• Controle das matérias-primas (fibras)

✓ Norma brasileira apenas para fibras de aço

✓ Praticas recomendadas para macrofibras poliméricas e de vidro

Controle do material CRF

- ✓ Mistura
- ✓ Trabalhabilidade
- ✓ Comportamento mecânico
- Controle de aplicação/execução

Mistura

- Como introduzir as fibras?
- Homogeneização liberação das fibras em pentes ou feixes
 - Mistura prévia com agregados ou com o concreto pronto
- Tempo de mistura adequado
- Dosador automático
- Colocação na esteira (fibras sintéticas?)

Trabalhabilidade

• Pode usar slump?

E o controle tecnológico do CRF se a moldagem não segue os mesmos parâmetros?

• Trabalhabilidade e lançamento:

ALFERES FILHO, R. S.; MOTEZUKI, F. K.; ROMANO, R. C. O.; PILEGGI, R. G.; FIGUEIREDO, A. D. Evaluating the applicability of rheometry in steel fiber reinforced self compacting concretes. Revista IBRACON de Estruturas e Materiais. Aceito para publicação em 2017.

ALFERES FILHOS, R. S. Avaliação da influência do direcionamento de fibras de aço no comportamento mecânico de concreto autoadensável aplicado em elementos planos. Dissertação de Mestrado. Escola Politécnica da USP. 2016

Reometria rotacional

- Aproximadamente 18L de concreto
- Ciclo de cisalhamento
- Etapa de re-homogeneização
- Variação de velocidade 50 1000 50 RPM
- Patamares de velocidade (9s)
- Obtenção do Torque (N.m)

Resultados

Caixa L e espalhamento:

Teor de fibra (kg/m³)	0	20	80	120	Limites (EFNARC)	
	U				mín.	máx.
Caixa – L (h2/h1)	1,0	1,0	0,74	0	0,8	1,0
Espalhamento (mm)	785	795	775	780	650	800

Bloqueio

Segregação

Resultados

Resultados

Relação: Teor de Fibra x Parâmetros reológicos

Utilização conjunta dos métodos: Maior capacidade de análise

Aplicação

- Reforço híbrido cuidados para as <u>fibras não ficarem retidas na</u> <u>armadura</u> (limitar comprimento da fibra)
- Auto adensável cuidados com a <u>orientação das fibras com o fluxo</u> e a <u>segregação</u>

ALFERES FILHO, 2016

Estudo em lajes

• PUJADAS, P. Caracterización y diseño del hormigón reforzado con fibras plásticas. UPC, 2013.

Avaliação em elementos de grande escala

- Moldagem com SCPFRC a partir do centro.
- Ensaio de punção central.

Padrão de ruptura

Resultados (cargas e deflexões máximas)

- Superestimação dos valores obtidos com os modelos RILEM e EHE utilizando os resultados obtidos em prismas.
- O grau de orientação da fibra também existe, mas não é tão favorável quanto ocorre no prisma.

Figura 4.27 – Comparación resultados numéricos y experimentales para las losas a) L_A y B_3,0mx3,0m b) M_A y B_2,0mx3,0m y c) S_A y B_1,5mx3,0m

Fatores relacionados à fibra que influenciam a resposta do CRF

- -resistência mecânica;
- -<u>distribuição</u>;
- -<u>volume</u>;
- -comprimento;
- -número de fibras;
- -etc.

Controle do teor incorporado de fibras

- Estado fresco
 - volume conhecido, lavagem pasta, separação das fibras para secagem e determinação da massa de fibras
- Estado endurecido após ruptura
 - volume conhecido, esmagamento, separação das fibras e determinação da massa de fibras
- Ensaio indutivo
 - método indireto apenas fibra de aço

Indutivo

✓ Desenvolvido e aprimorado na UPC✓ Avaliar quantidade e orientação de fibras

Calibração

Shape	Size (mm)	Parameter			
		$B_{V,x}$	$B_{V,y}$	$B_{V,z}$	
Cylindrical	$\phi 100 \times 100$	536	536	538	
	ϕ 150 × 150	1,789	1,789	1,809	
Cubic	$100 \times 100 \times 100$	695	695	695	
	$150 \times 150 \times 150$	2,342	2,342	2,342	

$$Cf = \beta \sum_{i=x,y,z} \frac{\Delta Li}{B_{\nu,i}}$$

(Cavalaro et al, 2016)

Indutivo - aplicações

Segmentos de túneis

Galobardes et al., (2015)

Blanco et al., (2015)
Não há norma brasileira de ensaios de caracterização do CRF

Práticas recém publicadas

- Macrofibras poliméricas para concreto destinado a aplicações estruturais: definições, especificações e conformidade
- 2. Macrofibras de vidro álcali resistentes (AR) para concreto destinado a aplicações estruturais: definições, especificações e conformidade
- 3. Controle da qualidade do concreto reforçado com fibras (métodos de ensaio)

Ainda não há norma brasileira de ensaios de caracterização do CRF

Três comissões de estudo trabalhando no tema CRF

- Comissão de Estudo de Concreto Reforçado com Fibras (CE 018:300.011)
- Proposição de três normas
 - Requisitos e critérios de controle tecnológico
 - Método de ensaio de tração na flexão 3 pontos c/ entalhe
 - Método de ensaio de duplo puncionamento

ENSAIOS DE FLEXÃO

Item	ASTM C1609	JSCE-SF4	EN 14651	
Representação esquemática				
Tipo de controle	closed-loop	open-loop (1984)	closed-loop	
Variável controlada	deslocamento vertical	deslocamento vertical	deslocamento vertical abertura de fissura	
Geometria (mm ³)	100 x 100 x 350 ou 150 x 150 x 500	100 x 100 x 350 ou 150 x 150 x 500	150 x 150 x 550	
Vão (mm)	300 ou 450	300 ou 450	500	
Velocidade (mm/min)	0 a L/600: 0,06 a 0,12 L/600 a L/150: 0,06 a 0,24	0,15 a 0,50	0 a 0,10mm: 0,05 0,10 a 4,0mm: 0,2	
Número de LVDTs	2	1 ou 2	2	
Análise do gráfico	Cargas residuais (P _{d,L/600} e P _{d,L/150})	Área sob a curva	Carga máxima 0,05mm (F _L) cargas residuais (F _j)	
Resultados obtidos	Resistências residuais (f _{d,L/600} e f _{d,L/150}), Tenacidade (T _{d,L/150})	Tenacidade (T _b) e fator de tenacidade à flexão (FT)	Limite de proporc (f ^f _{ct,L}) e resistências residuais (f _{R,j})	

Fonte: Salvador (2013)

Controle tradicional do CRF JSCE-SF4 (1984)

- Controle por absorção de energia até 2 ou 3 mm de deslocamento.
- Método totalmente antiquado e ultrapassado

CARGA

Caracterização do comportamento pósfissuração do CRF

 Flexão em prismas ASTM C1609 (já está realizado com simplificações: sem closed-loop = JSCE SF4)

Instabilidade dos ensaios Open-loop

Deslocamento vertical do corpo-de-prova

- No sistema closed-loop o deslocamento vertical ou a abertura da fissura é mantido constante durante todo o ensaio.
- A variável funciona como retorno para a aplicação de carga proporcional à deformação do corpo de prova.

Instabilidade no ensaio - causas

- Alta resistência da matriz em comparação à resistência mecânica da fibra;
- Baixo volume de fibras empregado;
- Quantidade insuficiente de fibras na seção de ruptura;
- Falta de rigidez do equipamento;
- <u>Sistema de controle da velocidade;</u>
- Método de ensaio (redundância).

Efeito da Instabilidade – Exemplos

Exemplo de instabilidade pós-pico

•	Vel	ocidad	de s	cript	- 0,	2mm	/min
•	Atir	ngiu 7	50m	nm/mi	n		
	20 -						
			SF	- 20			
F	15 🦹						
ga (kh	10						
Car	5	·					_
	0						
	0	0,5	1	1,5	2	2,5	3
		Desl	ocam	ento ve	ertica	l (mm)	

Vel (mm/min)	Tempo(s)	Força(N)	δ (mm)	
0,138	583,46	16320	0	
0,206	583,76	16320	0,001031	
0,247	584,01	16320	0,002062	
0,309	584,21	16308	0,003093	
0,476	584,34	16308	0,004124	
0,516	584,46	16283	0,005156	
0,619	584,56	16270	0,006187	
0,884	584,63	16245	0,007218	
1,031	584,69	16232	0,008249	
1,238	584,74	16207	0,009281	
1,547	584,78	16182	0,010312	
4,641	584,8	16144	0,011859	
9,282	584,81	16107	0,013406	
133,032	584,82	15705	0,035578	
590,904	584,83	14335	0,134062	
751,800	584,84	12513	0,259362	
745,560	584,85	10591	0,383622	
668,280	584,86	8794,6	0,495002	
572,340	584,87	7236,7	0,590392	
470,220	584,88	5967,8	0,668762	
374,340	584,89	5003,5	0,731152	
281,580	584,9	4274,8	0,778082	
210,360	584,91	3762,8	0,813142	
148,500	584,92	3423,6	0,837892	
102,060	584,93	3216,3	0,854902	
64,980	584,94	3106,4	0,865732	
29,400	584,96	3059,3	0,875532	
-0,780	585	3200,6	0,875012	
-5,670	585,06	3329,4	0,869342	
0,247	585,56	3348,2	0,871402	

Medida e controle da:

- deflexão (δ) ou —
- abertura de fissura (CMOD)

Ensaios realizados com controle fechado

Sistema de controle baseado na EN14651 pode ser complicado

- Podemos utilizar métodos de ensaio simplificados e correlacionáveis com a EN 14651 para controle corriqueiro
- EN 14651 apenas para dosagem e validação de materiais e processos de produção

Outros métodos de ensaio para caracterização do comportamento pós-fissuração do CRF

Compressão diametral com duplo entalhe em cunha - DEWS

DEWS - Ensaios preparação para o ensaio

Corte a 45°

Colagem de chapas

Duplo extensômetro

DEWS – Simplificação do setup

- Moldagem com as cunhas
- Execução apenas do entalhe
- Correlação entre COD e deslocamento vertical da maquina

Fonte: Pereira et al. (2019)

Primeiros resultados

Fonte: Pereira et al. (2019)

Punção de placa quadrada

ALFERES FILHO 2016

Punção de placa quadrada

Punção - centro

Dissertação Ricardo Alferes – 20 kg/m³ de fibra de aço

Punção de placa circular

Imagens: ASTM C 1550, 2012

Montevidéu

- Com entalhe, cunha metálica
- Sistema Open-loop, controle do deslocamento vertical
- Em desenvolvimento ...

Dificuldade: controle do CRF

- No Brasil mal controlamos a resistência à compressão:
 - 21 Laboratórios acreditados no INMETRO: 15 SP (CARROMEU et al., 2012)
 - RS nenhum acreditado: 7 laboratórios agrupados em 4 médias diferentes (MAGALHÃES et al. 2013)
- Tenacidade e comportamento pós-fissuração é muito pior
 - Não conseguem sequer atender a JSCE-SF4 (GUIMARÃES, 2001)

Segundo problema: como controlar?

 Tenacidade e comportamento pós-fissuração é muito pior:

Não consegue com o JSCE-SF4:1984 (Guimarães e Figueiredo, 2002)

 Poucos laboratórios no Brasil (maioria nas universidades) está capacitada para realizar o ensaio EN14651.

Quais métodos de ensaio são viáveis de se utilizar em uma futura normalização ou especificação brasileira?

Duplo puncionamento (Ensaio Barcelona)

Ensaio Barcelona Cinta extensométrica UNE 83515, 2010 Ensaio duplo puncionamento Deslocamento vertical da máquina de ensaio

Chen (1970) medida indireta da resistência à tração do concreto simples

Correlação produzida nos ensaios prévios

É uma correlação específica para o concreto e fibra que serão adotados no projeto

Resultados do **controle com o duplo puncionamento** são introduzidos nas equações e o projetista pode avaliar o valor equivalente na flexão

Dissertação de mestrado – estudo em desenvolvimento

Modelo constitutivo simplificado baseado no ensaio Barcelona

Fonte: Blanco et al., (2014)

Simulação comportamento dos TCRF com parâmetros CRF do ensaio Barcelona

Fonte: MONTE (2015)

Características do método normalizado na UNE 83515

✓ Duplo puncionamento de cilindros

✓Corpo de prova de diâmetro igual à sua altura

✓150 mm – moldado; permite 100 mm – extraído

✓ Aplicação de carga uniforme com velocidade de descida da máquina de ensaio de $(0,5 \pm 0,05)$ mm/min

✓ Surgem entre 2 a 4 fissuras

 ✓ Medida do deslocamento diametral (TCOD) cinta extensométrica

Características do método prática recomendada Ibracon/Abece

- ✓ Duplo puncionamento de cilindros
- ✓Corpo de prova de diâmetro igual à sua altura
- ✓150 mm moldado; permite 100 mm extraído
- ✓ Aplicação de carga uniforme com velocidade de descida da máquina de ensaio de $(0,5 \pm 0,05)$ mm/min
- ✓ Surgem entre 2 a 4 fissuras

Medida do deslocamento vertical (δ) – máquina de ensaio

Deslocamento vertical (\delta) x TCOD

Fonte: Pujadas (2013)

Correlação entre os ensaios: JSCE x Duplo puncionamento - Energia

Fonte: Monte, Toaldo, Figueiredo (2014)
Correlação entre os ensaios: JSCE x Duplo puncionamento - Resistência residual

Fonte: Monte, Toaldo, Figueiredo (2014)

Flexão X duplo puncionamento

 $A = -1148.93 \cdot CMOD^{2} + 473.72 \cdot CMOD - 2165.34$ $B = 1889.31 \cdot CMOD^{2} - 791.03 \cdot CMOD + 3617.56$ $C = -0.14 \cdot CMOD^{2} + 0.48 \cdot CMOD + 3.80$

Não é uma correlação geral

Fonte: Galobardes e Figueiredo, 2015

Flexão X duplo puncionamento

Table 4 Constants and confidence interval of Eq. (2).

i (mm)	а	b	Cl _{99%} (kN)	R	R ²
1.5	1.76E-01	-3.29E-04	2.00	0.86	0.74
2.5	1.45E-01	4.70E-06	1.67	0.89	0.79
3.5	1.52E-01	1.46E-05	1.65	0.87	0.76

É uma correlação geral, mas não apresentou bons resultados para 0,5 mm

Modelo constitutivo simplificado baseado no ensaio Barcelona

Simulação comportamento dos TCRF com parâmetros CRF do ensaio Barcelona

MONTE (2015)

Controle para obras com CRF

Controle do CRF

- Princípios básicos
 - Parametrização do comportamento através do ensaio de flexão três pontos com entalhe
 - Parametrização do comportamento através do ensaio de duplo puncionamento
 - ✓ Estabelecida uma correlação entre estes ensaios, o ensaio de duplo puncionamento pode ser adotado para o controle de qualidade do CRF

Controle do CRF

- Parametrização do comportamento através do ensaio de flexão três pontos com entalhe
 - O desafio é a disseminação do ensaio para além das universidades e centros de pesquisa
 - Investimento em máquinas de ensaio com sistema de controle fechado e qualificação dos técnicos

Controle do CRF

- Parametrização do comportamento através do ensaio de duplo puncionamento
 - A disseminação do ensaio é um pouco mais simples
 - Investimento em máquinas de ensaio com sistema de controle por deslocamento e aquisição de dados
 - Avaliação da robustez do ensaio
 - Diferenças nas máquinas de ensaio (mestrado recém concluído)
 - Repetibilidade e reprodutibilidade (mestrado em andamento)

Considerações sobre controle do comportamento mecânico

- Buscar correspondência com métodos já consagrados;
- Aderência aos modelos constitutivos do elemento estrutural;
- Simplicidade;
- Repetibilidade;
- Reprodutibilidade;
- Fácil implementação.

Continuidade das pesquisas e urgência de normalização

Tipos de fibras e classificação

Tipos de fibras

Fibras de aço

Fibras de vidro

Histórico

- Fibras de aço tem maior histórico como material de reforço para aplicações estruturais.
- Isto gera uma fundamentação de comportamento baseado na interação fibra X matriz.
- Isto governa as exigências para a fibra.

Primeira especificação (e única) brasileira de fibras: fibras de aço

- Norma NBR 15530:07 Fibras de aço para concreto - Especificação.
- Estabelece parâmetros de classificação para as fibras de aço de baixo teor de carbono e dispõe sobre os requisitos mínimos de:

✓ forma geométrica;

✓ defeitos de fabricação;

✓tolerâncias dimensionais e

✓ resistência à tração e dobramento.

Escopo e abrangência da norma

 Com isto, procura-se garantir que as fibras em conformidade com estes requisitos tenham <u>potencial</u> para proporcionar um desempenho adequado ao CRFA, desde que sejam observados os cuidados com a dosagem e controle do material.

Classificação das fibras de aço

TIPOS:

- Tipo A: fibra de aço com ancoragens nas extremidades
- Tipo C: fibra de aço corrugada
- ➤ Tipo R: fibra de aço reta

Classificação das fibras de aço

CLASSES:

- Classe I: fibra oriunda de arame trefilado a frio
- Classe II: fibra oriunda de chapa laminada cortada a frio
- Classe III: fibra oriunda de arame trefilado e escarificado

Designações

Tipo (geometria)	Classe da fibra	Fator de Forma mínimo λ	Limite de resistência a tração do aço MPa ^(*) f _u	
Λ	I.	40	1000	
A	I	30	500	
С		40	800	
	I	30	500	
	III	30	800	
R		40	1000	
	II	30	500	
(*)Esta determinação deve ser feita no aço, no diâmetro equivalente final imediatamente antes do corte.				

Verificação de defeitos

- Deve ser executada para cada lote em uma amostra de no mínimo 200 gramas.
- São consideradas defeituosas fibras de qualquer tipo que estiverem emendadas pelo topo, ou as fibras Tipo A que não apresentarem ancoragem.

Tolerâncias dimensionais

- A variação permitida para $l \neq de \pm 5 \%$.
- Para fibras com comprimento menor ou igual a 35 mm a variação permitida para o comprimento (*I*) é de ± 10% (As medições devem ser feitas nas fibras sem nenhuma retificação).
- A variação máxima permitida para os valores de d_e em relação ao valor nominal é de 5%.
- A variação máxima permitida para a diferença entre as medidas d₁ e d₂ é de 4%.

Resistências

• Ao dobramento (não pode haver quebras).

Aceitação ou rejeição

Ensaio	Amostragem mínima	% mínima de fibras conformes
Dobramento	10 fibras	90
Verificação dimensional	60 fibras	90
Verificação de defeitos	200g	95

Alguns problemas:

- A norma é muito rigorosa e alguns fabricantes brasileiros (vários estrangeiros) não conseguiam atender aos requisitos dimensionais.
- A resistência à tração era medida no fio e isto fica restrito ao <u>fabricante</u>.
- Não está compatível com as tendências atuais ISO

ENSAIO DE TRAÇÃO:

Tem-se dificuldade do ensaio devido as pequenas dimensões das fibras.

A pré-qualificação deve ser realizada pelo fabricante, segundo:

NBR 6207 : Determinação da resistência do aço para as Classes I e III. ASTM A370 : Determinação da resistência do aço para as Classes II.

RESULTADOS DA CARACTERIZAÇÃO DE FIBRAS DE AÇO SEGUNDO A NBR 15530:2007

Selecionadas duas fibras: curta e longa

CLASSIFICAÇÃO DAS FIBRAS:

Tipo A, com ancoragem nas extremidades. Classe I, oriunda de arame trefilado a frio.

Tipo (geometria)	Classe da fibra	Fator de Forma mínimo λ	Limite de resistência a tração do aço MPa ^(*) f _u
А		40	1000

REQUISITOS GEOMETRICOS DA FIBRA:

Realizou-se a medição do diâmetro ($d_1 \in d_2$) em duas direções ortogonais entre si, e do comprimento (I) não alongado sem nenhuma retificação. A medição foi executada em uma amostra de *60 fibras* coletadas:

Resultados:

Análise dos resultados fibra curta

_	D1 (mm)	D2 (mm)		30	45
_	DT (mm)	Dz (mm)	De=(D1+D2)/2	L (mm)	λ=L/De
Média	0.61	0.61	0.61	29.07	47.59
DP	0.009	0.009	0.008	0.281	0.761
CV	1.5%	1.4%	1.3%	1.0%	1.6%
Ν	60	60	60	60	60
Máximo	0.63	0.63	0.63	29.59	49.27
Mínimo	0.59	0.59	0.60	28.22	45.52

Tolerâncias dimensionais				
NBR 15530:07				
1 > 100/		D1-D2 >		
L > 10%	De > 5%	4%		
0	0	0		

Análise dos resultados fibra longa

_			De=(D1+D2)/2	60	80
_	DT (IIIII)	Dz (mm)		L	λ=L/De
Média	0,74	0,74	0,74	60,28	81,61
DP	0,009	0,007	0,007	0,223	0,821
CV	1,2%	0,9%	0,9%	0,4%	1,0%
Ν	60	60	60	60	60
Máximo	0,75	0,76	0,75	60,79	84,13
Mínimo	0,71	0,72	0,72	59,73	79,89

Tolerâncias dimensionais				
NBR 15530:07				
		D1-D2 >		
L > 5%	De > 5%	4%		
0	0	0		

Os dois tipos de fibras estão de acordo com a NBR 15530:2007: FF > 40 e valores individuais medidos atendem a 100% dos requisitos.

RESISTÊNCIA A TRAÇÃO: ensaio particularmente difícil para a fibra curta.

Fibra longa

Corpo de Prova	Diâmetro (mm)	Carga de ruptura (Kgf)	Resistência a tração (MPa)
CP 1	0,725	48,00	1163
CP 2	0,725	52,00	1260
CP 3	0,735	52,00	1226
CP 4	0,740	46,00	1070
CP 5	0,740	51,00	1186
		Média	1181

Tabela 6 - Resistência a tração das fibras Dramix 45/30.

Corpo de Prova	Diâmetro (mm)	Carga de ruptura (Kgf)	Resistência a tração (MPa)
CP 1	0,615	32,00	1077
CP 2	0,600	34,00	1203
		Média	1140

Segundo NBR 15530 fs > 1000MPa: **as fibras cumprem** o mínimo estabelecido.

RESISTENCIA AO DOBRAMENTO

VERIFICAÇÃO DE DEFEITOS:

Detalhe das fibras oxidadas.

Com relação à resistência ao dobramento e à verificação de defeitos, de acordo a NBR 15530, todas as fibras cumprem com o estabelecido.

MACROFIBRAS POLIMÉRICAS SEGUNDO CT303

- Nova recomendação CT303
- Baseada na norma EN 14889-2: Fibres for concrete - Part 2: Polymer fibres — Definitions, specifications and conformity

Requisitos

 Gerais: tipo de polímero, forma (dimensões), tipo de agrupamento, tratamento de superfície.

Requisitos

• Dimensionais

Característica	Símbolo	Desvio máximo admissível do valor individual medido em relação ao valor declarado	Desvio máximo admissível do valor médio medido em relação ao valor declarado
Comprimento e comprimento desenvolvido	L, L _d	±10%	±5%
Diâmetro equivalente	d _e	±50%	±5%
Fator de forma	λ	±50%	±5%

ESTRADA, A. R. C.; GALOBARDES, I.; REBMANN, M. S.; MONTE, R.; FIGUEIREDO, A. D. Geometric charactarization of polymeric macrofibers. **Revista IBRACON de Estruturas e Materiais**, v. 8, p. 644-668, 2015.
- Propriedades mecânicas:
- Resistência à tração e módulo de elasticidade por norma europeia (EN 10002-1) R_m e E ou método simplificado (Anexo C) R_{ms} e E_s

ESTRADA, A. R. C.; GALOBARDES, I.; FIGUEIREDO, A. D. Mechanical characterization of synthetic macrofibres. **Materials Research**. v.19, n.3, pp.711-720, 2016.

- Propriedades mecânicas:
- Resistência à tração e módulo de elasticidade por norma europeia (EN 10002-1) R_m e E ou método simplificado (Anexo C) R_{ms} e E_s
- Tolerâncias sobre os valores declarados:
 - R_m e E é de 10% para os valores individuais e de 5% para os valores médios.
 - R_{ms}e E_s é de 20% para os valores individuais e de 10% para os valores médios.

Efeito sobre a consistência do concreto

O efeito da adição das macrofibras na consistência do concreto será determinado em um concreto de referência (Anexo D).

FIGUEIREDO, A.D.; CECCATO, M. R. Workability Analysis of Steel Fiber Reinforced Concrete Using Slump and Ve-Be Test. Materials Research, p. 1, 2015.

Efeito sobre a resistência residual do concreto

O efeito da macrofibra sobre a resistência residual do concreto será determinada utilizando os concretos de referência.

 $f_L = (4,3 \pm 0,3) \text{ MPa}$ $f_{R1m} = 1,60 \text{ MPa}$ $f_{R3m} = 0,80 \text{ MPa}$

$$f_L = (5,3 \pm 0,3) \text{ MPa}$$

 $f_{R1m} = 2,00 \text{ MPa}$
 $f_{R3m} = 1,00 \text{ MPa}$

Resistência ao meio alcalino das macrofibras poliméricas

- Histórico de utilização de resíduos de PET para a fabricação de fibras para o reforço do concreto.
- É uma ideia interessante aproveitar resíduos, mas isto não pode comprometer a tecnologia.
- Objetivo: Avaliação de desempenho quanto à estabilidade em meio alcalino.
- Método especificado na recomendação prática (Anexo A)

SALVADOR, R. P., FIGUEIREDO, A. D. Evaluation of the durability of synthetic macrofibers in cement matrices. **7th International Conference FIBRE CONCRETE**. Praque, Cze Republic. 2013.

MACROFIBRAS DE VIDRO SEGUNDO CT303

- Nova recomendação CT303
- Baseada na norma UNE83516
 Fibras para hormigón
 Fibras de vidreo resistentes a los álcalis (AR)

Fibras de vidro para aplicações estruturais

- Exigências muito similares às das macrofibras poliméricas:
 - Tolerâncias dimensionais
 - Densidade linear (Norma EN 15422)
 - Resistência à tração e módulo de elasticidade
 - Efeito na trabalhabilidade e resistência residual
 - Resistência ao meio alcalino (Norma EN 14649)
 - A norma europeia (EN 15422, 2008) indica que para uma fibra de vidro ser considerada álcali resistente é necessário a presença de no mínimo 16% de dióxido de zircônio (ZrO₂)

Propriedades mecânicas

• Avaliação da tração diretamente na macrofibra de vidro

Propriedades mecânicas

Mais detalhes na defesa de mestrado Joelma Manzione 24/10/2019 as 9h Sala de videoconferencia

Comentários

- Caminhamos para a futura normalização:
 - É necessário aplicar essas normas
- Podemos chegar a ter fibras com certificado de qualidade no mercado
- Evitar "leilão não tecnológico"

Dúvidas cruéis...

- O controle e a dosagem deve ser feito a partir dos valores característicos de resistência residual?
- Qual é o erro admissível para estrutura e para os corpos de prova?
- Como avaliar a condição de segurança de uma estrutura de CRF?

Exemplo de dosagem

 $f_{ck} = 35$ MPa com 15 kg/m³ de fibra de aço

Exemplo de dosagem

 $f_{ck} = 35$ MPa com 45 kg/m³ de fibra de aço

Exemplo de dosagem f_{0,5}

Valor	45 0,5mm	45 3mm	15 0,5mm	15 3mm
Média =	6,82	4,26	3,37	2,53
Desvio =	1,00	0,71	0,81	0,77
CV =	14,62	16,60	23,92	30,32
f _{0,5k} =	5,17	3,09	2,04	1,26

Solução encontrada: $f_{rk} = 0,7.frm$

Por que 5% para o quantil?

http://obviousmag.org/archives/2005/07/manter_a_forma_1.html

É razoável pedir 5% de quantil para um túnel? O professor Fusco disse que não.

E um pavimento industrial?

 Já nasceu caído. • Os esforços podem ser bem localizados e controlados (condição de uso mais controlada). O comprometimento de uma parte da estrutura (ruptura localizada do pavimento) não afeta necessariamente a estabilidade do restante.

Comentários finais

- Aplicações com alto grau de empirismo acarretam sistemas em risco (não otimizado ou inseguros).
- Modelos de dimensionamento e previsão de comportamento (Bittencourt Jr.,) são fundamentais.
- A visão integrada é fundamental para a garantia do bom desempenho das obras de infraestrutura: vocação natural do CRF.
- Há muito que se investir em infraestrutura no Brasil e há muito que investir em pesquisa.