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Thermal Effects of the Formation of Atlantic Continental
Margins by Continental Break up
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Swummary

The thermal history of Atlantic continental margins resembies that of the
oceanic crust as it spreads away from a mid-oceanic ridge, since the
margin was formed when a ridge began spreading benecath a pre-existing
continent. During break-up the thickness of the continental crust along
the new margin was reduced by subareal erosion and subcrustal processes.
Afterwards the continental shelf subsided, probably due to thermal
contraction of the lithosphere. The observed subsidence rate on the
Atlantic and Gulf coasts of the United States declined exponentially with
a time constant of about 50 My, as it does for ridges. Except for the
Florida peninsula, deviations of the observed sedimentation from a
smooth curve with respect to time could be associated with eustatic
changes and variations in the supply of sediments. The subsidence rate
of basins in the mid-continent of North America also decreases with a
50 My time constant. In Kansas a subcrustal process must have thinned
the crust and initiated subsidence as a sequence of thinly bedded sediments
beneath the basin is uncroded.

Introduction

At Atlantic continental margins a steep continental slope truncates older structures,
These margins are considered to form when a proto-continent breaks up and drifts
apart.

Large amounts of oceanographic and seismic data indicate that the upper 100 km
of the Earth, the lithosphere, drifts over the asthenosphere as a rigid slab, while new
material is brought up at mid-ocean ridges (e.g. Isacks er al. 1968). Atlantic type
margins thus form when a mid-ocean ridge begins spreading benecath a continent.
The thermal processes at mid-ocean ridges are now well enough understood, that the
thermal effects of continental break up on the evolution of the continental margin
can be examined and compared with observed data.

This paper is concerned only with the subsidence phase of margin evolution where
the continental and oceanic plates are strongly coupled. Folded margins and geo-
synclines are beyond the scope of this report.

The evolution of Atlantic type margins can be studied by comparing margins of
various ages (See, Heezen 1968), and by the examination of the sedimentary record
as scen in well cores on margins (Vogt & Ostenso 1967). The latter approach was
adopted for this paper. A mathematical model for the evolution of sudsidence rate
with time was constructed and compared with observed data from the Atlantic,
Florida, and Gulf coasts of the United States, and several basins in the mid-continent
region of North America.
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(no artigo do McKenzie ha um peqgueno erro de digitacao!)
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Evolucao da estrutura téermica
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Solucdo obtida por série de Fourier.



Fluxo téermico
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