Bridging prehistoric caves with buried landscapes in the Swabian Jura (southwestern Germany)

Alvise Barbieri a, f, *, Carsten Leven b, Michael B. Toffolo a, Gregory W.L. Hodgins c, Claus-Joachim Kind d, Nicholas J. Conard a, e, f, Christopher E. Miller c, f

a Institute for Archaeological Sciences, University of Tübingen, Germany
b Center for Applied Geosciences, Hydrogeology, University of Tübingen, Germany
c Accelerator Mass Spectrometry Laboratory, University of Arizona, USA
d Regierungspräsidium Stuttgart, Landesamt für Denkmalpflege, Germany
e Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Germany
f Senckenberg Centre for Human Evolution and Paleoenvironment, University of Tübingen, Germany

A R T I C L E I N F O

Article history:
Received 31 January 2017
Received in revised form 8 June 2017
Accepted 1 August 2017
Available online 5 August 2017

Keywords:
Swabian Jura
Last Glacial Maximum (LGM)
Cave erosion
Landscape development
Gravettian
Magdalenian

A B S T R A C T

The Ach and Lone valleys of the Swabian Jura represent two key areas for the study of the dispersal of modern humans into central Europe, owing to the presence of numerous cave sites in the region that contain stratigraphic sequences spanning the Middle and Upper Paleolithic. However, despite the relatively complete sequences contained within these caves, previous studies hypothesize that phases of erosion have influenced the preservation of Upper Paleolithic deposits, particularly those dating to the Gravettian. Furthermore, these same studies suggest that during the Late Glacial and Holocene, colluvial sediments subsequently covered these unconformities. In this paper we present a dataset that helps us evaluate how geomorphological processes active at the regional scale around the Last Glacial Maximum (LGM) have impacted the preservation of the archaeological record within the cave sites of the Ach and Lone valleys. To this end we applied and integrated a variety of methods, including geophysical prospection, coring, micromorphology, Fourier Transform infrared (FTIR) spectroscopy, and radiocarbon dating. Our results show that alternating phases of soil formation, hillside denudation, river valley incision and floodplain aggradation have been the major processes active in Lone and Ach valleys throughout the Pleistocene and Holocene. These processes impacted the formation histories of the caves in the two valleys, thereby significantly influencing how we interpret the archaeological record of the region. In particular our data support the hypothesis arguing for the erosion of Gravettian-aged deposits (which are dated between 29.000 and 27.000 14C BP) from the caves of Bockstein, Hohle Fels and possibly Hohlenstein-Stadel. Shortly after this erosive phase, increased depositional rates of loess nearly free of gravel and reworked soils marked in both the Ach and Lone valleys a shift towards colder and drier conditions corresponding with the LGM. Deteriorating climate likely forced Gravettian groups to abandon the Swabian Jura. The Magdalenian recolonization of the region took place in a cool interstadial (13.500–12.500 14C BP) that was followed by a period of climate deterioration with minor phases of erosion in the caves and bedrock denudation. Towards the beginning of the Holocene the accumulation of frost debris (Bergkies) at the cave entrances marked the cessation of erosion within the caves.

© 2017 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

1.1. Linking caves with the landscape

Caves and rockshelters play a significant if outsized role in Paleolithic research. Humans preferentially selected these types of sites for habitation since the lower Paleolithic (e.g., Wonderwerk Cave, South Africa. Malan and Cooke, 1941; Beaumont and Vogel,
and their rich assemblages of archaeological materials—often found within well-stratified and datable deposits—have attracted the attention of archaeologists since at least the 19th century. However, despite the importance of caves for Paleolithic humans (and the scientists who investigate them), much, if not most, of the daily lives of foragers was carried out in the open air, and not in the confines of a natural shelter. By only focusing on the archaeological record of caves and rockshelters, we run the risk of forming biased views of the activities and behaviors of Paleolithic humans. Archaeologists recognize this bias (Conard, 2001) and have addressed these concerns through a wide range of methodological approaches that provide a link between activities conducted in the open air and the material remains recovered from excavations in caves (Castel et al., 1998; Gep and Waiblinger, 2001; Faith, 2007; Niven, 2007; Saladie et al., 2011; Starkovich, 2014; Yeshurun et al., 2007). Geoscientists who study Paleolithic cave sites have similar concerns about linking data collected within a cave to processes that occur outside of a cave. Since the late 1970s (Goldberg, 1979), numerous micromorphological investigations have shown that paleoenvironmental changes influence the formation of cave deposits (Courty and Vallverdu, 2001; Goldberg et al., 2015; Karkanas, 2010; Mentzer, 2011; Sherwood et al., 2004). However, it is not always possible to form a link between micromorphological observations made at the microscopic or site scale with specific environmental processes (Courty and Vallverdu, 2001). This problem is exacerbated by the fact that researchers working in caves and those working in the open air often make observations at different scales and with different techniques: cave geoarchaeologists rely on micromorphology and field observations made over tens of centimeters and meters; landscape geoarchaeologists and quaternary geoscientists often focus on observations made over tens of meters or kilometers and study geomorphic features such as loess sequences (e.g. Terhorst et al., 2014), lake deposits (e.g. Litt et al., 2001) and river terraces (e.g. Vanderberghhe, 2015). As a result, research focusing on “inside” deposits and “outside” deposits is often designed to answer very different questions. Furthermore, bridging open air and cave sequences relies on the comparison of chronological datasets, which are not always comparable between inside and outside of a cave, or the identification of lithological or pedological markers (e.g. Karkanas et al., 2015; Pirson et al., 2012), which do not necessarily extend from the open air into a cave environment.

In this paper, we present a case study conducted in the Ach and Lone valleys of the Swabian Jura, southwestern Germany—a region rich in Paleolithic cave sites, dynamic landscapes and a long research tradition. Here we attempt to link a paleolandscape study with geoarchaeological analysis of cave sediments by applying macro- and microscopic methods to both “outside” and “inside” deposits. This holistic approach to paleolandscape reconstruction and site formation processes allows us to assess the role that past environments played on depositional and post-depositional processes in the caves. Furthermore, by placing these important cave sites within a paleolandscape context, we are able to determine how landscape change in the Swabian Jura influenced the archaeological record of the caves and how humans in the Pleistocene exploited these natural shelters.

1.2. Geographic setting, geology and geomorphology

The Swabian Jura (or Schwäbische Alb) is a karstic plateau (between 500 and 1500 m amsl) located in southwestern Germany and delimited by The Neckar Valley to the north, the Black Forest to the west, the Nördlinger Ries to the east and The Danube Valley to the south (Fig. 1). The predominant bedrock present in this area is composed of limestones, mudstones, marls and sandstones which formed in the Jurassic period (Black, Brown and White Jura in Fig. 1. Geyer and Gwinner, 1991; Schall, 2002). Part of the Swabian bedrock is composed of molasse and volcanic rocks formed in the course of the Miocene (Geyer and Gwinner, 1991). Relicts of tertiary sediments are often found reworked within karst features and dry valleys. Among them, the Bohnerz-Formation is composed of peat-sized, iron oxide/hydroxide concretions embedded in kaolinite clay, and well sorted, rounded quartz sand (Ufrecht, 2008).

The presence of silt-sized particles of quartz, micas, hornblende and epidote in Quaternary-aged sediments indicate that during the Pleistocene the Swabian Jura was covered with loess (Gwinner, 1989; Schall, 2002; Goldberg et al., 2003, Miller, 2015; Barbieri and Miller, in press). However, in situ loess deposits are nearly absent in the Swabian Jura north from the Danube (Sauer et al., 2016). Schall (2002) hypothesized that this absence is likely due to the relatively weak aeolian sedimentation and the intensive hillside denudation which were active in this region during and after the Würm Glaciation. After reworking, the loess of Swabia has been also affected by intensive diagenesis (Riek, 1957; Gwinner, 1989; Schall, 2002). In the study region, reworked but non-decalcified loess is commonly reported admixed with fine, elongated, platy, immature limestone gravel. This sediment type is named Bergkies and has been correlated with the breakdown of exposed bedrock during the stadials of the Würm glaciation (Riek, 1957, 1973; Wolff, 1962; Campen, 1990; Freund, 1998). Bergkies has been documented as an infilling of dry valleys (Wolff, 1962), caves, rockshelters and abris (e.g. Riek, 1957, Riek, 1973; Kind, 1987; Campen, 1990; Freund, 1998). Although it presents a lithology similar to the French Grèzes Littées (Bertran et al., 1992, 1994; Ozouf et al., 1995), the term Bergkies seems to indicate a slightly different sediment type, being coarser (up to 20 mm, Wolff, 1962) and not always bedded (Wolff, 1962).

The Ach and Lone valleys have been considerably shaped by alluvial processes. Starting from the Miocene, the Lone headwaters have been captured by the progressive southward expansion of the Neckar (Schall, 2002; Strasser et al., 2009). This process led to the present-day configuration of these two river basins probably around the Mindel-Haslach Interglacial (Schall, 2002; Strasser et al., 2009). On the contrary the Ach Valley formed in the Early Pleistocene, when the Paleo-Danube flowed in the Jura plateau between Ulm and Schelklingen (Fig. 1, detail 1 and 2. Gwinner, 1989; Strasser et al., 2009). Probably after the Eemian, the Danube migrated southward, roughly in its present location. Since then, the Ach is drained by three smaller karstic rivers: the Schmich, Ach and Blau (Gwinner, 1989; German et al., 1995). Alluvial processes shaped these two valleys also in more recently in the Pleistocene; these processes were likely more active during colder periods when the aggradation of permafrost favored the formation of surficial drainages (German et al., 1995). In both valleys phases of river valley incision and floodplain aggradation resulted in the formation of river terraces, which, however, have been poorly studied (Dongus, 1974; German et al., 1995).

1.3. The Swabian Paleolithic

The Swabian Jura has been a key region for the study of the Paleolithic for the past 150 years, beginning with the pioneering work of Oscar Friedrich Fraas, Robert Rudolf Schmidt and Gustav Riek in the 19th and early 20th century and continuing to today, with recent excavations at Hohle Fels, Hohlenstein, and other localities (Schmidt, 1912; Riek, 1934; Kind and Beutelspacher, 2010; Beutelspacher et al., 2011; Bolus and Conard, 2012; Conard et al., 2015). Although the region is probably best known for its evidence of early music and figurative art dating to the Aurignacian, the
Swabian Jura has also been a key area for investigating human settlement following the Last Glacial Maximum (Jochim et al., 1999; Kind, 2003; Taller, 2015). Upper Paleolithic sequences from southeastern Poland (Bobak et al., 2013), Switzerland (Leesch et al., 2012) and southwestern Germany (Conard and Bolus, 2003; Kind, 2003; Moreau, 2009) suggest that Magdalenian groups spread into central Europe after a period of depopulation coinciding with the LGM. Only southwestern France appears to have been continuously occupied during the Late Pleniglacial (Terberger, 2003). In Swabia Magdalenian recolonization took place in a short-lasting (13.500–12.500 14C BP, Kind, 2003, Taller, 2015) cool period characterized by grassland steppe with some forest biomes (Jahnke, 2013). Taller (2015) hypothesized that the climate amelioration of the Early Late Glacial might have affected hunting strategies and settlement dynamics of the Magdalenian groups, forcing them to leave Swabia.

1.4. The Paleolithic caves of the Ach and Lone valleys

Apart from a few notable exceptions (Bolus et al., 1999; Floss et al., 2012), almost all of the Paleolithic sites in Swabia are found in caves or rockshelters. For our study, we collected data from both the Ach and Lone valleys, but focused on linking our observations with three key cave sites: Hohlenstein and Bockstein in the Lone valley, and Hohle Fels in the Ach valley.

1.4.1. Hohlenstein

The name Hohlenstein indicates a limestone outcrop located in the Lone Valley (48.5495; 10.1725 WGS 84, Fig. 2), which hosts 4 distinct karstic cavities located approximately 3 m above the valley floor: Stadel, Bärenhöhle, Kleine Scheuer and Ostloch. Since the first excavation conducted by Oscar Fraas in the Bärenhöhle (Fraas, 1862), a number of researchers have investigated this karstic complex for over a century (Wetzeli, 1961; Beck, 1999; Jahnke, 2013). In particular the cave of Hohlenstein-Stadel has gained much attention after the discovery of the Lion Man (Löwenmensch), which has been dated as one of the earliest examples of figurative art in Europe (Kind et al., 2014).

From 2008 to 2013 Claus-Joachim Kind and Thomas Beutelspacher have led the most recent excavations in this cave (Kind and Beutelspacher, 2010; Beutelspacher et al., 2011). During these years two distinct areas were investigated: at the back of the cave and at the entrance (area named Vorplatz, Fig. 3). Profiles exposed during these excavations have been sampled and analyzed with micro-morphology (Barbieri and Miller, in press). Results from this analysis show that mass-wasting is the main process responsible for accumulation and erosion of sediment at this site. Sheet flow and gelification moved loess and other sediments originally deposited on top of the Jura into the karst system of Hohlenstein-Stadel (Fig. 4, detail 1). Here the originally calcareous loess underwent a process of phosphatization (Fig. 4, detail 2). Karkanas et al., 2002; Goldberg et al., 2003; Brailld et al., 2004; Shahack-Gross et al., 2004; Miller, 2015; Sanz et al., 2016; Barbieri and Miller, in press). This diagenetic process was not constant over time: the early Aurignacian deposits (Fig. 4, detail 3) display less intensive calcite dissolution and apatite neoformation. After undergoing phosphatization, cave sediments were periodically transported by sheet flow, mud flow and gelification from the back of Hohlenstein-Stadel towards the Vorplatz and the valley floor (Fig. 4, detail 5). Barbieri and Miller (in press) cite isolated grains of phosphatized loess in the otherwise non-phosphatized deposits of the Vorplatz (Fig. 4, detail 6) as evidence for this model. Cave erosion was more intensive probably around the LGM, when Gravettian-aged deposits were completely removed from Hohlenstein (Jahnke, 2013). After the LGM, mass-wasting originating from the cave redeposited Aurignacian artifacts at the cave entrance (unit GKS-2 in Fig. 4), on top of sediment yielding LGM to Late Glacial 14C ages (unit KKS in Fig. 4, Jahnke, 2013). Later, cave erosion was much less intensive as suggested by the absence of grains of phosphatized loess in unit GKS-1 (Fig. 4). However, erosive processes might have lasted longer at the Vorplatz, where part of the Magdalenian deposit (unit GL2B, Fig. 4) has been removed (Jahnke, 2013). On top of this disconformity the deposition of unit GL2A marks a shift in sediment source with fresh loess and gravel moving from the hillside towards the cave entrance (Fig. 4).

In 1997 Schneidermeier (1999) investigated the hillside area...
downslope from Hohlenstein. In his cores Schneidermeier (1999) recovered bone and stone tools. Based on his data a team of excavators led by Michael Bolus opened three small open-air test pits along the slope in front of the site (Bolus et al., 1999. Fig. 3). Two archaeological horizons were exposed during these excavations. Bolus (et al., 1999) and Geiling (et al., 2015) interpreted the upper GE1 horizon as mixed Holocene sediment of colluvial origin, while they considered the lower GE2 as a possibly less-disturbed Middle Paleolithic deposit containing 25 stone tools. However, Kitagawa (2014) suggested that the high amount of cave bear bones free from cut marks in GE2 might indicate that these materials originated from the Hohlenstein caves and were redeposited by mass-wasting processes.

1.4.2. Bockstein

The outcrop of Bockstein is located only a couple of kilometers westwards from Hohlenstein, in the Lone Valley (Fig. 2). Here, approximately 20 m above the floodplain, karstic processes have formed 4 small cavities, namely Bocksteinhöhle, Bockstein-Westloch, Bocksteingrotte and Bocksteinloch. Ludwig Bürger was the first to investigate this cave complex in 1879 (Kronneck, 2012) and between the 1930s and 1960s systematic archaeological excavations were carried under the direction of Robert Wetzel (Wetzel and Bosinski, 1969). During these three decades, the team lead by Wetzel removed almost all of the archaeological deposits accumulated inside the Bockstein caves and dug long trenches from Bocksteinhöhle and Bocksteinloch down to the Lone floodplain.

More recently, 14C measurements (Conard and Bolus, 2003) and a re-evaluation of lithic assemblages (Borges de Magalhães, 2000) have been carried out on materials recovered from Bockstein-Törle.

This small cave presents a Middle Paleolithic sequence covered with a thinner deposit (BT VII) that contains a mixture of

Fig. 2. Hohlenstein and Bockstein. On the left, geographic map showing the areas we surveyed in front of the cave complex of Bockstein and Hohlenstein. The map is compiled from Lidar data with 1 m resolution and it is projected in the DHDN Gauss-Krüger coordinate system. The labels along the upper and left axes indicate the DHDN Gauss-Krüger coordinates. The labels along the lower and right axes indicate the corresponding WGS 84 coordinates, which can be used to locate this map in Fig. 1. On the upper right, detail from the main map displaying the cores, ec-logs, and GPR grids we collected opposite from Hohlenstein. Cores are numbered in red. The black line indicates the position of Fig. 7. On the lower right, detail from the main map depicting the Bockstein cave complex, core 31 and the close by GPR grid. The black line indicates the location of Fig. 13. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Excavations at Hohlenstein. The location of the most recent archaeological excavations conducted inside and outside Hohlenstein-Stadel. Excavations conducted by Kind and Beutelspacher in the years 2008–2013 are marked with squares filled with red, diagonal dashes. Excavations conducted by Bolus et al. (1999) are marked with completely filled, red squares. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Aurignacian and Middle Paleolithic artifacts. The radiocarbon dating from this layer (from 46.000 BP to 30.000 BP) confirms its mixed nature (Conard and Bolus, 2003). On top of these sediments, three Gravettian deposits (BT VI-IV) have yielded dates from 31.500 BP to 20.000 BP (Conard and Bolus, 2003). Later filling of Bockstein-Törl contains non-diagnostic Upper-Paleolithic stone tools and Neolithic artifacts.

Of particular interest for our research is the sequence that Wetzel exposed at the entrance of Bocksteinloch (the Brandplatte area), where he reported a deposit with mixed Upper and Middle Paleolithic stone tools of possible colluvial origin (Wetzel and Bosinski, 1969, p.18). Additionally, Schneidermeier (1999) investigated the Lone floodplain downhill from the Bockstein outcrop. His results confirm the general sedimentary sequence exposed by Wetzel along the hillside of Bockstein; however, Schneidermeier did not recover any artifacts in the river valley.

1.4.3. Hohle Fels

Hohle Fels is located approximately 3.5 m above the Ach floodplain, a few kilometers to the east of the town of Schelkingen (Fig. 5 detail 1). Archaeological excavations have been conducted at this site since the late 19th century, when Oscar Fraas and Theodor Hartmann recovered cave bear bones and artifacts shaped from stone, bone and antler (Hahn, 1978). Over the last two decades, seasonal excavation campaigns have been carried out by the University of Tübingen under the direction of Nicholas Conard and Maria Malina.

Previous geoarchaeological studies (Goldberg et al., 2003; Schiegl et al., 2003; Miller, 2015) have focused on the micromorphological analysis of the Middle Paleolithic to Gravettian deposits accumulated inside the site. Results from these studies show that loess and soil material from the external hillside entered the cave through a large chimney located in the back of Hohle Fels. Once deposited inside this karstic cavity, sediments moved towards the cave entrance and underwent diagenesis similar to what Barbieri and Miller (in press) reported from Hohlenstein-Stadel. At Hohle Fels, Miller (2015) and Goldberg et al. (2003) emphasized the role of guano in the phosphatization processes. As observed at Hohlenstein-Stadel (Barbieri and Miller, in press.) and at the nearby site of Geißenklösterle (Miller, 2015, Fig. 5, detail 2), the replacement of calcite with apatite at Hohle Fels was less intensive in the early Aurignacian deposits. However, Late Aurignacian deposits display more intensive phosphatization, increased clay content and numerous clay infillings indicating wetter and warmer conditions.

On top of these sediments the Gravettian-aged deposits display evidence of gelification, erosion and less intensive phosphatization (Miller, 2015; Goldberg et al., 2003). Recent archaeobotanical data from Hohle Fels published by Riehl et al., (2015) largely support the climatic fluctuations hypothesized by Miller (2015).

2. Methods

In this paper we present an innovative approach to landscape archaeology by integrating macro-, meso- and microscale techniques, including geophysical prospection, coring, lithostratigraphic description, Fourier Transform infrared (FTIR) spectroscopy, micromorphology and radiocarbon dating.
2.1. GPR and EC-logging

We investigated depth-to-bedrock, grain size, structure and geometry of the deposits accumulated in the Ach and Lone valleys by applying Ground-Penetrating Radar (GPR) and Direct Push-based logging of electrical conductivity (EC). These techniques are complementary. GPR allows for the collection of continuous, high resolution, 2D-vertical time profiles of the shallow subsurface (Annan, 2009). On the other hand, EC-logging is used to acquire highly resolved, 1D-vertical depth profiles of electrical conductivity in unconsolidated sediments to a depth of 12 m (Leven et al., 2011). Therefore, EC-logging data do not necessitate post-collection processing (Schulmeister et al., 2003), can precisely deliver depth-to-bedrock and often facilitate the interpretation of geophysical measurements (e.g. Hoffmann et al., 2008).

In the course of the surveys we conducted in the Ach and Lone valleys we collected measurements in continuous mode (50–70 scans per meter) employing a GSSI TerraSIRch SIR System-3000 (SIR-3000) with a 200 MHz antenna (for details concerning the processing of the data, Supplementary 2: GPR data acquisition and processing). In the survey area nearby Hohlenstein and Hohle Fels, EC-logging was conducted using a Geoprobe® probing unit of the type 6610 DT in combination with a Direct Image® Soil Conductivity System of the type SC-500. During logging, direct current geo-electrical measurements are continuously applied with a four-pole downhole probe (diameter: 44.4 mm, distance between poles: 25.4 mm) using a Wenner array. Measurements are recorded every 1.5 cm. In the survey area nearby Hohlenstein, logging was performed down to bedrock, while in the area of Hohle Fels we proceeded down to a depth of 12 m. The position of the EC-logs was recorded in the field with D-GPS. With the software “R” we were able to associate geographic coordinates to each EC-log and export the result into a format compatible with GOCAD.

2.2. Coring

According to the information obtained from the geophysical surveys, we focused our coring in a few key areas. Previous work (Schneidermeier, 1999) showed that the use of motor driven percussion coring devices were problematic in the recovery of sediments from the Lone Valley. This was likely a result of the high amount of gravel present in these sediments which frequently caused shallow refusal and sample mixing (Schneidermeier, 1999). To avoid similar issues, we used the same hydraulically-driven probing unit as employed for our EC-logging. The use of a Dual Tube Sampling System of the type DT325 guaranteed a good core recovery and penetration (average ca. 4 m, max 9.6 m) and prevented the possibility of sample mixing. We recovered almost all of our cores using this sampling system in 1.22 m long transparent polyethylene (PE) sample liners with a diameter of 50 mm. With the aim of reaching greater sampling depths, we recovered core 5 from the Hohlenstein area using a single-rod Geoprobe® Macro Core MCS system. In this case sediment was recovered in 1.2 m long transparent PE liners with a diameter of 40 mm. All cores were recovered until bedrock was reached or probing refusal, and the geographic position of the coring locations were recorded with D-GPS.

At the end of the coring campaign we transported the cores to a facility of the Department of Geosciences in the city of Tübingen. Here we opened the liners and photographed, described and sub-sampled the recovered sediment. We distinguished over 300 geological layers (GL) based on their lithology. By comparing their lithology and stratigraphic position we subsequently grouped all the GL in 27 geological units (GU). As a final step, all of the data recovered from the cores was imported into GOCAD.

2.3. Micromorphology

In order to investigate depositional processes and sediment source, in addition to soil formation and post-depositional alteration, we sampled sediments recovered from the cores for micromorphological analysis. We collected 62 block samples focusing on the major geological units and their contacts. Blocks were extracted from the cores with the help of plaster bandages. We focused our
study on 26 of the most representative block samples. In the Geoarchaeology Laboratory of Tübingen we dried these blocks in the oven at ca. 40 °C for about 3 days. Afterwards, we impregnated them with a mixture of styrene, resin and hardener and let them consolidate for about three weeks in the fume hood. Once hardened we cut them with a rocksaw and ground them to a thickness of circa 30 μm. In total we produced 30 thin sections (6 × 9 cm) which we analyzed and described using petrographic microscopes in plane polarized (PPL), crossed polarized (XPL) and fluorescent light (FL) following terminology and protocols developed by Stoops (2003).

During the description of the thin sections we observed a few microstructural effects from the coring, in particular we noted a reduction in porosity and deformation of the original sedimentary structures along the sides of the samples. These effects were generally minor and obvious, and therefore did not significantly hinder the analysis.

2.4. Dating

We chose to date our sediments by 14C measurements rather than luminescence methods since we did not have the possibility to study and sample our cores under subdued, red or orange light. We were also encouraged to take advantage of radiocarbon dating given the large 14C dataset published for the Swabian caves by Conard and Bolus (2003, 2008). During the course of studying the recovered cores, we identified several materials that were potentially suitable for 14C dating, including possible fragments of charcoal and bone. We removed these materials from the cores and analyzed them using FTIR. A few milligrams of sample were homogenized and powdered in an agate mortar and pestle. About 0.1 mg were left in the mortar and mixed with approximately 0.5 mg of KBr (FT-IR grade, Sigma-Aldrich) and pressed into a 7-mm pellet using a hand press (PIKE Technologies). Infrared spectra were obtained at 4 cm-1 resolution in 32 scans within the 4000-400 cm-1 spectral range using an Agilent Technologies Cary 660 spectrometer. Phase identification was performed using Resolutions Pro, standard literature (Van der Marel and Beutelspacher, 1976; Lin-Vien et al., 1991), and our in-house reference spectral library. The crystallinity index, or splitting factor, of carbonate hydroxylapatite (bone mineral) was calculated using the method of Weiner and Bar-Yosef (1990).

Based on the results of this analysis (Supplementary 3: FTIR results) we selected 7 samples for radiocarbon dating (Table 1A and B): three samples contained sufficient amounts of organic carbon (ID-19, ID-58 and ID-72), two samples were of gastropod shell fragments that displayed good preservation of aragonite (ID-69 and ID-73), one sample was of charcoal fragments (ID-57) and one sample was a bone fragment with a high degree of collagen preservation (ID-63). All of these samples were shipped to the AMS Laboratory at the University of Arizona in Tucson where they were pretreated and their 14C content measured.

The samples we selected for 14C dating were processed following different protocols. ID-19 and ID-72 were composed of reworked loess which we recovered from deeper than 4 m in core 12 and 31. Macroscopically these sediment did not display any organic matter, so we pretreated them with 1 N HCl acid in order to remove exclusively inorganic carbon and acid soluble organic molecules. ID-58 was composed of a peat-like sediment which was recovered in core 37 less than 2 m below the ground surface. With the aim of removing the younger carbon possibly translocated from overlying Holocene soils, we cleaned this sample with 1 N HCl acid, 0.1% NaOH followed by a final reacidification with HCl (so called acid-base-acid, ABA pretreatment. Hatté et al., 2001; McGeehin et al., 2001; Pessenda et al., 2001; Jull et al., 2013). ID-19, ID-58 and ID-72 were collected from geological layers of colluvial origin (see the section below). By burning these samples at 400 °C we aimed at extracting the organic carbon that they might have incorporated around the time of their final burial (McGeehin et al., 2001; Wang et al., 2013).

Charcoal and bone samples have been pretreated with ABA flow and burnt at high temperature (900–1100 °C). The two mixed shell samples (ID-69 and ID-73) were sonicated to remove any remaining sediment. Only ID-69 was large enough to be etched with a 100% H3PO4 solution to remove 90–95% of the carbonate, from both of them we have extracted carbon via hydrolysis using H3PO4 (as discussed by Burr et al., 1992).

The samples and their respective pretreatments are summarized in Table 1A, dating results are listed in Table 1B (14C ages have been calibrated with the program OxCal 4.3 using the curve IntCal 13). All the dates mentioned in the text are 14C ages before calibration (14C BP).

3. Results

3.1. The Lone Valley in front of Hohlenstein

During the collection of pilot data in the Lone Valley, we

<table>
<thead>
<tr>
<th>ID</th>
<th>13C (±0.1‰)</th>
<th>14C age (14C BP)</th>
<th>Calibrate age 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(14C BP)</td>
<td>±</td>
<td>BCE/CE</td>
</tr>
<tr>
<td>19</td>
<td>25.7</td>
<td>25,320</td>
<td>190</td>
</tr>
<tr>
<td>57</td>
<td>26.9</td>
<td>314</td>
<td>40</td>
</tr>
<tr>
<td>58</td>
<td>28.5</td>
<td>4933</td>
<td>28</td>
</tr>
<tr>
<td>63</td>
<td>21.6</td>
<td>27,900</td>
<td>460</td>
</tr>
<tr>
<td>69</td>
<td>9.7</td>
<td>25,900</td>
<td>200</td>
</tr>
<tr>
<td>73</td>
<td>-7.3</td>
<td>28,280</td>
<td>270</td>
</tr>
<tr>
<td>72</td>
<td>24.6</td>
<td>32,390</td>
<td>450</td>
</tr>
</tbody>
</table>
identified a break in slope located along the hillside opposite from the caves of Hohlenstein that, based on its morphology, strongly suggested the presence of a fluvial terrace (Fig. 2, detail on the upper right, Fig. 1, detail 1 in supplementary material). We decided to investigate this feature using GPR and covered this part of the slope and the downhill area of the Lone floodplain with 11 grids, each measuring 30 × 40 m. GPR profiles were measured with 1–3 m spacing along x and y grid axes. Based on the results of this survey we collected 7 cores (Supplementary 1.1: Hohlenstein) and 22 EC-logging profiles.

3.1.1. Depth-to-Bedrock

We used the depth of our EC-loggings to roughly reconstruct the bedrock topography. According to our data the White Jura limestone is located between 9.5 m and 2.8 m from the modern ground surface (Figs. 6 and 7). The bedrock appears deeper in the central part of the valley, where we detected a 100 m-large depression crossing our survey area from the northwest to the southeast. Our estimate of the bedrock depth and morphology is in agreement with the results of a seismic survey conducted by Schneidermeier (1999) on the opposite hillside.

3.1.2. HS-GU1 to HS-GU4

HS-GU1 rests on top of the bedrock and is composed of alternating silty clay and fine to coarse, subangular limestone gravel separated by sharp contacts (Fig. 6, HS-GU1, and Fig. 7, detail 1). Although we only recovered this unit in core 5, our EC-logging measurements revealed the presence of EC values comparable with HS-GU1 over an area of about 720 m². This deposit appears thicker along the hillsides (up to 3.5 m) and it gently (ca. 3°) dips towards the center of the valley, where it is no longer detectable (Fig. 7 supplementary material). The area in which we did not distinguish EC peaks comparable with HS-GU1 corresponds with the bedrock depression previously presented.

GL 315 is located towards the middle of HS-GU1 and displays a distinctive red color (7.5 R 4/6). Micromorphological results from this layer show that it is largely formed of aggregates of silt and clay and iron-stained clay coatings exhibiting graded laminations. Clay coatings are dusty and laminated, even though boundaries separating the laminae are diffuse (Fig. 8, detail 1). Calcite is almost exclusively present in laminations of sand-sized grains (Fig. 8, detail 2).

We acquired EC-logging data below 6 m of depth. However, we were only able to recover sediment from below this depth in core 5; all other cores refused at this depth. Based on the EC-loggings and the refusal at depth, we hypothesize that in most of our boreholes the deeper HS-GU1 is covered with a deposit of coarser grained cobbles and likely boulders, a unit we designate as HS-GU2 (Fig. 6, HS-GU2, and Fig. 7, detail 2).

At the bottom of cores 5, 9, 12, 27 and 30 we recovered HS-GU3 (Fig. 6, HS-GU3, and Fig. 7, detail 3), which is composed of fine to medium, sub-rounded gravel of limestone, quartz and chert in a dark brown (10YR 3/3) silty sand composed of quartz and decalcified, reworked loess. In core 12 HS-GU3 appears laminated and poorer in gravel content. Our micromorphological results show that this unit is extensively impregnated with iron-manganese oxides and contains also fragments of laminated, limpid clay coatings (Fig. 8, detail 3). In comparison with HS-GU1, these fragmented coatings present more distinct laminae.

Above HS-GU3 we have distinguished HS-GU4 (Fig. 6, HS-GU4, and Fig. 7, detail 4), which is largely composed of decalcified, reworked loess and clay. Radiocarbon measurements on the total organic carbon from this unit has yielded an age of 25.320 ± 190 BP (Table 1B, ID-19). Our micromorphological results from this deposit revealed the presence of fragmented, laminated, limpid clay coatings similar to those described for HS-GU3. We have additionally observed typic, disorthic, iron-manganese nodules and aggregates composed of reworked loess and clay. These aggregates are composed of smaller angular ped separated by star-shaped vughs which have been infilled with iron-manganese oxides. Occasionally these smaller ped present pressure faces. Particularly in the area of the upper contact with HS-GU5, the groundmass of HS-GU4 appears formed of granular, densely-packed aggregates displaying granostrained b-fabric (Fig. 9, detail 1).
Fig. 7. Section across The Lone Valley in front of Hohlenstein. This figure is based on data from our geophysical measurements and coring, the location of this section is plotted in Fig. 2, upper right detail. HS-GUs are numbered on the profile.

Fig. 8. Clay coatings from the area opposite from Hohlenstein. 1, photomicrograph in PPL of fragmented, dusty, iron stained clay coating (cc) exhibiting graded laminations, from HS-GU1. 2, photomicrograph in cross polarized light (here on XPL) depicting alternating laminations of calcite sand (ca) and fragmented, iron stained clay coatings (cc), from HS-GU1. 3, photomicrograph in PPL of fragmented, laminated, limpid clay coating, from HS-GU3. 4, photomicrograph in XPL of limpid clay coating (cc) displaced from the limestone gravel on which it originally formed, from HS-GU8. 5, photomicrograph in PPL of fragmented, layered coating displaying alternating laminations of silt (si) and clay (cl), from HS-GU10. 6, photomicrograph in PPL of reworked clay aggregate (ag) displaying clay infillings (in), from HS-GU11.
3.1.3. HS-GU5 to HS-GU13

On top of HS-GU4 we have documented two different sequences: HS-GU5 through HS-GU13 accumulated along the northern hillside of the valley and HS-GU14 accumulated exclusively in the center of the Lone flood plain (Figs. 6 and 7).

The sequence HS-GU5-13 is mainly composed of reworked loess and angular, fresh, occasionally platy limestone debris ranging from fine (Fig. 10) to coarse gravel-sized. These components are organized in beds that vary from matrix-to-clast-supported. The color of the matrix alternates between reddish-brown and yellowish-brown. In thin section we observed reworked limpid clay coatings (Fig. 8, detail 4), fragmented compound-layered coatings composed of clay and silt (Fig. 8, detail 5), clay aggregates and in situ to reworked, dense, incomplete to complete clay infillings (Fig. 8, detail 6). In HS-GU5 we observed well-rounded aggregates composed of sand-sized fragments of calcite coated with alternating laminations of silt and clay (Fig. 9, detail 2).

HS-GU7 is unusual within the HS-GU5-13 sequence in that it is composed of laminated, reworked, and partly decalcified loess nearly free of limestone gravel and fragmented clay coatings (Fig. 6, HS-GU7, and Fig. 7, detail 7).

The presence of shallow units richer in silty clay (such as HS-GU7, HS-GU11 and HS-GU13) limited the penetration of our GPR measurements along the hillside. Only in the area between cores 15 and 30 could our geophysical data indicate that in the floodplain this disconformity has been covered with sediments much different from the HS-GU5-13 deposits (Fig. 6, HS-GU14, and Fig. 7, detail 14). In cores 5, 9 and 27 we recovered almost dry, well-rounded to angular, coarse, medium and fine gravel which we distinguished as HS-GU14. The gravel of this unit is largely composed of limestone fragments, while quartz, Bohnerz and chert are occasionally present. In the top part of this unit (core 27) we found rare fragments of pottery (2–4 mm).

Our GPR results from the floodplain show the presence of laterally continuous reflectors (2–2 m to 5–5 m) that are located at depths between −1 m and −3 m and dip (3°–5°) northwards, towards the hillside (Fig. 11, detail A). In the passage between hillside and floodplain these potential beds appear truncated by a nearly continuous reflector that appears to delineate a 1 m deep, ca. 10 m wide and 80 m long depression (Fig. 11, detail B). Velocity analysis of the GPR measurements (Davids and Annan, 1989) and additional augering revealed that this depression is filled with silty clay sediments. On the southernmost edge of our survey area, we have detected other laterally continuous reflectors (up to 10 × 30 m)

3.1.4. HS-GU14

Our coring and GPR data indicate that in the floodplain this disconformity has been covered with sediments much different from the HS-GU5-13 deposits (Fig. 6, HS-GU14, and Fig. 7, detail 14).

Two merged GPR profiles from core 24 to core 27 (numbered in red) which display reflectors likely indicative for an incision of the HS-GU5-11 sequence accumulated along the hillside (Terrace truncation). A, gravelly deposits resulting from northwards migrations of the Lone. B, potential channel filled with silty clay sediments. C, sedimentary structures suggesting a final southwards migration of a paleo-channel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
3.2. The Lone Valley in front of Bockstein

Along the hillside and floodplain located downhill from the Bockstein caves we collected a GPR survey composed of 20 grids (30 × 40 m each. Fig. 2). Similar to the prospections conducted in the surroundings of Hohlenstein, GPR profiles were collected along the x and y axes of each grid with 1–2 m spacing. GPR data from the Bockstein area showed strong attenuation of the electromagnetic signal likely caused by higher silt content of the sediments located below the modern soil. Nevertheless, the GPR proved to be effective in detecting gravelly deposits that accumulated in a few discrete areas along the base of the hill. From these areas we collected three cores: 31, 32 and 33 (Supplementary 1.2: Bockstein). The sequence we recorded from core 31 is the most representative and is summarized below.

3.2.1. BS-GU2

At the bottom of core 31 we recovered well-rounded gravel alternating with beds composed of silt and rarer, angular gravel (Fig. 12, BS-GU2, and Fig. 13, detail 2). Both bed types are composed of fine to coarse limestone, Bohnerz and chert gravel. Among these sediments, GL 266 presents composition and color comparable with that described for HS-GU3. Our micromorphological analysis of GL 266 revealed the presence of fragmented, laminated, limpid clay coatings similar to those reported for HS-GU3 (Fig. 13, detail A), redeposited soil aggregates, in addition to disorthic and orthic iron-manganese nodules. We also identified small bone fragments (500 μm at maximum length. Fig. 13, detail B) and coarse gravel composed of chert. From the underlying GL 268 we conducted measurements on the total organic carbon, obtaining an age of 32.390 ± 450 14C BP (Table 1B, ID 72).

3.2.2. BS-GU3

In the central and lower part of core 31 we observed laminations of partly decalcified loess alternating with occasional beds of medium to fine, subrounded limestone gravel (Fig. 12, detail BS-GU3, and Fig. 13, detail 3). In addition to loess, our micromorphological analysis revealed that BS-GU3 contains snail shells, rare fragments of limpid clay coatings and bones (up to 250 μm maximum length). We also identified aggregates composed of rare silt-sized grains of quartz and mica embedded within a phosphatic groundmass, which we interpreted as phosphatized grains of loess (Goldberg et al., 2003; Miller, 2015; Barbieri and Miller, in press, Fig. 13, detail C). We performed radiocarbon measurements on the aragonite from two assemblages of shell fragments, collected at 4 m and 2 m below the ground surface. The deeper sample has been dated at 28.280 ± 270 14C BP (Table 1B, ID 73), while the shallower has yielded a date of 25.900 ± 200 14C BP (Table 1B, ID 69).

3.2.3. BS-GU4

In terms of composition, BS-GU3 presents substantial similarities with the overlying BS-GU4 (Fig. 12, BS-GU4, and Fig. 13, detail 4). The main difference is represented by the upward increase in mean grain size and gravel content. In BS-GU4 fragments of bone and phosphatized grains of loess are even more abundant than below and appear larger in size (500 μm maximum length. Fig. 13, detail D).

3.2.4. BS-GU5

From the uppermost part of core 31 we observed open, loose, angular limestone gravel (Fig. 12, BS-GU5). Given the loose nature of this deposit we have not investigated it with micromorphological analysis. Our GPR data show that BS-GU5 presents slightly imbricated bedding (Blikra and Nemec, 1998) comparable with HS-GU12 (Fig. 13, detail 5). Furthermore, the GPR data suggests that this unit is not laterally continuous and possibly covers a silty deposit that was not recovered within core 31 (silty clay in Fig. 13).

3.3. The Ach valley in front of Hohle Fels

Here we focused our surveys on the break-in-slope (Vorplatz) and the floodplain area located directly in front of the entrance to Hohle Fels cave (Fig. 5, detail on the right). We covered the Vorplatz with two smaller grids, respectively 9 × 12 m and 6 × 8 m. In each grid we measured GPR profiles along the x and y axes with a spacing of 1 m. We collected additional, freely oriented lines around the Hohle Fels area and along the Ach plain. Based on our GPR results we recovered 2 cores from the Vorplatz and 1 core and 2 EC logging profiles from the floodplain (Also Supplementary 1.3: Hohle Fels).

3.3.1. HF-GU1

In this GU we have grouped all the units recovered within core 38 and 39 from the Vorplatz area (Fig. 14, HF-GU1). These sediments are composed of loose, angular, fine to coarse limestone gravel alternating with non-decalcified, reworked loess. At the Vorplatz the maximum depth reached with both our GPR and coring data was about 5 m. Further penetration was likely impeded by an aquifer that we encountered in core 38 at 4.8 m below the ground surface (Fig. 15, detail A). Our attempt to recover sediments buried below this depth was unsuccessful, due to the water saturation of these deposits.

Moving from core 38 towards core 39 the GPR signal attenuated also at shallower depth (Fig. 15, detail A). Sediments recovered from this latter core display a higher content of silty clay in comparison with those contained within core 38 (Fig. 14). This difference in grain size has probably led to a more intensive upwards capillary movement of ground water from the water table in this part of the Vorplatz (Lu and Sato, 2007).

At about 4 m below the surface we identified a reflector that dips gently from the Hohle Fels cave entrance towards the center of

![Fig. 12. Cross-correlation of the cores collected in front of Bockstein. White rectangles indicate the analyzed micromorphological samples, red stars mark the location of dating material. For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image-url)
The Ach Valley (Fig. 15, detail A.z). This feature corresponds to the lower part of core 38 and 39 from where we have also recovered sand-sized fragments of speleothems. Around 1–2 m below the surface we detected reflectors defining an irregular, 14 × 5 m large surface (Fig. 15, detail A.f). Above this disconformity we have distinguished densely stacked reflectors which dip towards the Hohle Fels cave entrance and The Ach Valley (Fig. 15, detail A.g). These sedimentary bodies appear truncated on top by the present day topography.

3.3.2. HF-GU2 to HF-GU4
HF-GU2-4 correspond to the lowermost deposits we have recovered from The Ach Valley (from −4.8 m to −9.6 m) and they are composed of angular to subrounded, fine to medium limestone gravel alternating with beds of decalcified, reworked loess (Fig. 14, HF-GU2, HF-GU3, HF-GU4, Fig. 15, detail 2, 3 and 4). Our micro-morphological analysis from the lower portion of HF-GU2 reveal the presence of sand-sized fragments of speleothem, phosphatized grains of loess, reworked limpid clay coatings (Fig. 15, detail B, C and D) and bone. Additionally, from the lower part of HF-GU3 we have recovered a larger bone fragment (about 2 cm²) that has yielded a radiocarbon age of 4.933 ± 28 14C BP (Table 1B, ID 58); a few decimeters upwards a mixed sample of charcoal fragments has yielded an age of 314 ± 40 14C BP (Table 1B, ID 57).

The gray color of the groundmass suggests that these sediments have been extensively gleyed (Lindbo et al., 2010).

3.3.3. HF-GU5
Stratigraphically above HF-GU4, HF-GU5 (Fig. 14, HF-GU5, and Fig. 15, detail 5) is composed of graded laminations and lenses of well-sorted, non-decalcified, coarse, reworked loess. In comparison to the lower units, HF-GU5 appears richer in iron oxide features.

3.3.4. HF-GU6
HF-GU6 is composed of decalcified and reworked loess, organic matter, rare sand-sized fragments of charcoal, and occasional sand-sized grains of pottery (Fig. 14, HF-GU6, and Fig. 15, detail 6). This deposit appears well-sorted and exhibits graded laminations. The contact with the lower HF-GU5 displays channels and bio-galleries in which we have observed fragments of laminated, limpid clay coatings and matrix aggregates moved from HF-GU6 downwards into HF-GU5.

From HF-GU6 we collected two samples for radiocarbon measurements. From the lower part of this unit a sample of the humin fraction has been dated to 4.933 ± 28 14C BP (Table 1B, ID 58); a few decimeters upwards a mixed sample of charcoal fragments has yielded an age of 314 ± 40 14C BP (Table 1B, ID 57).

3.3.5. HF-GU7
HF-GU7 is the uppermost unit we recovered from the flood plain (Fig. 14, HF-GU7, and Fig. 15, detail 7). It is composed of bedded limestone gravel displaying different degrees of roundness (from subangular to rounded) and size (from coarse to fine). We have also observed rare fragments of glazed pottery and Bohnerz.

4. Discussion
Our data collected in this study suggests that the landscape within both the Ach and Lone valleys has been variably shaped by phases of soil formation, soil denudation, loess accumulation and river incision. Below we provide a diachronic discussion of these processes as they relate to the areas around Hohlenstein, Bockstein and Hohle Fels. We then discuss what influence these processes had on the Paleolithic cave sites of the region.
eroded away from the central part of the Lone Valley. Interestingly, the area in which we did not detect HS-GU1 coincides with a 100 m-large depression in the limestone bedrock, which crosses our survey area from the northwest to the southeast (Fig. 7 in this text and Fig. 7 in the supplementary material). Based on the morphology of HS-GU1 and the underlying bedrock, we hypothesize that the Lone River may have removed HS-GU1 from the central part of the valley and additionally carved the underlying limestone bedrock during a phase of river incision. Examining the difference between maximum elevation of HS-GU1 along the hillsides and minimum elevation of the bedrock in the center of the Lone Valley we suggest that during this erosive phase the Lone might have lowered the valley floor by up to 3.5 m.

4.1.1. Soil formation, soil erosion, possibly river incision (pre-Quaternary and Pleistocene)

Given the subangular gravel and the sharp contacts we have described within HS-GU1, we hypothesize that this unit represents the earliest evidence for hillside erosion that we have recovered from the Lone Valley. Within it, GL 315 is largely formed of iron-stained clay, which has been redepotted as aggregates and fragments of dusty, laminated clay coatings organized in graded laminations (Fig. 8, detail 1 and 2). Therefore GL 315 might be regarded as a phase of soil re-deposition.

We suggest that the clay deposited in GL 315 originated from a soil that likely formed under a relatively warm and wet environment that promoted nearly complete dissolution of calcium carbonate, clay neoformation and subsequent clay illuviation. Later carbonate, clay neoformation and subsequent clay illuviation. Later

Our EC-logging data indicate that HS-GU1 may have been

4.1.2. Soil formation, soil erosion, major loess deposition (around 25,000 14C BP)

In HS-GU3 and HS-GU4 we identified fragmented limpid clay coatings (Fig. 8, detail 3), reworked manganese nodules and reworked soil aggregates. The clay coatings we identified in these units present more distinct laminae in comparison with the coatings we identified in GL 315 (Fig. 8, detail 1). Based on this difference in internal organization of the fragmented clay coatings we hypothesize that the reworked and redeposited pedofeatures of HS-GU3-4 and HS-GU5 may have formed during two separate and distinct phases of pedogenesis (Kühn et al., 2006).

Soil erosion and deposition of HS-GU3 and 4 was possibly ongoing around 25,000 14C BP based on dates recovered from the low heat (400 °C) combustion of total organic carbon preserved in the deposits (ID 19, Table 1B). This may correspond with a phase of deteriorating climate associated with the onset of glacial conditions which likely activated mass-wasting of the regional landscape. It is also possible that the lowering of the valley floor due to the preceding phase of river incision may have promoted hillside instability.

HS-GU3 and 4 were subsequently buried by HS-GU5, which exhibits well-sorted, fine, angular limestone gravel (Fig. 10, detail 1). We interpret this unit as a Bergkies deposit (Riek, 1957; Wolff, 1962). HS-GU5 also contains well-rounded aggregates composed of medium and coarse calcite sand coated with alternating laminations of iron stained clay and silt (Fig. 9, detail 2). Similar features have been reported from Pleniglacial deposit in England by Rose et al., (2000), who interpreted them as the result of rolling sand grains mobilized during poorly-drained sheet wash events (“snowball”). Concentric aggregates similar to those we have identified in HS-GU5 have also been identified in deposits influenced by solifluction and gelification (Huijzer, 1993; Bertran and Texier, 1999; Van Vliet-Lanoë, 2010).

The radiocarbon age of 25,320 ± 190 14C BP (ID-19, Table 1B) from HS-GU4 falls in the range of the Gravettian as published for the Swabian Jura by Conard and Bolus (2008). Therefore, it is possible that the same erosive processes which have been responsible for the deposition of HS-GU3-5 might have also led to the erosion of Gravettian-aged deposits from Hohlenstein-Stadel and other cave sites in The Lone Valley.

Hillside denudation was later followed by accumulation of sheet flow deposition (Blikra and Nemec, 1998; Pawelec, 2006) represented by HS-GU7 (Fig. 6, HS-GU7, and Fig. 7, detail 7). This unit is the only deposit that we have recovered in front of Hohlenstein that is almost exclusively composed of laminated, reworked loess. The increased presence of loess within this unit may indicate a shift towards colder and drier climate conditions.

4.1.3. Soil formation, river incision, mass-wasting, and floodplain aggradation (Late Glacial to Holocene)

The overlying units HS-GU8, −9 and −10 are composed of
angular, fresh, coarse to fine, limestone gravel, which we interpret as Bergkies (Riek, 1957; Wolff, 1962). These units appear generally very rich in reworked clay coatings, fragmented compound layered coatings, clay aggregates and in situ to reworked clay infillings (Fig. 8, detail 4, 5).

In contrast, HS-GU11 is richer in finer grained materials and contains clay pedofeatures that appear to have suffered only minor displacement (Fig. 8, detail 6) or even to have been preserved in situ.

The presence of reworked and redeposited clay pedofeatures in the HS-GU8–11 sequence suggests that these sediments may have formed through the periodic alternation of colluviation and weak pedogenesis.

Our GPR data suggests that HS-GU10–11 was partially eroded, likely as a result of river incision. This erosion also explains the absence of HS-GU4–9 in the center of the flood plain (Figs. 6 and 7). We hypothesize that this river incision was later followed by a period of hillside instability. The consequent increase in sediment load from the hillside likely impeded further river incision and promoted flood plain aggradation. In this phase the Lone River deposited the well-rounded to angular, coarse, medium and fine gravel of HS-GU14 (Fig. 6, HS-GU14, and Fig. 7, detail 14). Our GPR data show that this unit exhibits dense, laterally continuous, dipping reflectors comparable with point bar deposits discussed by Aspiron and Aigner (1999) and Bridge et al., 1995 and 2009, Fig. 11).

This phase of floodplain aggradation was probably triggered by the accumulation at the foothills of non-decalcified, reworked loess and angular, fresh and fine limestone gravel (HS-GU12. Fig. 10, detail 2). Our GPR data from the north hillside show that this unit is composed of imbricated beds that resemble those described for low-viscosity debris flow relict deposits (Blikra and Nemec, 1998, Fig. 5, Supplementary material).

We hypothesize that HS-GU12 was affected by laterally extensive erosion probably during the Holocene (Fig. 11, detail B), as suggested by the pottery fragments from the top HS-GU14 in core 27.

4.2. Landscape formation processes in front of Bockstein in The Lone Valley

Similar to the sequence reconstructed for the Hohlenstein area, the sediments we have recovered from the Lone Valley downhill from the Bockstein complex have formed through alternating phases of landscape stability and erosion.

4.2.1. Soil formation (before 32.000 14C BP)

BS-GU2 contains the earliest evidence for reworked pedofeatures that we have documented in the Bockstein area. This unit contains a high number of reworked manganese nodules, reworked soil aggregates and redeposited fragmented, laminated clay coatings (Fig. 13, detail A). Accumulation of this reworked soil likely took place between 32.390 ± 450 14C BP and 28.280 ± 270 14C BP (Table 1B).

Integrating our data from Hohlenstein and Bockstein we conclude that probably before 32.000 14C BP at least some areas of the Lone Valley were covered with a soil in which clay illuviation had taken place. This scenario of landscape stability is also supported by the results of the fauna analysis that Kröneck (2012) conducted on the Aurignacian horizon of Bockstein-Törle (BT VII), where she identified species indicative of steppe and forest environments.

4.2.2. Soil erosion and potential minor cave erosion (32.000 14C BP - 26.000 14C BP)

We hypothesize that during a subsequent phase of climate deterioration the lack of arboreal vegetation along the slope may...
have triggered mass-wasting. This phase of landscape instability corresponds to the accumulation of BS-GU2 which contains fragmentary clay coatings (Fig. 12, BS-GU2, and Fig. 13, detail 2).

In the Brandplatte area, uphill from the location of our cores, Wetzel reported a deposit which presented lithological characteristics (particularly dark color and high amount of gravel) comparable with our BS-GU2 (Fig. 13). In this sediment Wetzel also discovered mixed Upper and Middle Paleolithic artefacts, which Bosinski interpreted as colluvial material eroded from the cave of Bocksteinloch (Wetzel and Bosinski, 1969, p. 18). The hypothesis that BS-GU2 might correspond to a phase of cave erosion is not fully supported by our data. In this unit we identified only one sand-sized fragment of bone (Fig. 13, detail B) and one coarse gravel-sized fragment of chert, the latter could come from the local bedrock or could represent a fragment of lithic debitage. Here, we did not identify any phosphatized grains of loess. Moving even further downhill—in the Lone floodplain—Schneidermeier (1999) did not report the recovery of any bones or artefacts in his cores. At the same time, our and Schneidermeier’s data cannot reject the possibility that a phase of cave erosion actually occurred at Bockstein between 32.000 14C BP – 26.000 14C BP. This erosional phase might have been less intensive than in later periods (see next section) and thus might be possible to be poorly visible in the sediments preserved at the foot of the hill. Further investigation of the sediments accumulated uphill from our core 31 is today impeded, since these deposits have been largely removed in the course of previous investigations (Wetzel and Bosinski, 1969).

4.2.3. Hillside instability, major cave erosion, major loess deposition (26.000 14C BP – 20.000 14C BP)

Fauna assemblages from the Gravettian horizons of Bockstein-Törl (BT VI-IV) are indicative of a landscape dominated by grasslands and wetlands (Kronneck, 2012). We hypothesize that around the time of the LGM, hillside denudation was still active and might have triggered a major phase of cave erosion.

BS-GU3 is composed of laminated, non-phosphatized reworked loess alternating with occasional beds of medium to fine, sub-rounded limestone gravel (Fig. 12, BS-GU3, and Fig. 13, detail 3). Similar sediments have been reported from various regions of Europe and have been interpreted as the result of alternating sheet and snow-flows (Blikra and Nemec, 1998; Pawelec, 2006). BS-GU4 has the same composition as BS-GU3 but displays increased mean grain size that might be related to a shift towards higher energy mass-wasting (Fig. 12, BS-GU4, and Fig. 13, detail 4). At the contact between these two units we have identified fragments of bones and phosphatized grains of loess (Fig. 13, details C and D). Associated with these components we have also identified snail shells, which contain well preserved aragonite and yielded an age of 25,900 ± 200 13C BP (ID 69, Table 1 B). Due to the potential incorporation of fossil carbon in gastropod shells, this 13C measurement might be overestimated by 1500 (Yates et al., 2002) to 3120 13C years (Goodfriend and Stipp, 1983). However, despite these uncertainties, the range of 26,000–23,000 14C BP falls in the interval of 20,000–31,000 14C BP published by Conard and Bolus (2003) for the Gravettian horizon BT VI from Bockstein-Törl.

As micromorphological studies were not conducted at the Bockstein caves, it is difficult to identify the cave as a potential source of sediment for the slope and valley deposits. However, detailed micromorphological studies at Hohle Fels (Goldberg et al., 2003; Miller, 2015) and Geißenklösterle (Miller, 2015) and Hohensteint-Stadel (Barbieri and Miller, in press) suggest that Pleistocene-aged deposits found in the local caves are largely composed of phosphatized loess and contain numerous sand-sized fragments of bone. Therefore, we conclude that the bone fragments and phosphatized grains of loess redeposited in BS-GU3 and 4 were likely eroded from Bockstein-Törl or other cavities of the Bockstein complex.

Similarly to HS-GU7, BS-GU3 and 4 are very rich in reworked loess and appear nearly free of fragmentary clay coatings. Therefore we suggest, similarly to the sequence from Hohenlenstein, that these three units might represent a shift towards a colder, dryer environment associated with the onset of glacial conditions. Alternatively the absence of these pedofeatures in BS-GU3 and 4 might indicate that the soil originally formed on top of the plateau was completely eroded before the deposition of these units.

4.2.4. River erosion (Late Glacial to Holocene)

BS-GU5 (Fig. 12, BS-GU5, and Fig. 13, detail 5) displays similarities with the Bergkies deposits exposed by Wetzel slightly uphill from core 31. In those deposits Wetzel recovered non-diagnostic upper Paleolithic stone tools (Wetzel and Bosinski, 1969).

Our GPR data suggest that BS-GU5 exhibits structural analogies with HS-GU12 (Fig. 5 in Supplementary material). Both of these deposits display imbricated bedding comparable to that reported by Blikra and Nemec (1998) from debris flow deposits in Norway. Our GPR data also indicate that this unit was partially eroded, likely by the Lone River which also subsequently covered this disconformity with fine, alluvial sediment.

4.3. Landscape formation processes in front of Hohle Fels in the Ach valley

The data collected in the area around Hohle Fels suggests that the Ach Valley also experienced several phases of soil formation, river incision, hillside denudation and loess accumulation.

4.3.1. River incision, soil and cave erosion, major loess deposition (after 28.000 14C BP)

Some hundred meters northwards from our core 37, Groschopf (1973) recovered core 7624/45 (Fig. 5, detail 3), which yielded sediments similar to HF-GU2 to HF-GU7 (Fig. 6 in Supplementary material). For example, our HF-GU6 exhibits color, composition and depth-below-surface that is comparable with a dark peat recovered by Groschopf at 2.8 m underground. Below this, to a depth of –5.2 m, he described a sequence composed of yellow-brown silty-sand, which is similar to what we described for HF-GU5. Additionally, to a depth of –14 m, Groschopf reported gravel that was embedded in gray matrix which is possibly equivalent to HF-GU2. In core 7624/45, underneath these deposits (–14 m) Groschopf recovered a thick marl covering Alpine gravel, the latter was probably deposited in the Ach Valley by the palaeo-Danube. Additional coring and geophysical data indicate that this marl deposit is laterally continuous in the Ach and Schmiech valleys and was partly eroded during a phase of valley incision (Brost et al., 1987; German et al., 1995, Fig. 7 in Supplementary material, lower detail). If we accept the correlation of HF-GU2 with the sequence described by Groschopf, we can conclude that HF-GU2 might have been deposited shortly after a phase of river valley incision.

In HF-GU2 we found sand-sized grains of phosphatized loess together with fragments of bone, speleothems and rare reworked clay coatings (Fig. 15, detail B, C and D). Previous micromorphological investigations conducted inside Hohle Fels show that the cave sediments are largely composed of loess that has been either decalcified or phosphatized (Goldberg et al., 2003; Miller, 2015). We conclude that the most likely source for the phosphatized grains of loess, speleothems and bone fragments deposited in HF-GU2 is the nearby cave of Hohle Fels and that unit HF-GU2 formed as a result of mass-wasting that originated from both the external hillside and Hohle Fels cave.
5. Major landscape processes and their impact on cave sequences

5.1. Significance of the fragmented clay coatings

In most of our Geological Units we have identified numerous reworked and fragmented, laminated clay coatings. Such pedofeatures originate from multiple cycles of clay illuviation and are regarded as indicators of long-lasting landscape stability (Kühn et al., 2010). In situ clay coatings have been reported from paleosols formed across Europe during colder (Sedov et al., 2013) or warm Interstadials of the Late Glacial (Van Vliet-Lanoë, 1990; Kühn, 2003). Fragmented clay coatings have been documented in various Würm-aged colluvial sediments (Buch and Zoller, 1990; Antoine et al., 2001; Kühn et al., 2006; Sedov et al., 2013). In particular Van Vliet-Lanoë (1990) has discussed the role of gelification as potential process responsible for the disruption and deposition of these pedofeatures.

We propose that the reworked and fragmented clay coatings we have observed in our GU's might have been the result of different processes. The clay pedofeatures of HS-GU4 and 5 might have been disrupted and deposited by gelification. In support of this hypothesis, we have also observed granostriated b-fabric and well-rounded, concentric aggregates of silt and clay (Fig. 9, detail 1). These features are comparable with the cryogenic microfabrics described by Huijzer (1993) and Van Vliet-Lanoë (2010). In apparent contradiction with this interpretation, HS-GU4 and 5 do not display micromorphological features indicative for ice segregation (e.g. banded microfabric or platy microstructure), which, on the contrary, have been observed in Pleniglacial and LGM cave deposits of both Lone and Ach valleys (Goldberg et al., 2003; Miller, 2015; Barbieri and Miller, in press). This absence is likely due to the higher presence of gravel (for instance in HS-GU5, Van Vliet-Lanoë, 2010) and the more intensive reworking that these open-air sediments might have undergone in comparison with the cave deposits. The fragmented clay coatings we have observed in the remaining GU's of both Ach and Lone valleys are not associated with potential cryogenic microfabrics, banded microfabric nor platy microstructure. Therefore, other mass-wasting processes (such as debris flow) might have been responsible for the deposition of these sediments.

5.2. Phases of soil formation, soil erosion, river valley incision, soil and cave erosion

From the Lone Valley Schneidermeier (1999) recovered “red horizons” which he interpreted as potential paleosols preserved in situ. In contrast, our micromorphological results indicate that these deposits are likely formed from redeposited soil material. GL 315 within HS-GU1 displays fragments of dusty clay coatings and thus represents the earliest evidence for soil formation and denudation in our study region (Fig. 8, detail 1 and 2). Our data do not clarify the age of this deposit (Fig. 16). Results from our geophysical measurements show that HS-GU1 might have been eroded in the course of a phase of river valley incision, which lowered the Lone Valley floor of about 3.5 m (Fig. 7 in the text. Fig. 7 in Supplementary material). Interestingly, in the Ach and Schmiech valleys Brost et al. (1987) and German et al. (1995) documented a comparable major valley incision, which lowered the floor of these two valleys of ca. 10 m (incision of marl deposits in Figs. 6 and 7 in Supplementary material). The lack of dating for the deeper deposits preserved in Ach and Lone valleys make the correlation of these disconformities tentative (Fig. 16).

On top of these river incisions, in HS-GU3-4 (Fig. 8, detail 3), BS-GU2 (Fig. 13, detail A) and HF-GU2 (Fig. 15, detail D) we documented fragmented, limpid clay coatings which present more
distinct laminae in comparison with those deposited in GL 315 (Fig. 8, detail 1). Based on their internal organization, we hypothesize that the pedofeatures redeposited in HS-GU1, on one hand, and HS-GU3-4, BS-GU2 and HF-GU2, on the other hand, might have originated in the course of two distinct phases of soil formation (Kühn et al., 2006). Basing on our 14C dating, HS-GU3-4, BS-GU2 and HF-GU2 have been deposited in the course of phases of soil erosion, which took place in Ach and Lone valleys between 32.000 and 25.000 14C BP (Fig. 16).

In partial overlap with these phases of soil erosion (Fig. 16), Gravettian-aged sediments (BS-GU3-4 and HF-GU2-3) containing grains of phosphatized loess (Fig. 13, detail C and D. Fig. 15, detail B), and bone fragments (Fig. 13, detail D. Fig. 15, detail E) were eroded and redeposited in front of the caves of Bockstein and Hohle Fels. Interestingly, our results support the observations of Miller (2015), who hypothesized the presence of erosive contacts within the Gravettian deposit of Hohle Fels. From the area opposite from Hohlenstein we did not recover any material potentially eroded from this cave complex. This is to be expected since the area we have covered with our survey and coring is located on the other side of the Lone River, at a distance of about 150 m from the cave entrances and slightly upstream in comparison with Hohlenstein. Nevertheless, previous archaeological investigations showed that also the Gravettian deposits accumulated within Hohlenstein-Stadel might have suffered major erosion (units KKS and GKS-2 in Figs. 4 and 16, Jahnke, 2013). In the Ach and Lone valleys, phases of soil formation, river valley incision, soil and cave sediment erosion likely resulted from the adaptation of the vegetation coverage to the climatic changes. We hypothesize that during Würm interstadials the spread of arboreal vegetation might have offered conditions suitable for long-lasting landscape stability and thus soil formation (Jahnke, 2013; Kronneck, 2012; Kitagawa, 2014; Riehl et al., 2015). In the spring and early summer of these periods, the water discharged from the melting snow drained into the unfrozen ground, possibly causing clay illuviation (Clark, 1988. Fig. 17, detail 1). In the passage from interstadials to stadials the vegetation likely adapted to the climate change with a time lag of some 50–100 years (Knox, 1984; Jump and Peñuelas, 2005). We hypothesize that during these transitional periods, the permafrost table was shallow, melting water was drained in river channels and both hillsides and riversides were stabilized by sparse arboreal coverage (Fig. 17, detail 2). As result, the water discharge would have been higher than the sediment supply (Mol et al., 2000; Van Huistenden and Kasse, 2001). In this hydrological setting, the rivers Lone and Ach might have been able to incise, respectively, HS-GU1 (Fig. 7 in the text and Fig. 7 in Supplementary material) and marl deposits (Figs. 6 and 7 in Supplementary material). After this river incisions, frozen ground and grasslands spread in the Lone and Ach valleys towards the end of the Pleniglacial (Goldberg et al., 2003; Jahnke, 2013; Krönneck, 2012; Kitagawa, 2014; Miller, 2015; Riehl et al., 2015; Barbieri and Miller, in press). We hypothesize that the lack of arboreal vegetation along the hillside together with the lowered base level of the two valleys likely triggered major mass-wasting of soils and cave sediments (Fig. 17, detail 3).

5.3. Shift in sediment source: from reworked soil material to loess

The Gravettian-aged material eroded from the caves of Bockstein was redeposited in a sediment largely composed of reworked loess, with occasional gravel beds and almost free of fragmented clay coatings (BS-GU3 and 4). Similar sediments accumulated also in front of Hohlenstein (HS-GU7) and, after the phase of cave erosion, in front of Hohle Fels (HF-GU5, Fig. 16).

Higher loess sedimentation in the Ach and Lone valleys might be regarded as an indicator of drier and colder climate compatible with the LGM. Additionally, the drop in the amount of reworked clay coatings suggest that the accumulation of these units was not
interrupted by climate ameliorations favorable to soil formation. The near lack of limestone debris in these deposits may indicate a lower frequency of frost cycles, which was possibly caused by temperatures more constantly under 0 °C. The absence of limestone debris might also indicate that bare bedrock was less exposed and/or erosional processes were more surflcial, possibly as result of well-developed permafrost.

Landscape instability and extreme climate forced human groups to leave the Swabian Jura probably at the beginning or shortly after the onset of erosion within the cave, around 26,000 14C BP (Conard and Bolus, 2003; Moreau, 2009). However, the removal of deposits from this time period make it difficult to identify exactly when the region may have become depopulated. Loess deposition and thus harsh climatic conditions likely lasted until 14,000 14C BP, when loess (GKS-1) sterile and free of phosphatic grains accumulated at the Vorplatz of Hohlenstein-Stadel (Jahnke, 2013; Barbieri and Miller, in press). Starting around 13,000 14C BP, Magdalenian groups colonized the region during a cool interstadial towards the beginning of the Late Glacial period (Jahnke, 2013; Taller, 2015).

5.4. River incision, minor cave erosion, Bergkies deposition

After the LGM, in both the Ach and Lone valleys, periodic alternation of stadials and interstadials led to the accumulation of sediments rich in gravel and fragmented clay coatings (HS-GU9-11, BS-GU5, probably HF-GU1. Fig. 16). Previous investigations conducted at the Vorplatz of Hohlenstein-Stadel showed that the Magdalenian deposit GL2B was partly eroded and covered with sediment containing microfauna compatible with a Stadial period (GL2A, Jahnke, 2013). We hypothesize that during the transition between these two climatic phases the Lone River eroded HS-GU11 from the center of the valley (Fig. 16). It is possible that this phase of downcutting corresponds to a similarly-aged event reported from The Danube Valley in the Regensburg area, dated to 13,000–9,000 14C BP (Heine, 1999; Münzberger, 2005; Schellmann, 2010). Incision of The Lone Valley was followed by the accumulation of Bergkies at the Vorplatz of Hohlenstein-Stadel (GL2A) and probably also along the hillside opposite from the cave (HS-GU12, Fig. 7, detail 12. Fig. 10, detail 2. Fig. 16).

Our data do not support or refute the occurrence of a contemporaneous river incision in the Ach Valley. Nevertheless, at the entrance of Hohle Fels we detected a shallow disconformity filled with Bergkies (Fig. 15, detail A. Fig. 16). This deposit appears to contain rare Magdalenian artifacts (Blumentritt personal communication). Further research is needed to verify the timing of this sequence.

The association of Magdalenian materials and Bergkies has been reported from various sites, such as Sesselfelsgrotte (Freund, 1998), Felställe (Kind, 1987), Burkhardtshöhle (Riek, 1935), Spitalhöhle (Riek, 1957), Vogelherd (Riek, 1934), Bockstein (Wetzel and Bosinski, 1969), Brillenhöhle (Riek, 1973) and Sirgenstein (Schmidt, 1912). However assuming that the Magdalenian occupation of the Jura took place while Bergkies was deposited in the valleys is questionable. Given that the Magdalenian colonization of the study region took place during an Interstadial (Jahnke, 2013), the presence of sparse arboreal coverage along the hillside should have prevented major denudation processes. In agreement with the data published for Hohlenstein-Stadel (Jahnke, 2013), a major part of the Bergkies reported from Sesselfelsgrotte was deposited probably after the Magdalenian, during a Stadial period (layer B3, Freund, 1998). Inside Hohle Fels Bergkies forms part of the Magdalenian sequence (layer GH 3ad) but appears more abundant in later, possibly Holocene-aged deposits (1ka, 1kb, 1c, 1s, 3as, Fig. 16). Field descriptions from Maria Malina).

We conclude that the exact timing of Bergkies deposition in caves of the Swabian Jura is not clear and further research is needed to address this point. As a working hypothesis, we propose that this sediment type was produced and deposited during Stadial periods of the Late Glacial when the landscape was shaped by major denudation processes. Increased sedimentation rates of Bergkies might indicate more frequent frost cycles and/or more extensive bedrock denudation during the Late Glacial. In the valley floor, accumulation of Bergkies and coarser gravel prevented any further river incision, promoting floodplain aggradation (HS-GU14). Production of frost debris was likely more intensive in the areas surrounding the different Vorplätze, where bedrock was possibly more exposed. Here deposition of Bergkies overprinted cave erosion and filled the cave entrances.

6. Conclusions

Our research demonstrates that cave sequences can be successfully linked with open air sediment archives when the study focuses at both micro- and macroscopic scales on depositional process, sediment source and diagenesis. This success was only achieved by integrating our data with the results from previous archaeological, faunal, botanical, geoarchaeological and micro-morphological investigations carried out in this region. Our results
show that alternating phases of soil formation, hillside denudation, river valley incision and floodplain aggradation have been the major processes active in Lone and Ach valleys throughout the Pleistocene and Holocene (Fig. 16). These processes impacted the prehistoric archaeological record contained within the caves, in particular:

1. River valley incision and subsequent, intensive mass-wasting of the hillsides promoted the erosion of Gravettian-aged deposits from the caves of Bockstein, Hohle Fels and possibly Hohlenstein-Stadel.

2. Increased deposition rates of loess nearly free from gravel and reworked pedofeatures marks in both the Ach and Lone valleys a shift towards colder and drier conditions corresponding with the LGM. Deteriorating climate likely forced Gravettian groups to abandon the Swabian Jura.

3. Magdalenian recolonization of the region took place in a phase of climate amelioration alternating with phases of major hillside instability, minor cave erosion, bedrock denudation and consequent Bergkries production.

4. During or after the Magdalenian, Bergkries filled the cave entrances marking the cessation of cave erosion.

Acknowledgments

We would like to express our gratitude to the Baden-Württemberg Ministry of Culture and Science that has funded this project. Our field and lab work would have been not possible without the support of Haydar B. Martinez, Felix Bachover, Geraldine Quach, Viola Schmid, Peter Kloos, Flora C. Schilt, Clemens Schmid, Elmar Schmaltz, Matthias Czechowski and Lucia Leierer. The thin sections published in this paper have been produced by Panos Kritikakis at the Geoarchaeology Laboratory of the University of Tübingen. We are thankful to Hartmut Schulz for having hosted us in the Sand Laboratory of the Department of Geosciences at The University of Tübingen. Thanks to Peter Lech, Jen Ort, Jens Hornung and the Geodaraforum for having supported our GPR surveys, to Maria Malina for the access to her field descriptions from Hohle Fels, and finally to Marcus Lee and the staff of the University of Arizona AMS Laboratory for their help with the 14C dating. We also would like to acknowledge Peter Kühn, Wolfgang Ufretch and Frank Schätz for their suggestions and remarks. Finally thanks to Diego E. Angelucci and one anonymous reviewer.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.quaint.2017.08.002.

References

Frosch, O., 1862. Der Hohlenstein und der Höhlenbär. Jahreshefte des Vereins für