Relatório de Resoluções

O código de cada membro pode ser consultado a seguir:

x_{05} : José Soares Jr.	x_{11} : Luca Monaco
x_{06} : Maurício Damião	x_{15} : Rodrigo Melendez
x_{08} : Pedro Lopes Silva	x_{18} : Matheus Cardoso
x_{09} : Rafael Maddalena	x_{20} : Gustavo Zequini

Resolução (\parallel Questão: 4.8.1 \parallel Relator: $\mathbf{x}_{08} \parallel$ Revisor: $\mathbf{x}_{06} \parallel$)

Sketch the graphs of $y = x^{-3}$, $y = x^{-1}$, $y = x^{-\frac{1}{2}}$, and $y = x^{-\frac{1}{3}}$, defined for x > 0.

Seja a linha vermelha representante da função $y = x^{-\frac{1}{2}}$, a linha verde representante da função $y = x^{-3}$, a linha rosa representante da função $y = x^{-1}$ e a linha azul representante da função $y = x^{-\frac{1}{3}}$. Assim temos o seguinte gráfico: Considere o eixo x sendo o eixo da horizontal e o eixo y o eixo da vertical.

Figure 1: $y = x^{-3}$, $y = x^{-1}$, $y = x^{-\frac{1}{2}}$, and $y = x^{-\frac{1}{3}}$, defined for x > 0

Resolução (|| Questão: 4.8.2 || Relator: \mathbf{x}_{09} || Revisor: \mathbf{x}_{08} ||)

Usando uma calculadora, encontre os valores aproximados de $\sqrt{2^{\sqrt{2}}}$ e π^{π}

 $\sqrt{2^{\sqrt{2}}} \approx 1.6325269194$

 $\pi^\pi\approx 36.4621596072 \quad \blacksquare$

Resolução (\parallel Questão: 4.8.3 \parallel Relator: $\mathbf{x}_{11} \parallel$ Revisor: $\mathbf{x}_{09} \parallel$)

3. Solve the following equations for x: \mathbf{a}) $2^{2x} = 8$

$$2^{2x} = 2^3 (1)$$

$$2x = 3 \to x = \frac{3}{2} \tag{2}$$

b) $3^{3x+1} = \frac{1}{81}$		
	$3^{3x+1} = 81^{-1}$	(3)
	$3^{3x+1} = 3^{-4}$	(4)
	3x + 1 = -4	(5)
	$x = -\frac{5}{3}$	(6)
$\mathbf{c})10^{x^2-2x+2} = 100$		
	$10^{x^2 - 2x + 2} = 10^2$	(7)
	$x^2 - 2x + 2 = 2$	(8)
	$x^2 - 2x = 0$	(9)
	x(x-2) = 0	(10)
	x = 0, x = -2	(11)
_		

Resolução (\parallel Questão: 4.8.4 \parallel Relator: $\mathbf{x}_{15} \parallel$ Revisor: $\mathbf{x}_{11} \parallel$)

Match five of the graphs A-F in Figs 4.8.5 to 4.8.10 with each of the functions (a)–(e) below. Then specify a suitable function in (f) that matches the sixth graph.

a) $y = \frac{1}{2}x^2 - x - \frac{3}{2}$

The function can be assigned to the following graph:

As a quadratic function with a > 0, it assumes a U shape. We also see that the point (1, -2) in the graph belongs to the function:

$$\frac{1}{2}1^2 - 1 - \frac{3}{2} = \frac{1}{2} - 1 - \frac{3}{2} = -2$$

b) $y = 2\sqrt{2-x}$

The function can be assigned to the following graph:

As our function is $y = 2\sqrt{2-x}$, we know that $2-x \ge 0$, because the square root of a negative number is not defined. Then:

$$2 - x \ge 0 \Leftrightarrow x \le 2 \tag{12}$$

Therefore the domain of the function is defined as $D = (-\infty, 2]$, as we can verify in the graph.

Also, as 2 - x is raised to the power of $\frac{1}{2}$, the power is between 0 and 1, so the curve will be exactly the same as the graph.

c)
$$y = -\frac{1}{2}x^2 + x + \frac{3}{2}$$

The function can be assigned to the following graph:

As it is a quadratic function, with a < 0, it will have the \cap shape, as shown in the graph.

We also know that the function will cross the y axis at $\frac{3}{2} > 0$, and we can see that the function crosses the y axis in some positive number.

d)
$$y = (\frac{1}{2})^x - 2$$

The function can be assigned to the following graph:

As $(\frac{1}{2})^x - 2 = 2^{-x} - 2$ it is clear that the power will be negative for positive x and positive for negative x, so the curve will be like the curve of 2^x mirrored.

e)
$$y = 2\sqrt{x-2}$$

The function can be assigned to the following graph:

As our function is $y = 2\sqrt{x-2}$, we know that $x-2 \ge 0$, because the square root of a negative number is not defined. Then:

$$x - 2 \ge 0 \Leftrightarrow x \ge +2 \tag{13}$$

Therefore the domain of the function is defined as $D = [2, +\infty)$, as we can verify in the graph.

Also, as x - 2 is raised to the power of $\frac{1}{2}$, the power is between 0 and 1, so the curve will be exactly the same as the graph.

f) The following graph:

Can be assigned to the following function:

$$y = -(\frac{1}{2})^x + 2 \tag{14}$$

As $-(\frac{1}{2})^x + 2 = -(2)^{-x} + 2$, we have that the shape will be as the graph is showing.