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Fatigue crack growth is uncertain, either for cracking rate or direction. The stochastic 

models proposed in the literature suffer from limited applicability or lack of physical 

meaning. In this paper, a new stochastic collocation method is proposed to solve mixed 

mode fatigue crack growth problem with uncertain parameters. This approach has the 

advantage of non-intrusive nature methods, such as Monte-Carlo simulations, since it 

allows us to decouple the stochastic and the mechanical computations. The proposed 

numerical implementation is very simple, as it requires only repetitive runs of 

deterministic finite element analysis at some specific points in the random space. The 

method describes a precise approximation of the mechanical response corresponding to 

the fatigue life, in order to assess the stochastic properties, namely the statistical moments 

and the probability density function of fatigue life. The performance of the stochastic 

collocation method for dealing with this kind of problems has been evaluated through 

two numerical examples, showing the high performance for practical applications. 

Moreover, the proposed method is extended in the last example to the failure probability 

assessment, with respect to the target service life. 
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Most of engineering components and structures are subject to cyclic loading during 

their service life, which may lead to fatigue damage. Starting from a microscopic defect, 

fatigue crack growth takes place and may lead to catastrophic failure of structural 

components; it is recognized that 50% to 90% of the observed failures are due to fatigue 

damage and crack propagation. The fatigue process corresponds to a sequence of 

complex phenomena, such as work hardening and localized damage, which firstly lead to 

nucleation of microscopic cracks, then to a dominant macroscopic crack which grows 

until the remaining material cannot support the applied load. For many mechanical 

structures, such as aircrafts, the crack growth period represents the major part of the total 

fatigue life. In this context, the present work aims to assess the propagation part of the 

lifetime.  

The process of Fatigue Crack Growth (FCG) is uncertain by nature, due to variability 

of material properties and composition, fluctuations of load intensity and direction, 

uncertainties in geometrical properties, and changes in operating conditions, such as 

temperature and humidity. Even in ideal conditions of laboratory testing, fatigue tests 

show considerable amount of scatter in crack growth [1], which can be explained by the 

strong dependence on the microscopic structure of the material. For this reason, the use of 
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traditional deterministic approaches cannot assess properly the fatigue life of structural 

and mechanical components. That is why the probabilistic modeling of FCG has been 

intensively developed in the last two decades [2-10]. An extensive list of technical 

literature representing the state-of-the-art concerning those models is given by Yao et al 

[2].  

Among others, Tsurui et al [3] proposed a stochastic crack growth model based on 

closed form solution of Fokker-Plank equation which describes the temporal variation of 

crack length distribution. Bogdanoff and Kozin [4-7], have developed the stochastic 

model named the B-model, where the FCG is considered as a cumulative damage 

problem discretized in time and space. Based on the Markov chain theory, the main idea 

of this model is to discretize the crack size in several pre-defined states, assuming that the 

cracked component is subject to repetitive identical damage period (“duty cycle”) during 

which the accumulated damage and the probability distribution of damage at the end of 

each “duty cycle” depends, in a probabilistic manner, only on the “duty cycle” itself, in 

addition to and the amount of damage accumulated at the start of the “duty cycle”. Thus, 

using the mathematical proprieties of Markov chains, the probability distribution of the 

crack size at any time during the service life is completely determined by the transition 

matrix and the probability distribution of the initial crack size. It is noted that, because of 

its simplicity, the B-model has been widely used in various applications dealing with 

probabilistic fatigue crack growth [8, 9, 10]; recently it has been applied to model the 

fatigue damage evolution in composite materials subjected to cyclic mechanical loading 

[11]. However, it has faced criticism from many researchers for its lack of consistency 
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with respect to the physics of fatigue crack growth phenomena, since it has a purely 

mathematical basis [12].  

Another category of stochastic models, known as physical approach, is based on 

randomizing the traditional crack growth equations such as that of Paris-Erdogan one, by 

introducing random variables or processes leading to random differential equation. We 

can mention the example of Yang and Manning’s model [13-17]. This model has been 

proposed in order to overcome the lack of physical meaning of the B-model. The 

stochastic modeling is performed by adding a random factor to the formulation of the 

adopted crack propagation law. As a result, this latter was transformed into stochastic 

equation. It has been suggested to model the random factor by stationary lognormal 

stochastic process [17]. This kind of model has been widely used up to date and has 

inspired many other models. For example, Wu and Ni [17] and Casciati et al. [18] have 

employed this model to study the uncertainty of the fatigue crack growth rate with the 

initial crack length taken as deterministic. Beck et al [19] have combined this model with 

a random process approach to deal with the problem of overload failure of a structural 

component under random loading and under random crack growth. Although the Yang 

and Manning model has been the subject of several studies, the difficulty lies in obtaining 

a closed-form solution of the stochastic equation. To overcome this difficulty, Paris-

Erdogan crack growth law is sometimes simplified in order to obtain the probability 

distribution of the loading cycles for any crack size reached during the FCG process. The 

advantage of Yan and Manning’s model lies in its generality. In the same category, the 

polynomial model proposed by Ni [20] can be also mentioned. This model was developed, 

in order to obtain a better compromise between the adequate representation of the FCG 
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physics and the numerical simplicity. Consequently, the polynomial modeling could be 

included in the probabilistic modeling. Madsen et al [21] employed the approach adopted 

in the Yang and Manning’s model but with a random factor defined by a random variable 

describing the variations between the mean values in different specimens and a positive 

random process describing variations from the mean value along the crack path within 

each specimen. The same model has been applied in the work of Ortiz et al [22] in 

conjunction with time series analysis. Sobczyk [23-25] proposed the cumulative jump 

model which represents the crack growth process as a discontinuous random process 

consisting of random number of jumps, with random magnitudes. In further studies, the 

cumulative jump model has been extended to model curvilinear random fatigue crack 

growth [25] and to deal with random fatigue crack growth problem with retardation [26]. 

In the stochastic model proposed by Min and Qing-Xiong [27], the material parameters of 

Paris-Erdogan crack growth law are considered as random variables and the distribution 

of the FCG rate for a given crack length is obtained by Monte-Carlo simulations. In the 

paper of McAllister and Ellingwood [28], a stochastic model based on Bayesian approach 

has been proposed to assess the fatigue damage in miter gate structures. This study has 

shown that the probabilistic fatigue analysis can be used to evaluate the fatigue 

performance of welded miter gate structures and for inspection and maintenance planning. 

In the same way, Shoji et al. [29] have proposed a study on the evaluation of the 

reliability of fuselage skin rivet splices with multiple-site fatigue cracks. The uncertain 

parameters of the model have been identified using a Bayesian approach based on in-

service inspection data. Also, Cross et al. [30] have developed a Bayesian technique for 

simultaneous estimation of the equivalent initial flaw size (EIFS) and crack growth rate 
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distribution. This technique provides a joint posterior probability distribution of the EIFS; 

the parameters of the crack growth rate are obtained using samples generated by Markov 

Chaine Monte-Carlo methods and the distribution of the fatigue life for a given crack 

length is obtained from these samples. Liu and Mahadevan [31] have proposed a new 

methodology based on equivalent initial flaw size distribution (EIFS). They have 

combined this methodology with probabilistic fatigue crack growth analysis to predict the 

fatigue life of smooth specimens. They have shown that their methodology is 

independent of the applied load level and the predictions are compared to experimental 

data for several metallic materials. Recently, Castillo et al. [32] have proposed a new 

probabilistic model for crack propagation under fatigue loading  and they have shown the 

compatibility of this model with Whöler field models. The parameters of this model are 

obtained by experimental testing. 

From the above literature review, it can be concluded that the large majority of 

stochastic FCG models are limited to opening crack growth mode (ie. mode I). However, 

in practice the FCG is mainly a mixed mode propagation and the opening mode models 

represent a very special case that is rarely encountered in engineering.  

As an alternative to these methods, the present paper proposes a stochastic 

collocation method to solve FCG problems in the probabilistic framework. In addition to 

its numerical efficiency, the proposed method has the advantage of dealing with random 

crack propagation in mixed mode. The herein developed model allows us to evaluate the 

first statistical moments, the probability density function of the FCG and the probability 

of failure. As it will be shown later, this method can be easily implemented in order to 
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solve efficiently this kind of problems with a good level of accuracy. In addition, it 

provides results with low computational times compared to Monte-Carlo simulations. 

The present paper is organized in four sections: section 2 describes the problem 

under consideration and presents the stochastic collocation as a tool to solve this problem. 

In section 3, we present the adopted methodology to construct the finite element model 

dealing with mixed mode FCG. The convergence and the effectiveness of the stochastic 

collocation method are investigated through numerical applications in section 4.  
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In this section, the propagation of uncertainties in the mechanical model, defined by 

finite element analysis, is considered. In this context, the model output has to be 

characterized in terms of the uncertainties related to the input parameters. To deal with 

this kind of problems, two steps are required: the first one consists of developing a 

probabilistic model to describe the uncertainties related to the input parameters, and the 

second step aims at computing the statistical characteristics (i.e. first statistical moments) 

and the probability density function of the output parameters. In our work, the stochastic 

collocation method [33, 34] is used to estimate the mean and the covariance  of the 

mechanical response. This method is mainly based on two traditional techniques, namely: 

the interpolation using Lagrange polynomials and the numerical integration by Gaussian 

quadratures. In the following, these two techniques are briefly described after rewriting 

the standard formulation of the problem. 
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In the following, we consider a mechanical system whose behavior is described by a 

finite element model with M input random parameters . Let  be N 

observations representing the mechanical responses of the considered system. The 

relation between the input vector  and the output vector 

 is defined by the finite element model. Mathematically speaking, this 

link can be represented by a measurable function denoted by , defined from  to  

and verifying the following relationship: 

  

In general, the input parameters, such as those representing the material properties 

(Young’s modulus, toughness, Paris law parameters, ...) and the geometry (crack 

length, ...), can be appropriately described by lognormal probability distributions. Let  

be a lognormal random variable , defined in  with mean , and with 

covariance matrix : 

 

where  and  denote respectively the mean of  and 

the covariance of  and   (coordinates of rank i and j) of the vector  (  denotes the 

mathematical expectation). 

Before undergoing further developments, it is convenient to standardize the random 

variables, by probabilistic transformation  to the standard Gaussian space. In our case, 
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the physical input parameters are represented by lognormal random variables  which 

may be statistically correlated. By applying the probabilistic transformation, we can get 

the image of the physical variables as independent normalized variables  in , 

( ), with equal cumulative probability function [35]. The transformation  is a 

measurable function defined from  into , such that:     

 

The general formula of the function  can be found in [35]. For the case of lognormal 

input variables, let  be a real vector in , and  a 

symmetrical and positive definite matrix in , such that: 

 

with The probabilistic transformation  can be expressed as: 

 

with  where , in , is the lower triangular matrix 

derived from Cholseky’s factorization, such that . 

As the input parameters y are rather probabilistic, equation (1) can be re-written in 

terms of the input and output random variables  and , respectively: 

 



  

���

�

By substituting Eq. (3) in Eq. (6), we can write: 

 

where  is a measurable function from  into  such that  

It is clear that, to characterize the probabilistic distribution of , we have to define the set 

(f,Y). Let us return to the basic problem, that is to find the statistical characteristics of . 

On the basis of Eq. (7), the mean  and the covariance matrix  are given by: 

 

where  and   is the probability density function 

of  the standard Gaussian variable , given by: 

 

where  denotes the Euclidean norm in .    

Equations (8) are the standard formulations of the problem which can be well evaluated 

with a stochastic collocation method based on Lagrange polynomials with quadrature 

points of Gauss-Hermite type. 
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Let  be a set of points in ,  be the space of all M-variate 

polynomials with real coefficients, and  be the subspace of polynomials of order less 
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or equal to p. For the set of collocation points , , , and the set 

of real constants , , the Lagrange interpolating polynomial is defined by 

 that satisfies . 

In the one-dimensional case (M = 1), it is always possible to define the polynomial 

for any set of collocation points : 

 

where the set of polynomials  forms a  basis of the subspace , whose 

elements are defined by: 

 

A specificity of Lagrange polynomial is given by the following property: 

 

where  represents the Kronecker operator, which is equal to 1 when   and 0 when 

. It should be noted that, in the multidimensional case (M > 1) and for any set of 

collocation points , the existence and the uniqueness of Lagrange polynomials 

cannot be guaranteed.  

In the following and in order to simplify the presentation, we will consider the case 

of M = 1. Consequently, the function  will be defined from  into  and the 

parameter  represents a scalar random variable. As mentioned above, the first step is to 

build the approximation of the function , which is carried out by projection onto a basis 
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of Lagrange polynomials with order p = q – 1. We can therefore define the response 

approximation by: 

 

This approximation is called the stochastic response surface. According to Lagrange 

polynomials property (Eq. 12), the coefficients  are easily computed by collocation and 

we get , where , ( , are the collocation points. By replacing the 

function  by its response surface (Eq. 13) in the expressions of the statistical moments 

and  (Eq. (8)), we get: 

 

 

 
      

 

 

 

For the seek of simplicity, let us denote the integrals in the above equation as  and , 

such that: 
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The statistical moments and  can thus be re-written as: 

 

From equations (17), it is obvious that computing the statistical moments and  can 

be done by evaluating the integrals  and  (Eq. 16), which can be done by choosing a 

convenient set of collocation points . These points should be chosen such that the 

quadrature formula:    

 

becomes exact for any polynomial , where  is the sub-space of 

polynomials with order up to . The quantities  and , ( ), are 

respectively the collocation points and quadrature weights, derived from the equality in 

equation (18). The function  are the probability density function of the variables . In 

the standardized normal space, this function  is simply given by: 

 

and equation (18) verifies the Gauss-Hermite quadrature rule.    
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The first step to compute the collocation points is to build the Gauss-Hermite 

orthogonal polynomial basis , which is simply performed by applying the 

recurrence relationship:  

 

As stated by the Gauss quadrature theorem, the set of quadrature points are the 

roots of the polynomial . From Eq. (20), we can easily observe that the roots of the 

polynomial  includes those of ; we can therefore start by computing the root of 

 to find the roots of  and so on, until obtaining the roots of . 

After defining the collocation points , the weights  are obtained by 

replacing the polynomial  in the quadrature rule (Eq. (18)) by the polynomial  for 

, leading to a  linear equation system: 

 

where the quantities ,  and  are defined by: 
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By taking into account that  and the set  of Hermite polynomial is a 

orthogonal basis, the above linear system (Eq. 21) can be considerably simplified. By 

multiplying each element  of the vector  by the polynomial , we can obtain, for 

, the following expression:    

 

Consequently, the right hand side of the linear system becomes , and we can 

easily obtain the set of weights  by using a standard technique of numerical 

solution of linear systems. 
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The random mechanical response can be characterized by the two first statistical 

moments, namely and , and by the probability density function. The statistical 

moments and  of the mechanical response can be computed by Eq.  (17) in terms of 

 and  respectively. Having the sets of collocation points and integration weights, 

 and  respectively, these integrals can be evaluated by the quadrature rule 

(18).  
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For the one-dimensional case, the statistical moments and  are given by:  

 

 

In the case of multidimensional random space (M >1), the function  is defined from 

 to  and  is the vector of realizations of the random variables, 

defined in ; the tensor product can be applied to deal with these quantities. In order to 

simplify the formulation, we assume that the solution is spanned by Lagrange 

polynomials of order p = q – 1, in each direction of the multidimensional random space. 

The stochastic response surface can thus be obtained by: 

 

 

where  denotes the tensor product of the one-dimensional polynomial spaces with fixed 

polynomial orders in all dimensions,  is the usual symbol of multiplication in  and 

 are the Lagrange polynomials of order  derived from the collocation 

points  corresponding to the density function  of the 

variable  ( ). As stated in the one-dimensional case, the coefficients, 

 are obtained by collocation, by replacing  in Eq. (28) by the collocation 
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point  and using the Lagrange polynomials property 

: 

  

Finally, the statistical moments and  of the mechanical response can be evaluated as 

following:  

 

 

Having the stochastic response surface (Eq. (13)), the probability density function 

can be easily constructed by Monte-Carlo simulations. This procedure is accurate and 

efficient since it requires very low computing time.   
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The numerical implementation of the stochastic collocation method can be 

summarized by the flowchart in figure 1. Firstly, we choose a number  of collocation 

points and compute the  responses (Eq. 29) of the mechanical system. Then, we 

construct the stochastic response surface (Eq. 28) using the Lagrange polynomials based 

on the set of collocation points. Finally, we compute the statistical moments by Gauss 

quadrature rule (Eqs. 30 and 31) and construct the PDF using Monte-Carlo simulations 

on the obtained stochastic response surface (Eq. 28). 



  

�	�

�

 � %
�
	
�
�
�
�	����
�
�������
�
�����
���	
��
�����������	��

In this section, we present the numerical model used to deal with the mixed mode 

fatigue crack growth.  
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In finite element analysis, several numerical methods have been proposed to evaluate 

the fracture parameters in cracked body . In the present work, the stress intensity factors 

are calculated by the G-� method, firstly introduced by Destuynder [36]. On the basis of 

virtual crack extension technique, the G-� method gives the stress intensity factors 

through the computation of the strain energy release rate G, representing the decrease of 

the total potential energy Wp during the growth dA of the crack. Based on G-�, the 

quantity G can be computed by: 

 

where  denote the strain energy density,  and  are the stress and the displacement 

fields respectively,  is the virtual displacement vector and  denotes the symbol of the 

trace of tensor.     
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In practice, due to the loading and geometrical conditions, fatigue cracks attempt to 

propagate in mixed mode; in other words, the cracks follow curved paths during their 

propagation. In order to define the bifurcation angle of the crack during propagation, 
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there exist mainly three criteria: the maximum circumferential stress , the 

minimum strain energy density  and the maximum energy release rate . In our 

study, the maximum circumferential stress criterion  was implemented in order to 

predict the crack bifurcation angle. The maximum circumferential stress criterion [37] 

states that the crack propagate in the plane perpendicular to the direction in which the 

stress component  is maximum.  

 

where  and  are the stress intensity factors for mode I and II respectively,  is the 

crack orientation angle and  is the distance from the crack tip.   

Based on the maximization of Eq. (33) with respect to the crack orientation angle , the 

bifurcation angle  is obtained by: 
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Usually, the FCG rate   is represented by an empirical equation with parameters 

defined by direct fitting of crack size “a” vs. number of loading cycles “N” plots 

obtained from experimental data. This empirical equation defines a functional 

relationship between the fatigue crack growth rate and different parameters such as 

loading and material parameters, etc. Generally, this functional relationship can be 

written as follow: 
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The basic model of the fatigue crack growth rate was first proposed by Paris and 

Erdogan [38], who assumed that the FCG rate depends on the stress intensity factor range 

�K. The Paris-Erdogan equation corresponding to the mixed mode fatigue crack growth 

is written: 

 

with: 

 

where  is the crack length,  is the number of loading cycles,  and  are material 

parameters and  is the equivalent stress intensity factor (ie. equivalent mode I). 

This law has been extended to account for variety of parameters such as loading ratio 

R effect and the fracture toughness of the material d . In this context, Forman et al. 

[39] modified Eq. (36) and suggested the form: 

 

To predict the fatigue life of structures experiencing cyclic loading, the  number of 

loading cycles can be obtained by integrating the FCG rate (Eqs. 36 or 38): 

 

where  is the initial crack length and  the crack length at failure. In this work, the 

integration of the FCG rate is performed numerically and the failure is observed when the 
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crack length reaches the critical value . The steps used to perform mixed mode FCG 

analysis are summarized in figure 2. 
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The stochastic collocation method allows us to construct efficiently the PDF of the 

fatigue life and therefore to get the analytical expression of the stochastic response 

surface. These two advantages allow us to perform reliability analysis either by 

integration of the PDF or by coupling with FORM method [21]. In this subsection, we 

use the FORM technique to assess the reliability of the engineering structure under 

consideration.     

To carry out reliability analysis, one important step is to define the failure criterion 

that represents the frontier between the failure and the safety. According to the model 

developed in [40] and based on the Forman’s law the safety margin is expressed as:  

 

where  is the vector of random variables representing the uncertain parameters in the 

model,  and  are the initial and the critical crack sizes respectively and  denotes the 

number of loading cycles. 

One note that, the chosen safety margin is equivalent to the following failure criterion: 

 

where is the crack size after  cycles of loading. By expressing  using the Forman 

law we obtain the expression defined by Eq. (40). 

The corresponding failure probability  can be written as: 
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To compute this probability, different numerical techniques can be used. In this 

paper, we apply the First-Order Reliability Method (FORM) [21], which gives an 

estimation of the failure probability in terms of the reliability index , as proposed by 

Hasofer and Lind [41]. The FORM failure probability is given by: 

   

where � is  the cumulative probability function of standard normal distribution. 
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The stochastic collocation method is applied to fatigue crack growth problems with 

uncertain input variables. The mechanical response corresponds to fatigue life, which is 

represented by the number of load cycles at failure. The numerical applications focus on 

the effect of uncertainties on the mechanical response through the calculation of the 

statistical moments and the probability density function. The random variables are 

lognormally distributed and correlations are considered in the second example. The 

efficiency of the stochastic collocation method is demonstrated by comparison with 

Monte-Carlo simulations.   
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Based on the example given [42], we consider a modified four-point bending SEN 

specimen, in which a hole of radius  is introduced in the neighborhood of 

the initial crack. The location of the hole with respect to the initial crack is defined by the 

parameters Xc and Yc (Figure 3).  

Due to this geometrical defect, the stress state in the vicinity of the crack is modified and 

consequently the trajectory of the crack does not follow a straight line but curves toward 

the hole.  

We consider that the applied load amplitude denoted by P and the two parameters C 

and m of the fatigue crack growth law are the uncertain input parameters of the problem. 

They are modeled as independent lognormal random variables as given in Table 1. 

The crack growth is performed by using a constant increment length  and 

the FCG life is recorded when the crack length reaches a critical value denoted by 

. 
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In order to predict the fatigue crack path, a finite element model was developed using 

Cast3m software [44]. The analysis was performed under plane stress hypothesis and we 

use quadratic elements. As shown in figure 4, the mesh is refined near the crack tip and at 

the boundary of the hole. The initial mesh is composed by 674 elements with 1482 nodes.  
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In order to highlight the influence of the geometrical defect on the crack trajectory, 

we simulate the propagation of the crack for four different configurations of the hole 

location. Each one is defined by a combination of the parameters Xc and Yc (Table 2). 

Figure 5 shows the fatigue crack path obtained for each configuration of the 

geometrical defect. For the four studied configurations, the fatigue crack is attracted by 

the hole position.  
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Let us consider the convergence analysis of the first four statistical moments (mean, 

standard deviation, skewness and kurtosis) of the mechanical response with respect to the 

number of collocation points. To compute these quantities, the stochastic collocation 

method based on i th-order Lagrange polynomials was used. The number of collocation 

points has been varied from 2 to 8.  

Figure 6 highlights the statistical moments of the fatigue crack growth life as a 

function of the number of collocation points. One note that the obtained results concerns 

the first configuration as mentioned in table 2. It can be seen that the convergence of the 

mean and the standard deviation is ensured by 4 collocation points for each input random 

variable. However, it can be observed that the convergence of the skewness and the 

kurtosis is slower and requires 6 collocation points. We can conclude that, for high order 

statistical moments, more collocation points are needed to obtain accurate results. 

In order to evaluate the accuracy of the obtained results, Monte-Carlo simulations are 

directly applied to the finite element model using 104 samples, was taken as reference 
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solution. This limited number of samples used in the direct Monte-Carlo simulations is 

justified, because the FEM is time consuming. However, we have verified the 

convergence of the statistics. The results show that for the first statistical moments of the 

stochastic collocation method are close to those given by Monte-Carlo simulations, 

althought the number of samples is low.  

Table 3 provides a comparison of the number of FEM calls and the corresponding CPU 

times required by different computation methods to obtain the statistical moments.  

We can observe that the stochastic collocation methods L-2 to L-8 provides more and 

more accurate results, for all statistical moments, but far more FEM model calls are 

required too and CPU time become large. However, Monte-Carlo simulations are too 

time-consuming to be interesting.  
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We propose now to study the convergence of the PDF with respect to the number of 

collocation points. Figure 7 shows the corresponding plots obtained by 105 Monte-Carlo 

simulations on the stochastic response surface (Eq. 28). The same graph shows the PDF 

obtained by 104 Monte-Carlo simulations applied directly on the finite element model. 

We can see that starting from a number of collocation points equal to 5, the 

probability density function is already very close to the one given by the reference 

solution. Note that the fluctuations observed in the PDF obtained by the Monte-Carlo 

simulations directly applied to the mechanical model is due to the limited numbers of 

simulations employed.  
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Figure 8 shows the convergence of the four statistical moments of the fatigue life 

when increasing the coefficients of variation of the uncertain input parameters. We are 

interested in studying the effect of the variability level of the uncertain input parameters 

on the convergence of statistical moments of the fatigue life. For this purpose, we choose 

to increase the COV in the range [5%-20%].  

 

 

It can be seen that, for a given level of accuracy (which can be defined by the 

number of collocation points), an increase of the COV of the input parameters requires 

the use of more collocation points to achieve the convergence. The computation cost in 

term of number of numerical model calls increase with the COV of the input parameters 

and the order of the statistical moments.     
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In this example, we consider an engineering structure whose geometry is depicted on 

figure 9a. The structure contains a corner crack and is subjected to cyclic pressure with 

amplitude P applied as shown in figure 9a. The material of the structure is elastic with the 
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following mechanical properties; Young’s modulus , Poison’s ratio 

 and fracture toughness . 

In this application, we consider that the fracture toughness KIc, the applied load P 

and the two parameters C and m of FCG law are random. The parameters C and m 

correlated. The statistical characteristics of this random variables are listed in table 4. 
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As in the previous examples, in order to predict the fatigue crack growth life, a finite 

element model has been implemented using Cast3m software. The FCG analysis is 

performed using 6-node plane stress elements. The initial mesh is composed of 1010 

elements and 2125 nodes as presented in figure 9b. 

Before applying the stochastic collocation method, the finite element model should 

be validated for FCG analysis. For this purpose, the deterministic path was studied. The 

crack bifurcation angles  obtained at each step of crack growth were compared to the 

results of two other software (QUEBRA2D and FRANC2D) [43] (Table 5).  

The crack growth is performed by using a constant increment length 

 and the fatigue crack growth life was recorded when the crack length 

reaches a critical value denoted by . In this exemple, the fatigue crack 

growth rate has been represented by the Forman’s law (Eq. 38). As could be seen, the 

results obtained by the different software are in good agreement. Consequently, the finite 

element model is approved. 
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As for the previous example, we are interested in the convergence of the statistical 

moments of the fatigue life. Table 6 summarizes the obtained results. 

It can be seen, that stable convergence is achieved for the all the computed quantities. 

However, the convergence speed is influenced by the order of the statistical moment. As 

an example, the convergence of the standard deviation is achieved by 4 collocation points, 

while for the kurtosis the convergence was insured by 6 collocation points.  

Figure 10 compares the probability density functions obtained by the stochastic 

collocation method for different values of collocation points. It can be observed that 

convergence is achieved for only 5 collocation points for each input random variable.  
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In this subsection, we consider the same uncertain parameters as defined in table 4. 

In order to evaluate the efficiency of the proposed method to carry out reliability analysis, 

we choose to compute the failure probability  with respect to the target operation life 

and using the procedure presented in section 4.  

Firstly, we are interested in convergence of the failure probability with respect to the 

number of collocation points. The obtained results are given by table 7.  

It is showed that the convergence of the failure probability is well reached with a 

reasonable number of collocation points, six in this case which represents 64 FEM calls.   
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At convergence, the failure probability is estimated by , and the 

coordinates of the design point in the random physical space are , 

,  and .  

We propose now to evaluate the structural reliability with respect to the number of 

loading cycles . For this purpose, we consider a reference period of service life equal to 

cycles and to ensure the convergence we use 6 collocation points. 

Figure 11 highlights the evolution of the probability failure  as function of the 

number of loading cycles .   

It can be observed that the failure probability increases as the design life increases. If 

we consider a target failure probability , the damage accumulated during the 

FCG process is acceptable when the design life  is lower than  cycles.   
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This paper presented a stochastic collocation method applied to solve mixed mode 

fatigue crack growth problems with uncertain input parameters. The study aims to 

evaluate the effect of these uncertainties on the variability of the fatigue crack growth life. 

In this way, the first four statistical moments and the probability density function of the 

fatigue crack growth life are estimated. The obtained results were compared to those 

given by Monte-Carlo simulations and have shown that fast convergence can be achieved 

for the statistical moments and accurate PDF could be obtained. The presented results 

show that the stochastic collocation method is efficient to study stochastic problems: this 
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approach is easy to implement (non intrusive as Monte-Carlo simulations that is to say, 

based on a series of computations using the deterministic model as a black box) and not 

time consuming (as the number of input random variables is low). 

Throughout the applications performed in this study, the dimension of the random 

space was limited to four. However, for more input random variables, the cost of the 

method in terms of computation time grows rapidly. One of the significant advantages of 

the stochastic collocation method lies in the fact that a stochastic response surface is 

obtained, which allows to perform a reliability analysis by coupling with an optimization 

algorithm. In this context, a successful attempt was made in the last application to assess 

the structural reliability by coupling the stochastic collocation method with the First 

Order Reliability Method (FORM). However, additional efforts are needed to develop 

more effective structural reliability analysis. Since the proposed method allow us to 

obtain the PDF of the crack length at any time of the service life, it can be possible to 

integrate additional events like non-destructive inspection. 
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a  the crack size 

a0 the initial crack size 

ac the critical crack size 

�a the increment of the crack size 

� the crack orientation angle 

�0 the crack growth angle 

N the number of loading cycle 

Nc the fatigue life time (the number of loading cycle at failure) 

�N the increment of the number of loading cycle 

E the Young’s modulus of the material 

� the Poison’s ratio of the material 

C, m the parameters of the Paris law of the fatigue crack growth 

P the applied load 

R the load ratio 

G the strain energy release rate 

Wp the total potential energy 

 
the displacement vector field 

 the stress field 

 the strain field  

KI, KII the stress intensity factors with the fracture mode I, II 

KIeq the equivalent mode I stress intensity factors 

KIc the mode I fracture toughness of the material  
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X the vector of the random standard normal variables  

Y the vector of the random input variables 

Z the vector of the random output variables 

µY, µZ the mean value vector of the random vectors Y and Z, respectively  

CY, CZ  the covariance matrix of the random vectors Y and Z, respectively 

� the coefficient of correlation 

 the probability density function of the standard normal distribution 

� the cumulative probability function of the standard normal distribution 

 the space of all M-variate polynomials with real coefficients 

 the subspace of polynomials of order less or equal to p 

 the Lagrange polynomial basis 

 the Gauss-Hermite polynomial basis 

  the set of collocation points 

 the set of weight integration 

 
the symmetric and positive definite matrix  

 
the lower triangular matrix derived from Cholseky’s factorization 

 the stochastic response surface 

H the limit state function 

� the reliability index 

Pf the probability of failure 

FCG the Fatigue Crack Growth 

COV the Coefficient Of Variation 

PDF the Probability Density Function 
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MCS the Monte-Carlo Simulations method 

L-i  the stochastic collocation method using ith-order Lagrange polynomials 

FORM the First Order Reliability Method 

FEM the Finite Element Model 

G-� the G-Theta method 

 the mathematical expectation 

 the Euclidean norm in  

 the Kronecker operator 
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Figure 1: Flow-chart of the stochastic collocation method 
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Figure 2: Flow-chart of mixed mode fatigue crack growth analysis 
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Figure 3: Modified SEN specimen loaded in four-point bending   

 

 
Figure 4: Finite element mesh of the modified SEN specimen  

 

 
Figure 5: Predicted crack path for each configuration of the hole 
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Figure 6: Convergence of the statistical moments (Configuration 1) 

 

 
Figure 7: Fatigue life PDF (Configuration 1) 
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Figure 8: Convergence with respect to the COV of input variables 

 

 
Figure 9: a) Geometry of the structure, b) Finite element mesh 
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Figure 10: Fatigue life PDF 

 

 
Figure 11: Probability of failure  with time 
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Table 1: Statistical characteristics of the uncertain input parameters  

Variable Distribution type Mean COV (%) 
P (kN) lognormal 11 10 % 

 lognormal   
 lognormal   

 
 

Table 2: Values of the parameters Xc et Yc   

Configuration Xc Yc 
1 9.3 mm 14.8 mm 
2 9.8 mm 14 mm 
3 10.3 mm 14 mm 
4 11.8 mm 12.8 mm 

 
 

Table 3: Number of FEM calls and corresponding CPU times 

Computation method Number of FEM calls CPU  
L - 2 23 34’’23 
L - 3 33 1’89 
L - 4 43 4’52 
L - 5 53 8’96 
L - 6 63 15’82 
L - 7 73 25’99 
L - 8 83 40’21 
MCS 10000 23h47 

 
 

Table 4: Statistical characteristics of the uncertain input parameters 

Variable Distribution type Mean COV (%) 
KIc (ksi ) lognormal 70 20 % 

P  lognormal 10 15 % 

 lognormal  10 % 
 lognormal  5 % 
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Table 5: Crack growth angle obtained by Cast3m, QUEBRA2D and FRANC2D 

Crack bifurcation angle  
Step 

Cast3m QUEBRA2D [41] FRANC2D [41] 
1 29.740 29.940 31.400 
2 5.1603 5.0700 4.3700 
3 2.3712 2.2400 2.4500 
4 3.0068 2.9900 3.5800 
5 3.7203 3.7500 3.2300 
6 4.4512 4.8800 4.0400 
7 5.1171 4.9500 6.4300 

 
 

Table 6: Statistical moments of the fatigue life 

 
Statistical moments  

Computation 
Method Mean  Standard 

deviation Skewness Kurtosis 

Number of 
FE model 

calls 
L - 2 68506.817 59799.917 1.531 1.943 24 
L - 3 68970.415 66198.273 2.723 12.031 34 
L - 4 68977.331 66648.915 3.003 17.088 44 
L - 5 68977.456 66671.908 3.042 18.353 54 
L - 6 68977.482 66672.898 3.045 18.574 64 
L - 7 68977.454 66672.886 3.046 18.604 74 
L - 8 68977.429 66672.837 3.046 18.608 84 
MCS 68714.398 67035.901 3.247 23.737 10000 

 
 

Table 7: Convergence of the failure probability  

Number of 
collocation points 

Number of FEM 
calls 

Failure probability 
   

2 24 8.36708 10-2 
3 34 0.11930 
4 44 9.55324 10-2 
5 54 9.55663 10-2 
6 64 9.63491 10-2 
7 74 9.63491 10-2 
8 84 9.63491 10-2 

 
 


