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a b s t r a c t

The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate

complex physical systems. It is based on the generation of pseudo-random number sequences by

numerical algorithms called random generators. In this work we assessed the suitability of different

well-known random number generators for the simulation of gamma-ray spectrometry systems during

efficiency calibrations. The assessment was carried out in two stages. The generators considered

(Delphi’s linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array,

and non-periodic logistic map based generator) were first evaluated with different statistical empirical

tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of

tests. In a second step, an application-specific test was conducted by implementing the generators in

our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were

performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli

geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based

generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of

the efficiency values obtained with this generator. The results of the application-specific assessment

and the statistical performance of the other algorithms studied indicate their suitability for the Monte

Carlo simulation of gamma-ray spectrometry systems for efficiency calculations.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Gamma-ray spectrometry has become one of the most widely
used non-destructive procedures to quantify the activity of
radionuclides. The analysis requires the knowledge of the peak
efficiency at each photon energy, which can be determined by
performing an efficiency calibration using standard samples with
the same geometrical dimensions, density, and chemical compo-
sition as the sample of interest. These conditions often cannot be
met because it is difficult to find adequate standards for all
energies of interest and radionuclides with appropriate half-lives.
Therefore, the use of interpolation procedures and a continuous
renewal of spent standards are inherent shortcomings of this
approach. Experimental calibrations are also time-consuming,
especially when many different matrices or sample-detector
geometries have to be measured. In order to overcome these
difficulties, a powerful tool is the Monte Carlo simulation, which
allows the peak efficiencies to be calculated taking into account
the detailed characteristics of detectors and samples.
ll rights reserved.

: +34 924 289 651.
The Monte Carlo method is based on the generation of pseudo-
random numbers by numerical algorithms called random number
generators (RNGs). The ideal RNG does not exist, because no one
generator is better than others for all purposes. The ‘‘quality’’ of a
given generator is closely related to the problem to be solved.
Therefore, despite the diversity of available statistical tests, it is
also desirable to evaluate each random number generator
according to the specific application it will be used for.

In this paper we describe the results of the studies carried out
to assess the suitability of some of the most common RNGs for
Monte Carlo simulation of gamma-ray spectrometry systems
during efficiency calibrations. In Section 2 we provide a brief
description of the RNGs considered. Section 3 summarizes the
statistical empirical tests used for the preliminary assessment of
the RNGs, while its application-specific assessment is described in
Section 4. The main conclusions are provided in Section 5.
2. Random number generators considered

Discussion about which is the more appropriate term, ‘‘ran-
dom number generator’’ or ‘‘pseudo-random number generator’’
is beyond the scope of this work, so that, for simplicity the term
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‘‘random number generator’’ will be used throughout. Although
there are many random number generators that in principle could
be used in a study of this type, we will focus on some of the
simpler, faster, and widely known generators that have already
been applied in stochastic simulations:
(a)
 Linear congruential generator (LC) (Knuth, 1998), provided
with the Borland Delphi package. The sequence of random
numbers is obtained by setting:

xnþ1 ¼ ða � xnþcÞmod mðnZ0Þ ð1Þ

with the multiplier a=134 775 813, the increment c=1, and
modulus m=232. The period of this generator is
232
�1E4.29�109.
(b)
 Mersenne twister generator (MT), implemented by us (Vergara
Gil, 2008). The algorithm is a twisted generalized feedback
shift register of rational normal form, with state bit reflection
and tempering (Matsumoto and Nishimura, 1998; Matsumo-
to, 2002). The period is E219 937

�1.

(c)
 Multiply with carry generator (MWC) (Marsaglia, 2003), with

the general algorithm:

Nn ¼ ða � Nn�1þcn�1Þmod m;nZ1 ð2Þ

cn ¼
a � Nn�1þcn�1

m

� �
ð3Þ

This generator was implemented by us according to the work
of Debord (2008), by combining two 16-bit MWC generators
with multipliers a1=18 000 and a2=30 903, respectively, and
modulus m=215 to form 32-bit numbers. The period of this
generator is ða1 � 2

15
�1Þða2 � 2

15
�1Þ � 6� 1017. The algorithm

used poses the problem of an additional requirement
regarding the proper selection of the sequence seeds.
(d)
 XorShift generator (XorS) (Marsaglia, 2003), with a period of
232
�1E4.29�109 and sequence:

N xor ðN shl 1Þ; N xor ðN shr 3Þ; N xor ðN shl 10Þ ð4Þ

Universal virtual array generator (UVA), implemented by us
(e)

according to Debord (2008). This generator uses the content
of the computer’s random access memory to generate random
sequences. This generator does not allow the repetition of
random sequences and has no period.
(f)
 Non-periodic logistic map based generator (LM), implemented
by us according to Barberis (2007) but without discarding the
first 300 numbers in every calculation, as it was suggested by
the author to improve the independence of the terms in the
sequence, although with an obvious cost in time. This
generator is based on the recurrence:

xn ¼ r � xn�1 � ð1�xn�1Þðr¼ 4Þ ð5Þ

with the substitution yn ¼ 2=p � arcsin
ffiffiffiffiffi
xn
p

, where xn and yn are
real numbers in the interval (0,1). The lack of periodicity was
confirmed in Barberis (2007) up to 1013 numbers. Because of
its simplicity, this generator seemed to be promising for our
purposes.
Table 1
Results of the Kolmogorov–Smirnov test.

RNG PKS(xrKS+) PKS(xrKS�)

LC 0.377 0.727

XorS 0.647 0.276

MWC 0.673 0.307

MT 0.417 0.321

UVA 0.673 0.307

LM 1.000 1.000
Amongst the generators studied, the LC generator is one of the
oldest and more used in Monte Carlo codes for radiation
transport. The RNG implemented in the well known Monte Carlo
code MCNP is based on a linear congruential scheme (Brown and
Nagaya, 2002). Additionally, the subroutine RANECU, written by
James (1990) from the algorithm proposed by L’Ecuyer (1988) and
implemented in the Monte Carlo packages PENELOPE (Salvat
et al., 2006) and GEANT4 (Geant4 Home Page), is the combination
of two LC generators. The MT generator is another of the RNGs
included in the GEANT4 toolkit.
3. Statistical empirical tests

The RNGs were first assessed with different basic statistical
empirical tests according to Knuth (1998), which evaluate the
moments, the uniformity, and the independence of terms in the
sequences. In a second step, each RNG was checked with the
DIEHARD battery of tests (Marsaglia, 1995), which contains 15
statistical tests covering among others independence between
consecutive numbers, independence between bits and between
sequences of bits, and uniformity in several dimensions. The
DIEHARD battery of test is also included in the tests suite called
TESTU01 (L’Ecuyer and Simard, 2009), which includes more
sophisticated test for parallelization problems or larger random
number sequences.

The results of statistical tests were evaluated using the
student, chi-square, and Kolmogorov–Smirnov tests.

The random numbers obtained with the LM generator showed
non-independence in the most significant bits. Therefore, this
generator failed to pass some of the basic tests such as ‘‘the sum of
dice’’ and ‘‘the graphical correlation’’ (Knuth, 1998). Regarding the
‘‘sum of dice’’ test, if we consider the experiment of throwing two
dice (each of which is assumed to yield the values 1, 2, 3, 4, 5, or 6
with equal probability) the sum of dice must be an integer
number in the interval [2, 12], with 36 different combinations. For
each RNG, we simulated n throws (n=100 000), using 2n random
numbers. The statistic V was then calculated according to

V ¼
X12

k ¼ 2

ðYk�n � pkÞ
2

n � pk
ð6Þ

with Yk being the observed number of times in which the sum of
dice equals k fkAN;2rkr12g and pk the probability of obtaining
the value k. V should follow the behavior of a stochastic variable
with a w2 distribution (for 10 degrees of freedom) if the dice were
‘‘true’’, i.e., if the numbers obtained in the sequence were really
independent. For each RNG the experiment was carried out 10
times and the corresponding probability pw2 ðxrVÞn ¼ 10 for each
value of V was determined. The Kolmogorov–Smirnov test was
finally applied to the 10 values of pw2 ðxrVÞn ¼ 10 obtained for each
RNG, calculating the pertinent positive (KS+) and negative (KS�)
maximum deviations from a uniform distribution in the interval
(0,1). Table 1 presents the probability values PKS(xrKS+) and
PKS(xrKS�) given for the differences KS+ and KS� , respectively,
by assuming 10 degrees of freedom.

This ‘‘sum of dice’’ test was repeated by considering 3, 4, 5 and
6 dice, and the results were similar to those given in Table 1. As
can be seen in that table, the differences KS+ and yKS� for the LM
generator are much greater than those expected if the statistics V

followed a w2 distribution. As a consequence of this non-
independence between consecutive elements in the sequence
obtained with the LM generator, the ‘‘graphical correlation’’ test
does not show points uniformly distributed in the area of interest
((0,1)� (0,1)), but a well-defined pattern, as shown in Fig. 1. On
the contrary, the application of the ‘‘graphical correlation’’ test to
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the rest of the RNGs results in uniform distributions of the points
in 2 dimensions.

Table 2 gives the results derived from applying the DIEHARD
battery of tests (Marsaglia, 1995) to the RNGs considered in this
work. As observed, the results of the individual tests OPSO, OQSO,
and DNA show that in the random numbers obtained with the LM
0 1

0 1

1

0

0

1

Fig. 1. Scatter plot of points ðxðj-1Þ�k ; xj�kÞf1r jrn;kANgobtained with the LM

generator: (a) k=2 and (b) k=3. The number of peaks is equal to 2k�1.

Table 2
Results of the DIEHARD battery of tests (Marsaglia, 1995).

Test Generators

LC XorS

Birthday spacing (1–24) to (6–29) Yes

The overlapping 5-permutation Yes Yes

Binary rank 31�31 Yes No

Binary rank 32�32 Yes No

Binary rank 6�8 (1–8) to (14–21) (1–8) to (17–2

Bit stream No Yes

OPSO (1–10) to (6–15) (1–10) to (14–

OQSO (1–5) to (5–9) (1–5) to (19–2

DNA (1–2) to (5–6) Yes

Count the 1’s (1–8) to (15–22) (1–8) to (16–2

Parking lot Yes Yes

Minimum distance Yes Yes

3D spheres Yes Yes

Squeeze Yes Yes

Overlapping sums Yes Yes

Runs Yes Yes

Craps Yes Yes

The numbers in parentheses represent the bits for which the test was satisfactory.
generator only the least significant bits seem to be independent.
This explains the poor behavior of this RNG in the aforementioned
basic tests that evaluate the independence of real numbers, i.e.,
the ‘‘the sum of dice’’ and ‘‘the graphical correlation’’.

The LC and XorS generators gave random sequences where the
bit-independence was verified only in the most significant bits.
However, for applications that require real random numbers, this
could be irrelevant as non-randomness would appear until some
places after the decimal point. Finally, it must be noted that the
bit sequences obtained with the MWC, MT, and UVA generators
passed all the tests in the DIEHARD battery of tests.

The results of the statistical empirical tests gave us some
confidence regarding the possible use of the MT, MWC, UVA, LC,
and XorS generators during the simulation of radiation transport
in gamma-ray spectrometry. The results of empirical tests also
suggest that LM might not be appropriate for our problem. In
addition, other variables (the speed, the period, the requirements
for the initialization of the generators, and the possibility of
random sequence repetitions) need to be evaluated.
4. Application-specific assessment

In a second step, the generators studied were implemented in
the Monte Carlo program DETEFF, developed by us for detector
efficiency calibrations in gamma-ray spectrometry, and experi-
mentally validated using the Borland Delphi LC generator (Jurado
Vargas et al., 2003; Cornejo Dı́az and Jurado Vargas, 2008). The
possible problems with the seeding of the sequences were taken
into account for each RNG. The specific assessment was carried
out by comparison of the full energy peak (f.e.p.) efficiency values
determined with DETEFF using the different generators. For this
task, we considered a typical HpGe type p detector and a water
sample in a 250 mL Marinelli beaker which emits gamma rays
between 60 and 1850 keV. The basic scheme of the source-
detector system used is illustrated in Fig. 2, and the main
characteristics and dimensions of the detector are given in
Table 3. The calculations with the code DETEFF were performed
with two different CPUs (Centrino Duo T5600 2�1.83 GHz and
Intel Dual Core 2P4 3 GHz). The number of photons generated was
set between 1�108 and 2�108 in order to keep the relative
statistical standard deviations below 0.2%.
MWC MT UVA LM

Yes Yes Yes (4–27) to (9–32)

Yes Yes Yes No

Yes Yes Yes Yes

Yes Yes Yes Yes

4) Yes Yes Yes (15–22) to (25–32)

Yes Yes Yes No

23) Yes Yes Yes (21–30) to (23–32)

3) Yes Yes Yes (22–26) to (28–32)

Yes Yes Yes (19–20) to (31–32)

3) Yes Yes Yes (17–24) to (25–32)

Yes Yes Yes No

Yes Yes Yes No

Yes Yes Yes No

Yes Yes Yes No

Yes Yes Yes No

Yes Yes Yes No

Yes Yes Yes No
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Table 4 gives the results as relative deviations between the
f.e.p. efficiency values calculated with MT, MWC, UVA, XorS, and
LM generators and those obtained with the LC generator, for the
two CPUs used. The LC generator was taken as the reference
because of its adequate results during the previous validation
studies (Jurado Vargas et al., 2003; Cornejo Dı́az and Jurado
Vargas, 2008). The corresponding efficiency values for the LC and
LM generators are plotted in Fig. 3 for the CPU Centrino Duo. The
results with the Intel Dual Core are similar.

According to Table 4, the observed deviations between the
efficiency values calculated with the MT, MWC, UVA, and XorS
generators are not statistically significant. However, as was
Table 3
Main characteristics of the HPGe detector used for the specific assessment of

RNGs.

Detector parameters Values (mm)

Diameter 48.0

Length 57.0

Thickness of frontal dead layer 1.00

Thickness of lateral dead layer 1.00

Detector–cover distance 5.5

Inactive core diameter 12.0

Inactive core length 45.0

Thickness of Al lateral holder 1.0

Thickness of Al frontal holder 0.5

Thickness of Al frontal cover 0.5

Thickness of Al lateral cover 1.0

Cover diameter 75.0

108

58
.5

80.75

37
.8

Fig. 2. Basic scheme of the source-detector system used during the specific

assessment of RNGs.

Table 4
Relative deviations (expressed in %) between the values of the f.e.p efficiency calculated

Energy (keV) Centrino Duo T5600 2�1.83 GHz

MT MWC UVA XorS LM

60 �0.01 �0.01 �0.04 0.06 �

250 �0.15 �0.04 0.00 �0.07 �

662 �0.19 0.10 0.00 0.00

1000 �0.03 �0.06 �0.16 �0.14

1300 �0.33 0.09 0.23 �0.09 �

1850 0.27 0.09 0.00 0.18
expected, the LM generator introduces a significant bias in the
f.e.p. efficiency values. Even when these deviations are significant
in the context of the pertinent statistical uncertainties, they are
not as high as would be expected taking into account the strong
dependence of terms in the LM random sequences. This fact
indicates that the simulation of radiation transport for efficiency
calibrations in gamma-ray spectrometry is a ‘‘less demanding
problem’’ regarding the independence of the terms in the random
sequences produced by the RNG used. It seems to be a
consequence of the diversity of variables and processes sampled
during the simulation of each radiation path.

Fig. 4 shows the CPU times required for the specific energy of
661.66 keV, being the plots quite similar for the rest of energies.
According to this figure, the speed is therefore not a limiting
factor in choosing between the LC, MT, MWC, UVA, and XorS
with various generators and those obtained with the LC, using two different CPUs.

Intel Dual Core 2P4 3 GHz

MT MWC UVA XorS LM

4.46 �0.04 �0.01 �0.04 �0.04 �4.48

5.99 0.04 0.11 0.11 0.07 �5.89

4.28 0.00 0.10 0.10 �0.10 4.28

3.65 0.06 0.09 0.21 0.10 3.87

4.09 �0.23 0.09 0.09 0.09 �4.01

0.66 0.16 0.11 0.11 0.23 0.63
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9.00E-03

1.40E-02

1.90E-02

2.40E-02

2.90E-02
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Fig. 3. Values of the full-energy peak efficiency calculated with the LC generator

(dots) and with the LM generator (triangles). The dashed lines connect the LC

values. The CPU used was the Centrino Duo T5600 2�1.83 GHz.
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Random number generators
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Fig. 4. CPU times for Centrino Duo T5600 2�1.83 GHz (white) and Intel Dual Core

3 GHz (dots) corresponding to calculations for 661.66 keV.
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generators. It must be noted that, in general, the time required in
each simulation with DETEFF to generate the random number
sequence is just a small fraction of the total time consumed
(about 1%). The periods of the studied random sequences are
equal to or greater than 232, the period of the MT generator being
the greatest (2

19 937

�1). Anyway, in almost all the situations
modeled with DETEFF, 108 random numbers are enough to obtain
standard deviations o0.2% for the efficiency.
5. Conclusions

The statistical performance, the application-specific test, the
speed, and the period of the LC, MT, MWC, UVA, and XorS
generators studied indicate their suitability for Monte Carlo
simulation applied to efficiency calculations in gamma-ray
spectrometry, with the MT, MWC, and UVA generators being the
most powerful. However, considering the possibility of repeating
the random number sequences, the generators MT and MWC
could be more convenient.

The non-periodic logistic map based generator (LM) implemen-
ted by us does not seem to be suitable for Monte Carlo
simulations in gamma-ray spectrometry. The rejection of the first
300 numbers in each calculation would improve the statistical
performance of the random sequence, but this implementation
would be in clear disadvantage with the rest of the generators
studied because of its speed.

Finally, the approach described in this work, combining the
statistical empirical tests with the application-specific assessment
could be applied to assess other generators intended for the
simulation of gamma-ray spectrometry systems.
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