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Multiple Comparisons Procedures
Howard J. Cabral, PhD, MPH

In biomedical research, a common question posed by
investigators is whether or not an outcome of interest

differs significantly between multiple independent groups of
subjects in the study sample. For example, in a randomized
clinical trial focusing on differences in a parameter of
cardiovascular health such as systolic blood pressure or heart
rate that is measured on a continuum, one might make the
comparison of those who received a placebo, those who
received a particular active drug, and those who received a
different active drug. Another example of a multiple group
comparison might arise in an observational study when
comparisons between categories of race or ethnicity are of
interest.

The statistical problem that arises from the use of multiple
comparisons tests is that any subsequent tests of hypotheses
will be performed on the outcome with the same data on
which the global test was performed. This can result in an
uncontrolled type I error rate (the rate of rejecting the null
hypothesis when it should not be rejected). These tests can
produce this statistical problem, which can be encountered in
analyses of multiple treatment or exposure groups, multiple
end points, or multiple interim analyses. This problem has
been addressed from a broad perspective.1 The present report,
however, will focus on the statistical analysis strategies used
when the global or omnibus test of differences on a contin-
uous outcome across the multiple groups has been performed
and statistical tests contrasting subgroups are then conducted.
It serves as a follow-up to an earlier article2 in the series of
statistical tutorials in Circulation that addressed the use of the
ANOVA in performing the global test of hypothesis for a
continuous outcome. These statistical tests are often referred
to as multiple comparisons procedures (MCPs). We will first
present a brief review of the statistical foundations of 1-factor
ANOVA and then will describe the 2 main types of MCPs
with specific reference to the more commonly used MCPs.
Finally, we will show a worked example of an analysis of
data from a study of heart size in animals exposed to different
conditions of physical exercise that will illustrate the use of
1-factor ANOVA with supplementary MCPs.

Review of 1-Factor ANOVA
The 1-factor ANOVA is used to compare mean values for a
continuous outcome of interest across 2 or more independent
groups, ie, groups in which subjects belong to only 1 group.

In this analysis, the outcome, or dependent variable, is
compared between the categories of the grouping, or inde-
pendent, variable, which is referred to as the “factor.” The
categories of the factor are referred to as “levels” (whether or
not they are ordered in some fashion). We will henceforth
refer to these categories as “groups.” In the population to
which statistical inference is to be made, the outcome is assumed
to be measured on a continuum and to follow a gaussian
distribution for each group, with statistically independent
values across individual subjects. Furthermore, the variances
of the outcome are assumed to be equal across the groups. For
k groups, the null hypothesis (H0) is that the population means
(�) of the outcome are the same for all of the groups. This is
commonly written in symbolic form as:

H0: �1��2�. . .��k

versus the alternative hypothesis, H1, that the k population
means are not equal. This null hypothesis is referred to as the
“global” hypothesis and its statistical testing as an “omnibus”
test. Note that if the null hypothesis is rejected in the face of
sufficient sample data, the question of where particular
differences were present between the mean values is not
addressed.

In situations such as tests of treatment efficacy in a
phase-III clinical trial in which a placebo control is used, for
example, it has been argued that rejection of the global null
hypothesis is required before one proceeds with additional
analyses to identify specific differences between subgroups
of the factor of interest.3 In contrast, it can also be argued that
with a limited number of a priori (ie, preplanned) multiple
comparisons (for example, in a confirmatory study), one
should not have to reject the global null hypothesis to perform
the preplanned MCPs.4 We will adopt the former strategy and
thus will next discuss the use of MCPs to answer the question
of the significance of differences between specific subgroups
assuming that the global test has been rejected at a given �,
or “significance,” level.

Multiple Comparisons Procedures
As noted above, the performance of multiple hypothesis tests
subsequent to the global test can result in an uncontrolled
type I error rate (the rate of rejecting the null hypothesis when
it should not be rejected). MCPs are applied when the global
null hypothesis of the study has been rejected at a given
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�-level either (1) in an a priori fashion when specific
preselected comparisons are of interest or (2) in a post hoc
fashion when the data suggest that specific groups be com-
pared statistically. Commonly, this �-level is set at 0.05 for
the experiment or study and is applied to the global test
whether or not a priori or post hoc MCPs are conducted.

In determining how to maintain the overall �-level, an
investigator must consider an MCP to reduce the �-level for
each MCP test or to apply the same �-level for each MCP test
as applied in the global test. In mathematical terms, each
additional statistical test performed in addition to the global
test in such a situation will actually increase the overall
�-level for the study. For example, with k groups and interest
in comparing each pair of the k mean values, k(k�1)/2
possible comparisons exist. If a separate �-level is applied
here to each test of hypothesis, the actual �-level for the set
of comparisons could be as large as �[k(k�1)/2]. Thus, when
k�4 and ��0.05 for each test, the overall �-level for the set
of tests could be as large as 0.30: ie, 0.05[4(3)/2]. Further-
more, if interest exists in comparisons beyond those between
pairs of means, the number of multiple comparisons tests will
increase. For example, in a study of 3 groups (A, B, and C),
one might have interest in the following comparisons: A
versus B, A versus C, B versus C, A and B versus C, A and
C versus B, and B and C versus A (6 total, 3 pairwise
comparisons). MCPs that maintain the overall �-level for the
set of tests are said to control the “experimentwise” error rate;
a related type, called “familywise” error rate control proce-
dures, also effectively reduce the �-level for each post hoc
test. We will simplify matters by referring to these 2 classes
of procedures as “experimentwise,” although technical dif-
ferences between the 2 must be acknowledged and have been
left to the reader to investigate independently.4

In contrast, MCPs that apply a separate �-level for each
test are called “comparisonwise” error control procedures. In
the case of the study with groups A, B, and C, the use of
comparisonwise error control after the global null hypothesis
has been rejected would entail the performance of 6 individ-
ual tests and application of an �-level of 0.05 for each test.
Statistically oriented overviews of MCPs,3 as well as general
biostatistical and research texts,5–8 cover in more detail the
distinction between these classes of MCPs and their relative
strengths and weaknesses. In addition, the use of MCPs in
additional analytical frameworks, such as multiway ANOVA
and repeated-measures analysis, is beyond the scope of this
article.

Experimentwise Error Control Procedures
As noted above, when interest exists in maintaining the
overall �-level for the experiment or study, an investigator
may choose an MCP that controls the experimentwise error.
Many MCPs have been developed to maintain this overall
�-level (the term “experiment” stems from the early devel-
opment of ANOVA in the context of experimental research).
Most statistical software packages that offer applications for
general linear models analyses such as ANOVA have also
implemented MCPs with an array of choices for these tests.
Among the more commonly used procedures in this class are
the Tukey (John W. Tukey, PhD, unpublished data, 1953),

Dunnett,9 Scheffé,10 and Bonferroni (Dunn)11 tests. The
options available for MCPs vary by software package. Inves-
tigators should consider their scientific question when choos-
ing an MCP and not limit their choice by the availability of
MCPs in the statistical software used for their global test.

The Tukey test is appropriate for the comparison of pairs of
group means; originally developed for equal sample sizes per
group, a modified version accommodates unequal sample
sizes. A Dunnett test is applied in situations in which
contrasts are limited to comparisons with a control group and
not, for example, between the means of active treatment
groups. The Scheffé test is applicable for more general
comparisons than the comparison of pairs of group means and
is more appropriate than the Tukey test if sample sizes per
group differ markedly. It is considered to be more conserva-
tive than the Tukey test when pairs of group means are being
compared. The Scheffé test can be computed for a specific
contrast of group means by first determining the critical value
of the F statistic for the �-level of interest, with k�1 degrees
of freedom (df) for the numerator and N�-k degrees of
freedom for the denominator when k groups are present and
N subjects overall. This F value is then multiplied by k�1 to
yield a new critical F value for the multiple comparisons
contrast.

The Bonferroni (Dunn) procedure takes into account the
number of comparisons to be made and is more conservative
(less likely to find a significant difference) than the Tukey or
Scheffé test in comparisons of pairs of group means, and it is
considered to be the most conservative option among MCPs
in most situations. It can be applied to general hypothesis
tests in addition to ANOVA. The Bonferroni (Dunn) proce-
dure is implemented by computing a new �-level for each
multiple comparisons test based only on the overall �-level
for the study and the number of comparisons to be made. In
this approach, the new �, �", is equal to �/C, where C is the
number of post hoc tests to be performed. Thus, in the
previously discussed example with 3 groups, A, B, and C, and
interest in all possible comparisons, the new alpha, �", would
be equal to �/6. Modifications have been made to the
Bonferroni procedure with the goal of improving statistical
power and include the Holm12 and Hochberg13,14 procedures
among the more prominent methods.

Comparisonwise Error Control Procedures
When an investigator has a limited number of comparisons to
be made after the rejection of the global null hypothesis,
especially if these were prespecified before this test was
conducted, it may be of interest to employ an MCP that
controls the comparisonwise error. As noted previously,
MCPs that control the comparisonwise error rate typically use
the same �-level for each test that is applied in the test of the
global null hypothesis for the study. Thus, the likelihood of
falsely rejecting each null hypothesis increases with addi-
tional tests. They also, however, provide the benefit to the
investigator of being more powerful, ie, more likely to reject
the null hypothesis of each test when it should be rejected.
Examples of such procedures include the application of
Fisher’s LSD (least significant difference) test and linear
contrasts.6 In the LSD test, a variant of the standard 2-sample
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t test is used in which the within-subjects mean square from
the global test on the full data set is used as an estimate of the
pooled variance, as opposed to using the variance estimates
only from the 2 groups being compared. Linear contrasts can
be used for more general comparisons, for example, when a
set of groups is to be compared with another set of groups or
when the study groups represent different dose levels of a
treatment or exposure.

Worked Example
We now present an example of an analysis of data from a
study of heart size in mice exposed to different conditions of
physical exercise15 that will illustrate the use of 1-factor
ANOVA with supplementary MCPs. The design used 2
randomly assigned factors, long-term exercise versus no
exercise (control), and exercise duration at 7 different ages
after baseline. The sample included 30 mice in total, 21
assigned to the 7 different durations of long-term exercise
(swimming) and 9 assigned to 3 durations in the control
group (8, 12, and 13 weeks of age). The heart weight–to–
body weight ratio at the time of euthanasia was examined as
the outcome of interest in this study. We will limit our
analyses here to the long-term exercise group to illustrate the
use of 1-factor ANOVA. In Table 1, we show the data for this
sample.

For these 21 animals, the global F test of differences in
mean heart weight–to–body weight ratio for the 1-factor
ANOVA was 20.59 (numerator df�6, denominator df�14;
R2�0.90) with P�0.0001. Thus, we reject the global null
hypothesis of no difference in population mean heart weight–
to–body weight ratio between groups using ��0.05 and are
next interested in where significant differences can be found

between subgroups. Although one should in practice restrict
the choice of multiple comparisons to those that are substan-
tively meaningful, we will assume for the purpose of illus-
tration in this case that all pairs of means are of interest and
will examine results of contrasts between pairs of means
using MCPs among those discussed earlier.

In Table 2, we present the means and SDs for the outcome
of interest, heart weight–to–body weight ratio, together with
a summary of the results of the application of 4 procedures
that control the experimentwise type I error rate (Tukey test,
Scheffé test, and the Bonferroni [Dunn] procedure) and one
that controls the comparisonwise type I error rate (Fisher
LSD test). To aid in the interpretation of differences between
groups, means have been arranged so that the highest is
presented at the top of the table and the lowest at the bottom
the table (higher values indicating greater cardiac hypertro-
phy as a result of exercise).

In Table 2, we adopt a system used in the statistical
software, SAS,16 to identify statistically significant differ-
ences between groups. We apply a level of ��0.05 to denote
statistical significance. In this system, means of groups that
share a letter are not significantly different, whereas the
means of any groups that do not share a letter are significantly
different. For example, for the results of the Tukey test, the “3
weeks” group is significantly different from all groups except
“4 weeks” and “2 weeks,” because they all share the letter
“A” in the display. Likewise, the “10 minutes” group is
significantly different from all groups except the “2.5 days”
group, because it shares the letter “D” only with that group.

In the table overall, we see a similar set of results for
comparisons of all pairs of means among the procedures that
control the experimentwise error rate. These tests, however,
are rejected at the 0.05 level less frequently than the Fisher’s
LSD test, which is expected given that the LSD test controls
the comparisonwise error rate and should be more powerful.
We note, however, that the actual type I error rate for the set
of all pairwise comparisons here could be as large as
0.05[(7�6)/2)]�1.00 (k�7). In interpreting these results,
however, one should keep in mind that the results of hypoth-
esis tests are highly dependent on sample size, and only 3
mice in each of the 7 groups were examined in this sample.
Greater distinction between the findings of these procedures
may be observed in larger samples.

Table 1. Heart Weight/Body Weight Ratio by Exercise-Duration
Group

Exercise Duration

10 min 2.5 d 1 wk 2 wk 3 wk 4 wk
4 wk,

1-wk Rest

4.29 4.49 5.38 5.44 5.50 5.54 4.66

4.43 4.54 5.18 5.59 6.47 5.70 4.90

4.17 4.65 4.83 5.64 6.03 5.47 4.91

Values are heart weight/body weight ratios.

Table 2. Means and SDs of Heart Weight/Body Weight Ratio With Results of Multiple Comparisons Procedures (n�21 Mice, 3 per
Group)

Multiple Comparisons Procedure

Exercise-Duration Group Mean (SD) Tukey Scheffé Bonferroni (Dunn) Fisher LSD

3 wk 6.00 (0.49) A A A A

4 wk 5.57 (0.12) A B A B A B B

2 wk 5.56 (0.10) A B A B A B B

1 wk 5.13 (0.28) B C B C B C C

4 wk, 1 wk of rest 4.82 (0.14) B C B C D C D C D

2.5 d 4.56 (0.08) C D C D C D D E

10 min 4.30 (0.13) D D D E

Means are sorted from largest to smallest, and means of groups that do not share a letter are significantly different.
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Summary
We have presented information that should be helpful to
investigators in biomedical research who have an interest in
addressing study questions in which multiple comparisons of
study groups are appropriate. We have reviewed the statistical
framework for 1-factor ANOVA and have discussed how
multiple comparisons after the rejection of the global null
hypothesis are conceptually linked to the global test. We have
described selected, commonly applied MCPs and have uti-
lized them in the analysis of data from an animal study.

Several of the procedures discussed here can be applied in
common statistical software in the context of ANCOVA
models when variables are present that need to be controlled
statistically to obtain valid inferences about differences be-
tween treatment or exposure groups (eg, Bonferroni, Scheffé,
Tukey, and Dunnett tests in SAS). We have not covered this
situation and leave this to the reader to investigate within
their statistical software of choice. Researchers without ex-
tensive statistical analysis experience should be able to use
this information to work with a professional statistician to
better design and analyze data from studies in which multiple
comparisons are of interest.

Disclosures
None.
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