Quiz II.

Question 1. In the lab on multicollinearity last week, we examined the case of multiple regression model with two explanatory variables. The four cases were: a) Case 1. Correlation ($\mathrm{x} 1, \mathrm{x} 2$) $=0$; b) Case 2. Correlation ($\mathrm{x} 1, \mathrm{x} 2$) $=0.4$; c) Case 3. Correlation (x 1 , $x 2$) $=0.7$ and d) Case 4. Correlation ($\mathrm{x} 1, \mathrm{x} 2$) $=0.9$.

The following Stata commands were issued in each case (this example refers to case 3):
clear
mat $\mathrm{C}=(1, .7 \backslash .7,1)$
set seed 999
corr2data $\mathrm{x} 1 \mathrm{x} 2, \mathrm{n}(30)$ corr (C)
generate $\mathrm{r}=$ invnorm(uniform())
generate $y=.5+x 1+x 2+r$
regress y x1 x2
estat vce, block format(\%7.2f)
The results below represent the variance-covariance matrix for the four cases when $\mathrm{n}=30$. Can you match the matrixes with the cases?

Hint: Remember that the variance-covariance matrix can be summarized as:
$\operatorname{Var}(\beta)=\sigma^{2}\left[\begin{array}{ccccc}s_{1}^{2} & s_{12} & s_{13} & \ldots & s_{1 j} \\ s_{21} & s_{2}^{2} & s_{23} & \ldots & s_{2 j} \\ s_{31} & s_{32} & s_{3}^{2} & \ldots & s_{3 j} \\ \ldots & \ldots & \ldots & \ldots & \\ s_{j 1} & s_{j 2} & s_{j 2} & \ldots & s_{j}^{2}\end{array}\right]$
such that $\mathrm{s}_{j}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)^{2}=$ variance of jth variable
and $\mathrm{s}_{j k}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-\overline{x_{j}}\right)\left(x_{i k}-\bar{x}_{\mathrm{k}}\right)=$ covariance of jth and kth variables
and $\overline{\mathrm{x}}_{j}=\frac{1}{n} \sum_{i=1}^{n} x_{i j}$
Hint: Please note that we are creating a data generating process with a positive correlation between X1 and X2. However, in the Variance-Covariance Matrix (VCE) below there are negative covariances reported. This is because if there is positive covariance, the VCE should have a negative sign for the covariance between X 1 and X 2 . This is because when taking the inverse of $X^{\prime} X$, the off-diagonal elements switch signs. If the correlation
between X1 and X2 was negative in the DGP, the off-diagonal in the VCE would take on a positive sign.
A)

Covariance matrix of coefficients of regress model covariance

	x1	x2	- cons
x1	0.06		
x2	-0.04	0.06	
- cons	0.00	0.00	0.03

Case 3. Correlation $(x 1, x 2)=0.7$
B)

Covariance matrix of coefficients of regress model
covariance

	$x 1$	$x 2$	- cons
x1	0.03		
x2	-0.01	0.03	
_cons	0.00	-0.00	0.03

Case 2. Correlation $(\mathrm{x} 1, \mathrm{x} 2)=0.4$
C)

```
Covariance matrix of coefficients of regress model
```

covariance

	x 1	x 2	_cons
$\mathrm{x1}$	0.15		
x 2	-0.14	0.15	
_cons	0.00	0.00	0.03

Case 4. Correlation $(x 1, x 2)=0.9$
D)

Covariance matrix of coefficients of regress model
covariance

	x1	$x 2$	- cons
x1	0.03		
x2	-0.00	0.03	
- cons	0.00	-0.00	0.03

Case 1. Correlation $(\mathrm{x} 1, \mathrm{x} 2)=0$

Question 2. In the lab on multicollinearity last week, we examined the case of multiple regression model with two explanatory variables. The four cases were: a) Case 1. Correlation ($\mathrm{x} 1, \mathrm{x} 2$) $=0$; b) Case 2. Correlation ($\mathrm{x} 1, \mathrm{x} 2$) $=0.4$; c) Case 3. Correlation (x 1 , $\mathrm{x} 2)=0.7$ and d) Case 4. Correlation ($\mathrm{x} 1, \mathrm{x} 2$) $=0.9$.

The following Stata commands were issued in each case:
clear
mat $\mathrm{C}=(1, .7 \backslash .7,1)$
set seed 999
corr2data x1 x2, n(30) corr (C)
generate $\mathrm{r}=$ invnorm(uniform())
generate $y=.5+x 1+x 2+r$
regress y x1 x2
estat vce

The results below represent the correlation matrix for the four cases when $n=30$. Can you match the matrixes with the cases?

Hint: Remember that the correlation matrix can be summarized as:

$$
\mathrm{R}=\begin{array}{ccccc}
1 & r_{12} & r_{13} & \ldots & r_{1 j} \\
r_{21} & 1 & r_{23} & \ldots & r_{2 j} \\
r_{31} & r_{32} & 1 & \ldots & r_{3 j} \\
\ldots & \ldots & \ldots & \ldots & \\
r_{j 1} & r_{j 2} & r_{j 2} & \ldots & 1
\end{array}
$$

such that
$r_{j k}=\frac{s_{j k}}{s_{j} s_{k}}$ or the correlation coefficient between x_{j} and x_{k}
A)

Correlation matrix of coefficients of regress model
correlation

	$x 1$	$x 2$	_cons
x1	1.00		
x2	-0.70	1.00	
_cons	0.00	0.00	1.00

Case 3. Correlation (x1, x2) $=0.7$
B)

Correlation matrix of coefficients of regress model correlation

	$x 1$	$x 2$	_cons
x1	1.00		
x2	-0.40	1.00	
_cons	0.00	-0.00	1.00

Case 2. Correlation (x1, x2) $=0.4$
C)
. estat vce, correlation block format(\%7.2f)

Correlation matrix of coefficients of regress model
correlation

	x 1	x 2	cons
x1	1.00		
x2	-0.90	1.00	
_cons	0.00	0.00	1.00

Case 4. Correlation $(\mathrm{x} 1, \mathrm{x} 2)=0.9$
D)

Correlation matrix of coefficients of regress model
correlation

	x 1	x 2	_cons
x1	1.00		
x 2	-0.00	1.00	
_cons	0.00	-0.00	1.00

Case 1. Correlation $(\mathrm{x} 1, \mathrm{x} 2)=0$

