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Abstract
The physical principles and approximations employed in Monte Carlo simulations of coupled
electron–photon transport are reviewed. After a brief analysis of the assumptions underlying
the trajectory picture used to generate random particle histories, we concentrate on the physics
of the various interaction processes of photons and electrons. For each of these processes we
describe the theoretical models and approximations that lead to the differential cross sections
employed in general-purpose Monte Carlo codes. References to relevant publications and data
resources are also provided.

1. Introduction

In the last few decades, with the availability of fast
desktop computers and affordable memory storage, Monte
Carlo simulation has become an essential tool in radiation
physics. Because of the random nature of the interactions
of radiation with matter, the evolution of electron–photon
showers is a process particularly amenable to Monte Carlo
simulation. Each interaction mechanism is characterized
by a corresponding differential cross section (DCS), which
determines the probability distribution of the various quantities
relevant to that interaction (energy transfer, angular deflection
of the projectile, energy and direction of generated secondary
particles, if any, etc). Once the DCSs of the various interaction
processes have been specified, Monte Carlo simulation
reduces to routine numerical random sampling and particle
tracking. However, even the most reliable DCSs available are
obtained from approximate theoretical calculations and from
experimental information and, consequently, they are affected
by intrinsic uncertainties.

A number of Monte Carlo codes for the simulation of
coupled electron–photon transport are available. Some of them
(e.g. ETRAN (Berger and Seltzer 1988), ITS3 (Halbleib et al
1992), EGS4 (Nelson et al 1985), PENELOPE (Baró et al 1995,
Salvat et al 2006), EGSnrc (Kawrakow and Rogers 2001), EGS5

(Hirayama et al 2006)) track only photons and electrons (and
positrons). Other codes (most notably MCNP (X-5 Monte Carlo
Team 2003), GEANT4 (Agostinelli et al 2003, Allison et al 2006)

and FLUKA (Ferrari et al 2005)) allow tracking also neutrons and
heavy charged particles.

In all existing codes, simulation of photon histories is
performed by using a detailed (analogue) scheme, in which
all interactions undergone by the transported photons are
simulated in chronological succession. This strategy is
applicable to radiations of any kind, whenever the number of
interactions in each history is small or moderate. Indeed, a
photon history terminates after a single photoelectric or pair-
production interaction, or after a few Compton interactions
(say, of the order of 10). With present-day computational
facilities, detailed simulation of photon transport is a simple
task.

Simulation of electron and positron transport is much more
difficult than that of photon transport. The main reason is that
the average energy loss of an electron in a single interaction
is very small (of the order of a few tens of eV) and, therefore,
high-energy electrons suffer a large number of collisions
before being effectively slowed down to thermal energies. For
high-energy electrons and positrons, most Monte Carlo codes
have recourse to multiple-scattering theories which allow the
simulation of the global effect of a large number of events
in a track segment of a given length. Different schemes for
condensed Monte Carlo simulation of high-energy charged
particles are analysed in the seminal paper of Berger (1963).
It should be noted that the multiple-scattering theories used
in condensed simulations are only approximate (Berger and
Wang 1988, Kawrakow and Bielajew 1998) and may lead
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to systematic distortions of the results when the number of
interactions undergone by the transported particles is small
(plural scattering), as occurs, for example, in transmission
through thin layers.

The aim of this paper is to describe the physical interaction
models adopted in general-purpose Monte Carlo codes for
the simulation of coupled electron–photon transport, and how
the associated DCSs are derived or calculated. Emphasis is
laid on the approximations underlying the theoretical models,
and their limits of validity. Some of these approximations
frequently pass unnoticed to the code users, not only because
of the complexity of the theory, but also because code manuals
usually provide only a superficial description of the interaction
models employed. Although the list of references is not
exhaustive, it includes the most relevant sources of numerical
data used in Monte Carlo codes, as well as original publications
and reviews on various aspects of radiation interactions that
are of importance for transport simulation. A comparative
analysis of sampling methods, multiple-scattering theories and
electron/positron tracking algorithms (the so-called electron-
transport mechanics) in the various codes is beyond the scope
of this paper. The interested reader can find details in the user
manuals of the codes, as well as in the publications cited above.

We limit our considerations to radiations with energies
(kinetic energies in the case of electrons and positrons)
in the range from about 1 keV up to ∼1 GeV. Simulations
within this energy interval find applications in dosimetry,
radiation shielding, medical diagnostic and radiotherapy,
electron microscopy, x-ray fluorescence, detector design and
characterization and other fields. At higher energies, physical
processes not included in the theoretical formalism may take
place with appreciable probabilities, e.g. in collisions of high-
energy electrons with atoms, electron–positron pairs can be
generated. At lower energies, interactions are affected by
molecular binding and aggregation effects, which cannot
be fully accounted for with the generic interaction models
implemented in general-purpose codes. Special codes for the
simulation of low-energy electron and positron transport in
specific materials have been developed, mostly for applications
in electron surface spectroscopies (Shimizu and Ding 1992,
Jensen and Walker 1993, Fernández-Varea et al 1996) and
microdosimetry (Nikjoo et al 2006).

The paper is organized as follows. Section 2 is devoted to
fundamental approximations adopted in Monte Carlo transport
simulation, including simplifications in the modelling of
interactions and in the description of atomic structure. In
section 3 we describe interaction models and data resources
employed in general-purpose Monte Carlo codes to simulate
photon interactions. Electron and positron collisions are
considered in section 4. The relaxation of ions resulting from
photon interactions or electron/positron impact is considered
in section 5, which is followed by some concluding comments.
The appendix contains a brief description of the Dirac equation
and the relativistic distorted plane waves, which are used in
most of the theoretical calculations that are referred to in the
text.

2. General considerations

It is well known that the main advantages of Monte
Carlo simulation are the ability to incorporate sophisticated
interaction models and the ease of handling arbitrary
geometries. The fact that these advantages stem from a
number of drastic simplifications is not so common knowledge.
Some of these simplifications set limits on the complexity
of the physical interaction models that can be implemented
in simulation codes and also on the energy range where
simulation results are faithful. First of all, it is assumed
that each material medium is homogeneous, isotropic and
amorphous, with defined composition and density. The
atoms or molecules in the medium are assumed to be
randomly distributed with uniform density, i.e. in the case of
solids, crystalline ordering is ignored. Moreover, molecular
aggregation effects are disregarded, that is, molecules are
considered as sets of individual atoms with uncorrelated
positions. As a result, all material media are treated as if
they were admixtures of atomic gases, with the same atomic
concentrations as in the actual media. Energetic electrons
or photons penetrating such a ‘random scattering medium’
are assumed to interact only with individual atoms, that is,
the physics of the interactions is contained in the DCSs of
atoms. In the case of compounds, this scheme is equivalent
to using Bragg’s additivity: the molecular cross section is set
equal to the sum of the cross sections of the atoms that make
up a molecule. Although molecular cross sections could in
principle be used, at least for important specific materials
(for instance water and air), such a sophistication is seldom
implemented in high-energy codes. However, in the particular
case of inelastic collisions of charged particles, molecular
binding and aggregation effects are partially accounted for by
using empirical values of the mean excitation energy of the
considered materials, thus ensuring the correct high-energy
collision stopping power (see section 4.2).

A basic assumption in both Monte Carlo simulation
and elementary transport theory is that forces between
beam particles are negligible. Consequently, these particles
propagate independently of each other. In the Monte Carlo
simulation, the transported (primary and secondary) particles
follow straight trajectories between consecutive interactions.
That is, wave-like characteristics are disregarded. This
trajectory picture is justified only for high-energy radiation,
whose wavelengths are much smaller than the average
separation between the atoms in the material. When the
wavelength is comparable to the interatomic distances,
interference effects, resulting from the coherent superposition
of waves scattered by different atoms, may become important
and invalidate the trajectory picture. Thus, conventional Monte
Carlo codes do not account for wave effects such as Bragg
diffraction and channelling of charged particles in crystals.

In principle, individual interaction events should be
simulated by random sampling from the associated DCSs.
Very frequently, the DCS depends on several correlated
variables (e.g. the energy loss and the scattering angle in the
case of inelastic collisions of electrons) and, moreover, the
DCSs may vary rapidly with the energy of the projectile.
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Such DCSs are not practicable for Monte Carlo simulation,
not only because of the large memory required to store the
numerical DCSs (a three-dimensional table in the case of
inelastic collisions) but also because random sampling from
multivariate distributions is far more complicated, and slower,
than from univariate distributions. A frequent practice is to
disregard (or alter artificially) correlations between variables,
normally by sampling the most relevant quantity from
its marginal probability distribution and using approximate
probability distributions for the other variables. The simulation
of pair-production events (see section 3.4) provides a good
example of this practical procedure. Approximations of this
kind are employed in virtually all Monte Carlo codes and are
expected to be harmless in the majority of applications, but
they can cause visible distortions of the simulation results in
cases where particles undergo a small number of interactions
(e.g. in transmission through thin foils).

Owing to the wide energy range of interest, interactions
must be treated using relativistic quantum mechanics. For
electrons and positrons (mass me, charge ±e) with kinetic
energy E and momentum p = h̄k (h̄ is the reduced Planck
constant), we will frequently use the quantities

γ ≡ E + mec
2

mec2
=

√
1

1 − β2
and

β = v

c
=

√
E(E + 2mec2)

(E + mec2)2
=

√
γ 2 − 1

γ 2
, (1)

which are, respectively, the total energy in units of the rest
energy mec

2 and the velocity in units of the speed of light c.
The wave number and wavelength of the electron are

k = (ch̄)−1
√

E(E + 2mec2) and

λ = 2π

k
= 1.2398 nm√

(E/keV)[(E/keV) + 1022]
, (2)

respectively. The corresponding quantities for a photon of
energy E are

k = (ch̄)−1E and λ = 1.2398 nm

E/keV
. (3)

2.1. Atomic structure

In the following we will consider interactions with neutral
atoms of the element of atomic number Z. High-energy
photons and charged particles interact with atoms primarily
by producing excitations of the electron cloud. Although
excitations of nuclei involve, on average, large energy transfers
and may lead to nuclear activation, they have a small impact
on the transport of photons and electrons and are often
disregarded. Therefore, the nucleus can be considered as
a passive distribution of electric charge. The finite size
of the nucleus has a slight effect on the binding energies
and wave functions of the inner shells of heavy atoms,
and also on the DCS for elastic scattering of high-energy
electrons. These effects can be accounted for by considering
the distribution ρnuc(r) of protons (or electric charge in units

of e) in the nucleus, which is nearly spherically symmetric.
The associated electrostatic potential is

ϕnuc(r) = e

∫
ρnuc(r

′)
|r − r′| dr′ = 4πe

r

∫ r

0
ρnuc(r

′)r ′2 dr ′

+ 4πe

∫ ∞

r

ρnuc(r
′)r ′ dr ′. (4)

For semi-quantitative calculations, we can describe the nucleus
as a uniformly charged sphere of radius

Rnuc = 1.07 × 10−15A1/3 m, (5)

where A is the mass number. More realistic nuclear
charge distributions are determined from electron-scattering
experiments (Hofstadter 1956) or obtained from theoretical
nuclear-structure models (see, for example, Richter and
Brown 2003).

Because the mass of the target atom is much larger than the
electron mass, in radiation transport theory and simulations the
nucleus is normally regarded as having an infinite mass. This
assumption implies that the nucleus can absorb any amount
of recoil momentum without absorbing energy, a feature that
simplifies the calculation of interaction cross sections.

When the energy of the radiation is higher than about
10 keV, interaction properties are not very sensitive to the
fine details of atomic structure. As a consequence, it is
sufficient to use relatively simple atomic models. In practice,
simplifications in the description of atomic structure could
be compensated a posteriori using empirical information. It
should also be borne in mind that, although most theoretical
calculations are based on free-atom models, material media
are normally in condensed states. When aggregation effects
are appreciable, they need to be modelled independently.

The state of the art in atomic-structure calculations is the
self-consistent Dirac–Fock method (see, for example, Grant
1970, Desclaux 1975). The essential feature of the underlying
physical picture is that electrons in different orbitals ‘feel’
different, non-local potentials. However, many calculations of
interactions of high-energy radiation with atoms are based on
simpler independent-particle approximations (IPA), in which
atomic electrons are assumed to move independently in a
common local central-field potential V (r). The use of an
IPA simplifies the calculation of atomic wave functions,
ensures their orthogonality and, as a consequence, facilitates
the evaluation of transition matrix elements, which satisfy
strong selection rules (e.g., only single-electron transitions are
allowed when interactions of atoms with radiation are treated as
first-order perturbations). Without these simplifications, most
calculations would be virtually impossible.

In the IPA, atomic wave functions are represented by
single Slater determinants,

� ≡ 1√
Z!

∣∣∣∣∣∣∣∣
ψ1(r1) . . . ψ1(rZ)

...
. . .

...

ψZ(r1) . . . ψZ(rZ)

∣∣∣∣∣∣∣∣ , (6)

where the one-electron orbitals ψi(r) are solutions of the Dirac
equation

[cα̃ · p + (β̃ − 1)mec
2 + V (r)]ψi(r) = Eiψi(r). (7)
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The (bound) orbitals ψi(r) are of the form given by
equation (A.4), that is, they are identified by the quantum
numbers n, 	 and j (or κ) and m. The energy of each atomic
state � is determined by the electronic configuration, that
is, by the set of single-electron levels n	j that are occupied
and the corresponding occupancy numbers q (�2j + 1). A
configuration

(n1	1j1)
q1 , (n2	2j2)

q2 , . . . (8)

consists of shells n1	1j1, n2	2j2, . . . with q1, q2, . . . electrons,
respectively. The electron density corresponding to the state
� is

ρ(r) ≡
Z∑

i=1

|ψi(r)|2 = 1

4πr2

∑
a

qa[P 2
naκa

(r) + Q2
naκa

(r)],

(9)

where the last summation runs over the occupied shells,
and Pnaκa

(r) and Qnaκa
(r) are the radial wave functions of

the orbitals in shell na	aja . In the case of closed-shell
configurations (with qa = 2ja + 1), the electron density
and the electrostatic potential are spherically symmetric and,
consequently, the central-field approximation is expected to be
fairly accurate. Note that for open shells (with qa < 2ja + 1)
the electron density, which is not spherical, is replaced by a
spherical average. The electrostatic potential of the electron
cloud is

ϕel(r) = −e

∫
ρ(r ′)

|r − r′| dr′ = −4πe

r

∫ r

0
ρ(r ′)r ′2 dr ′

− 4πe

∫ ∞

r

ρ(r ′)r ′ dr ′. (10)

Many calculations of radiation interactions utilize the
Dirac–Hartree–Fock–Slater (DHFS) self-consistent potential.
This potential is given by

VDHFS(r) = Vnuc(r) + Vel(r) + Vex(r), (11)

where Vnuc(r) = −eϕnuc(r) and Vel(r) = −eϕel(r) are
the electrostatic interaction energies of the electron with the
nucleus and the electron cloud, respectively, and

Vex(r) = −e2 3

2

(
3

π
ρ(r)

)1/3

(12)

is Slater’s (1951) local approximation to the exchange
potential, which results from assuming that the exchange
charge distribution is the same as if the electron were immersed
in a homogeneous electron gas with density equal to the local
electron density ρ(r). This simplification is not accurate at
large radii, where ρ(r) is very small, and the potential given
by equation (11) incorrectly vanishes at large distances. To get
a potential with the correct asymptotic behaviour (= −e2/r)
it is customary to introduce an ad hoc correction, known as the
Latter tail (Latter 1955), which consists of replacing VDHFS(r)

by −e2/r at large radii, where expression (11) gives values
larger than −e2/r . The DHFS potential is calculated self-
consistently, usually for the ground-state configuration of the
atom. A computer program that calculates DHFS orbitals,

Figure 1. Shell ionization energies of neutral atoms, Unκ , in electron
volts. Symbols represent the ionization energies recommended by
Carlson (1975), from a combination of experimental data and
theoretical calculations. Lines indicate the one-electron energy
levels of the DHFS potential, with reversed sign, −Enκ .

energy eigenvalues and electronic densities has been written
by Liberman et al (1971).

It is worth mentioning that the DHFS model implies a
number of approximations. First, the non-local exchange
interaction in the Dirac–Fock equations is approximated by
Slater’s local potential. Moreover, the use of a single
Slater determinant as the atomic wave function amounts to
neglecting electron correlations other than those implied by
the antisymmetry of the wave function. Nevertheless, DHFS
electron densities do not differ appreciably from Dirac–Fock
densities. A peculiarity of the DHFS model, with Latter’s
tail correction, is that experimental ionization energies Unκ

of inner shells are very close to the negative eigenvalues of
equation (7), Unκ ≈ −Enκ (see figure 1). These features
make the DHFS model well suited for high-energy radiation
interaction calculations.

3. Photon interactions

In the considered energy range, the dominant interactions of
photons with atoms are photoelectric absorption, Rayleigh
(coherent) scattering, Compton (incoherent) scattering
and electron–positron pair production (Hubbell 1999).
Photonuclear absorption occurs with appreciable probability
only for photons with energies between ∼5 MeV and 50 MeV
(see, for example, Hubbell et al 1980, and references therein);
the corresponding total cross section has a broad peak (the
so-called giant resonance) with a maximum value smaller than
the total cross section for ‘electronic interactions’ by a factor of
the order of 10. As indicated above, photonuclear absorption
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has a small effect on transport calculations and it may be
disregarded in the majority of practical applications.

In each interaction, the primary photon is absorbed. In
the case of scattering, coherent or incoherent, a secondary
photon is re-emitted. Although the net effect of a scattering
event is analogous to a change in the direction and energy
of the photon, this change occurs through absorption and
re-emission of quanta. This behaviour is at variance with
that of charged particles, which may lose only part of their
energy in each interaction (see section 4). The most accurate
description of photon interactions is obtained within the
framework of quantum electrodynamics. Nevertheless, for
radiations with energies of less than about 20 keV, conventional
perturbation theory and non-relativistic quantum mechanics
(see, for example, Baym 1974) also yield realistic results.

Electromagnetic radiation is treated by using the
formalism of second quantification. Since calculations are
performed in a reference frame where the atom (and the
material medium) is at rest, it is convenient to use the Coulomb
gauge. In this gauge, and in the Gaussian system of units, the
electromagnetic field in vacuum is represented by the vector
potential operator (Baym 1974, Sakurai 1967)

A(r, t) =
∑
k,α

√
2πh̄c2

ω
{akα ε̂α exp[i(k · r − ωt)]

+ a
†
kα ε̂∗

α exp[−i(k · r − ωt)]}, (13)

where a
†
kα and akα are creation and annihilation operators,

respectively, and the sum is over wave vectors k and over
two orthogonal linear polarization states ε̂α (α = 1, 2).
The angular frequency ω, wave number k and energy E of
each mode kα are related through E = h̄ω = ch̄k. The
constant under the square root in equation (13) corresponds
to monochromatic plane waves obeying periodic boundary
conditions on a cubic box with edges of unit length.

As mentioned above, atomic states are usually described
by means of an IPA, that is, as single Slater determinants,
equation (6). Cross sections are calculated by treating the
interaction between the electromagnetic field and the target
atom as a perturbation, to lowest non-vanishing perturbation
order. Generally, when the final state contains free particles
(photons or electrons), the transition rate is calculated using
Fermi’s golden rule (see, for example, Sakurai 1967), and
the DCS is obtained as the ratio of that transition rate to the
fluence rate of incident photons. The calculation involves
matrix elements of the (dimensionless) operator

Mkα ≡ ε̂α ·
Z∑

i=1

α̃i exp(ik · ri ), (14)

where the summation is over the Z atomic electrons. This
operator describes absorption of a kα photon by the atom; its
Hermitian conjugate M

†
kα describes the emission of a photon.

Since these are symmetric one-body operators, their matrix
elements between Slater determinants, 〈�B |Mkα|�A〉, can be
reduced to a sum of matrix elements of a one-electron operator.
This is accomplished by straight application of the Slater–
Condon rules (Condon 1930). When �A and �B differ in more

than one orbital, these rules imply that 〈�B |Mkα|�A〉 = 0 (as
a consequence of the orthogonality of one-electron orbitals).
Therefore, the only possible transitions are between states
whose Slater determinants differ in just one orbital, i.e. single-
electron transitions. Let ψa and ψb denote the differing orbitals
in �A and �B , respectively. We have

〈�B |Mkα|�A〉 =
〈
�B

∣∣∣∣∣ε̂α ·
Z∑

i=1

α̃i exp(ik · ri )

∣∣∣∣∣�A

〉
= 〈ψb|ε̂α · α̃ exp(ik · r)|ψa〉
≡ (Mkα)ba. (15)

We are thus led to the so-called one-active-electron
approximation, which consists of considering only the
excitations of a single electron from a bound orbital ψa to
an unoccupied (bound or free) orbital ψb, whereas the other
atomic electrons behave as mere spectators and their orbitals
remain frozen in the course of the interaction.

Elementary quantum electrodynamics deals with free
electrons and positrons described in the second-quantification
formalism, with states of these particles represented as
Dirac plane waves. More elaborate quantum electrodynamics
calculations of interactions with atoms are performed using the
so-called Furry picture, in which the interaction of the electrons
with the atomic field, represented by a certain potential V (r),
is incorporated in the unperturbed Hamiltonian. That is,
electron wave functions are solutions of the one-electron Dirac
equation (7), which can be solved numerically to very high
accuracy, and only a fraction of the interaction needs to be
treated (approximately) as a perturbation. With a weaker
interaction, calculations in the lowest non-vanishing order of
perturbation theory should yield more accurate results. In the
theoretical interaction models presented below, the states of
free electrons or positrons are distorted plane waves, that is,
exact solutions of the Dirac equation for the potential V (r)

which, at large radial distances, behave as a plane wave plus a
spherical (incoming or outgoing) wave (see the appendix).

3.1. Photoelectric effect

In the photoelectric effect, a photon in the mode kα, with
energy E, is absorbed and an electron makes a transition from a
bound orbital ψa of energy Ea to a final free orbital with kinetic
energy Eb = Ea + E and momentum h̄kb. The elementary
theory of the atomic photoeffect has been reviewed by Pratt
et al (1973). The interaction between the active electron and
the electromagnetic field is treated in first-order perturbation
theory, and the wave function of the ejected photoelectron is
represented as a distorted plane wave with incoming spherical
distortion, ψb = ψ

(−)

kbmSb
, equation (A.18).

The partial photoelectric cross section of a closed electron
shell na	aja is obtained by summing the contributions of the
2ja + 1 orbitals of that shell. It is usually assumed that
the incident photon beam is unpolarized, and that the spin of
the photoelectron is not observed. With these assumptions, the
partial DCS for photoionization of the active shell is a function
of only the direction k̂b of the photoelectron. It is given by

dσph,a

dk̂b

= (2π)2 e2h̄c
1

E
kb

Eb + mec
2

c2h̄2

∑′|(Mkα)ba|2, (16)
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where the primed summation sign denotes a sum over the
orbitals in the shell and over the spin states of the emerging
electron, as well as an average over polarization directions
of the incident photon. The global factor in this equation
depends on the adopted normalization for free-state electron
wave functions, which determines the ‘number of states per
unit final energy’ that occurs in Fermi’s golden rule. Here, and
in the following sections, we assume the normalization given
by equation (A.15). The numerical calculation of the DCS is
performed by making a multipole expansion of the radiation
field and using the partial-wave expansion in equation (A.13)
of the distorted plane wave of the electron (Scofield 1989).

The shell cross section, σph,a , is obtained by integrating
the DCS given by equation (16) over photoelectron directions
(and averaging over occupied orbitals in the case of open
shells). This integration (and average) simplifies the whole
calculation, since angular integrals are evaluated analytically
and only radial integrals have to be calculated numerically
(Pratt et al 1973). The total atomic cross section is the
sum of contributions of the various shells of the ground-state
configuration. Calculations of the photoeffect for electrons in
a pure Coulomb field (i.e. using the potential V (r) = −Ze2/r)
were reported by Pratt et al (1964) and by Alling and Johnson
(1965). Calculations for screened Coulomb fields, typically
the DHFS field, are described by Pratt et al (1973) and by
Scofield (1989).

Since the DCS given by equation (16) cannot be
expressed in analytical form, a common practice in Monte
Carlo simulations is to sample the direction of the emitted
photoelectron from the approximate DCS obtained by Sauter
(1931). This DCS describes the ionization of the ground
state (1s1/2) of hydrogenic ions, and is obtained in the plane-
wave Born approximation (i.e. with the final state of the
photoelectron ψb represented by a plane wave). The Sauter
DCS (per electron) is given by

dσph

dk̂b

= α4r2
e

(
Zmec

2

E

)5
β3

γ

sin2 θe

(1 − β cos θe)4

×
[

1 +
1

2
γ (γ − 1)(γ − 2)(1 − β cos θe)

]
, (17)

where θe is the angle between the directions of the
photoelectron and the incident photon, α = e2/(h̄c) is the fine-
structure constant, re = e2/(mec

2) is the classical electron
radius and the quantities γ and β are the reduced energy
and velocity of the emitted photoelectron, equations (1). It
should be noted that this DCS is obtained by neglecting the
distortion that the atomic field causes on the wave function
of the emerging electron. The difference between the Sauter
angular distribution and the exact distribution (for a pure
Coulomb field) has been analysed by Pratt et al (1964). These
authors found that the distributions agree closely for atomic
numbers up to ∼50, but the differences become significant for
higher atomic numbers (∼25% for Z = 84 and E = 662 keV)
and decrease when the photon energy increases.

In principle, Sauter’s angular distribution applies only to
the ionisation of the K shell of not too heavy atoms by high-
energy photons. Nevertheless, in many practical simulations
no appreciable errors are introduced when Sauter’s distribution

is used to describe any photoionization event, irrespective
of the atomic shell and the photon energy. The main reason
is that the emitted photoelectron immediately starts to interact
with the medium, and its direction of movement is strongly
altered after travelling a path length much shorter than the
photon mean free path. On the other hand, when the photon
energy exceeds the K edge, most of the ionizations occur in
the K shell and then the Sauter distribution represents a fairly
good approximation.

The most extensive tables of atomic photoelectric cross
sections available are those of the Evaluated Photon Data
Library (EPDL97) of Cullen et al (1997), which includes
partial shell cross sections and total atomic cross sections for all
the elements from hydrogen (Z = 1) to lawrencium (Z = 100)
and photon energies E from 10 eV to 100 GeV. For energies
from the absorption edge to 1 MeV, the tabulated cross sections
were computed according to equation (16) using Scofield’s
computer program. For energies higher than 1 MeV, calculated
shell cross sections were scaled to match the total cross sections
of Hubbell et al (1980). Note that shell cross sections are
needed for sampling the active shell in each photoabsorption
event. The XCOM program (Berger et al 2005) also provides
total atomic cross sections for photon energies between 1 keV
and 100 GeV, which are essentially the same as in the EPDL97
library. Henke et al (1993) have published tables of total
atomic cross sections for the elements Z = 1 to 92, and
for a more limited range of photon energies extending from
50 eV to 30 keV, which were generated from a compilation of
experimental data and theoretical calculations.

It should be mentioned that these cross sections pertain
to free atoms. Cross sections for photoabsorption by atoms
bound in molecules and solids are different, because neighbour
atoms alter the wave function of the emerging photoelectron.
The main effect of aggregation is an oscillatory structure in
the photoabsorption cross section, for energies just above an
absorption edge, known as x-ray absorption fine structure. The
theory of this effect is reviewed by Rehr and Albers (2000).

3.2. Rayleigh scattering

Here, and in the next section, we consider photon scattering
processes, that is, interactions in which an incident photon in
the mode kα is absorbed by the target atom and a photon k′α′

is emitted, while the active atomic electron makes a transition
from its initial orbital ψa to a final orbital ψb. Since the
process involves two photons, it is described using second-
order perturbation theory. The transition rate is determined by
the transition matrix element (Akhiezer and Berestetskii 1965,
Baym 1974)

Tb,k′α′;a,kα ≡ −mec
2
∑

n

[
(M

†
k′α′)bn(Mkα)na

Wn − Wa − E − iη

+
(Mkα)bn(M

†
k′α′)na

Wn − Wa + E′ − iη

]
(18)

and by energy conservation,

E′ = E + Wa − Wb. (19)
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The quantity Wn = En +mec
2 is the total energy (including the

rest energy) of the electron in the orbital ψn. The summation
is over all, positive- and negative-energy intermediate one-
electron states ψn. This calculation scheme is frequently
referred to as the second-order S-matrix method.

Rayleigh scattering, also called coherent scattering, is the
elastic scattering of photons, without electronic excitation of
the target atom (E′ = E, ψb = ψa). The DCS for Rayleigh
scattering of polarized photons by a free atom is given by

dσRa

dk̂
′ = r2

e

∑′|Ta,k′α′;a,kα|2, (20)

where the primed summation is over the filled orbitals ψa

of the ground-state configuration (with the usual average in
the case of open shells), and over possible degenerate final
states ψb of the active electron, excluding orbitals that are
occupied by other atomic electrons. A detailed description
of the calculation of cross sections for Rayleigh scattering is
given by Cromer and Liberman (1970). To express the DCS in
a form that resembles the non-relativistic result (as given, for
example, by Sakurai 1967), they set

Ta,k′α′;a,kα = −(ε̂∗
α′ · ε̂α)〈ψa| exp[i(k − k′) · r]|ψa〉

+ f ′
a + if ′′

a . (21)

The first term on the right-hand side is proportional to the form
factor of the active orbital,

Fa(q) ≡ 〈ψa| exp(iq · r)|ψa〉 =
∫

|ψa(r)|2 exp(iq · r) dr,

(22)

where h̄q = h̄k − h̄k′ is the momentum transfer to the atom.
Note that, for elastic scattering, k′ = k and

q = 2k sin(θ/2). (23)

The quantity f ′
a + if ′′

a is known as the anomalous scattering
factor or as the dispersion correction to the form factor.
The adjective ‘anomalous’ refers to the fast variation of this
quantity for photon energies around the absorption edge.

For unpolarized incident photons, and when the
polarization of the scattered photons is not observed, the atomic
DCS for Rayleigh scattering is given by

dσRa

dk̂
′ = r2

e
1 + cos2 θ

2
|F(q, Z) + f ′ + if ′′|2, (24)

where

F(q, Z) =
∑

a

Fa(q) =
∫

ρ(r) exp(iq · r)dr (25)

is the atomic form factor, i.e. the Fourier transform of the
electron density. For a spherical electron density, the integral
over directions can be performed analytically, and we have

F(q, Z) = 4π

q

∫ ∞

0
ρ(r) sin(qr)r dr. (26)

Hubbell et al (1975, 1977) have published tables of atomic
form factors, mostly obtained from non-relativistic Hartree–
Fock electron densities. The EPDL97 library (Cullen et al

1997) contains a more detailed tabulation of Hubbell’s form
factors.

NumericalS-matrix calculations indicate that, for energies
below the absorption edge of the K shell, the anomalous
scattering factors are practically independent of the scattering
angle θ (see, for example, Kissel et al 1995, and references
therein). Hence, f ′ + if ′′ can be approximated by its value at
θ = 0, which can be obtained from dispersion relations that
follow from the analytic nature of the scattering amplitude
and from causality requirements. Similar considerations in
classical dielectric theory lead to essentially equivalent results
(see, for example, James 1948, Henke et al 1993). The angle-
independent anomalous scattering factor is given by

f ′(E) = −(Z/82.5)2.37 +
1

π2reh̄c
P

∫ ∞

0

W 2σph(W)

E2 − W 2
dW

(27)

and

f ′′(E) = 1

4πreh̄c
Eσph(E), (28)

where σph(E) is the atomic photoelectric cross section for
photons of energy E and P indicates the principal value of
the integral.

The tables of Henke et al (1993) include anomalous
scattering factors for the elements Z = 1 to 92 and photon
energies between 50 eV and 30 keV. An extensive tabulation
of anomalous scattering factors, covering all the elements up
to Z = 100 and energies between 1 eV and 10 MeV has been
prepared by Cullen (1989).

3.3. Compton scattering

In Compton scattering, the incident photon kα is absorbed
and a scattered photon k′α′ of lower energy is emitted. The
energy difference between the incident and scattered photons
is transferred to an atomic electron in the orbital ψa(r) that
makes a transition to a positive-energy free orbital ψb(r),
which is represented by a distorted plane wave ψ

(−)

kbmSb
(r) with

momentum h̄kb and spin mSb. Since the mass of the target atom
is much larger than the electron mass, the atom can absorb any
amount of recoil momentum and, consequently, the directions
of the scattered photon and the electron are not constrained by
kinematics.

Assuming that the spin of the ejected electron is not
observed, the DCS for scattering by electrons of a closed shell
na	aja is given by

d3σCo,a

dE′dk̂
′
dk̂b

= r2
e
E′

E
kb

Eb + mec
2

c2h̄2

∑′|Tb,k′α′;a,kα|2, (29)

where E and E′ are the energies of the incident and scattered
photons, respectively, and the summation is over the orbitals
of the active shell. The numerical factor before the sum arises
from the density of continuum electron states. Calculations
of Compton scattering following this second-order S-matrix
method have been reported by Bergstrom et al (1993).
These calculations are very complicated, and the results
cannot be reduced to a compact form suited for simulation
purposes.
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A limiting situation that can be described analytically is
that of Compton scattering by free electrons at rest, which
was first studied by Klein and Nishina in 1929. In this
case, the initial and final states of the target electron can
be represented as discrete plane waves satisfying periodic
boundary conditions on a cubic box of unit volume. The
calculation involves the use of energy-projection tricks; a
detailed description of the formal technique can be found, for
example, in Heitler’s (1984) book. The final result is the Klein–
Nishina DCS,

dσ (KN)

dk̂
′ = r2

e
1

4

E
′2

E2

[
E

E′ +
E′

E
− 2 + 4(ε̂α′ · ε̂α)2

]
, (30)

which describes the scattering of linearly polarized photons
by free electrons at rest. Because of energy-momentum
conservation, the energy E′ of the scattered photon depends
only on the scattering angle θ , and is given by

E′ = E

1 + (E/mec2)(1 − cos θ)
≡ EC. (31)

The DCS for the scattering of unpolarized photons is obtained
by summing and averaging over, respectively, final and initial
polarization states (see, for example, Sakurai (1967), pp 51
and 52). The result is

dσ (KN)

dk̂
′ = r2

e
1

2

E
′2

E2

(
E

E′ +
E′

E
− sin2 θ

)
. (32)

The Klein–Nishina DCS provides a reliable description of
Compton scattering by atoms only for those interactions where
the momentum transfer h̄q (h̄q = h̄k − h̄k′) is much larger
than the average momentum of the active electron. A more
realistic description is provided by the impulse approximation
(Ribberfors 1975), which assumes that the electrons in the
active shell na	aja react essentially as if they were free
electrons moving with a momentum distribution ρa(p), which
is spherically symmetrical for closed shells. That is, the DCS
for Compton scattering by the active shell is given by

dσ
(IA)
Co,a = �(W − Unaκa

)

∫
dpρa(p) dσ (free)(p), (33)

where dσ (free)(p) denotes the DCS for collisions of the
projectile with a free electron that moves with momentum p
and W is the energy transferred in the interaction, W = E−E′.
The unit step function �(x) (= 1 if x > 0, and = 0 otherwise)
accounts for the fact that only energy transfers W larger than
the ionization energy Unaκa

of the active shell can produce
ionizations. The momentum distribution ρa(p) of the electrons
in the active shell can be obtained from the Fourier transforms
of the orbitals ψa(r) (see, for example, Segui et al 2002).

To allow the evaluation of the integral in equation (33),
Ribberfors used the Klein–Nishina DCS expressed in covariant
form (so that its dependence on the initial momentum of the
target electron is explicit) and, after certain simplifications,
obtained the following expression for the Compton DCS
(Ribberfors and Berggren 1982, see also Brusa et al 1996),

d2σ
(IA)
Co,a

dE′ dk̂
′ = r2

e

2

E′mec

Ech̄q

[
1 +

(
pz

mec

)2
]−1/2

XJa(pz), (34)

where
ch̄q =

√
E2 + E

′2 − 2EE′ cos θ. (35)

The quantity pz is the projection of the initial momentum p of
the active electron on the direction of the vector −q, and it is
given by

pz ≡ −p · q
q


 EE′(1 − cos θ) − mec
2(E − E′)

c2h̄q
(36)

or, equivalently,

pz

mec
= E(E′ − EC)

ECch̄q
, (37)

where EC is the energy of the Compton line (given by
expression (31)), i.e. the energy of photons scattered in the
direction θ by free electrons at rest (p = 0).

The function X in equation (34) is

X ≡ R

R′ +
R′

R
+ 2

(
1

R
− 1

R′

)
+

(
1

R
− 1

R′

)2

(38)

with

R = E

mec2


[

1 +

(
pz

mec

)2
]1/2

+
E − E′ cos θ

ch̄q

pz

mec


(39)

and

R′ = R − E′

mec2

(
E

EC
− 1

)
, (40)

and Ja(pz) is the Compton profile of the active electron shell,

Ja(pz) ≡
∫ ∫

ρa( p) dpx dpy = 2π

∫ ∞

|pz|
ρa(p)p dp, (41)

where the last equality follows from the spherical symmetry
of the electron density ρa(p) of the shell. Extensive tables
of Hartree–Fock Compton profiles for the elements have been
published by Biggs et al (1975).

The motion of the atomic electrons causes the so-called
Doppler broadening of the energy distribution of the scattered
photons. Photons that are scattered in directions forming an
angle θ with the direction of incidence have a continuous
energy distribution, with a maximum at the Compton energy,
given by equation (31). This results from the fact that the
frequency of the incident photon is Doppler shifted when
observed from a Lorentz frame moving with the same velocity
as the target electron. The main effect of binding is to prevent
transitions that would lead the active electron to final bound
orbitals. Note that interactions where the final state of the
electron is an unoccupied bound state are also possible. These
interactions correspond to Raman scattering (see, for example,
Baym 1974), a process that involves relatively small energy
transfers and is usually disregarded in high-energy Monte
Carlo codes.

Exact non-relativistic DCSs for Compton scattering by
hydrogenic ions in the ground state (K shell) and in the first
excited level (L shell) have been evaluated by Eisenberger
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Figure 2. DCSs for Compton scattering of 10 keV photons by free argon and copper atoms at the indicated scattering angles. The
dot–dashed vertical line is the Compton line, equation (31).

and Platzman (1970) and by Bloch and Mendelsohn (1974),
respectively. Their calculations indicate that the impulse
approximation is accurate to within a few per cent for energies
of a few tens of keV or larger, except near the ionization
thresholds of tightly bound shells.

The atomic DCS for Compton scattering is obtained by
adding the contributions from the various electron shells.
Compton scattering by molecules is described by means of
the additivity approximation, that is, the molecular DCS is
estimated as the sum of DCSs of the atoms in a molecule. In
the case of condensed media, the Compton profiles of outer
shells may differ substantially from the free-atom profiles (see
Cooper 1985). Since electrons in these shells have relatively
small momenta, they can either be considered free electrons
at rest or treated as a free-electron gas. Figure 2 shows
DCSs, obtained from the impulse approximation, for scattering
of 10 keV photons by isolated argon and copper atoms at
scattering angles of 60◦ and 180◦. The finite width of the
energy spectrum of scattered photons is caused by Doppler
broadening.

It is worth mentioning that various compilations of atomic
cross sections for Compton scattering (Berger et al 2005,
Cullen et al 1997) and various Monte Carlo codes still rely
on the use of the incoherent scattering function to account for
binding effects. In this formalism, which is sometimes referred
to as the Waller–Hartree approximation, the DCS is set equal to
the Klein–Nishina DCS multiplied by the incoherent scattering
function S(q, Z), defined by

S(q, Z) =
〈
�0

∣∣∣∣∣
Z∑

i=1

Z∑
j=1

exp[iq · (rj − ri )]

∣∣∣∣∣�0

〉

− [F(q, Z)]2, (42)

where �0 is the ground-state atomic wave function.
Tabulations of this function, for the elements Z = 1 to 100
were compiled by Hubbell et al (1975, 1977). As pointed

out by Ribberfors and Berggren (1982), the assumptions
underlying the Waller–Hartree theory are essentially non-
relativistic. These authors also obtain a relativistic expression
for the incoherent scattering function in terms of the atomic
Compton profile, by integrating the atomic DCS over the
energy of the scattered photon.

Figure 3 displays energy DCSs, integrated over directions
of the scattered photon, for scattering of 50 keV and 500 keV
photons by isolated tungsten atoms. The plotted DCSs were
obtained from the impulse approximation, and from the Klein–
Nishina formula, equation (32). The most conspicuous feature
of the impulse approximation is the absence of a threshold
energy in the DCS, which is a direct manifestation of the
Doppler broadening. For relatively small energy transfers
(E′ ∼ E) the Klein–Nishina DCS increases with the energy of
the scattered photon, whereas the energy DCS obtained from
the impulse approximation vanishes at E′ = E due to the
effect of binding. The accuracy of the Klein–Nishina formula
improves when the photon energy increases, and when the
atomic number decreases.

3.4. Electron–positron pair production

Electron–positron pairs can be created by absorption of a
photon in the vicinity of a massive charged particle, a nucleus
or an electron, which takes energy and momentum so that
these two quantities are conserved. The threshold energy
for pair production in the field of a nucleus (assumed of
infinite mass) is 2mec

2. When pair production occurs in
the field of an electron, the target electron recoils after the
event with appreciable kinetic energy; the process is known
as ‘triplet production’ because it causes three visible tracks
when observed, for example, in a cloud chamber. If the target
electron is at rest, triplet production is only possible for photons
with energy larger than 4mec

2.
Pair production and bremsstrahlung emission (section 4.3)

are closely related processes, and cross sections from pair
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Figure 3. Energy DCSs for Compton scattering of 50 keV and 500 keV photons by free tungsten atoms. The continuous curves represent
the DCS obtained from the impulse approximation, by integrating the DCS (34) over directions of the scattered photon. The dashed curves
correspond to the Klein–Nishina formula, equation (32) with E′ = EC, i.e. they describe collisions with Z electrons free and at rest.

production can be readily obtained from the bremsstrahlung
formulae by simple substitutions (see, for example, Akhiezer
and Berestetskii 1965, Tsai 1974). Thus, the Bethe–
Heitler DCS for pair production (Born approximation) follows
from the corresponding DCS for bremsstrahlung emission,
equation (98). An extensive list of formulae obtained from
the Bethe–Heitler formula, and with more elaborate methods,
has been compiled by Motz et al (1969).

The process of triplet production differs from that of pair
production in the field of the atom in two respects, namely, the
possibility of exchange between the two electrons in the final
state, and the possibility that the photon be absorbed by the
target electron. The transition amplitude for triplet production
is given by a complicated analytical expression, which can be
deduced from the transition amplitude for electron–electron
bremsstrahlung (given by Haug and Nakel 2004). DCSs for
triplet production were calculated by Jarp and Mork (1973),
who found that for photons with high energies, most of the
interactions involve small momentum transfers to the target
electron. The total cross section was obtained by Mork (1967).

Let us consider the pair-production process in which
an unpolarized incident photon with energy E creates an
electron–positron pair in the atomic field. The kinetic
energies and momenta of the electron and positron are denoted
by E−, h̄k− and E+, h̄k+, respectively. As in the case of
bremsstrahlung emission, the Born approximation provides
a reliable description of the process at high energies. The
DCS for pair production is usually expressed as a function
of the energy E+ of the positron and of the directions k̂−
and k̂+ of the pair. Most Monte Carlo codes simulate pair-
production events by first sampling the energy of the positron
(or the electron) from a theoretical DCSs differential in only
the energy of that particle (i.e. using the marginal probability
distribution of E+). Very frequently, the high-energy Bethe–
Heitler formula (equation 3D-1003 of Motz et al 1969),

obtained through an approximate integration of the Born DCS
over the directions of the generated pair, is used.

The Bethe–Heitler DCS for a photon of energy E to
create an electron–positron pair in the atomic field can be
approximated as (Tsai 1974)

dσ
(BH)
pp

dε
= r2

e Z2

{
[ε2 + (1 − ε)2](�1 − 4fC)

+
2

3
ε(1 − ε)(�2 − 4fC)

}
, (43)

where the reduced energy ε ≡ (E+ +mec
2)/E is the fraction of

the photon energy carried off by the positron. The screening
functions �1 and �2 are given by integrals that involve
the atomic form factor and, therefore, must be computed
numerically when a realistic form factor is adopted. To
obtain approximate analytical expressions for these functions,
one may assume that the Coulomb field of the nucleus is
exponentially screened by the atomic electrons (Schiff 1951,
Tsai 1974), i.e. the electrostatic potential of the atom is
represented as

ϕS(r) = Ze

r
exp(−r/R). (44)

The screening radius R is usually chosen to be proportional to
the inverse cubic root of the atomic number, R = aZ−1/3,
in accordance with the Thomas–Fermi model of the atom,
with the parameter a determined so as to reproduce, for
example, the total cross section obtained from more elaborate
calculations. The corresponding atomic electron density is
given by Poisson’s equation, ρS(r) = (1/4πe)∇2ϕS(r), and
the atomic form factor is

FS(q, Z) = 4π

∫ ∞

0
ρS(r)

sin(qr)

qr
r2 dr = Z

1 + (Rq)2
. (45)
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The screening functions for this particular form factor take the
following analytical expressions (Tsai 1974)

�1 = 2 − 2 ln(1 + b2) − 4b arctan(b−1) + 4 ln(Rmec/h̄),

�2 = 4

3
− 2 ln(1 + b2) + 2b2[4 − 4b arctan(b−1)

− 3 ln(1 + b−2)] + 4 ln(Rmec/h̄), (46)

where

b = Rmec

h̄

mec
2

2E

1

ε(1 − ε)
. (47)

The quantity fC in equation (43) is the high-energy Coulomb
correction of Davies, Bethe and Maximon (1954), which
accounts for the effect of the atomic field on the wave functions
of the produced particles. Because of the approximate nature
of this correction, it should not be used for photon energies of
less than about 100 MeV.

The Bethe–Heitler formula (43) yields a DCS for pair
production that, considered as a function of the positron
reduced energy ε, is symmetrical about ε = 1/2. This
dependence on ε is reasonably accurate only for photon
energies larger than ∼5 MeV. For lower photon energies, the
effect of the electrostatic field of the atom (which slows
down the electron and accelerates the positron) becomes
increasingly important, with the result that the actual DCS
becomes asymmetrical and the mean value of ε becomes larger
than 1/2 (see, for example, Motz et al 1969). At these relatively
low energies, however, pair production is not dominant and,
moreover, the produced particles have ranges that are much
less than the mean free path of the absorbed photon. Therefore,
no large simulation errors are introduced by using the Bethe–
Heitler DCS, equation (43), for energies down to the threshold.

Cross sections for pair production in the field of a bare
point nucleus, i.e. a pure Coulomb field, have been computed
by Øverbø et al (1973). These authors derived a closed formula
for the cross section differential in the energy of the emitted
positron, which is given as an infinite series of hypergeometric
functions (formula 3D-1006 of Motz et al (1969)). This
formula yields asymmetric energy spectra for electrons and
positrons, but disregards screening effects. Tseng and Pratt
(1971a) reported numerical calculations of pair production in
screened atomic fields. These calculations are performed by
using essentially the same procedure as for the bremsstrahlung
process, namely, using the multipole expansion for the photon
and the partial-wave expansion in equation (A.13) of the
distorted plane waves of the electron and the positron. A review
of later work on partial-wave calculations of pair production in
screened Coulomb fields has been published by Pratt (2006).
Partial-wave calculations are numerically difficult and feasible
only for photons with energies up to about 10mec

2, because of
the slow convergence of the multipole and partial-wave series.
Calculated energy spectra are in fairly good agreement with
those obtained from the formula of Øverbø et al (1973) for the
unscreened Coulomb field.

To complete the simulation of pair-production events,
we need to sample the directions of the pair of particles.
As the final state involves three bodies (the nucleus and the
produced pair), the directions of the produced particles cannot

be obtained from only their kinetic energies. The polar angles
of the directions of movement of the electron and positron,
θ− and θ+, relative to the direction of the incident photon are
usually sampled from an analytical approximate expression
of the DCS, d2σpp/dE± dk̂±, differential in the energy and
direction of the particles. The simplest approach is to use
the leading term of the high-energy Sauter–Gluckstern–Hull
formula for the unscreened point nucleus (equation 3D-2000
in Motz et al (1969)), which yields the distribution

p(cos θ±) = a(1 − β± cos θ±)−2, (48)

where a is a normalisation constant and β± are the velocities
of the particles in units of the speed of light, see equation (1).
A more elaborate approach (Bielajew 1994) uses the high-
energy angular distribution for pair production in the screened
field (44) derived by Schiff (equation 3D-2003 of Motz et al
1969).

Extensive tables of pair-production total cross sections,
evaluated by combining different theoretical approximations,
have been published by Hubbell et al (1980). These tables
give the separate contributions of pair production in the field
of the nucleus and in that of the atomic electrons for Z = 1 to
100 and for photon energies from the threshold up to 105 MeV.
This is still the most authoritative source of pair-production
data available. Hubbell’s data are incorporated in the EPDL97
database (Cullen et al 1997) and in the XCOM program
(Berger et al 2005). To our knowledge, in all general-purpose
codes, triplet-production events are simulated as if they were
pairs.

3.5. Mass attenuation coefficients

The primary quantity for simulating photon histories is the
(linear) attenuation coefficient, the reciprocal of the mean free
path. It is given by

µ = NσT, (49)

where N is the number of atoms (or molecules) per unit volume
and σT = σph + σRa + σCo + σpp is the total interaction cross-
section of an atom (or molecule). For a material of mass density
� and ‘molecular weight’ Aw (g/mol), N = NA�/Aw, where
NA is Avogadro’s number. The dependence of µ on the density
of the material is removed by considering the mass attenuation
coefficient,

µ/� = (NA/Aw)σT. (50)

To provide a sense of the relative importance of the different
interaction processes, figure 4 shows total and partial mass
attenuation coefficients of photons in water and lead as
functions of the photon energy. These coefficients were
obtained from the XCOM program (Berger et al 2005), except
for the Compton contribution, which was evaluated from
the impulse approximation (section 3.3). The plotted mass
attenuation coefficient for Rayleigh scattering is obtained
from the usual form-factor approximation, i.e. neglecting the
anomalous scattering factor in equation (24).
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Figure 4. Partial and total mass attenuation coefficients of water and lead as functions of the photon energy.

4. Interactions of electrons and positrons

The dominant interactions of electrons and positrons
with atoms are elastic scattering, inelastic collisions and
bremsstrahlung emission. Positrons also undergo annihilation,
either in flight or at rest. By definition, elastic interactions are
those in which the initial and final quantum states of the target
atom are the same, normally the ground state. The angular
deflections of the trajectories of electrons and positrons in
matter are mainly due to elastic scattering; inelastic collisions
also cause angular deflections, but these are on average much
weaker. Because of the large mass of the nucleus, the recoil
energy of the target atom is assumed to be negligible in all
interactions.

4.1. Elastic collisions

The theoretical description of elastic collisions is much simpler
than that of other collision processes because the effective
interaction between the projectile and the atom is essentially
electrostatic. Although the nucleus and the atomic electrons
have spin magnetic moments, magnetic interactions have a
much smaller effect, which can be neglected for most practical
purposes. Moreover, it is a good approximation to assume that
the charge distribution of the target atom remains frozen in
the course of the interaction. This assumption is essentially
correct for fast projectiles, with kinetic energies larger than
about 10 keV (Salvat 2003). When the projectile is slow, its
electric field polarizes the charge distribution of the target
atom, and the field of the induced dipole acts back on the
projectile. Since the response of the atom is not instantaneous,
the atomic polarization sets in only when the electric field
applied on the atom varies slowly during a long enough time.
That is, only relatively slow projectiles passing at moderate
distances from the atom can produce an effective polarization
of the latter. Since, in a semiclassical picture, large impact
parameters correspond to small scattering angles, the effect

of atomic charge polarizability on the elastic-scattering DCSs
is limited to relatively small angles (see, for example, ICRU
2007), which are not important for transport studies.

We shall therefore describe elastic collisions on the basis
of the so-called static-field approximation (Mott and Massey
1965, Walker 1971, ICRU 2007). The interaction energy
between the target atom, fixed at the origin of the reference
frame, and the projectile is set equal to the (instantaneous)
Coulomb interaction energy,

V (r) = z0eϕ(r), (51)

where z0e is the charge of the projectile and ϕ(r) is the
electrostatic potential of the target atom (see section 2.1),

ϕ(r) = ϕnuc(r) + ϕel(r). (52)

When the projectile is an electron, the effective interaction
is modified by exchange effects, which occur because the
projectile is indistinguishable from the atomic electrons. A
convenient approach to account for these effects is to add
to the ‘direct’ potential (51) an approximate local-exchange
potential,

V (r) = −eϕ(r) + Vex(r). (53)

Furness and McCarthy (1973) proposed the following
exchange potential,

Vex(r) = 1

2

[
h̄2k2

2me
+ eϕ(r)

]

− 1

2

{[
h̄2k2

2me
+ eϕ(r)

]2

+ 4πa0e
4ρ(r)

}1/2

, (54)

where k is the wave number of the projectile electron,
equation (2), and a0 = h̄2/(mee

2) is the Bohr radius. Although
the potential (54) is obtained from non-relativistic arguments, it
is also approximately valid for relativistic electrons, for which
exchange effects are small. Bransden et al (1976) have shown
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that, for scattering by hydrogen and helium, the potential
given by equation (54) describes exchange effects accurately
for projectile electrons with kinetic energies larger than about
25 eV.

For simplicity, we consider that incident particles are spin-
unpolarized and move in the direction of the positive z axis, and
that the final spin state is not observed. Then, the deflection
caused by the elastic interaction is characterized by the polar
and azimuthal scattering angles θ and φ. For a central field, the
angular distribution of singly-scattered projectiles is axially
symmetric about the direction of incidence, i.e. independent
of φ. The DCS (per unit solid angle) for elastic scattering of
a projectile with kinetic energy E into the solid-angle element

dk̂
′

about the direction k̂
′ = (θ, φ) is given by (see, for

example, Walker 1971, ICRU 2007)

dσel

dk̂
′ = |f (θ)|2 + |g(θ)|2, (55)

where f (θ) and g(θ) are the direct and spin-flip scattering
amplitudes, which are defined by the partial-wave expansions
in equation (A.23a) and (A.23b). The phase shifts δκ (see
equation (A.11)) are extracted from the asymptotic behaviour
of the numerical solution of the Dirac radial equations (A.5).
The DCS, equation (55), accounts for spin and other relativistic
effects, as well as for finite nuclear size effects. The Fortran
77 code ELSEPA1 (Salvat et al 2005) calculates scattering
amplitudes and DCSs for elastic scattering of electrons and
positrons by atoms.

The partial-wave expansions in equation (A.23a), (A.23b)
result from considering the scattering as a stationary process,
with the wave function of the projectile described by a
distorted plane wave (see the appendix). Alternatively,
one could calculate the scattering amplitudes according to
equation (A.20). When the distorted plane wave ψ

(+)

kmS
(r)

in that expression is replaced by the corresponding plane
wave, φkmS(r), we obtain the relativistic plane-wave Born
approximation (PWBA) to the scattering amplitude matrix,

FB
m′

S,mS
(k̂

′
, k̂) = −4πW

(ch̄)2

∫
φ

†
k′m′

S
(r)V (r)φkmS(r) dr. (56)

Here we assume that V (r) = z0eϕ(r), that is, in the case
of electron scattering we disregard the exchange potential,
because exchange effects are negligible when the Born

approximation is applicable. Expressing FB(k̂
′
, k̂) in the form

(see equation (A.22))

FB(k̂
′
, k̂) =

(
f B(θ) −e−iφgB(θ)

eiφgB(θ) f B(θ)

)
, (57)

it follows that

f B(θ) =
(

γ + 1

2
+

γ − 1

2
cos θ

)
f B

n.r.(q), (58)

gB(θ) = γ − 1

2
sin θf B

n.r.(q), (59)

1 The acronym stands for elastic scattering of electrons and positrons by
atoms.

where

f B
n.r.(q) ≡ − me

2πh̄2

∫
V (r) exp(iq · r) dr (60)

is the non-relativistic scattering amplitude (see, for example,
Mott and Massey 1965) and h̄q = 2h̄k sin(θ/2) is the
momentum transfer. The Fourier transform of the potential,

V(q) ≡
∫

V (r) exp(iq · r) dr, (61)

occurs frequently in calculations within the Born approxi-
mation. With the aid of Poisson’s equation, (4πe)[ρnuc(r) −
ρ(r)] = −∇2ϕ(r), V(q) can be transformed into a more
familiar form

V(q) = −z0e

q2

∫
ϕ(r)∇2 exp(iq · r) dr

= −z0e

q2

∫
[∇2ϕ(r)] exp(iq · r) dr

= 4πz0e
2

q2

∫
[ρnuc(r) − ρ(r)] exp(iq · r) dr

= 4πz0e
2

q2
[Fnuc(q) − F(q, Z)], (62)

where F(q, Z) is the atomic form factor, equation (26), and

Fnuc(q) ≡
∫

ρnuc(r) exp(iq · r) dr

= 4π

q

∫
ρnuc(r) sin(qr)r dr (63)

is the nuclear form factor. Note that for a point nucleus
Fnuc(q) = Z. Thus, the non-relativistic scattering amplitude
can be expressed as

f B
n.r.(q) ≡ −2mez0e

2

(h̄q)2
[Fnuc(q) − F(q, Z)]. (64)

The DCS for elastic scattering by the potential V (r)

obtained from the PWBA is (Mott and Massey 1965)

dσ B

dk̂
′ = |f B(θ)|2 + |gB(θ)|2 = 1 − β2 sin2(θ/2)

1 − β2
|f B

n.r.(q)|2

= 1 − β2 sin2(θ/2)

1 − β2

(
(2mez0e

2)2

(h̄q)4

)
× [Fnuc(q) − F(q, Z)]2. (65)

The quantity in parentheses is the non-relativistic Rutherford
DCS, i.e. the DCS for scattering by a bare point nucleus.
The factor [1 − β2 sin2(θ/2)]/(1 − β2) arises from relativistic
corrections, i.e. spin effects and Lorentz contraction. Finally,
the last factor, with the form factors, accounts for the effects of
screening of the nuclear charge by the atomic electrons and of
the finite size of the nucleus. Note that the PWBA yields the
same DCS for electrons and positrons. This approximation
is the basis of various calculation models for scattering of
electrons and positrons with energies higher than ∼10 MeV,
where partial-wave methods are impracticable.
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Figure 5. DCSs for elastic scattering of electrons and positrons with the indicated kinetic energies by carbon and lead atoms. Note the
logarithmic scale for θ < 10◦.

A review of theoretical calculation methods and
experimental measurements of elastic scattering of electrons
and positrons has recently been published in the ICRU Report
77 (ICRU 2007). This report also includes an extensive
database of DCSs for elastic scattering of projectiles with
kinetic energies from 50 eV to 100 MeV by atoms of the
elements Z = 1 to 103, which was generated using the ELSEPA

code (Salvat et al 2005). Figure 5 displays the DCSs from
that database for elastic scattering of electrons and positrons
of various energies by atoms of carbon and lead. The plots
illustrate the variation of the DCS with the atomic number
Z, the charge of the projectile and the energy E. Since the
interaction V (r) is attractive for electrons and repulsive for
positrons, the scattering is more intense for electrons (which
can fall deeply into the potential well of the atom) than for
positrons (which are repelled from the nucleus and cannot
‘feel’ the inner part of the atom). The DCS for low-energy
electrons exhibits a diffraction-like structure, while the DCS
for positrons decreases monotonically with θ .

4.2. Inelastic collisions

Inelastic collisions of electrons and positrons are usually
described by using the first Born approximation (see, for
example, Fano 1963). We will sketch the conventional theory
to clarify the underlying approximations. For simplicity, we
adopt the IPA and use the one-active electron approximation
to describe atomic excitations. The interaction between the
projectile (0) and the active electron (1) must account for
virtual excitations of the electromagnetic field and the Dirac
sea (see, for example, Sakurai 1967). When these excitations
are described in lowest non-vanishing order of perturbation
theory, the effective interaction Hamiltonian takes the form
(Fano 1963)

Hint(0, 1) = −z0e
2

2π2

∫
dq

(
1

q2
− α̃0 · α̃1 − (α̃0 · q̂)(α̃1 · q̂)

q2 − (W/h̄c)2

)
× exp[iq · (r1 − r0)], (66)

where W is the energy exchanged between the projectile and
the target electron. The first term in this expression is the
instantaneous (longitudinal) Coulomb interaction. The second
term accounts for the exchange of virtual photons and is usually
referred to as the transverse interaction.

We assume that before the interaction the projectile moves
with velocity v, linear momentum h̄k and kinetic energy E;
the corresponding values after the collision are v′, h̄k′ and E′,
respectively. The interaction causes the excitation of the active
electron from the initial orbital ψa to an unoccupied orbital ψb,
which can be bound (excitation) or free (ionization). For the
sake of brevity, we will limit our considerations to the case of
ionization (W > Unaκa

).
Considering the interaction given by equation (66) as

a first-order perturbation, the DCS for ionizing collisions is
found to be

d3σin,a

dW dk̂
′
dk̂b

= (2π)4

h̄v
k′kb

E − W + mec
2

c2h̄2

Eb + mec
2

c2h̄2 |Tf i |2,

(67)

where W = E − E′ is the energy loss and Eb = W − Unaκa

is the kinetic energy of the knock-on electron. The transition
matrix element is given by

Tf i = 〈ψ(−)

k′m′
S
(0)ψb(1)|Hint(0, 1)|ψ(+)

kmS
(0)ψa(1)〉. (68)

In the so-called distorted-wave Born approximation (DWBA),
the initial and final states of the projectile are described as
distorted plane waves in a certain potential V (r), for instance,
the DHFS potential given by equation (11) (Segui et al 2003).
The DWBA allows taking into account not only the distortion
of the projectile waves caused by the atomic potential, but
also exchange effects in electron collisions. It also accurately
describes differences between DCSs for collisions of electrons
and positrons.

For many purposes, only the effect of the interactions
on the projectile is of interest, and the relevant DCS is the
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integral of expression (67) over the direction k̂b of the knock-
on electron. Usually, the target atoms are randomly oriented,
the incident beam is unpolarized and final magnetic and spin
states are not distinguished. Under these circumstances, the
observed DCS is obtained by averaging over initial degenerate
magnetic and spin states and summing over final degenerate
states. Following Fano (1963), we introduce the recoil energy
Q, defined by

Q(Q + 2mec
2) = (ch̄q)2 = c2h̄2(k2 + k′2 − 2kk′ cos θ),

(69)

where h̄q = h̄k − h̄k′ is the momentum transfer. That is, Q is
the kinetic energy of a free electron that moves with momentum
h̄q. In the case of binary collisions of the projectile with free
electrons at rest we have Q = W , because the energy lost by
the projectile is equal to the kinetic energy of the recoiling
target electron. Noting that

dk̂
′ = 2π d(cos θ) = 2π(Q + mec

2)

c2h̄2kk′ dQ, (70)

the DCSs for ionization of a closed shell na	aja can be
expressed as

d2σin,a

dW dQ
= (2π)5

c2h̄4v2

E − W + mec
2

E + mec2
(Q + mec

2)Jf i, (71)

with

Jf i ≡ kb

Eb + mec
2

c2h̄2

∑
ma,mS

∑
mSb,m

′
S

∫
dk̂b|Tf i |2. (72)

The DWBA yields reliable results even for projectiles
with kinetic energies close to the ionization threshold (Bote
and Salvat 2008). Unfortunately, practical computations are
difficult and feasible only for energies up to about 20 times the
ionization energy Unaκa

of the active electron shell. To get a
more operative form of the theory, the projectile wave functions
must be simplified. The PWBA is obtained by replacing the
distorted plane waves in the T -matrix elements by plane waves
(see equation (A.17)),

T
(PWBA)
f i = 〈φk′m′

S
(0)ψb(1)|Hint(0, 1)|φkmS(0)ψa(1)〉. (73)

The DCS for inelastic collisions of charged particles within
the PWBA was first derived by Bethe (1932). An authoritative
review of the Bethe theory has been published by Inokuti
(1971) (see also Inokuti et al 1978). The total DCS for
collisions with atoms is obtained by adding the contributions,
ionization and excitation, of the various electron shells; an
average over orbitals of open shells is normally assumed. The
atomic DCS for inelastic collisions of a heavy spin- 1

2 particle
with charge ±e can be expressed as (Fano 1963, Segui et al
2002)

d2σin

dW dQ
= 2πe4

mev2

df (Q, W)

dW

[
1

WQ(1 + Q/2mec2)

+
β2

t W/2mec
2

[Q(1 + Q/2mec2) − W 2/2mec2]2

]
, (74)

where the first and second terms in square brackets account
for longitudinal and transverse interactions, respectively. The
parameter βt is the component of β = v/c perpendicular to q,

β2
t = β2 − W 2

Q(Q + 2mec2)

(
1 +

Q(Q + 2mec
2) − W 2

2W(E + mec2)

)
.

(75)

The key quantity in equation (74) is the generalized oscillator
strength (GOS), defined by

df (Q, W)

dW
≡ W

Q

2(Q + mec
2)

Q + 2mec2

∑
na,κa

qa

2ja + 1

kb

π(Ea + W)

×
∑
ma

∑
κb,mb

|〈ψEbκbmb
| exp(iq · r)|ψnaκama

〉|2,

(76)

where the first summation is over the occupied electron
shells naκa . Because of the spherical symmetry of closed
shells, and the average over orbitals of open shells implicit in
equation (76), the GOS is a function of only the energy loss W

and the recoil energy Q (i.e. it depends only on the magnitude
of the vector q). Within the PWBA, the GOS provides a
complete description of inelastic collisions of charged particles
with atoms.

The PWBA is the basis of the conventional theory of
stopping of charged particles (Fano 1963, Inokuti 1971, ICRU
1984). The inelastic collision models used in all high-
energy Monte Carlo simulation codes are also based on this
approximation. Note that the DCS given by equation (74)
describes the effect of the interaction on the projectile only.
This causes difficulties in determining the initial direction
of secondary electrons (delta rays) generated in ionizing
collisions. Very frequently, delta rays are assumed to have
initial momentum equal to the momentum transfer, which
amounts to neglecting binding effects.

Closed analytical formulae for the GOS are available
only for the hydrogen atom (see Inokuti 1971). Bote and
Salvat (2008) have reported numerical calculations of GOSs
for ionization of inner shells of atoms, computed using the
DHFS self-consistent potential. The GOS can be represented
as a surface over the (Q, W) plane, which is known as the
Bethe surface (Inokuti 1971). In the limit of very large recoil
energies, the target electrons behave as if they were essentially
free and at rest and, consequently, the GOS reduces to a ridge
along the line W = Q, which was named the Bethe ridge by
Inokuti (1971). The GOS satisfies the Bethe sum rule (Inokuti
1971) ∫ ∞

0

df (Q, W)

dW
dW = Z for any Q. (77)

This sum rule, which is a result from non-relativistic theory
(see, for example, Mott and Massey 1965), is assumed to be
generally satisfied. It leads to the interpretation of the GOS as
the effective number of electrons per unit energy transfer that
participate in interactions with given recoil energy Q. The
Bethe sum rule also holds for compounds, in which case the
quantity Z denotes the number of electrons in a molecule.
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The concept of a GOS can be extended to describe
inelastic collisions of charged particles in condensed matter
(Fano 1963). The main difficulty with this generalization
is that the contribution of valence-electron excitations to the
GOS depends strongly on the structure of the medium, and its
calculation is at present very difficult. In the limit Q → 0, the
GOS reduces to the optical oscillator strength (OOS),

df (W)

dW
≡ df (Q = 0, W)

dW
, (78)

which is closely related to the (dipole) photoelectric cross-
section for photons of energy W and to the optical dielectric
function of the medium (Fano 1963). The so-called optical-
data models (see, for example, Fernández-Varea et al 2005,
and references therein) utilize experimental information on
optical properties (i.e. the index of refraction and the extinction
coefficient) to build the OOS, and generate the GOS (for
Q > 0) from the OOS by using suitable extension algorithms,
usually based on the free-electron-gas theory.

The mean excitation energy I , defined by (Fano 1963,
Inokuti 1971)

Z ln I =
∫ ∞

0
ln W

df (W)

dW
dW, (79)

plays a central role in the Bethe stopping power formula (see
equation (89)). This quantity has been determined empirically
for a large number of materials (see ICRU 1984, and references
therein) from measurements of the stopping power of heavy
charged particles and/or from experimental optical dielectric
functions. Most Monte Carlo codes make explicit use of
these empirical I values. For materials not included in
the ICRU tables, I is usually estimated from the additivity
approximation.

The DCS for inelastic collisions with atoms in a condensed
medium differs from that of free atoms, equation (74), not only
because the corresponding GOS are different but also because
of the so-called density effect. The origin of this effect is
the polarizability of the medium, which ‘screens’ the distant
transverse interaction causing a net reduction of its contribution
to the stopping power. The density effect correction to the
stopping power has been studied in detail by Sternheimer
(1952) and Sternheimer et al (1982). The calculation of the
density-effect correction on the DCS for inelastic collisions,
using empirical optical-data models of the GOS, is described
by Fernández-Varea et al (2005). The correction is determined
by the OOS, i.e. the GOS contains all the information needed
to compute the DCS for electron/positron inelastic interactions
in condensed media.

It is worth noting that equation (74) follows from the
formulation of Fano (1963), which assumes that q � k.
This assumption is appropriate for heavy projectiles, but
not for electrons and positrons, because collisions of these
particles may involve momentum transfers comparable to the
momentum of the projectile (see below). A more detailed
derivation of the DCS for inelastic collisions of electrons
and positrons has been described recently by Bote and Salvat
(2008). Their result not only generalizes equation (74) for
arbitrary momentum transfers but also leads to the definition

of a GOS for transverse interactions. In equation (74), this
transverse GOS is approximated in terms of the longitudinal
GOS, defined by equation (76); the approximation corresponds
to equations (21) and (28) in Fano’s (1963) review. The
same approximation is adopted in semiempirical GOS models
for the simulation of inelastic collisions in condensed media
(see, for example, Fernández-Varea et al 2005, and references
therein).

4.2.1. High-Q excitations. As mentioned above, high-Q
excitations can be considered as collisions with free electrons
at rest (V = 0). The DCS obtained from elementary quantum
electrodynamics for collisions of two distinguishable electrons
(see, for example, Greiner 1994) is the following:

d2σ (free)

dW dQ
=

(
2πz2

0e
4

mev2

1

W 2

)
Frel(W)δ(Q − W), (80)

with

Frel(W) = 1 − (2E − W + 4mec
2)W

2(E + mec2)2
. (81)

The quantity in parentheses has the same analytical form as
the non-relativistic Rutherford energy-loss DCS, but with the
relativistic velocity v = βc (equation (1)) instead of the
non-relativistic speed vn.r. = √

2E/me. The factor Frel(W)

accounts for other relativistic corrections.
When the projectile is an electron, the DCS for close

binary collisions must be corrected to account for the
indistinguishability of the projectile and the target electrons.
For low-Q (distant) interactions, the effect of this correction is
small and can be neglected. The energy-loss DCS for binary
collisions of electrons with free electrons at rest, obtained from
the Born approximation with proper account of exchange, is
given by the Møller (1932) formula,

d2σM

dW dQ
= 2πe4

mev2

1

W 2

[
1 +

(
W

E − W

)2

− W

E − W

+ a

(
W

E − W
+

W 2

E2

)]
δ(W − Q), (82)

where

a =
(

E

E + mec2

)2

=
(

γ − 1

γ

)2

. (83)

In the final state we have two indistinguishable free electrons,
and it is natural to consider the fastest one as the ‘primary’.
Accordingly, the maximum allowed energy transfer in close
collisions is

Wmax = E/2. (84)

Positrons do not interact with matter as usual (stable)
positively charged particles, because the competing process
of annihilation followed by re-creation can cause the same
transitions as ‘direct’ scattering (see, for example, Sakurai
1967). The DCS for binary collisions of positrons with free
electrons at rest, obtained from the first Born approximation
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including the ‘annihilation/creation’ mechanism, is given by
the Bhabha (1936) formula,

d2σB

dW dQ
= 2πe4

mev2

1

W 2

[
1 − b1

W

E
+ b2

(
W

E

)2

− b3

(
W

E

)3

+ b4

(
W

E

)4
]

δ(W − Q), (85)

where

b1 =
(

γ − 1

γ

)2 2(γ + 1)2 − 1

γ 2 − 1
,

b2 =
(

γ − 1

γ

)2 3(γ + 1)2 + 1

(γ + 1)2
,

b3 =
(

γ − 1

γ

)2 2γ (γ − 1)

(γ + 1)2
,

b4 =
(

γ − 1

γ

)2
(γ − 1)2

(γ + 1)2
. (86)

Note that the maximum energy loss in collisions of positrons
is Wmax = E.

4.2.2. Collision stopping power. The energy-loss DCS is

dσin

dW
≡

∫ Q+

Q−

d2σin

dW dQ
dQ, (87)

where Q− and Q+ are the minimum and maximum
kinematically allowed recoil energies, which are given by
equation (69) with cos θ = ±1. The collision stopping power
Scol is defined as the average energy loss per unit path length
due to inelastic collisions, and is given by

Scol = −dE

ds
= N

∫ Wmax

0
W

dσin

dW
dW, (88)

where N is the number of atoms or molecules per unit
volume. For projectiles with small and intermediate energies,
the integral has to be evaluated numerically. However, when
the energy E of the projectile is much larger than the ionization
energies of the atomic electrons, the stopping power is given
by the celebrated Bethe formula. The derivation of this
formula is described by Fano (1963). The contribution of
interactions with small and intermediate energy losses can
be evaluated analytically by making explicit use of the Bethe
sum rule, equation (77). For large W , the energy-loss DCS
is approximated by the analytical formulas given above for
collisions with free electrons at rest. The Bethe formula can
be expressed as

Scol = N
2πe4

mev2
Z

{
ln

(
E2

I 2

γ + 1

2

)
+ f (±)(γ ) − δF

}
, (89)

where I is the mean excitation energy, given by equation (79),
and

f (−)(γ ) = 1 − β2 − 2γ − 1

γ 2
ln 2 +

1

8

(
γ − 1

γ

)2

(90)

and

f (+)(γ ) = 2 ln 2 − β2

12

[
23 +

14

γ + 1
+

10

(γ + 1)2
+

4

(γ + 1)3

]
(91)

for electrons and positrons, respectively.
The quantity δF is the Fermi density-effect correction to the

stopping power (Sternheimer 1952, Sternheimer et al 1982).
It can be computed from the OOS as (Fano 1963)

δF ≡ 1

Z

∫ ∞

0

df (W)

dW
ln

(
1 +

L2

W 2

)
dW − L2

�2
p

(
1 − β2

)
,

(92)

where L is a real-valued function of β2 defined as the positive
root of the following equation (Inokuti and Smith 1982):

F(L) ≡ 1

Z
�2

p

∫ ∞

0

1

W 2 + L2

df (W)

dW
dW = 1 − β2. (93)

The function F(L) decreases monotonically with L, and
hence, the root L(β2) exists only when 1 − β2 < F(0);
otherwise it is δF = 0. Therefore, the function L(β2) starts
with zero at β2 = 1 − F(0) and grows monotonically with
increasing β2. Tables of the density-effect correction δF for
many materials (elements and compounds) are given in ICRU
(1984).

Figure 6 displays collision stopping powers of electrons
in solid aluminium and gold calculated from the optical-
data model of Fernández-Varea et al (2005), and from the
Bethe formula, equation (89), with the mean excitation energy
I obtained from the OOS used in the optical-data model
calculation. Optical-data models provide quite reliable values
of Scol for energies down to about 100 eV, as evidenced by
the relative agreement with available measurements. It is
striking that the ‘asymptotic’ Bethe formula is in fact valid
down to fairly small energies, of the order of 10 keV for high-
Z materials; it also accounts for the differences between the
stopping powers of electrons and positrons. This formula was
used to generate the tables of collision stopping powers of
electrons and positrons in ICRU (1984).

In principle, the simulation of individual inelastic
collisions should be performed by sampling the energy loss
W and the scattering angle (or the recoil energy Q) of the
projectile from the DCS given by equation (74). In practice,
however, this procedure is too involved, and most Monte
Carlo codes have recourse to condensed or mixed simulation
schemes (Berger 1963). In mixed schemes, the collective
effect of soft interactions (with W less than a certain cutoff
value Wc) is described as a continuous-slowing-down process,
while hard interactions are frequently simulated from the
DCSs for collisions with free electrons at rest (i.e. ignoring
the effect of electron binding). It is fortunate that multiple
scattering tends to smear out the details of the adopted DCS
and, as a consequence, accurate results are obtained by simply
ensuring that the stopping power has the right value. Under the
conditions of validity of the Bethe formula (89), the stopping
power is determined by the mean excitation energy I , which
summarizes all the dependence of the collision stopping power
on the structure of the material. Of course, uncertainties in this
empirical parameter translate to simulation results.
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( (
))

Figure 6. Collision stopping powers for electrons in solid aluminium and gold, as functions of the electron kinetic energy (above Fermi
level). The solid curves are theoretical results calculated from the optical-data model of Fernández-Varea et al (2005); the symbols are
experimental data from various authors. The dashed curves represent collision stopping powers calculated from the Bethe formula,
equation (89), with I values derived from the experimental OOS used in the optical-data model calculations.

4.2.3. Ionization of inner shells. To simulate x-ray emission,
we need accurate total cross sections for the ionization of
individual atomic shells by impact of electrons and positrons.
Scofield (1978) calculated cross sections for the ionization
of K and L shells of selected elements using the PWBA.
However, this approximation yields reliable cross sections
only for projectiles with kinetic energies larger than about
30 times the ionization energy of the active shell. A number
of approximations based on the PWBA have been proposed,
usually by combining analytical approximate forms of the GOS
with phenomenological low-energy Coulomb and exchange
corrections (Hippler 1990, Deutsch et al 1998, Kim et al 2000).
The Weizsäcker–Williams method of virtual quanta used by
Kolbenstvedt (1967) and Seltzer (1988) can also be regarded
as a simplification of the PWBA (see, for example, Mayol
and Salvat 1990). The most elaborate theoretical calculations
of inner-shell ionization by particle impact is provided by the
DWBA, but calculations can be performed only for projectiles
with kinetic energies up to about 20Unκ .

Bote and Salvat (2008) used the DWBA to evaluate
Coulomb and exchange corrections to the PWBA, and
generated a database of ionization cross sections for the K ,
L and M shells of the elements with Z = 1 to 99 and for
electrons and positrons extending from threshold up to 109 eV.
Comparison with available experimental data indicates that the
calculated cross sections are reliable even for near-threshold
energies. Figure 7 shows cross sections from Bote and Salvat’s
database for ionization of the various shells of the elements
argon and tungsten by electron impact. Cross sections obtained
from the PWBA are also displayed, to exemplify the domain
of validity of this approximation.

4.3. Bremsstrahlung emission

Bremsstrahlung emission by electrons and positrons can occur
in the electrostatic field of the atom or in collisions with

atomic electrons. Whereas the nuclear recoil has a negligible
effect and can be ignored (except at very high energies and
large photon emission angles), the recoil of the target electron
cannot be neglected, because it affects the kinematics of the
process. Moreover, in electron–electron collisions, exchange
effects occur. The book of Haug and Nakel (2004) is an
excellent review of the theory and experimental measurements
of bremsstrahlung emission (see also Haug (2006, 2008)).

A reliable description of bremsstrahlung emission in
collisions of electrons and positrons with free electrons is
obtained by using the methods of quantum electrodynamics
(Haug 2006) with electron states represented by plane waves.
The transition matrix element is difficult to calculate, because
eight different Feynman diagrams contribute to the transition
amplitude. The squared transition matrix element for electron–
electron bremsstrahlung, averaged over initial spin states of
the electrons and summed over final electron spin states
and polarization states of the emitted photon, is given by
a very long formula, which can be found in appendix B
of Haug and Nakel’s book (almost six pages for a single
analytical expression). This formula is in covariant form
and depends on five invariants. The corresponding average
squared matrix element for positron–electron bremsstrahlung
can be obtained from that of the electron–electron process by
a simple substitution rule (Haug and Nakel 2004). A striking
difference between electron–electron and electron–nucleus
bremsstrahlung is found in the angular distributions of emitted
photons. Whereas the angular distribution of the emitted
photon in electron–nucleus (and also in positron–electron)
bremsstrahlung is essentially a boosted dipole distribution,
the angular distribution of electron–electron bremsstrahlung
is quadrupolar (Haug and Nakel 2004). The difference is due
to the fact that the electron–electron system has a null electric
dipole moment.

The emission of bremsstrahlung in the field of bound
electrons can be described by using the impulse approximation
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Figure 7. Electron-impact ionization cross sections for K , L and M shells of argon and tungsten. The continuous curves are results from
DWBA calculations by Bote and Salvat (2008); dashed curves represent cross sections obtained from the PWBA.

(Haug and Keppler 1984). Alternatively, one may account for
the effect of binding (partially disregarding the motion of the
target electrons) by using the approximation of Wheeler and
Lamb (1939), where binding effects are introduced by simply
multiplying the DCS for a target electron free and at rest by the
incoherent scattering function S(q, Z), equation (42), where
h̄q is the momentum transfer to the target electron. Seltzer
and Berger (1985) used the Wheeler–Lamb approximation to
derive a binding correction, which they added to the DCS of
free electrons at rest to obtain the total DCS, differential in only
the energy of the emitted photon, for bremsstrahlung emission
in the field of the atomic electrons. More recently, Tessier
and Kawrakow (2008) reported more elaborate calculations
of atomic cross sections for electron–electron bremsstrahlung
using the Wheeler–Lamb approximation.

Let us now consider the process of electron–nucleus
bremsstrahlung in which a free electron with initial kinetic
energy E1 and momentum h̄k1 is scattered by the electrostatic
field of an atom, i.e. by the Coulomb field of the nucleus
screened by the atomic electrons. In the interaction, a photon
with energy W = h̄ω and momentum h̄k is emitted and thereby
the electron jumps to a state with kinetic energy E2 = E1 −W

and momentum h̄k2. It is assumed that the mass of the nucleus
is much larger than that of the electron, so that it can take
arbitrary amounts of recoil momentum and negligible energy.
Hence, the final directions of the electron and the emitted
photon are independent. Within the formalism of the Furry
picture, the DCS for this process, to lowest order, is given by
(Tseng and Pratt 1971b)

d3σbr

dW dk̂ dk̂2

= (2π)2α
W(E1 + mec

2)ch̄k2(E2 + mec
2)

(ch̄)4ch̄k1

×
∑′|(M†

kα)21|2, (94)

where α is the fine-structure constant. The matrix element
is between free-electron states, described by distorted plane

waves,

(M
†
kα)21 =

〈
ψ

(−)

k2,mS2

∣∣∣ ε̂∗
α · α̃ exp(−ik · r)

∣∣∣ψ(−)

k1,mS1

〉
. (95)

We are assuming that the incident electron is unpolarized and
that its final spin state and the polarization of the emitted photon
are not observed. The primed summation symbol in expression
(94) indicates a sum over final electron spin states and photon
polarizations, and an average over initial spin states.

Usually, in Monte Carlo calculations it is assumed that
deflections of electron trajectories are completely accounted
for by the elastic DCS and, consequently, the adopted DCS for
bremsstrahlung emission are integrated over the final direction
of the projectile electron,

d2σbr

dW dk̂
=

∫
d3σbr

dW dk̂ dk̂2

dk̂2. (96)

Calculations become much simpler after integrating over dk̂,
because angular integrals are performed analytically and each
of them effectively removes a large number of terms from the
partial-wave series. The energy-loss DCS, differential in only
the energy loss (or the energy of the emitted photon) is

dσbr

dW
=

∫
d2σbr

dW dk̂
dk̂ ≡ Z2

β2

1

W
χ(Z, E1, κ). (97)

The last expression defines the scaled DCS, χ(Z, E1, κ), as a
function of the atomic number Z, the energy of the projectile
E1 and the reduced energy of the photon, κ ≡ W/E1.
For a given element, this function varies smoothly with E1

and κ and is therefore amenable for numerical interpolation.
Pratt et al (1977) produced a table of bremsstrahlung energy
spectra for electrons, calculated according to equation (97)
using the partial-wave expansion of the distorted plane waves
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(equation (A.13)), for all elements and electron kinetic energies
from 1 keV to 2 MeV.

Partial-wave DCSs are available only for a limited range
of kinetic energies and, therefore, analytical approximate
formulae have to be employed for higher energies. The usual
practice in Monte Carlo simulation is to rely on the DCS
obtained from the first Born approximation (see, for example,
Haug and Nakel 2004), which is given by the Bethe–Heitler
formula. The calculation is not trivial, because it requires
building free-electron wave functions accurate to first order
in αZ. Replacing the distorted waves by pure plane waves
would yield a null cross section, reflecting the fact that the
emission of bremsstrahlung is possible only in the presence of
an external particle (potential) which can absorb momentum.
After a lengthy derivation, which involves the calculation of
traces of products of Dirac matrices using energy-projection
operators, one arrives at the Bethe–Heitler formula for the
triply DCS (equation 1BS in Koch and Motz (1959)). This
important formula is the basis of various approximations used
for sampling high-energy bremsstrahlung and pair-production
events. To express the Bethe–Heitler DCS, it is convenient to
orient the coordinate axes in such a way that the z axis has the
direction of k, and the momentum of the incident electron lies
in the x − z plane, that is,

k̂ = (0, 0, 1), k̂1 = (sin θ1, 0, cos θ1),

k̂2 = (sin θ2 sin φ, sin θ2 cos φ, cos θ2).

The Bethe–Heitler formula reads

d3σbr

dW dk̂ dk̂2

= r2
e

4π2

p2 m2
ec

4

Wk1q4

×
{

[4W2
2 − (ch̄q)2]

(ch̄k1)
2 sin2 θ1

(W − ch̄k1 cos θ1)2

+ [4W2
1 − (ch̄q)2]

(ch̄k2)
2 sin2 θ2

(W2 − ch̄k2 cos θ2)2

− [4W1W2 − (ch̄q)2 + 2W 2]

× 2(ch̄)2k1k2 sin θ1 sin θ2 cos φ

(W1 − ch̄k1 cos θ1)(W2 − ch̄k2 cos θ2)

− 2W 2 (ch̄k1)
2 sin2 θ1 + (ch̄k2)

2 sin2 θ2

(W1 − ch̄k1 cos θ1)(W2 − ch̄k2 cos θ2)

}
×[Fnuc(q) − F(q, Z)]2, (98)

where Wi = Ei + mec
2 are the total energies of the

electron and h̄q is the momentum transferred to the nucleus
(q = k1 − k2 − k),

(ch̄q)2 = 2W {[W1 − (ch̄k1) cos θ1]

− [W2 − (ch̄k2) cos θ2]}
+ 2[W1W2 − (ch̄)2k1k2(cos θ1 cos θ2

+ sin θ1 sin θ2 cos φ) − m2
ec

4]. (99)

The form factors Fnuc(q) and F(q, Z) arise through the Fourier
transform of the screened potential, V(q) (see equation (62)),
which appears at an intermediate stage in the calculation as a

global factor of the transition matrix elements. The nuclear
form factor accounts for the effect of the nuclear charge
distribution. Usually, a point nucleus is assumed, in which
case Fnuc(q) = Z. The atomic form factor accounts for the
screening of the nuclear charge by the atomic electrons.

A high-energy Coulomb correction, which approximately
corrects for the effect of treating the interaction of the projectile
with the atomic field as a perturbation, was derived by Davies
et al (1954). A refined Coulomb correction is described
by Seltzer and Berger (1985). Haug (2008) has recently
proposed an approximate theory that combines the DCS for the
unscreened point nucleus with a screening correction obtained
from the Born approximation. The DCS for the nucleus
is calculated by using approximate Sommerfeld–Maue wave
functions, which are more accurate than the modified plane
waves adopted in the Born approximation. The fact that
Haug’s cross section is given by analytical, although fairly
lengthy formulae makes it attractive to improve simulations
of electron and positron transport at intermediate energies, at
which partial-wave calculations are not feasible.

The Bethe–Heitler DCS is still too complicated to be
used in Monte Carlo codes. The usual practice to simulate
bremsstrahlung events is to sample first the energy W

of the emitted photon from the scaled DCS, χ(Z, E1, κ)

(equation (97)), which is the marginal probability distribution
of W . Seltzer and Berger (1985, 1986) have prepared
extensive tables of bremsstrahlung energy spectra, obtained
by combining different theoretical models, for electrons with
kinetic energies E1 from 1 keV to 10 GeV incident on neutral
atoms of the elements Z = 1 to 100. These tables
include energy spectra for both electron–nucleus and electron–
electron bremsstrahlung emission. The DCS for electron–
nucleus bremsstrahlung DCS was calculated by combining
analytical high-energy theories with results from partial-wave
calculations by Pratt et al (1977) for bremsstrahlung emission
in screened atomic fields and energies below 2 MeV. Seltzer
and Berger’s tables constitute the most reliable theoretical
representation of bremsstrahlung energy spectra available at
present, and they are adopted in many Monte Carlo codes.
The radiative stopping power of electrons in a single-element
medium is calculated from the tabulated scaled DCS as

Srad = N
∫

W
dσbr

dW
dW = N

Z2

β2

∫
χ(Z, E1, κ) dW, (100)

where N is the number of atoms per unit volume. Tables of
radiative stopping powers, obtained from Seltzer and Berger’s
scaled DCSs, are given in the ICRU Report 37 (1984).

To complete the simulation of bremsstrahlung emission
events, the direction of the emitted photon has to be sampled
according to the DCS, equation (96), with W equal to the
sampled photon energy. The angular distribution of emitted
photons in electron–nucleus bremsstrahlung (the so-called
shape function) has been calculated by Kissel et al (1983),
using the partial-wave expansion method (i.e. from the DCS
given by equation (94)), for 144 combinations of atomic
number Z, electron energy E1 and reduced photon energy κ .
Acosta et al (2002) found that these shape functions can be
closely approximated as Lorentz-boosted dipole distributions,
from which the emission angle can be sampled analytically.
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For energies above 500 keV, the highest energy in the tables
of Kissel et al, the shape function can be be obtained
from the Bethe–Heitler formula (98), or from a suitable
approximation to it. Bielajew et al (1989) described an
analytical method for sampling the photon direction from the
Schiff (1951) DCS (equation (2BS) of Koch and Motz 1959).
This DCS is obtained from equation (98), through a number
of approximations: high-energy limit (W, W1, W � mec

2),
exponential screening [V (r) = −(Ze2/r) exp(−r/R)], small
angles and an approximate integration over the scattered
electron direction.

To our knowledge, all Monte Carlo codes simulate
electron–electron bremsstrahlung by assuming that the
angular distribution is the same as for electron–nucleus
bremsstrahlung. Also, an important simplification is
introduced in the simulation of bremsstrahlung emission by
positrons. The scaled cross section for positrons reduces to
that of electrons in the high-energy limit, where the Bethe–
Heitler formula is applicable, but it is smaller for intermediate
and low energies. Cross sections for bremsstrahlung emission
by positrons have been calculated by Kim et al (1986) using
partial-wave methods. These authors found that the ratio of
the radiative stopping powers for positrons and electrons can
be approximated as a function only of the variable E1/Z

2,
Fp(E1/Z

2). Because of the lack of more accurate calculations,
various codes use DCSs for positrons obtained by multiplying
the electron DCS by the scaling factor Fp(E1/Z

2),

dσ
(+)

br

dW
= Fp(E1/Z

2)
dσ

(−)

br

dW
. (101)

The angular distribution of bremsstrahlung photons emitted by
positrons is assumed to be the same as for electrons.

4.4. Positron annihilation

Positrons can annihilate with the electrons in the medium
by emission of photons. The basic theory of the process is
described in Heitler’s (1984) book. In the case of annihilation
with a free electron, conservation of energy and momentum
implies that annihilation can only happen with emission of at
least two photons. Indeed, the dominant process is that of
two-photon annihilation; the probability of annihilation with
emission of three or more photons is about 400 times smaller.
When the target electron is bound to an atom, annihilation can
occur with emission of only one photon, but the probability
is again considerably smaller, by a factor of the order of
(αZ)4, than for two-photon annihilation (Broda and Johnson
1972, Tseng and Pratt 1973). It is also possible that, after
slowing down, the positron forms a positronium atom before
annihilating (see Heitler 1984). When the atom is in the
singlet 1S state, annihilation occurs with emission of two
quanta. From the triplet 3S state, the atom must annihilate
with emission of, at least, three photons. The probability of
three-photon annihilation is about 400 times smaller than for
two-photon decay.

In most Monte Carlo codes, positron annihilation is
described by assuming that the target electrons are free
and at rest, thus disregarding electron binding effects,

and considering only two-photon emission. The DCS
(per electron) for two-photon annihilation, as observed in the
centre-of-mass system of the positron and the electron, is
derived by Heitler (1984), Nelson et al (1985) transformed
this DCS to the laboratory system (where the electron is at
rest). Let us consider the annihilation of a positron with kinetic
energy E via emission of two photons with energies E+ and
E−, which add to E+2mec

2. Quantities referring to the photon
with the lowest energy will be denoted by the subscript ‘ − ’.
Each annihilation event is then completely characterized by
the quantity

ζ ≡ E−
E + 2mec2

. (102)

If the positron moves initially in the direction of the z-axis,
from conservation of energy and momentum it follows that the
two photons are emitted in directions with polar angles

cos θ− = (γ 2 − 1)−1/2(γ + 1 − 1/ζ ) (103)

and

cos θ+ = (γ 2 − 1)−1/2[γ + 1 − 1/(1 − ζ )], (104)

which are determined by ζ . The maximum value of ζ is 1/2,
its minimum value is found when cos θ− = −1 and is given by

ζmin = [γ + 1 + (γ 2 − 1)1/2]−1. (105)

The DCS for annihilation by an electron at rest is (Nelson et al
1985)

dσan

dζ
= πr2

e

(γ + 1)(γ 2 − 1)
[S(ζ ) + S(1 − ζ )], (106)

where

S(ζ ) = −(γ + 1)2 + (γ 2 + 4γ + 1)
1

ζ
− 1

ζ 2
. (107)

For fast positrons, annihilation photons are emitted
preferentially at forward directions. When the kinetic energy
of the positron decreases, the angular distribution of the
generated photons becomes more isotropic. The total cross-
section per electron for two-photon annihilation, which is
obtained by integrating expression (106) over ζ , decreases
monotonically when the energy E of the positron increases.
In most cases, a high-energy positron loses practically all its
kinetic energy before annihilating.

5. Atomic relaxation

Interactions of photons and electrons that cause the emission
of secondary electrons (photoelectric absorption, Compton
scattering of photons, inelastic collisions of electrons and
positrons, etc) leave the target atom ionized and in an excited
state. The excited ion then relaxes to its ground state through
a sequence of radiative and non-radiative transitions, in which
photons (fluorescence x-rays) and Auger electrons are emitted,
respectively. In inelastic collisions of charged particles, and
in Compton scattering, shells with larger ionization energies
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Unaκa
have smaller cross sections, and smaller probabilities of

being ionized. In the photoelectric effect, however, the shell
cross sections increase with Unaκa

(Cullen et al 1997), that is,
photons of energy E have a tendency to ionize the innermost
possible electron shell with Unaκa

< E.
A comprehensive review of the theory and measurements

of fluorescence yields and Auger and Coster–Kronig transition
probabilities was published by Bambynek et al (1972).
Hubbell et al (1994, 2004) reviewed fluorescence data
and fitted empirical values for the K , L and M shells.
More recently, Campbell (2003) has undertaken a critical
examination of fluorescence yields and Coster–Kronig
probabilities for the atomic L subshells. An extensive
tabulation of experimental x-ray energies was produced by
Bearden (1967). The most updated compilation of transition
energies for K and L x-rays is that of Deslattes et al (2003).

Various Monte Carlo codes simulate atomic relaxation
using information from the LLNL Evaluated Atomic Data
Library (Perkins et al 1991), which provides a comprehensive
tabulation of transition probabilities and energies for both
radiative and non-radiative transitions for all elements.
The transition probabilities in this library were calculated
theoretically by assuming that the relaxing ion has a single
vacancy (an assumption that ceases to hold, for example,
after a non-radiative transition) and transition energies were
approximated from the shell ionization energies of the neutral
atoms. In simulations of x-ray spectra, these simplifications
lead to visible inconsistencies. X-ray energies can be readily
corrected by using values from Deslattes et al (2003) and
Bearden (1967).

6. Concluding comments

We would like to conclude by stressing the fact that general-
purpose Monte Carlo codes are subject to a compromise
between generality and accuracy. The generic interaction
models currently in use are certainly incapable of describing
the finest details of the interactions in real media. The
approximations that plague the models are bound to produce
artefacts that become evident in extreme cases, e.g. in
transmission through very thin foils or when the emerging
radiation is analysed with high energy or angular resolutions.
Nevertheless, today’s Monte Carlo codes do provide accurate
results in many practical applications, primarily because each
approximation has only a weak influence on the simulation
results.

Various common approximations are likely to be improved
in the near future. Better theoretical models are already
available, and they have not yet been adopted only because
they are not amenable to analytical manipulation. Thus,
angular distributions of photoelectrons obtained from partial-
wave calculations could be employed, replacing the Sauter
distribution, equation (17). In pair production, the energies of
the produced particles may be sampled from the distribution
of Øverbø et al (1973) for pair production in a Coulomb
field. Refined cross sections for inelastic collisions of electron
and positron inelastic collisions, based on approximate GOS
models, can be introduced to allow a more detailed description

of secondary-electron emission. Angular distributions of
electron–nucleus bremsstrahlung at high energies could be
improved by using Haug’s (2008) formulation; the angular
distribution for electron–electron bremsstrahlung may also be
introduced. In the case of positron annihilation, the impulse
approximation could be used to account for the motion of the
target electrons; one-photon annihilation by bound electrons
could also be included.
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Appendix A. Dirac wave functions

The relativistic wave equation for the electron is the Dirac
equation. The Dirac Hamiltonian for an electron in a central
field V (r) is (see, for example, Rose 1961, Sakurai 1967)

HD = cα̃ · p + β̃mec
2 + V (r), (A.1)

where p = −ih̄∇ is the linear momentum operator, and α̃ and
β̃ are the Dirac matrices. The standard (or split) representation
of these matrices is

α̃ =
(

0 σ

σ 0

)
, β̃ =

(
I2 0

0 −I2

)
, (A.2)

where σ stands for the familiar 2 × 2 Pauli spin matrices and
I2 is the 2 × 2 unit matrix. The time-independent Dirac wave
equation has the form

[cα̃ · p + β̃mec
2 + V (r)]ψ(r) = Wψ(r), (A.3)

where W is the (total) energy eigenvalue.
The total energy W of a free electron (V ≡ 0) can take

positive and negative values (W � mec
2, W � −mec

2).
Negative-energy states cannot be interpreted on an equal
footing as the positive-energy states, because normal electrons
in positive-energy states cannot make radiative transitions to
negative-energy states. A partial solution is provided by
Dirac’s ‘hole theory’, which assumes that negative-energy
states are filled with electrons according to Pauli’s exclusion
principle. Since the Dirac sea of negative-energy states cannot
accommodate more electrons, the stability of matter is thus
assured. However, it is possible for a negative-energy electron
to absorb electromagnetic radiation and be excited to a positive-
energy state. When this process occurs, we observe an electron
of charge −e and positive energy and a hole in the negative-
energy sea. The hole reflects the absence of an electron of
charge −e and negative energy −|W| and can be interpreted
as the presence of a particle of charge +e, mass me and
positive energy +|W| in the Dirac sea, the positron. This
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is the hole-theory description of the electron-positron pair-
production process. With the methods of second quantification
(Heitler 1984, Sakurai 1967), the theory is formulated in terms
of electrons and positrons, avoiding the need of considering the
infinite sea of negative-energy electrons.

The angular momentum operator for a Dirac particle is
J = L + S, where L = −ir × ∇ is the orbital angular
momentum and S is the spin angular momentum (all angular
momenta are in units of h̄). Since HD commutes with J2, Jz

and with the parity operator (P = β̃× space inversion), there
exists a complete basis of eigenfunctions common to these four
operators. For positive-energy states, these eigenfunctions are
the spherical waves, and have the form (Rose 1961, Grant
1970)

ψEκm(r) = 1

r

(
P(r)�κ,m(r̂)

iQ(r)�−κ,m(r̂)

)
, (A.4)

where �κ,m(r̂) are spherical spinors, and P(r) and Q(r) are
the large- and small-component radial wave functions, which
satisfy the coupled differential equations

dP

dr
= −κ

r
P +

E − V + 2mec
2

ch̄
Q,

dQ

dr
= −E − V

ch̄
P +

κ

r
Q,

(A.5)

where E = W − mec
2 is the electron energy, exclusive of its

rest energy. The spherical spinors are eigenfunctions of the
total angular momentum in Pauli’s theory, and are given by

�κ,m(r̂) ≡
∑

mS=±1/2

〈	, 1/2, m − mS, mS|j, m〉Y	,m−mS(r̂)χmS ,

(A.6)

where the quantities 〈....|..〉 are Clebsch–Gordan coefficients,
Y	m(r̂) are spherical harmonics and χmS are the unit Pauli
spinors. To simplify notation, it is customary to introduce
the relativistic angular momentum quantum number

κ = (	 − j)(2j + 1), (A.7)

which specifies both the total angular momentum [ j ] and the
parity [(−1)	] of the Dirac spherical wave,

j = |κ| − 1

2
, 	 = j +

κ

2|κ| . (A.8)

The wave functions of negative-energy states can be obtained
by applying the charge-conjugation transformation to the
positive-energy states of an electron in the potential −V (r)

(Rose 1961). In what follows, we consider only positive-
energy states.

The potentials occurring in the study of interactions of
radiation with atoms are combinations of a short-range field
and a Coulomb field,

V (r) = Vsr +
Z∞e2

r
, (A.9)

where the short-range component is assumed to vanish
for r > rc. Thus, for the DHFS field of neutral atoms,
equation (11), rc is the onset of the Latter tail and Z∞ = −1.

Radial wave functions for these potentials can be calculated
numerically to high accuracy by using the subroutine package
RADIAL (Salvat et al 1995). The numerical algorithm
implemented in these subroutines combines a cubic-spline
interpolation of the function rV (r) with local power-series
expansions of the radial wave functions in such a way that
truncation errors are effectively reduced. In the case of bound
orbitals (E < 0), each discrete energy level is characterized by
the principal quantum number n and the relativistic quantum
number κ . For a given n, the allowed values of κ range from
−n to n−1. Bound orbitals satisfy the orthonormality relation∫

ψ
†
n′κ ′m′(r)ψnκm(r) dr = δn′nδκ ′κδm′m. (A.10)

The radial wave functions of free spherical waves (E > 0)
are normalized in such a way that the large-component radial
function asymptotically oscillates with unit amplitude,

P(r) ∼
r→∞

sin
(
kr − 	

π

2
− η ln(2kr) + δEκ

)
, (A.11)

where k, equation (2), is the wave number and η = Z∞e2me/
(h̄2k) is the Sommerfeld parameter. The phase shift δEκ is
obtained from the behaviour of the radial function P(r) at
large r . Free spherical waves normalized in the form (A.11)
satisfy the orthogonality relation∫

ψ
†
E′κ ′m′(r)ψEκm(r) dr = π(E + mec

2)

E + 2mec2
δ(k′ − k)δκ ′κδm′m.

(A.12)

In collision theory, states of free electrons in the initial
and final channels are described as distorted plane waves, i.e.
by solutions of the Dirac equation for the potential V (r) that
asymptotically behave as a plane wave plus an outgoing (+)
or incoming (−) spherical wave. A distorted plane wave is
characterized by the wave vector k and spin mS; it can be
expanded on the basis of spherical waves as (Rose 1961, Pratt
et al 1973)

ψ
(±)

kmS
(r) = 1

k

√
E + 2mec2

π(E + mec2)

×
∑
κ,m

i	 exp(±iδEκ){[�κm(k̂)]†χmS}ψEκm(r),

(A.13)

where
E =

√
(ch̄k)2 + (mec2)2 − mec

2 (A.14)

is the kinetic energy of the electron. With the adopted
normalization for free spherical waves, the distorted plane
waves satisfy the orthogonality relation∫ [

ψ
(±)

k′m′
S
(r)

]†
ψ

(±)

kmS
(r) dr = δ(k′ − k)δm′

SmS . (A.15)

The distorted plane waves have the following asymptotic
behaviour

ψ
(±)

kmS
(r) ∼

r→∞φkmS(r) + ψ
(±)

dist (r), (A.16)
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where

φkmS(r) = 1

(2π)3/2
exp(ik · r)

√
E + 2mec2

2E + 2mec2

×
 I2√

E

E + 2mec2
σ · k̂

χmS (A.17)

is a positive-energy plane wave that represents a beam of
electrons with momentum h̄k and spin state χmS . The second
term in expression (A.16) is an outgoing (+) or incoming (−)
spherical wave,

ψ
(±)

dist (r) = 1

(2π)3/2

exp(±ikr)

r

√
E + 2mec2

2E + 2mec2

×
 I2

±
√

E

E + 2mec2
σ · r̂

F(±kr̂, k)χmS . (A.18)

The scattering amplitude F(±kr̂, k) is a 2 × 2 matrix,

F(k̂
′
, k̂) =

(
F1/2,1/2 F1/2,−1/2

F−1/2,1/2 F−1/2,−1/2

)
, (A.19)

with elements

Fm′
S,mS = −4πW

(ch̄)2

∫
φ

†
k′m′

S
(r)V (r)ψ

(+)

kmS
(r) dr. (A.20)

This matrix determines the spin state of electrons in the
spherical wave component. In time-dependent perturbation
theory, the distorted plane wavesψ

(+)

kmS
(r) andψ

(−)

kmS
(r) represent

electron states in the initial and final channels, respectively (see
Breit and Bethe 1954).

The distorted plane wave ψ
(+)

kmS
(r) can be regarded as

the wave function of a stationary scattering state, with the
emerging spherical wave representing the scattered electron
flux. The scattering amplitude matrix can be expressed in a
more explicit form by adopting a reference frame with the z-
axis along the initial direction, ẑ = k̂. Then,

k̂
′ = (sin θ cos φ, sin θ sin φ, cos θ), (A.21)

where θ and φ are the polar and azimuthal angles of the ‘final’

direction k̂
′
, respectively. We have

F(k̂
′
, k̂) =

(
f (θ) −e−iφg(θ)

eiφg(θ) f (θ)

)
. (A.22)

The functions f (θ) and g(θ) are called the ‘direct’ and ‘spin-
flip’ scattering amplitudes, respectively, and are given by the
following partial-wave series

f (θ) = 1

2ik

∑
	

{(	 + 1)[exp(2iδE,κ=−	−1) − 1]

+ 	[exp(2iδE,κ=	) − 1]}P	(cos θ), (A.23a)

g(θ) = 1

2ik

∑
	

[exp(2iδE,κ=	)

− exp(2iδE,κ=−	−1)]P
1
	 (cos θ), (A.23b)

where P	(cos θ) and P 1
	 (cos θ) are Legendre polynomials and

associated Legendre functions, respectively (see, for example,
Abramowitz and Stegun 1974). In the limit where the strength
of the potential tends to zero (V = 0), the phase shifts
vanish, the radial functions of free states (E > 0) reduce
to regular spherical Bessel functions, and the distorted plane
waves reduce to plane waves.
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