Quiz II.

Question 1. In the lab on multicollinearity last week, we examined the case of multiple regression model with two explanatory variables. The four cases were: a) Case 1. Correlation (x1, x2) =0; b) Case 2. Correlation (x1, x2) =0.4; c) Case 3. Correlation (x1, x2) =0.7 and d) Case 4. Correlation (x1, x2) =0.9.

The following Stata commands were issued in each case (this example refers to case 3):

clear

mat C=(1,.7 $\.7,1$) set seed 999 corr2data x1 x2, n(30) corr (C) generate r=invnorm(uniform()) generate y=.5 + x1 + x2 + r regress y x1 x2

estat vce, block format(%7.2f)

The results below represent the variance-covariance matrix for the four cases when n=30. Can you match the matrixes with the cases?

Hint: Remember that the variance-covariance matrix can be summarized as:

$$Var(\beta) = \sigma^{2} \begin{bmatrix} s_{1}^{2} & s_{12} & s_{13} & \dots & s_{1j} \\ s_{21} & s_{2}^{2} & s_{23} & \dots & s_{2j} \\ s_{31} & s_{32} & s_{3}^{2} & \dots & s_{3j} \\ \dots & \dots & \dots & \dots \\ s_{j1} & s_{j2} & s_{j2} & \dots & s_{j}^{2} \end{bmatrix}$$

such that $s_{j}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_{j})^{2}$ = variance of jth variable
and $s_{jk} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_{j})(x_{ik} - \overline{x}_{k})$ = covariance of jth and kth variables
and $\overline{x}_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$

Hint: Please note that we are creating a data generating process with a positive correlation between X1 and X2. However, in the Variance-Covariance Matrix (VCE) below there are negative covariances reported. This is because if there is positive covariance, the VCE should have a negative sign for the covariance between X1 and X2. This is because when taking the inverse of X'X, the off-diagonal elements switch signs. If the correlation

between X1 and X2 was negative in the DGP, the off-diagonal in the VCE would take on a positive sign.

A)

Covariance matrix of coefficients of regress model

covariance

	x1	x2	_cons
x1	0.06		
x2	-0.04	0.06	
_cons	0.00	0.00	0.03

Case 3. Correlation (x1, x2) = 0.7

B)

Covariance matrix of coefficients of regress model

covariance

	x1	x2	_cons
	0.03		
x2	-0.01	0.03	
_cons	0.00	-0.00	0.03

Case 2. Correlation (x1, x2) = 0.4

C)

Covariance matrix of coefficients of regress model

covariance

	x1	x2	_cons
x1	0.15		
x2	-0.14	0.15	
_cons	0.00	0.00	0.03

Case 4. Correlation (x1, x2) = 0.9

D)

Covariance matrix of coefficients of regress model

covariance

	x1	x2	_cons
	0.03		
x2	-0.00	0.03	
_cons	0.00	-0.00	0.03

Case 1. Correlation (x1, x2) = 0

Question 2. In the lab on multicollinearity last week, we examined the case of multiple regression model with two explanatory variables. The four cases were: a) Case 1. Correlation (x1, x2) =0; b) Case 2. Correlation (x1, x2) =0.4; c) Case 3. Correlation (x1, x2) =0.7 and d) Case 4. Correlation (x1, x2) =0.9.

The following Stata commands were issued in each case:

clear

mat C=(1,.7\.7,1)

set seed 999

corr2data x1 x2, n(30) corr (C)

```
generate r=invnorm(uniform())
generate y=.5 + x1 + x2 + r
regress y x1 x2
estat vce
```

The results below represent the correlation matrix for the four cases when n=30. Can you match the matrixes with the cases?

Hint: Remember that the correlation matrix can be summarized as:

such that

$$r_{jk} = \frac{s_{jk}}{s_j s_k}$$
 or the correlation coefficient between x_j and x_k

A)

Correlation matrix of coefficients of regress model

correlation

	x1	x2	_cons
	1.00		
x2	-0.70	1.00	
_cons	0.00	0.00	1.00

Case 3. Correlation (x1, x2) = 0.7

B)

Correlation matrix of coefficients of regress model

correlation

	x1	x2	_cons
x1	1.00		
x2	-0.40	1.00	
_cons	0.00	-0.00	1.00

Case 2. Correlation (x1, x2) = 0.4

C)

. estat vce, correlation block format(%7.2f)

Correlation matrix of coefficients of regress model

correlation

	x1	x2	_cons
x1 x2	1.00 -0.90	1.00	
_cons	0.00	0.00	1.00

Case 4. Correlation (x1, x2) = 0.9

D)

Correlation matrix of coefficients of regress model

correlation

	x1	x2	_cons
x1	1.00		
x2	-0.00	1.00	
_cons	0.00	-0.00	1.00

Case 1. Correlation (x1, x2) = 0