
Computer Physics Communications 175 (2006) 440–450

www.elsevier.com/locate/cpc

A package of Linux scripts for the parallelization
of Monte Carlo simulations ✩

Andreu Badal ∗, Josep Sempau

Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain

Received 21 March 2006; received in revised form 22 May 2006; accepted 28 May 2006

Available online 26 July 2006

Abstract

Despite the fact that fast computers are nowadays available at low cost, there are many situations where obtaining a reasonably low statistical
uncertainty in a Monte Carlo (MC) simulation involves a prohibitively large amount of time. This limitation can be overcome by having recourse
to parallel computing. Most tools designed to facilitate this approach require modification of the source code and the installation of additional
software, which may be inconvenient for some users. We present a set of tools, named clonEasy, that implement a parallelization scheme of
a MC simulation that is free from these drawbacks. In clonEasy, which is designed to run under Linux, a set of “clone” CPUs is governed by
a “master” computer by taking advantage of the capabilities of the Secure Shell (ssh) protocol. Any Linux computer on the Internet that can be
ssh-accessed by the user can be used as a clone. A key ingredient for the parallel calculation to be reliable is the availability of an independent
string of random numbers for each CPU. Many generators—such as RANLUX, RANECU or the Mersenne Twister—can readily produce these
strings by initializing them appropriately and, hence, they are suitable to be used with clonEasy. This work was primarily motivated by the need
to find a straightforward way to parallelize PENELOPE, a code for MC simulation of radiation transport that (in its current 2005 version) employs
the generator RANECU, which uses a combination of two multiplicative linear congruential generators (MLCGs). Thus, this paper is focused on
this class of generators and, in particular, we briefly present an extension of RANECU that increases its period up to ∼5 × 1027 and we introduce
seedsMLCG, a tool that provides the information necessary to initialize disjoint sequences of an MLCG to feed different CPUs. This program,
in combination with clonEasy, allows to run PENELOPE in parallel easily, without requiring specific libraries or significant alterations of the
sequential code.

Program summary 1

Title of program: clonEasy
Catalogue identifier: ADYD_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYD_v1_0
Program obtainable from: CPC Program Library, Queen’s University of Belfast, Northern Ireland
Computer for which the program is designed and others in which it is operable: Any computer with a Unix style shell (bash), support for the
Secure Shell protocol and a FORTRAN compiler
Operating systems under which the program has been tested: Linux (RedHat 8.0, SuSe 8.1, Debian Woody 3.1)
Compilers: GNU FORTRAN g77 (Linux); g95 (Linux); Intel Fortran Compiler 7.1 (Linux)
Programming language used: Linux shell (bash) script, FORTRAN 77
No. of bits in a word: 32
No. of lines in distributed program, including test data, etc.: 1916
No. of bytes in distributed program, including test data, etc.: 18 202
Distribution format: tar.gz

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding author.
E-mail address: andreu.badal@upc.edu (A. Badal).

0010-4655/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2006.05.009

http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/ADYD_v1_0
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:andreu.badal@upc.edu
http://dx.doi.org/10.1016/j.cpc.2006.05.009

A. Badal, J. Sempau / Computer Physics Communications 175 (2006) 440–450 441
Nature of the physical problem: There are many situations where a Monte Carlo simulation involves a huge amount of CPU time. The paralleliza-
tion of such calculations is a simple way of obtaining a relatively low statistical uncertainty using a reasonable amount of time.
Method of solution: The presented collection of Linux scripts and auxiliary FORTRAN programs implement Secure Shell-based communication
between a “master” computer and a set of “clones”. The aim of this communication is to execute a code that performs a Monte Carlo simulation
on all the clones simultaneously. The code is unique, but each clone is fed with a different set of random seeds. Hence, clonEasy effectively
permits the parallelization of the calculation.
Restrictions on the complexity of the program: clonEasy can only be used with programs that produce statistically independent results using
the same code, but with a different sequence of random numbers. Users must choose the initialization values for the random number generator on
each computer and combine the output from the different executions. A FORTRAN program to combine the final results is also provided.
Typical running time: The execution time of each script largely depends on the number of computers that are used, the actions that are to be
performed and, to a lesser extent, on the network connexion bandwidth.
Unusual features of the program: Any computer on the Internet with a Secure Shell client/server program installed can be used as a node of a
virtual computer cluster for parallel calculations with the sequential source code. The simplicity of the parallelization scheme makes the use of
this package a straightforward task, which does not require installing any additional libraries.

Program summary 2

Title of program: seedsMLCG
Catalogue identifier: ADYE_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYE_v1_0
Program obtainable from: CPC Program Library, Queen’s University of Belfast, Northern Ireland
Computer for which the program is designed and others in which it is operable: Any computer with a FORTRAN compiler
Operating systems under which the program has been tested: Linux (RedHat 8.0, SuSe 8.1, Debian Woody 3.1), MS Windows (2000, XP)
Compilers: GNU FORTRAN g77 (Linux and Windows); g95 (Linux); Intel Fortran Compiler 7.1 (Linux); Compaq Visual Fortran 6.1 (Windows)
Programming language used: FORTRAN 77
No. of bits in a word: 32
Memory required to execute with typical data: 500 kilobytes
No. of lines in distributed program, including test data, etc.: 492
No. of bytes in distributed program, including test data, etc.: 5582
Distribution format: tar.gz
Nature of the physical problem: Statistically independent results from different runs of a Monte Carlo code can be obtained using uncorrelated
sequences of random numbers on each execution. Multiplicative linear congruential generators (MLCG), or other generators that are based on
them such as RANECU, can be adapted to produce these sequences.
Method of solution: For a given MLCG, the presented program calculates initialization values that produce disjoint, consecutive sequences of
pseudo-random numbers. The calculated values initiate the generator in distant positions of the random number cycle and can be used, for
instance, on a parallel simulation. The values are found using the formula SJ = (aJ S0) MOD m, which gives the random value that will be
generated after J iterations of the MLCG.
Restrictions on the complexity of the program: The 32-bit length restriction for the integer variables in standard FORTRAN 77 limits the produced
seeds to be separated a distance smaller than 231, when the distance J is expressed as an integer value. The program allows the user to input the
distance as a power of 10 for the purpose of efficiently splitting the sequence of generators with a very long period.
Typical running time: The execution time depends on the parameters of the used MLCG and the distance between the generated seeds. The
generation of 106 seeds separated 1012 units in the sequential cycle, for one of the MLCGs found in the RANECU generator, takes 3 s on a
2.4 GHz Intel Pentium 4 using the g77 compiler.
© 2006 Elsevier B.V. All rights reserved.

PACS: 02.70.Uu

Keywords: Monte Carlo; Parallelization; Pseudo-random number generator; Multiplicative linear congruential generator; RANECU; PENELOPE
1. Introduction

Monte Carlo (MC) methods are used in a vast range of ap-
plications [6]. The reason for their success lies, in part, in the
conceptual simplicity and in the relative easiness with which
they can be coded on a computer. One important application
of these methods is the description of radiation transport. In
this case, particle tracks are generated according to the cross
sections of the different atomic processes and, after simulat-
ing a sufficiently large number of independent random tracks,
the mean value and variance of the quantities of interest (for

instance, the energy deposited in a certain detector) are calcu-
lated using statistical procedures. In fact, the present paper has
been motivated by our work on the simulation of electromag-
netic showers using the PENELOPE code [20,21] and, although
the tools to be introduced are not restricted to a particular code,
the main goal is to allow PENELOPE users to run parallel sim-
ulations using a simple and reliable procedure.

A common feature of MC calculations is that the statistical
variance of the result is, when everything else remains the same,
inversely proportional to the simulation time. In spite of the fact
that fast computers are available nowadays at low cost, there

http://cpc.cs.qub.ac.uk/summaries/ADYE_v1_0

442 A. Badal, J. Sempau / Computer Physics Communications 175 (2006) 440–450

are still many situations where the amount of time needed to
obtain a reasonably low statistical uncertainty with a MC sim-
ulation is prohibitively large. This limitation can be overcome
by having recourse to parallel computing. Although the parallel
execution cannot reduce the total CPU time needed by your pro-
gram to finish the calculation, the use of more than one CPU at
the same time may effectively reduce the real time spent in the
simulation, that is, the time you have to wait to get your work
done. Various strategies and tools have been developed to fa-
cilitate the implementation of this solution, e.g., MPI, openMP,
PVM and openMOSIX. All these have been successfully used
with MC, but they all have the drawback of requiring the modi-
fication of the sequential code and the installation of additional
software, which may be inconvenient for some users.

In general, the parallelization of an algorithm is not a
straightforward task and it may even be unfeasible. Fortu-
nately, it can be achieved relatively easily in the case of an
MC code for which each random history is sampled indepen-
dently from the others and, therefore, the calculation can be
divided into several batches that can be executed on different
CPUs. The results yielded by independent runs of the same
code can be combined a posteriori to obtain a single final re-
sult with a reduced statistical uncertainty. Some authors call
this approach process replication (or domain replication) to dis-
tinguish it from a possible alternative, domain decomposition,
which involves segmenting the space of possible states of the
system, e.g., by splitting the geometry or the energy range into
pieces and assigning each piece to a different CPU. The “natu-
ral” simplicity of the process replication scheme has led to the
denomination “embarrassingly parallel” used by some authors
to refer to MC algorithms (see e.g. [22]).

In order to sample the probability distributions that charac-
terize the system to be simulated it is necessary to have a source
of randomness, typically a string of numbers uniformly distrib-
uted between 0 and 1. True random numbers can be generated
using physical devices such as radiation detectors or semicon-
ductors, but they are too slow compared with computer speeds
and their unpredictable nature makes it difficult to debug the
programs or check the results. For these reasons most MC codes
use pseudo-random number generators (PRNG), which provide
a cyclic sequence of numbers produced by deterministic algo-
rithms [8,10]. These algorithms must be carefully chosen so
that the correlations between the generated numbers are not ap-
parent. Thus, they are required to pass several statistical tests
intended to check the uniformity and independence of the pro-
duced sequence [1,22].

Along these lines, two related tools are presented in this
work. Firstly, we introduce a set of Linux scripts and FOR-
TRAN programs, named clonEasy, that implement the
process replication approach on a set of “clone” CPUs governed
by a “master” computer. This software package readily permits
parallel computations to be carried out without requiring ad-
ditional software or significant modifications of the original,
sequential, code. Secondly, a tool named seedsMLCG, which
provides the information necessary to initialize disjoint se-
quences of any PRNG based on a multiplicative linear congru-
ential algorithm, is presented. As a particular case, this auxiliary

tool can be used to obtain disjoint sequences of RANECU, the
PRNG used in PENELOPE.

The rest of the paper is organized as follows. In Section 2
we briefly describe the basic properties of some of the most
popular PRNGs used in MC simulations and discuss their use
in parallel calculations in order to show how they can be em-
ployed in combination with clonEasy. We focus our attention
on RANECU (including an extension to enlarge its period) and
on the method employed to obtain disjoint sequences with it.
The tools clonEasy and seedsMLCG are introduced in Sec-
tion 3. Finally, some conclusions are drawn in Section 4.

2. Pseudo-random number generators and parallel
simulations

The best PRNGs are those that perform as well as the true
random number generators in the randomness tests and have a
solid mathematical basis that justifies their essential properties
and cycle length. A theoretical proof of their quality is an im-
portant point since biased results due to subtle correlations have
been reported in the past (see e.g. [2]).

Among the most well studied and extensively used algo-
rithms for PRNGs there are those based on recursions with
modular arithmetic, which take a few input integer numbers,
called seeds, and produce a cyclic sequence of integers that can
be transformed into real values uniformly distributed between 0
and 1. A family of algorithms that belong to this class is the so-
called multiplicative linear congruential generators (MLCGs).
Although more recent generators are known to perform better in
some aspects and have therefore superseded MLCGs for most
applications, it can be argued that the latter are conceptually
simpler and their weaknesses well understood. In fact, PRNGs
based on combinations of MLCGs (such as RANECU, see be-
low) have been extensively used in the past and are still in use
by some computer codes. PENELOPE, for instance, has been
amply benchmarked against experimental results and other MC
codes since its first release in 1996, and no bias that can be at-
tributed to its PRNG has been detected to date.

An MLCG is initialized with a single seed, an integer
value S0. It produces each term of the sequence (Si , i = 0,1,

. . .) by multiplying the previous value by an integer a and calcu-
lating the modulo m, i.e. computing the remainder of the integer
division by m. A real value ui in the interval [0,1) is obtained
by dividing Si by m. The resulting sequence can thus be ex-
pressed by

(1)Si+1 = (aSi) MOD m, ui = Si

m
.

The possible remainders are all the integers from 0 to m − 1.
A null remainder, however, should be avoided to prevent the
generator from collapsing into a sequence of zeroes. The largest
possible period is therefore m−1, or ∼ 2×109 if m is restricted
to be representable by 32-bit-long signed integers, which is
clearly insufficient for present-day applications. This drawback
can be overcome by combining several MLCGs, as explained
later.

A known weakness common to all MLCGs is, as pointed out
by Marsaglia [13], that if groups of n successive random values

A. Badal, J. Sempau / Computer Physics Communications 175 (2006) 440–450 443

are used as the Cartesian coordinates of points in an n-dimen-
sional space, they do not uniformly fill up the volume. Instead,
they lie on a relatively small number of parallel hyperplanes
producing a lattice structure. The maximal distance between ad-
jacent hyperplanes is a convenient measure of the quality of the
generator and its determination is the goal of the so-called spec-
tral test [8]. When the distance between hyperplanes is small
the illusion that points are uniformly distributed in the hyper-
cube is reinforced. This criterion is thus frequently employed
to find the best multiplier and modulus for an MLCG.

Another widely known PRNG based on a recursion with
modular arithmetic is RCARRY, which implements an exten-
sion of the lagged Fibonacci algorithm called subtract-and-
borrow [14]. Its initialization requires 24 seeds (Si , i = 0,

. . . ,23) and a carry bit c23 (equal to either 0 or 1) and generates
the elements of the sequence as

(2)Si = (Si−10 − Si−24 − ci−1) MOD 224, i > 23,

where ci−1 (i > 24) is 0 if (Si−11 − Si−25 − ci−2) � 0 and it is
1 otherwise. This generator has a long period (∼ 5 × 10171) but
it fails several tests [23] and, therefore, its use may compromise
the reliability of the simulation results. By studying RCARRY
from the viewpoint of the dynamics of chaotic systems Lüscher
[12] showed that the detected correlations are short-ranged and
that they can be eliminated by simply discarding (p − 24) ele-
ments of every p consecutive elements of the sequence, where
p is a fixed user-defined parameter that determines the quality
(i.e., randomness) of the resulting generator. It can be argued
that the corresponding computer code, named RANLUX [5],
has therefore been proven to produce random sequences of the
highest quality, but the price to be paid is a low efficiency, that
is, the quantity of pseudo-random numbers produced per unit
time is relatively small compared with other algorithms.

Another heavily used generator is based on the algorithm
called Mersenne Twister (MT) proposed by Matsumoto and
Nishimura [16]. It implements a version of the linear feedback
shift register [8], which involves binary operations with the seed
bits. The MT is becoming increasingly popular due to the fact
that it is considerably faster than RANLUX and RANECU and
that it has passed the most relevant randomness tests available.
However, although it has been demonstrated that the generated
values are equidistributed in 623 dimensions and that the cycle
period is of the order of 106001, the theoretical basis for its ran-
dom properties is not as established as it is for RANLUX and
its possible weaknesses are not well understood.

The string of random numbers employed by each processor
participating in a parallel MC simulation should be uncorrelated
with those used by the other processors in order to guarantee
the statistical independence of the different partial results. The
ability to produce these sequences is thus an important feature
of a PRNG. While some algorithms can generate long indepen-
dent strings in a simple way (RANLUX produces one of these
strings for each integer value given to its initialization routine,
see [5]) more elaborated techniques are required in other cases
(for the MT they can be produced using a slightly modified ver-
sion of the generator in each node, as proposed in [17]). MLCGs

Table 1
Parameters of the MLCGs that are used in RANECU

Modulus (m) Multiplier (a)

1st generator 2 147 483 563 40 014
2nd generator 2 147 483 399 40 692

cannot intrinsically produce independent sequences but, as ex-
plained in Section 2.2, these can be obtained using a simple pro-
cedure. The popular software library SPRNG (Scalable Parallel
Random Number Generators Library) [15] can also be used to
produce this kind of sequences using different generators.

2.1. RANECU

RANECU, developed by L’Ecuyer in 1988 [9], combines the
sequences S

(1)
i and S

(2)
i (i = 0,1, . . .) from a pair of MLCGs

with moduli m(1) and m(2) and multipliers a(1) and a(2), re-
spectively, to produce a new sequence Si defined by

(3)Si = (
S

(1)
i − S

(2)
i

)
MOD

(
m(1) − 1

)
.

The parameters of these two MLCGs, chosen so as to yield opti-
mal results in the spectral test, are shown in Table 1. The period
of the combination in Eq. (3) is the least common multiple of
the periods of S

(1)
i and S

(2)
i and its lattice structure is consider-

ably better than that of its individual components (see below).
This algorithm was coded in FORTRAN 77 by James [4]

for computers that use registers with a minimum of 32 bits.
The FORTRAN code included in PENELOPE (version 2005),
which differs from the one proposed by James mainly in that it
returns a single value at each call instead of an array of values,
is displayed in Fig. 1. The reliability of RANECU stems from
the well known mathematical basis of congruential generators
and the fact that it has successfully passed a number of sta-
tistical tests [1,3,8,9]. Moreover, it has been satisfactorily used
for many years in a number of MC codes without showing any
apparent artefact. A version of RANECU (called RAN2) that
incorporates an additional shuffling algorithm is supplied with
the book Numerical Recipes [19].

RANECU’s two MLCGs fulfil the following conditions:

1. m is a large prime number and a is a primitive root mod-
ulo m.

2. a2 < m.
3. (m(1) − 1)/2 and (m(2) − 1)/2 are relatively prime.

Condition 1 is equivalent to requiring that the MLCG attains its
maximal period m − 1, i.e. that all the integer values between
(and including) 1 and m − 1 are produced once before repeat-
ing the initial seed. The second condition permits an MLCG to
be coded in an efficient and portable way with integers of bit
length b such that m < 2b−1 by having recourse to the so-called
approximate factoring (AF) method [11]. This method is used
to compute the product of the two integers Si and a modulo m

without overflow hazard (i.e. without exceeding the length of a
signed long integer) by taking advantage of the identity

(4)(aSi) MOD m = [
a(Si MOD q) − �Si/q�r] MOD m,

444 A. Badal, J. Sempau / Computer Physics Communications 175 (2006) 440–450
FUNCTION RAND(DUMMY)
C This is an adapted version of subroutine RANECU written by F. James
C (Comput. Phys. Commun. 60 (1990) 329-344), which has been modified to
C give a single random number at each call.
C
C The ’seeds’ ISEED1 and ISEED2 must be initialized in the main program
C and transferred through the named common block /RSEED/.
C
C Some compilers incorporate an intrinsic random number generator with
C the same name (but with different argument lists). To avoid conflict,
C it is advisable to declare RAND as an external function in all sub-
C programs that call it.
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)
PARAMETER (USCALE=1.0D0/2.147483563D9)
COMMON/RSEED/ISEED1,ISEED2

C
I1=ISEED1/53668
ISEED1=40014*(ISEED1-I1*53668)-I1*12211
IF(ISEED1.LT.0) ISEED1=ISEED1+2147483563

C
I2=ISEED2/52774
ISEED2=40692*(ISEED2-I2*52774)-I2*3791
IF(ISEED2.LT.0) ISEED2=ISEED2+2147483399

C
IZ=ISEED1-ISEED2
IF(IZ.LT.1) IZ=IZ+2147483562
RAND=IZ*USCALE

C
RETURN
END

Fig. 1. FORTRAN code of the pseudo-random number generator RANECU included in the PENELOPE package (version 2005).
where q = �m/a� and r = m MOD a are the quotient and re-
mainder, respectively, of the integer division of m by a. Since
RANECU uses moduli slightly smaller than 231, its MLCGs
can be coded using integer arithmetic in 32 or more bits. Fi-
nally, the third condition ensures that the combination of the
two MLCGs produces a generator which also attains its max-
imal possible period, (m(1) − 1)(m(2) − 1)/2, which is the
least common multiple of the individual periods m(1) − 1 and
m(2) − 1. For the moduli of Table 1 this yields a total period of
2 305 842 648 436 451 838 � 2.3 × 1018.

It is a well-known fact that some generators have long-range
correlations and, hence, it is not advisable to use a large fraction
of the sequence in a single simulation. This, compounded with
the increasing computing power available per monetary unit
and the widespread use of computer clusters, is bound to render
RANECU obsolete in the long run.1 However, using the general
formula described by L’Ecuyer [9], of which Eq. (3) is a partic-
ular case, it is possible to combine additional MLCGs provided
that all of them meet the three conditions presented above—the
third condition must then be applied to any pair of m values.
Particularly, the MLCG with multiplier a(3) = 45 742 and mod-
ulus m(3) = 2 147 482 739, also studied by L’Ecuyer [9], can be
used to produce an extension of RANECU with a sequence de-
fined by

(5)Si = (
S

(1)
i − S

(2)
i + S

(3)
i

)
MOD

(
m(1) − 1

)
.

1 Presently, it would take of the order of 104 years to cycle RANECU on a
single personal computer.

This “extended” RANECU uses three initial seeds and has a
period of ∼ 5 × 1027.

The structural properties of combined MLCGs are much bet-
ter than those of single MLCGs. To study the lattice structure of
the generators, a 2D plot of points with Cartesian coordinates
consisting of two consecutive random values in the interval
(0,1) can be employed. It can be calculated that for the two
MLCGs in Table 1 and the third one proposed above as an ex-
tension, the number of parallel hyperplanes (straight lines in
this case) that contain all these points is 65 535 at most [13]. In
contradistinction, RANECU requires of the order of 109 lines.
As shown in Fig. 2, the lattice structure of the MLCGs is appar-
ent, whereas the points from the extended RANECU (and simi-
larly for the original version) seem to be truly randomly distrib-
uted due to the much larger number of hyperplanes present.

2.2. Parallel execution with an MLCG

Statistically independent sequences of pseudo-random num-
bers for parallel executions can be obtained from an MLCG [11,
18] by applying the methodology described by L’Ecuyer [9]. As
he states, an important property of MLCGs is that any term in
the cycle can be obtained without calculating the intermediate
values. Indeed, given an initial seed S0, the term Si can be found
directly using (cf. Eq. (1))

(6)Si = (
aiS0

)
MOD m = [(

ai MOD m
)
S0

]
MOD m.

In order to compute ai MOD m the right-to-left binary method
for exponentiation described by Knuth [8, p. 462] adapted to

A. Badal, J. Sempau / Computer Physics Communications 175 (2006) 440–450 445

Fig. 2. Graphical representation of the lattice structure of the extended
RANECU generator (dots) and of its MLCG components. Triangles correspond
to the first MLCG employed in RANECU (the second MLCG, not shown, pro-
duces a similar pattern) and open circles to the third MLCG included in the
extended generator (see text).

modular arithmetic is used. The basic idea behind this method
is that a high power of a can be obtained by successively squar-
ing a. Thus, for instance, since 6 is written as 110 in binary, a6

can be expressed (by reading the binary from right to left) as
(a2)2 × a2, which involves evaluating only three products. No-
tice that the AF method described above (see Eq. (4)) may not
be applicable here to compute a6 (or any other power) because
some intermediate factors, a2 and (a2)2 in our example, may
not fulfil the condition that their squares are less than m, as
required by condition 2 in the previous section. To overcome
this difficulty and to calculate the product without overflow,
we have recourse to the algorithm proposed by L’Ecuyer and
Côté [11]. It consists of using the so-called Russian peasant
multiplication scheme halving one factor of the multiplication
while doubling the other until the halved factor complies with
the aforesaid condition 2, at which point the AF method is ap-
plied.

For backward jumps (that is, i < 0 in Eq. (6)) we define

(7)ai MOD m ≡ ã(−i) MOD m,

where ã is the multiplicative inverse of a modulo m, that is,

(8)aã MOD m = 1.

The value of ã can be evaluated as ã = a(m−2) since, when a

and m are coprime,

(9)a(m−1) MOD m = 1,

an identity known as Fermat’s little theorem (see e.g. [7]). Al-
ternatively, the inverse can be obtained using the so-called ex-
tended Euclid’s algorithm [7,8]. The latter is an adaptation of
the algorithm conceived by Euclid circa 300 B.C. to find the
greatest common divisor (GCD) of two integer numbers m and
a by taking advantage of the fact that, if r is the remainder of
the integer division of m by a, then

(10)GCD(m,a) = GCD(a, r).

By iterating the former expression, a division with null remain-
der is eventually found, yielding the GCD as the last non-null
remainder. The extended algorithm uses the quotients and re-
mainders of the intermediate iterations to find integers m̃ and ã

such that

(11)aã + mm̃ = GCD(m,a)

by recursively expressing each residue as a linear combination
of the original a and m values. When m and a are coprime, as
is the case with the MLCGs considered here, we find

(12)aã + mm̃ = 1,

known as Bézout’s identity—despite some authors attribute it
to Bachet de Méziriac. Now, since m MOD m = 0, it follows
that ã MOD m is the sought inverse. We have found that the
extended Euclid’s algorithm takes less computer time than eval-
uating a(m−2) and, hence, the former is the method of choice in
our routines.

With all these ingredients, each CPU in a parallel calculation
can be fed with a seed that initiates a string of pseudo-random
numbers that does not overlap other CPU sequences. Indeed,
if J is an integer larger than the number of calls to the PRNG
performed by any of the CPUs during the simulation, then the
kth CPU (k = 0,1, . . . ,K − 1) is provided with the sequence
{SJk+j | j = 0,1, . . . , J − 1}. This method is known as se-
quence splitting and has the advantage of using the original
generator without alterations. A drawback of this approach are
the long-range correlations of the MLCG, which may become
particularly relevant if J is related to m, for instance if both are
powers of 2.

A different procedure to obtain disjoint sequences is the
jumping or leapfrog technique. This method consists of jump-
ing a fixed distance K along the generator cycle before the next
seed is obtained. The resulting subsequence for the kth CPU is
thus {SKj+k | j = 0,1, . . . , J −1}. Since, from Eq. (6), S(Kj) =
(aK)jS0 MOD m, an MLCG can be modified to leapfrog the
sequence by merely replacing the multiplier a by aK or, equiva-
lently, by aK MOD m. Nonetheless, the generator with the new
multiplier may be cumbersome to code in a portable way be-
cause it may not comply with condition 2 mentioned above.
Furthermore, it is not clear whether the resulting sequence of
pseudo-random numbers is as good as the original since all
the tests (e.g. the spectral test) have been performed using the
latter. In other words, the correlations between numbers K po-
sitions apart in the original sequence are, generally speaking,
less well known. Taking these considerations into account, we
have opted for the sequence splitting method.

3. Description of the programs

3.1. clonEasy, a simple parallelization package

The clonEasy package is a collection of Linux scripts and
auxiliary FORTRAN programs that implement Secure Shell-
based communication between a “master” computer and a set

446 A. Badal, J. Sempau / Computer Physics Communications 175 (2006) 440–450
>>>> CLONES TABLE >>>
Sample clone table for clonEasy.
Copy and modify to fit your configuration.
Lines starting with ’#’ are skipped.

Clone ID Nickname Random seeds Make file Comments
--
joe@myserver.es fastMachine 918882992 858672133 make_ifc None
192.168.1.101 myPC_1 2069007070 1309916099 make_g95 Dual CPU
192.168.1.102 myPC_2 944675654 1438406465 make_g95 Dual CPU

neverWorks.es devil 149156960 257442270 make_g77 Inactive

[EndOfTable]

Fig. 3. Sample file clon.sample.tab distributed with clonEasy. The original version also contains some explanatory notes.
of “clones”.2 They perform simple operations, such as upload
and download files or compile and execute programs, with the
aim of running a code that performs a MC simulation on all
the clones at the same time. The scripts that are provided with
clonEasy are briefly explained below:

clon-setup : sets up the environment for clonEasy to
work.

clon-upload : uploads files from the master to the
clones.

clon-download : downloads files from the clones to the
master.

clon-remove : removes files and directories from all
clones.

clon-make : executes a compilation script on each
clone.

clon-run : uploads the PRNG seeds and executes
a program on all clones.

Most of these scripts take arguments; when not enough of
them are provided, a message is issued to the screen to in-
form the user. The scripts are written using the syntax of the
bash shell and, consequently, they may run under various Unix
flavours, although we have only tested them on Linux distrib-
utions. The README file distributed with the package gives a
detailed description of their use.

Secure Shell (ssh) is used to execute commands on a remote
machine and Secure Copy (scp) is used to move files across
the net. Thus, any computer on the Internet with a Secure Shell
server installed can be used as a node of a virtual computer
cluster for parallel calculations. It is not necessary to install any
additional software on the clones or the master and the sequen-
tial MC source code does not need to be modified, except for
the fact that the initial random seeds for the PRNG are required
to be read from an external file. A FORTRAN program included
in clonEasy and invoked by the scripts mentioned above pre-
pares the communication with all the clones that are listed in
an external ASCII file, named clon.tab hereafter. In this file
each clone is identified by a name or IP address and it is given
a unique nickname that will be used as a prefix for the files
downloaded to the master. Additionally, clon.tab also spec-

2 For a description of the features and use of an open distribution of Secure
Shell tools, the reader may consult http://www.openssh.com.

ifies the compilation command and the seeds for the PRNG that
are to be used for each clone. By default clonEasy expects
to find two integer seeds per clone, which may be for exam-
ple the initialization values of RANECU, or the “luxury level”
and the seed that are needed to initialize RANLUX. If more
than two seeds are needed the MC code can be adapted so as
to use the first introduced number as an index in a list of prede-
fined set of seeds or, alternatively, clonEasy source code can
be adapted conveniently. As explained before, since the same
code is executed on all the nodes with the same initial con-
ditions, the user should carefully choose these seeds so as to
produce independent sequences in each processor. The sample
file clon.sample.tab distributed with the package is dis-
played in Fig. 3.

The various processes that run in parallel do not need to
communicate with each other. When all of them have finished,
their outputs are downloaded to the master where they can be
combined to obtain the global result with a reduced statisti-
cal uncertainty. The FORTRAN program COMBINE, supplied
with clonEasy, can be used to perform this task. Its input
file can be adapted to read a wide variety of output file for-
mats. COMBINE looks for some user specified keywords inside
the output files and reads the value of the quantity of interest
qk (k = 0,1, . . . ,K − 1) produced by each clone. It can also
process output files containing a data set, e.g. an energy spec-
trum. After Nk histories have been simulated by the kth clone
producing the value qk with variance σ 2(qk), the global aver-
age value q and its standard deviation σ(q̄) are obtained using
the relations

(13)q̄ = 1

N

K−1∑
k=1

Nkqk

and

(14)σ(q̄) = 1

N

√√√√K−1∑
k=1

N2
k σ 2(qk),

where

(15)N =
K−1∑
k=1

Nk

is the total number of histories simulated. Notice that Eq. (14) is
derived from (13) by taking advantage of the independence of

http://www.openssh.com

A. Badal, J. Sempau / Computer Physics Communications 175 (2006) 440–450 447

the various qk’s. The overall relative uncertainty Δ is obtained
as the percentage

(16)Δ = 100
σ(q̄)

q̄
.

The intrinsic and absolute simulation efficiencies are defined by

(17)εN = 1

NΔ2

and

(18)ε = N

t
εN,

respectively, where N/t stands for the total simulation speed,
in histories per unit clock time (i.e. real time), which would be
achieved if all the clones were running in single-process mode.
We have

(19)
N

t
=

K−1∑
k=1

Nk

tk
,

where tk is the CPU time (that is, user time) employed by the
kth clone to simulate Nk histories. Note that εN depends only
on the performance of the simulation algorithm per unit sim-
ulated history, regardless of any timing considerations—hence
the term “intrinsic”.

The absolute simulation efficiency increases approximately
linearly with total CPU power, or what is equivalent in the
case that all CPUs are identical, with the number of proces-
sors. This assertion is quite obvious from the considerations
made above, since no time is spent intercommunicating clones
or sending information between these and the master, except
when required by the user. In consequence, N/t is propor-
tional to the computer power available and, since εN is inde-
pendent of this quantity, Eq. (18) reflects the claimed linear-
ity.

3.2. seedsMLCG, sequence splitting of an MLCG

The program seedsMLCG provides, using Eq. (6), the ini-
tial seeds required to feed a set of different CPUs in order to
implement the sequence splitting technique. On execution, the
user is prompted to introduce the modulus and multiplier of an
MLCG and the separation (that is, the number J of interme-
diate random values) to be jumped between consecutive seeds.
Since long integers with sign are usually restricted to 32 bits,
input separation is limited to 231 − 1. For this reason, the pro-
gram also allows the user to input the separation as the exponent
of a power of 10 to efficiently split the sequence of generators
with a very long period. Negative distances can be entered to
jump the sequence backwards with the aid of Eq. (7). This ca-
pability may be useful for debugging purposes; for instance, to
reproduce a certain past history.

The FORTRAN 77 source code of seedsMLCG is accom-
panied by three sample input files containing the parameters
that define the two MLCGs employed by RANECU and the
MLCG used in the extended version proposed in previous sec-
tions. These files are read by the program by redirecting the

Table 2
Seeds that start disjoint subsequences separated by 1015 numbers for the two
MLCGs in RANECU and for the third MLCG proposed as an extension in
Eq. (5)

RANECU seed 1 RANECU seed 2 Extension seed

1 1 1
918 882 992 858 672 133 35 977 198

2 069 007 070 1 309 916 099 62 205 517
944 675 654 1 438 406 465 392 697 167
149 156 960 257 442 270 820 143 318
360 537 627 133 123 709 609 065 445

1 446 789 139 1 248 992 867 917 376 822
888 673 974 2 014 364 429 382 392 929

258 943 664 687 714 1 007 129 025
1 434 784 182 1 598 489 021 804 921 119

698 429 770 1 978 724 894 1 737 229 562

keyboard input with the ‘<’ sign from the system command
line. In Table 2 a set of ten seeds found with the three sample
input files is presented. Each seed starts a disjoint subsequence
with 1015 numbers. On average, the generation of each seed
takes a few µs on a modern computer.

4. Conclusion

MC codes can be parallelized in a straightforward way with-
out significantly changing the source code or using sophisti-
cated software libraries. A simple communication system based
on the Secure Shell protocol that distributes a simulation job
among multiple CPUs and collects all the output files has been
implemented in the script package clonEasy. An auxiliary
program that combines the various output files to yield the
global result with reduced statistical uncertainty is also in-
cluded.

The statistical independence of the output from the different
executions is guaranteed when each computer uses an indepen-
dent sequence of pseudo-random numbers. Such sequences can
be produced with the initialization values supplied by the pro-
gram seedsMLCG for MC codes that rely on MLCGs or a
combination of them. The tools presented here have been suc-
cessfully applied to the MC code PENELOPE, which utilizes
the PRNG RANECU. A brief explanation of the mathematical
properties of this generator has also been provided with the aim
of proposing an extension that has a much longer period, a fea-
ture that may become necessary in future applications.

clonEasy and seedsMLCG can be freely downloaded
from http://www.upc.es/inte/downloads/clonEasy.htm and http:
//www.upc.es/inte/downloads/seedsMLCG.htm, respectively.

Acknowledgements

We would like to thank Prof. Francesc Salvat (Universitat de
Barcelona), co-author of PENELOPE, for giving us valuable
suggestions. The authors gratefully acknowledge financial sup-
port from the Fondo de Investigación Sanitaria (Spain), Project
No. 03/0980.

http://www.upc.es/inte/downloads/clonEasy.htm
http://www.upc.es/inte/downloads/seedsMLCG.htm
http://www.upc.es/inte/downloads/seedsMLCG.htm

448 A. Badal, J. Sempau / Computer Physics Communications 175 (2006) 440–450

Appendix A

A.1. Test run output for ‘clonEasy’

(Note: the following example assumes a Linux system with the bash shell. The file clon.tab shown in Fig. 3 has been used.)

user@master: ~/clonEasy$ source clon-setup
user@master: ~/clonEasy$ cd test

user@master: ~/test$ clon-upload
Usage: [thisScript] [FileToUpload] [ClonTableFile] [ClonDir]

%all can be used for [FileToUpload]
user@master: ~/test$ clon-upload program.f clon.tab JobDir
program.f 100% |*********************************| 83 00:00
program.f 100% |*********************************| 83 00:00
program.f 100% |*********************************| 83 00:00
user@master: ~/test$ clon-upload make_ifc clon.tab JobDir
make_ifc 100% |*********************************| 233 00:00
make_ifc 100% |*********************************| 233 00:00
make_ifc 100% |*********************************| 233 00:00
user@master: ~/test$ clon-upload make_g95 clon.tab JobDir
make_g95 100% |*********************************| 233 00:00
make_g95 100% |*********************************| 233 00:00
make_g95 100% |*********************************| 233 00:00

user@master: ~/test$ clon-make
Usage: [thisScript] [ClonTableFile] [ClonDir]
user@master: ~/test$ clon-make clon.tab JobDir
clon-run_aux 100% |*********************************| 438 00:00
clon-run_aux 100% |*********************************| 438 00:00
clon-run_aux 100% |*********************************| 438 00:00

user@master: ~/test$ clon-run
Usage: [thisScript] [ClonTableFile] [ClonDir] [ExecutableFile]

(Optionally: [RedirectionName])
user@master: ~/test$ clon-run clon.tab JobDir program.x
rngseed.in 100% |*********************************| 21 00:00
clon-run_aux 100% |*********************************| 438 00:00
rngseed.in 100% |*********************************| 21 00:00
clon-run_aux 100% |*********************************| 438 00:00
rngseed.in 100% |*********************************| 21 00:00
clon-run_aux 100% |*********************************| 438 00:00

user@master: ~/test$ clon-download
Usage: [thisScript] [ClonTableFile] [ClonDir] [FileToDownload]
user@master: ~/test$ clon-download clon.tab JobDir program.out
program.out 100% |*********************************| 21 00:00
program.out 100% |*********************************| 21 00:00
program.out 100% |*********************************| 21 00:00

user@master: ~/test$ clon-remove
Usage: [thisScript] [ClonTableFile] [ClonDir] [FileToRemove]

if [FileToRemove] is %all then [ClonDir] is deleted completely
USE WITH CARE!!

user@master: ~/test$ clon-remove clon.tab JobDir %all

user@master: ~/test$ combine.x < combine.in > program.out

A. Badal, J. Sempau / Computer Physics Communications 175 (2006) 440–450 449

user@master: ~/test$ ls
program.f make_ifc download.tmp myPC_1.program.out
clon.tab upload.tmp remove.tmp myPC_2.program.out
combine.in make.tmp program.out fastMachine.program.out
make_g95 run.tmp log.txt

A.2. Test run output for ‘seedsMLCG’

** **
** CALCULATING FUTURE OR PAST ELEMENTS OF THE **
** SEQUENCE OF A MULTIPLICATIVE LINEAR **
** CONGRUENTIAL GENERATOR (MLCG) **
** **
** [P. L Ecuyer, Commun. ACM 31 (1988) p.742] **
** **

- Initial integer seed: S(i) =
1

- Number of new seeds to be calculated =
10

- Is the interval to the next seed a power of 10? [0=no/1=yes]
Yes

- Distance between seeds (negative value for a backward jump):
j=10**k, k =

15
- Multiplier of the MLCG: a =

40014
- Modulus of the MLCG: m =

2147483563

- The input generator is the first MLCG from RANECU.

- RESULTS: 11 seeds, separated 10** 15 units:

1
918882992
2069007070
944675654
149156960
360537627
1446789139
888673974

258943
1434784182
698429770

References

[1] P.D. Coddington, Analysis of random number generators using Monte
Carlo simulation, Int. J. Mod. Phys. C 5 (1994) 547–560.

[2] A.M. Ferrenberg, D.P. Landau, Monte Carlo simulations: Hidden errors
from “good” random number generators, Phys. Rev. Lett. 69 (1992) 3382–
3384.

[3] B.M. Gammel, Hurst’s rescaled range statistical analysis for pseudoran-
dom number generators used in physical simulations, Phys. Rev. E 58
(1998) 2586–2597.

[4] F. James, A review of pseudorandom number generators, Comput. Phys.
Comm. 60 (1990) 329–344.

[5] F. James, RANLUX: A Fortran implementation of the high-quality
pseudorandom number generator of Luscher, Comput. Phys. Comm. 79
(1994) 111–114.

450 A. Badal, J. Sempau / Computer Physics Communications 175 (2006) 440–450
[6] M.H. Kalos, P.A. Whitlock, Monte Carlo Methods, vol. 1, John Wiley and
Sons, New York, 1986.

[7] D.E. Knuth, The Art of Computer Programming, vol. 1, second ed.,
Addison-Wesley, 1973.

[8] D.E. Knuth, The Art of Computer Programming, vol. 2, third ed., Addison-
Wesley, 1998.

[9] P. L’Ecuyer, Efficient and portable combined random number generators,
Comm. ACM 31 (1988) 742–749.

[10] P. L’Ecuyer, Random numbers for simulation, Comm. ACM 33 (1990)
85–97.

[11] P. L’Ecuyer, S. Côté, Implementing a random number package with split-
ting facilities, ACM Trans. Math. Soft. 17 (1991) 98–111.

[12] M. Luescher, A portable high-quality random number generator for lattice
field theory simulations, Comput. Phys. Comm. 79 (1994) 100–110.

[13] G. Marsaglia, Random numbers fall mainly in the planes, Proc. Nat. Acad.
Sci. 61 (1968) 25–28.

[14] G. Marsaglia, B. Narasimhan, A. Zaman, A random number generator for
PC’s, Comput. Phys. Comm. 60 (1990) 345–349.

[15] M. Mascagni, SPRNG: A scalable library for pseudorandom number gen-
eration, ACM Trans. Math. Soft. 26 (2000) 436–461.

[16] M. Matsumoto, T. Nishimura, Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator, ACM Trans.
Modeling Comput. Simul. 8 (1998) 3–30.
[17] M. Matsumoto, T. Nishimura, Dynamic creation of pseudorandom number
generators, in: Monte Carlo and Quasi-Monte Carlo Methods, Springer,
2000, pp. 56–69.

[18] B. Mendes, A. Pereira, Parallel Monte Carlo Driver (PMCD)—a soft-
ware package for Monte Carlo simulations in parallel, Comput. Phys.
Comm. 151 (2003) 89–95.

[19] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical
Recipes in Fortran 77: The Art of Scientific Computing, second ed., Cam-
bridge University Press, 1997.

[20] F. Salvat, J.M. Fernández-Varea, J. Sempau, PENELOPE, A code system
for Monte Carlo simulation of electron and photon transport, OECD Nu-
clear Energy Agency, Issy-les-Moulineaux, France, 2003. Available in pdf
format at http://www.nea.fr.

[21] J. Sempau, E. Acosta, J. Baró, J.M. Fernández-Varea, F. Salvat, An algo-
rithm for Monte Carlo simulation of coupled electron–photon transport,
Nucl. Instr. Meth. B 132 (1997) 377–390.

[22] A. Srinivasan, M. Mascagni, D. Ceperley, Testing parallel random number
generators, Parallel Computing 29 (2003) 69–94.

[23] I. Vattulainen, K. Kankaala, J. Saarinen, T. Ala-Nissila, A compara-
tive study of some pseudorandom number generators, Comput. Phys.
Comm. 86 (1995) 209–226.

http://www.nea.fr

	A package of Linux scripts for the parallelization of Monte Carlo simulations
	Introduction
	Pseudo-random number generators and parallel simulations
	RANECU
	Parallel execution with an MLCG

	Description of the programs
	clonEasy, a simple parallelization package
	seedsMLCG, sequence splitting of an MLCG

	Conclusion
	Acknowledgements
	Appendix A
	Test run output for `clonEasy'
	Test run output for `seedsMLCG'

	References

