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ABSTRACT

Background: Ingestion of whey or casein yields divergent patterns
of aminoacidemia that influence whole-body and skeletal muscle
myofibrillar protein synthesis (MPS) after exercise. Direct compar-
isons of the effects of contrasting absorption rates exhibited by these
proteins are confounded by their differing amino acid contents.
Objective: Our objective was to determine the effect of divergent
aminoacidemia by manipulating ingestion patterns of whey protein
alone on MPS and anabolic signaling after resistance exercise.
Design: In separate trials, 8 healthy men consumed whey protein
either as a single bolus (BOLUS; 25-g dose) or as repeated, small,
“pulsed” drinks (PULSE; ten 2.5-g drinks every 20 min) to mimic
a more slowly digested protein. MPS and phosphorylation of sig-
naling proteins involved in protein synthesis were measured at rest
and after resistance exercise.

Results: BOLUS increased blood essential amino acid (EAA) con-
centrations above those of PULSE (162% compared with 53%, P <
0.001) 60 min after exercise, whereas PULSE resulted in a smaller
but sustained increase in aminoacidemia that remained elevated above
BOLUS amounts later (180-220 min after exercise, P < 0.05). De-
spite an identical net area under the EAA curve, MPS was elevated
to a greater extent after BOLUS than after PULSE early (1-3 h:
95% compared with 42%) and later (3-5 h: 193% compared with
121%) (both P < 0.05). There were greater changes in the phos-
phorylation of the Akt-mammalian target of rapamycin pathway
after BOLUS than after PULSE.

Conclusions: Rapid aminoacidemia in the postexercise period en-
hances MPS and anabolic signaling to a greater extent than an iden-
tical amount of protein fed in small pulses that mimic a more slowly
digested protein. A pronounced peak aminoacidemia after exercise
enhances protein synthesis. This trial was registered at clinicaltrials.
gov as NCT01319513. Am J Clin Nutr 2011;94:795-803.

INTRODUCTION

Protein ingestion elicits an increase in aminoacidemia that
stimulates rates of muscle protein synthesis, which is an effect
that is enhanced when resistance exercise is performed (1-3). The
stimulation of muscle protein synthesis is driven primarily by
EAAs’ (4-8), appears to be triggered by leucine (9-13), and
occurs in a dose-dependent manner at rest (14, 15) and post-
exercise (16). The digestion rate of proteins (and the resultant
aminoacidemia) is an independent variable that also affects the
amplitude of acute increases in muscle protein synthesis (12,

17). For example, ingestion of rapidly digested whey protein,
compared with slowly digested micellar casein, results in a rapid
transient aminoacidemia of greater amplitude than does a gradual
prolonged aminoacidemia with casein (18). These stereotypical
patterns of aminoacidemia have profound effects on whole-body
protein turnover (18, 19), but far less is known about what
happens in skeletal muscle, particularly after exercise.
Exercise-induced rates of muscle protein synthesis have been
reported to be greater after ingestion of whey than after ingestion
of casein during postexercise recovery (12), which may be
stimulated by greater increases in blood leucine and other EAA
concentrations that occur in close temporal proximity to the
exercise bout; however, to our knowledge, this thesis remains
untested. We propose that a rapid acute rise in postprandial
circulating EAA, or leucinemia, is important for elevations in
rates of muscle protein synthesis in response to food at rest and
after resistance exercise (2, 12). Other lines of evidence support
this thesis. For example, the enzymatic hydrolysis of casein
protein, to yield more rapidly digested peptides, was shown (20)
to yield a more pronounced aminoacidemia, which tended to
elevate rates of mixed muscle protein synthesis at rest. With the
use of the same protein source, these authors eliminated the
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confounding effects of differences in the amino acid composition
of the protein to affect rates of muscle protein synthesis (20).
However, in previous studies (12, 20), only the rate of mixed
muscle protein synthesis was measured, and thus we have no
knowledge of how the myofibrillar protein fraction is affected,
which is a muscle protein fraction that is sensitive to both
nutrients and exercise (21).

The aim of the current study was to determine how the pattern
of aminoacidemia affected rates of postprandial MPS after re-
sistance exercise. To remove the influence of differing amino acid
compositions (22), we used whey protein consumed as a single
bolus (BOLUS) or as a repeated small pulse (PULSE) to create
a rapid transient aminoacidemia compared with a slower sustained
aminoacidemia, respectively. We also examined Akt-mTOR path-
way signaling to provide insight into the potential mechanisms for
changes in MPS rates during postexercise recovery. We hypothe-
sized that the BOLUS condition and the concomitant rapid ami-
noacidemia would stimulate greater rates of MPS (12, 20) and be
associated with an increased activation of mTOR signaling (13, 23—
26) during postexercise recovery than would the PULSE condition.

SUBJECTS AND METHODS

Participants and ethical approval

Eight recreationally active healthy young men [mean = SEM
age: 21.5 £ 1 y; height: 1.81 £ 0.02 m; weight: 80.1 = 3.5 kg;
BMI (in kg/mz): 24.3 *= 0.8] volunteered to participate in the
study. Participants were informed of the purpose of the study,
the experimental procedure, and all potential risks involved and
gave written consent to participate. The study was approved by
the Hamilton Health Sciences Research Ethics Board and con-
formed to the standards for the use of human subjects in research
as outlined in the most recent update of the Declaration of
Helsinki as well as to standards established by the Canadian Tri-
Council Policy on the ethical use of human subjects (Canadian
Institutes of Health Research, Natural Sciences and Engineering
Research Council of Canada, and Social Sciences and Human-
ities Research Council of Canada Tri-Council Policy Statement:
Ethical Conduct for Research Involving Humans, 2010).

Experimental design

Atleast 1 wk before the experiment infusion trials, participants
underwent a maximum strength test to determine their bilateral

10 repetition maximum on a standard leg-extension machine
(Badger 2001 series; Magnum Fitness Systems). After strength
testing, participants were randomly assigned to consume whey
protein as either BOLUS or PULSE during infusion trial 1 or 2.
The order of these trials (Figure 1) was randomized, and the
average time period between crossover trials was 30 d (range:
8-72 d). Each participant was provided with a dietary log and
instructed to maintain their regular diets and record their dietary
intakes for 3 d before the first infusion trial. On completion of
infusion trial 1, a copy of the dietary log was returned to par-
ticipants who were instructed to maintain their previously log-
ged dietary habits in the 3 d leading up to infusion trial 2.
Participants were also asked to refrain from vigorous exercise
for 2 d before the infusion trials and to eat no later than 2200 on
the day before the infusion trials.

Infusion protocol

All participants reported to the laboratory at ~0600 in a 10—
12-h postabsorptive state. A catheter was inserted into the hand,
and a baseline blood sample was drawn before a 0.9% saline
drip was started to keep the catheter patent for repeated blood
sampling. A second catheter was placed in the opposite arm
for a primed continuous infusion (0.05 umol - kg~ ' - min~'; 2.0
umol/kg prime) of [ring—13C6]phenylalanine (Cambridge Isotope
Laboratories), which was passed through a 0.2-um filter. We
recently validated a method (27) in which the resting FSR of
MPS was calculated from naturally abundant '>C enrichments
determined from a baseline preinfusion plasma sample taken
from tracer-naive participants, and a single biopsy was taken
after a period of tracer incorporation (12, 28-32). This method
assumes that the '*C enrichment of a mixed plasma protein
fraction reflects the >C enrichment of the muscle protein (33).
To minimize the number of biopsies taken, we obtained a single
resting biopsy (trial 1 only) that was used to calculate a baseline
rate of MPS. Participants performed an acute bout of resistance
exercise that consisted of 8 sets of 8—10 repetitions of a bilateral
leg extension (Badger 2001 series; Magnum Fitness Systems)
at their previously established 10 repetition maximum with a
2-min rest between sets. After completion of the exercise bout,
whey protein drinks were administered as either BOLUS or
PULSE (1/10th of BOLUS per 20 min X 10), and biopsies were
obtained at 1, 3, and 5 h of postexercise recovery. Arterialized
blood samples were drawn from a hand vein that was warmed in
a box heated to 60°C (34) every 60 min in the fasted state and
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FIGURE 1. Schematic of the experimental protocol. Participants consumed whey protein as either a single bolus (1 x 25 g) or as a series of small pulsed
drinks [10 x 2.5 g every 20 min (q20 min)] in a randomized order (n = 8 for both trials in a crossover design). A preexercise biopsy was taken at the first visit
only (trial 1). Exercise consisted of 8 sets of 810 repetitions of a bilateral leg extension with 2 min of rest between sets. Asterisks indicate blood sample and

upward arrows indicate biopsy.
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the fed state (Figure 1). During trial 2, the infusion was initiated
before commencement of the exercise to ensure the participant
would be at an isotopic steady state at the time of the 1-h
postexercise biopsy; this state was confirmed by similar plasma
and intracellular enrichments during trials 1 and 2 (see Results).
The exercise workload was matched to trial 1 such that the same
load, number of sets, and repetitions were performed. Muscle bi-
opsies were taken from the vastus lateralis with a 5 mm Bergstrom
needle that was modified for manual suction under 2% xylocaine
local anesthesia. Biopsy samples were freed from visible blood,
fat, and connective tissue and rapidly frozen in liquid nitrogen for
additional analyses as previously described (28, 35).

Drink composition

Participants consumed whey protein drinks in a randomized
fashion (either trial 1 or 2) as either BOLUS (25-g dose) or
PULSE (10 small 2.5-g drinks every 20 min). All drinks were
prepared in water with no additives. The 25 g whey protein
contained 12.8 g EAAs, 3.5 g leucine, and no carbohydrate or fat
(Inbalance Nutrition; for a full listing of the amino acid content,
see supplemental Table 1 under “Supplemental data” in the online
issue). To minimize disturbances in isotopic equilibrium, drinks
were enriched to 4% with tracer according to a phenylalanine
content of 3.5% in whey protein. We recently validated this
method of maintaining am isotopic steady state in the precursor
pools (plasma free and muscle intracellular free pools) after
protein ingestion and resistance exercise (27).

Analytic methods

After obtaining a blood sample, 100 pul. whole blood was
added to 0.6 mol perchloric acid/L and centrifuged at 10 000 X g
for 3 min. The supernatant fluid was analyzed by HPLC to de-
termine amino acid concentrations as previously described (17).
Plasma was separated and collected from the remainder of the
blood sample and stored at —20°C for analysis. Plasma insulin
was measured with a commercially available immunoassay kit
(ALPCO Diagnostics).

Muscle tissue was processed as previously described (21).
Briefly, to determine the intracellular enrichment, ~20 mg muscle
was homogenized in 0.6 mol perchloric acid/L. Free amino acids
in the supernatant fluid were passed over an ion-exchange resin,
converted to their heptafluorobutyric derivatives for analysis by
using gas chromatography—mass spectrometry (models 6890 GC
and 5973 MS; Hewlett-Packard) by monitoring ions 316 and 322
after electron ionization. A separate piece (~40 mg) of muscle
was homogenized in a standard buffer that contained protease and
phosphatase inhibitors. The supernatant fluid was collected for
Western blot analysis, and the pellet was further processed to
extract myofibrillar proteins by differential solubility as previously
described (21). A mixture of all plasma proteins was extracted in
acetonitrile from the preinfusion baseline plasma sample. Myofi-
brillar and plasma proteins were hydrolyzed overnight in 6 mol
HCI/L, purified via an ion-exchange resin (Dowex 50WX8-200;
Sigma-Aldrich Ltd), and converted to their N-acetyl-n-propyl ester
derivatives for analysis by using gas chromatography combustion-
isotope ratio mass spectrometry (model 6890 GC, Hewlett-
Packard; IRMS model Delta Plus XP, Thermo Finnigan).

Changes in signaling protein phosphorylation were analyzed
by Western blotting under conditions that were previously de-

scribed in detail (36, 37). Briefly, cell lysate protein concen-
trations were determined (Pierce) and used to prepare working
samples of equal concentration in Laemmli buffer. Equal amounts
(50 pg) of protein were separated by SDS-PAGE and transferred
to a polyvinylidene fluoride membrane for antibody incubation.
Membranes were blocked in 5% fat-free milk, washed in Tris
buffered saline with Tween 20 (0.02%) and incubated in primary
antibody (1:1000) overnight at 4°C. Membrane-bound proteins
were washed, incubated in a secondary antibody (1:2000), de-
tected with chemiluminescence (Amersham Biosciences; Pierce
Biotechnology) and quantified by using densitometry. Antibody
details were as follows: Akt>™"* (catalog no. 9271), Akt™3%
(catalog no. 4056), mTOR3*™***® (catalog no. 2971), and ribosomal
protein S6°*¥¢ (catalog no. 4856) were from Cell Signaling
Technology, PRAS40™24¢ (catalog no. 05-988) and p70S6K ™%
(catalog no. 04-392) were from Millipore, and o-tubulin (catalogue
no. T6074) was from Sigma-Aldrich Ltd. Samples were run within
subject with both conditions on the same gel and quantified rela-
tive to o-tubulin (control).

Calculations

FSR (%/h) was calculated from [ring—13C6]phenylalanine
enrichments according to the standard precursor-product equa-
tion as follows:

FSR = [(E2b - Elb)+(EIC X t)] X 100 (1)

where E,, is the enrichment of bound (myofibrillar) protein, Eic
is the average enrichment of the intracellular free amino acid
precursor pool of 2 muscle biopsies, and ¢ is the tracer incorpo-
ration time. The use of tracer nave subjects allowed us to use
a preinfusion blood sample (ie, a mixed plasma protein fraction)
as the baseline enrichment (E;,) for the calculation of the fasted
FSR (12, 30, 31).

Statistics

BOLUS and PULSE experimental trials were completed
within subject on separate days. Blood amino acids, plasma
insulin, MPS, and protein phosphorylation were analyzed by
using a 2-factor (time X condition) repeated-measures ANOVA
with Tukey’s post hoc test. Precursor pool enrichments were
analyzed by using a 2-factor (time X condition) repeated-
measures ANOVA and linear regression. AUC was analyzed by
a paired ¢ test. The construction of normal probability plots re-
vealed a better fit to a normal distribution of log-transformed
data for phospho Akt Ak(Th308 gpK 15236, rps6, and
eEF2™"3°; therefore, statistical analyses were performed on
transformed data for those phosphorylation sites to correct for
skewness. All Western blot data were graphed as raw values
with arbitrary units. Statistical analyses were performed with
SigmaStat 3.1 software (Systat Software Inc). Values are ex-
pressed as means = SEMs, and means were considered to be
significantly different at P << 0.05.

RESULTS

Blood amino acid and plasma insulin concentrations

Blood EAA concentrations (Figure 2A) in BOLUS were
greater than in the PULSE group at 60 and 80 min, whereas
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FIGURE 2. Mean (=SEM) blood concentrations of essential amino acids (A) and leucine (B) after ingestion of whey protein as a single bolus (BOLUS; 1 x
25 g) or as a repeated pulse (PULSE; 10 x 2.5 g every 20 min) (n = 8). Inset shows the AUC. *Significantly greater than PULSE, P < 0.05; *signiﬁcantly
greater than BOLUS, P < 0.05. Data were analyzed by using a 2-factor (time X condition) repeated-measures ANOVA with Tukey’s post hoc test (time X
condition interactions for A and B, P < 0.001). The AUC was analyzed by using a paired ¢ test. Pre, preexercise and prior to protein consumption.

EAA concentration in the PULSE group were greater at 180,
200, and 240 min. The same pattern and differences between
conditions occurred for blood leucine concentration (Figure 2B).
The AUC for EAA and leucine concentrations was nearly
identical (EAA: 99% similarity; leucine: 98% similarity) for the
2 protein ingestion conditions. There was no change in insulin
concentrations from baseline in the PULSE group, whereas there
was a pronounced rise in the BOLUS group such that insulin
concentrations in the BOLUS group were greater than in the
PULSE group at 20, 40, and 60 min (see supplemental Figure 1
under “Supplemental data” in the online issue).

Plasma and intracellular free phenylalanine enrichments

Plasma and intracellular free phenylalanine enrichments are
shown in Figure 3, A and B, respectively. Tracer added to drinks
did not substantially disturb the plasma pool, and slopes of
enrichments over time were not significantly different from zero
in BOLUS and PULSE groups (P = 0.38 and 0.12, respectively).
Intracellular free phenylalanine enrichment was stable at the 1-,
3-, and 5-h time points (P = 0.76), which confirmed that

measurements were made at the isotopic plateau; there were no
differences between conditions (P = 0.93). There was no dif-
ference between trials 1 and 2 in intracellular free phenylalanine
enrichment at the time of the 1-h postexercise biopsy (tracer-to-
tracee ratio for trials 1 and 2 were 0.064 = 0.001 and 0.061 *=
0.004, respectively; P = 0.58).

MPS

Exercise and protein consumption stimulated rates of MPS at
1-3 h (P =0.026) and 3-5 h (P < 0.001) of recovery (Figure 4);
however, this response was greater after BOLUS than after
PULSE at 1-3 h (P = 0.01) and 3-5 h (P = 0.001) of exercise
recovery. The aggregate (1-5 h) MPS response to exercise and
protein ingestion was elevated above basal rates (P = 0.003) and
to a greater extent with BOLUS (P = 0.003).

Muscle anabolic signaling

During BOLUS, there were greater changes in PRAS40™%¢,
S6K1™3% "and rpS6°°233/® phosphorylation 1 h after exercise
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FIGURE 3. Mean (*SEM) plasma (A) and muscle intracellular free (B)
phenylalanine enrichment [tracer-to-tracee ratio (t-Tfl)] (n = 8). Time =
0 denotes the end of the exercise and the start of consumption. Data were
analyzed by using linear regression (A and B: P > 0.05 for the difference of
the linear regression slope from zero) and 2-factor (time X condition)
repeated-measures ANOVA (B: main effect of time, P = 0.76; time X
condition interaction, P = 0.15).

than after PULSE (Figures 5 and 6), whereas PULSE reduced
eEF2™¢ phosphorylation (which indicated increased activation)
at the same time point. There were no differences between
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FIGURE 4. Mean (£SEM) myofibrillar protein synthesis [fractional
synthetic rate (FSR)] in the fasted state (Fasted) and after a protein bolus
(BOLUS; 1 x 25 g) and protein pulses (PULSE; 10 x 2.5 g every 20 min)
after resistance exercise (n = 8). Data were analyzed by using a 2-factor
(time X condition) repeated measures ANOVA with Tukey’s post hoc test
(time X condition interaction: P = 0.066). *Significantly greater than
Fasted, P < 0.05; Tsigniﬁcantly greater than PULSE at the same time
point, P < 0.05.

BOLUS and PULSE groups for Akt™3% Akt5™*73 mTORS*>*%,
or 4EBP1™374¢ phosphorylation (Figures 5 and 6).

DISCUSSION

To our knowledge, this was the first study to systematically
manipulate the pattern of aminoacidemia by using a single
protein source consumed by subjects after resistance exercise. In
doing so, we eliminated the possibility of the amino acid content
of the protein as a confounding factor. We showed that a rapid and
pronounced hyperaminoacidemia (BOLUS) early postexercise
stimulated MPS to a greater extent than a gradual and prolonged
aminoacidemia (PULSE), which mimicked a slowly absorbed
protein. In stark contrast to data from oral protein trials (38, 39),
BOLUS stimulated greater rates of MPS in the 3-5-h period
postexercise although blood amino acid concentrations had
returned to basal amounts. This finding highlighted the potent
effect that resistance exercise had in sustaining an elevation in
MPS with protein consumption. The net exposure to amino acids
(total, EAA, BCAA, and leucine) was identical between trials,
which indicated that the pattern of aminoacidemia, and not the
net amino acid exposure or total protein consumption, was the
variable that defined our results.

Multiple lines of evidence suggested a primary role for leucine
as an amino acid in stimulating muscle protein synthesis (40). We
provided data (12) in the postexercise period in support of the
hypothesis that blood leucinemia was important in maximizing the
protein consumption—mediated rates of MPS (2); other authors had
similar data with food consumption alone (41). Specifically, whey
protein ingestion induced a rapid aminoacidemia and leucinemia
postexercise that led to greater rates of muscle protein synthesis at
rest and after resistance exercise (12). In contrast, a bolus dose of
more slowly digested micellar casein protein, or soy protein, which
was digested at a similar rate as whey but contained less leucine
(12), stimulated MPS to a lesser degree at rest and postexercise. In
addition, we observed a protein dose-response relation in muscle
protein synthesis rates after resistance exercise that reached
a plateau at 20 g (16). Collectively, these data (12, 16) suggested
that, similar to amino acid infusions at rest (14), increases in blood
EAA, BCAA, or leucine concentrations from dietary protein in-
gestion induced a graded MPS response that was based on a signal
that is related to peak aminoacidemia or peak leucinemia after
resistance exercise but that is also clearly saturable.

An intriguing and important divergence between our findings
and reports in which aminoacidemia resulted in only a transient
rise in MPS with infusion of amino acids (42) or with amino acid
consumption (38, 39) is that our results were postexercise. It
appears that a unique aspect of resistance exercise is to selectively
sustain elevated synthetic rates of myofibrillar proteins after
protein consumption (21). In contrast to the effects of protein
consumption alone at rest, the current results and our earlier work
(21) showed that the highest rates of MPS were observed at 3-5 h
postexercise when aminoacidemia had subsided. It has not been
determined when the prolonged elevation of MPS rates after
resistance exercise and protein ingestion returns to baseline
(preexercise); however, this response lasts much longer than the
response to protein ingestion alone (38, 39, 42). Such a finding
has important implications for eating patterns and/or protein
choice in the postexercise period to maximize an anabolic
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response that could be advantageous to maximize muscle
maintenance or growth over the longer term.

The mechanisms that underpin the synergistic anabolic re-
lation between amino acids and resistance exercise on muscle
protein synthesis appeared to involve the independent and/or
additive contraction- and nutrient-mediated activation of the Akt-
mTOR pathway. We observed a prominent phosphorylation in-
crease of upstream effectors (Akt ™% and PRAS40™2%¢) and
downstream targets (S6K1™* and rpS65**>©) of mTOR.
Notably, the phosphorylation of S6K1 and rps6 were increased
to a greater extent at 1 h postexercise after BOLUS than after
PULSE, which was consistent with a greater acute stimulation
of protein synthesis. However, changes in signaling, which re-
flected effects of exercise and protein consumption combined,
were not enhanced after BOLUS in the case of eEF2 phos-
phorylation, which tended to be lower after PULSE at 1 h.
Overall, our observation that greater rates of MPS after BOLUS

were associated with an enhanced intramuscular signal for
translation initiation supported the notion that acute signaling
proteins in the Akt-mTOR pathway can be reflective of an an-
abolic response in skeletal muscle with resistance exercise (26,
43-45). Indeed, acute changes in mTOR signaling phosphory-
lation (Akt, p70S6K, and rps6) were significantly correlated
with changes in MPS (data not shown).

We observed a differential stimulation of MPS between
BOLUS and PULSE conditions, even though subjects ingested
equal amounts of total protein, which resulted in an identical net
exposure to EAAs during postexercise recovery. These data have
a number of practical implications. First, the supply if the bulk of
the amino acids immediately after exercise, as opposed to a
slower delivery such as with small divided doses, appeared to be
more beneficial to support muscle anabolism and presumably
long-term muscle protein accretion. The consumption of slower
digested proteins (ie, micellar casein) or use of large quantities of
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36 (D) phosphorylation in the rested-fasted state and after

ingestion of whey protein as a single bolus (BOLUS; 1 x 25 g) or as a repeated pulse (PULSE; 10 X 2.5 g every 20 min) after resistance exercise (n = 8). Values
are expressed relative to a-tubulin and presented in arbitrary units (AU). Phospho-protein bands on blots were ordered as follows: rest-fasted; 1, 3, and 5 h in
trial 1; and 1, 3, 5 h in trial 2, with the trial order counterbalanced for BOLUS and PULSE. Data were analyzed by using a 2-factor (time X condition) repeated-
measures ANOVA with Tukey’s post hoc test (time X condition interactions for A, B, C, D: P = 0.010, 0.034, 0.73, and 0.027, respectively). *Different from
Fast, P < 0.05; Tdifferent from PULSE at the same time point, P < 0.05. Times with different letters were significantly different from each other within the

same condition, P < 0.05.

fat and/or carbohydrates, which would slow gastric emptying and
protein absorption, would also likely reduce the rates of MPS
during postexercise recovery. However, if a threshold of leucine
needs to be exceeded to stimulate maximal oral protein—induced
and/or exercise-induced rates of MPS (2, 11, 12), then the
consumption of large quantities of slowly digested proteins will
result in a leucinemia that will be sufficient to trigger an increase
in MPS. Nonetheless, our data suggested that the ingestion of
proteins that are more rapidly digested, which resulted in a
pronounced aminoacidemia postexercise, were more likely to
stimulate a greater rise in muscle protein synthesis. We specu-
lated that, over time, the habitual practice of consuming rapidly
digested proteins after resistance exercise would provide an
anabolic advantage that leads to greater hypertrophy, which is
a view that has support from longer-term supplementation trials
(46). Data from the present study may also have applications to
elderly populations (41) in that the higher blood leucine con-

centrations generated by a bolus of whey protein could be in-
duced to overcome a reduced anabolic sensitivity to protein
consumption (15, 47). An interesting question with respect to
postexercise nutritional strategies to maximize muscle accretion
is at what time someone could consume a second bolus of protein
after resistance exercise to restimulate MPS because MPS
becomes insensitive to frequent consumption (39, 42). Research
is needed to determine the time at which skeletal muscle regains
sensitivity to another protein dose (39) to maximize the repeated
stimulation of MPS by protein consumption after resistance
exercise throughout the rest of the day.

In conclusion, we report that BOLUS after resistance exercise
is more effective in stimulating MPS than is PULSE. Our model
allowed us to specifically address the question at the level of the
muscle and eliminated limitations of previous studies in which
observations of differences in rates of protein synthesis to intakes
of different dietary proteins in combination with exercise were
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ascribed to differences in rates of protein digestion. The greater
MPS response after BOLUS was associated with greater acute
phosphorylation of anabolic signaling proteins that regulate
translation initiation. The rapid rise in extracellular EAA con-
centrations, or possibly of leucine alone (2, 11, 12), that occurred
after BOLUS appears to underpin the greater signal activation
and protein synthetic response that are observed after an acute
bout of resistance exercise.
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