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Nomenclature
A Atomic weight

b Impact parameter

Bnj Binding energy of an electron in shell n and

subshell j

c Velocity of light

ds/dV Scattering cross section differential in solid angleO
e Elementary unit of electric charge

E Kinetic energy of charged particle

F(q,Z) Atomic form factor, as function of momentum

transfer, q, and atomic number, Z

g Fraction of the kinetic energy lost by charged

particles in radiative processes when the charged

particles slow down to rest

hn Photon energy at frequency n
I Mean excitation energy

k Energy of photon expressed in electron mass units

LD Linear energy transfer or restricted (D) linear
electronic stopping power

M Rest mass of charged particle

me Rest mass of electron (or positron)

NA Avogadro constant

p Particle momentum

R Radiant energy

re Classical electron radius

S(q,Z) Incoherent scattering factor, as function

of momentum transfer, q, and atomic number, Z

S(r,u) Angular distribution of bremsstrahlung

Sel/r Mass collision stopping power
Snucl/r Mass nuclear stopping power

Srad/r Mass radiative stopping power

T/r Mass scattering power

v Particle velocity

X Radiation length

Y(Eo) Radiation yield for an electron with initial kinetic

energy Eo
z Charge of incident particle in units of the charge of

the electron

Z Atomic number

a Fine structure constant

b Ratio of particle velocity to the velocity of light

b/r Absorption coefficient for b-radiation
d Density–effect correction

«o Permittivity

P (x) Particle fluence at depth x

k/r Mass cross section for pair production

m/r Mass attenuation coefficient

men/r Mass energy absorption coefficient

mtr/r Mass energy transfer coefficient

r Density of the medium

s Cross section

s/r Mass cross section for scattering

sgn/r Mass cross section for photonuclear reaction

t The ratio of kinetic energy of a particle to its rest

energy

t/r Mass cross section for photoelectric effect

v Fluorescence yield

C (x) Energy fluence at depth x
9.01.1 Introduction

There are several reviews of the interaction of ionizing radiation

with matter, which are valuable for medical physics applica-

tions (e.g., Attix, 1986; Bethge et al., 2004; Evans, 1955; Khan,

2003; Nikjoo et al., 2012; Podgorsak, 2009; Roy and Reed,

1968), and the reader may refer to them and original publica-

tions for a more extensive description. The aim of this chapter

is to give an overview and try to show how the different inter-

action probabilities will influence the transport of ionizing

radiation through matter. This knowledge is important in dif-

ferent aspects of medical applications of radiation. It has an

impact in designing an optimal treatment gantry, in the choice

of radiation quality and of course when determining the

absorbed dose distribution in the body. It is also important in

diagnostic radiology when optimizing the image quality.

Knowledge of interaction of radiation with matter is also fun-

damental for understanding the biological effect of radiation
and its variation with ionization density. The focus will not be

on the basic physics and deriving the different cross sections but

on the impact of these cross sections on imaging and therapy in

medical physics applications. This chapter will then not include

detailed data on cross sections or tables found in the published

literature (e.g., Higgins et al., 1991; ICRU, 1984a,b, 1993) or on

the Internet (e.g., Berger et al., 2005a,b; http://nist.gov./pml/

data/). The notations proposed by ICRU (ICRU, 2011) will be

used when relevant.

Ionizing radiation is normally divided into charged parti-

cles (previously called directly ionizing radiation) such as lep-

tons, a-particles, protons and other light ions, and uncharged

particles (previously called indirectly ionizing radiation) such

as photons (x-rays or g-rays) and neutrons. This chapter will

concentrate on radiation qualities used in radiotherapy, and

the main part will be dedicated to electrons and photons with

http://nist.gov./pml/data/
http://nist.gov./pml/data/
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energies up to around 50 MeV and light ions with energies up

to 900 MeV per nucleon. The presentation is divided into two

main sections, charged particles and photons.
9.01.2 Charged Particles

9.01.2.1 Introduction to Charged Particle Interaction

When charged particles pass through matter, their Coulomb

electric field will interact with the atomic electrons and the

atomic nuclei in the matter. Normally, only a small part of

the kinetic energy is lost in each collision, and the particles will

undergo several interactions before they have transferred all

their kinetic energy to matter. The interactions will give rise to

excitations and ionizations of the atoms and emission of elec-

tromagnetic radiation, often called bremsstrahlung. Depend-

ing on the type of charged particle, different interaction

processes are more or less important, and often, the description

of the interactions of charged particles is divided into light

charged particles (electrons and positrons) and heavy charged

particles (ions). The ions are sometimes further divided into

light ions with Z�10 and heavy ions with Z�10. The choice

of Z is somewhat arbitrary. Figure 1 describes in a simplified

way the transport of charged particles in matter for ions and

electrons. The mechanisms by which charged particles lose

energy or are scattered can be divided into four principal

types of interactions:

1. Inelastic collision with atomic electrons. This is the dominant

mechanism by which heavy charged particles and light

charged particles with low to medium energy will lose their

energy. As a result of such a collision, there will be excitations

and ionizations. Often, the energy transferred to the emitted

electron may be high enough to make it possible for the

electron to ionize new atoms. If the energy is low, only a

few atoms will be ionized and there will be a cluster of often

three to four ionizations close to each other. If the energy is

higher, this secondary electron is called a d-electron.
2. Inelastic collision with a nucleus. When a charged particle

passes near a nucleus, it will be deflected. In some of the

deflections, the charged particle will lose energy and this

energy is emitted as electromagnetic radiation called brems-

strahlung. This interaction process is, in the energy region

used in medical physics, only of interest for electrons and

positrons.
Figure 1 Schematic diagram of the transport of an ion and an
electron through matter.
3. Elastic scattering with a nucleus. When the particle is deflected

without exciting the nucleus or emitting radiation, there will

be elastic scattering. Not only light charged particles but also

heavy charged particles, in particular low-energy particles,

have a high probability for experiencing elastic scattering.

4. Elastic collision with atomic electrons. An incident electron

may be elastically deflected in the field of the atomic elec-

trons. These processes are of interest only for very-low-

energy electrons and will not be discussed in this chapter.

As indicated in Figure 1, the tracks of the charged particles

will differ from both macroscopic and microscopic points of

view. The heavy charged particle will excite and ionize atoms

along its path. As the particle is heavy compared to the

electrons, it will only transfer a very small amount of its energy

in each collision and will only be deflected in elastic scattering

with the nucleus. The track is then rather straight and different

particles will have a similar range. The produced d-particles will
also have low energies. However, a light particle can lose a large

part of its energy in one collision and can be deflected at large

angles. They can also produce high-energy d-particles and

bremsstrahlung. This means that different electron tracks will

differ significantly leading to a large energy and range strag-

gling as will be discussed in the following sections.
9.01.2.2 Inelastic Collisions of Heavy Charged Particles
with Atomic Electrons and Nuclei

9.01.2.2.1 Inelastic collisions with atomic electrons
Figure 2 shows a sketch of a collision between a heavy charged

particle with the charge ze and the mass M and an atomic

electron with the charge e and mass me. The impact parameter

b is the closest distance between the particle and the electron

without any deflection of the particle. If b is similar to the

radius of the atom, the Coulomb force interaction will transfer

a large energy to the electron and then the interaction is called

a hard collision. If on the other hand, b is much larger than the

atomic radius, a small energy is transferred, and the interaction

is called a soft collision. The discussions in this section refer

mainly to the situation for soft collisions, which are the most

common ones. Bohr (1913a,b) derived, using classical physics,

an expression for the energy loss for heavy charged particles,

where only electromagnetic forces were included. Bohr

assumed that the velocity v of the charged particle is much

larger than that of the orbital electrons. He also assumed that

the electron can be regarded free and that the energy loss is

small, whichmeans that the heavy particle will not be deflected

and the velocity will be constant before and after the interac-

tion. The force, F, between the particles is given by
Figure 2 A simplified illustration of a collision between a heavy charged
particle and an electron.
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F ¼ 1

4pE0

ze2

r2
r̂ [1]

where ze is the charge of the incoming particle, e is the charge

of the electron, r is the distance between the particle and the

electron, and E0 is the dielectric constant in vacuum. With the

aforementioned assumptions and integrating the energy trans-

fer over all distances r, the relation between energy transfer DE
and impact parameter b will become

DE ¼ 4z2e4

2 4pE0ð Þ2b2v2me

[2]

where v is the velocity of the particle and me is the electron rest

mass. The energy transfer DE is inversely proportional to the

velocity of the particle in square; proportional to the particle

charge in square, ze; and independent of the particle mass.

All energy transfers are not possible however. There is a

maximal energy transfer based on energy and momentum

relations. In the maximum energy transfer, the electron will

be emitted in the forward direction. It is easy to show that the

maximum energy transfer in such a collision is

DEmax ¼ 4meE

M
[3]

where E is the kinetic energy of the incident particle. For heavy

charged particles with masses more than 1000 times than the

mass of the electron, this means that the energy transfers are

very small. For example, will an 8 MeV a-particle transfer less

than 0.4% of its energy. The relations will result in a maximum

velocity of the electron twice of the velocity v of the incoming

particle, that is, 2v. This implies that the maximum energy

transfer and thus the minimum impact parameter b are given

by

DEmax ¼ 2mev
2 ) bmin ¼ ze2

4pE0v2me
[4]

For a free electron, all energy transfers down to zero are

possible. For orbital electrons, this is not possible. Bohr in his

classical derivation compared the velocity of the particle and

the orbital period o and postulated that the minimum energy

transfer corresponds to the situation when the velocity of the

incoming particle equals the velocity of the orbital electrons.

The minimal energy transfer and thus the maximal impact

parameter are then given by

bmax ¼ v

o
) DEmin ¼ 2z2e4o2

4pE0ð Þ2v4me

[5]

The probability for an energy transfer between DE and

DEþd DE is equal to the probability of an impact parameter

between b and bþdb. This is given by

ds ¼ 2pr2emec
2z2

b2
dDE
DE2

[6]

where c is the velocity of light in vacuum, b¼v/c, and re is the

classical electron radius defined as

re ¼ e2

4pE0mec2
¼ 2:818 �10�15m [7]

From this equation, the conclusion can be made that the

probability to obtain a certain energy transfer DE is inverse to
the energy transfer squared. This means that small energy trans-

fers are more probable. Assuming that all impinging particles

are uniformly distributed with the same probability for all

values of b, the number of collisions dn with an energy transfer

between DE and DEþd DE will be equal to the number of

electrons per unit area times the collision cross section ds.
The energy loss per distance dx in a material with (NAZ/A)

number of electrons per unit mass is then given by

dDE=r ¼ NA=Að ÞZdxdDE [8]

Integrating over all energy losses from Emin to Emax gives the

Bohr relation for the collision stopping power:

Sel=r ¼ dEel
rdx

¼ 4p
ZNA

Ab2
r2e z

2mec
2 ln

4pE0mev
3

ze2o

� �
[9]

This equation is however not correct and gives values that

differed from experiments. At higher energies, the Bohr colli-

sion stopping power follows the trend of experimental data but

with a factor of two too low, and in particular, at low energies,

it completely fails to give correct values. To improve the

expression, corrections must be added for (a) relativistic

effects, (b) mean excitation energy, (c) impact of atomic elec-

tron shells, (d) effective charge, and (e) density effects.

The relativistic corrections are needed as at high velocities, the

Lorentz contraction of the electric field increases the force at

large distances. Thus, a velocity factor has to be included in the

equation.

Themean excitation energy, I, accounts for all possible atomic

ionizations and excitations and corresponds to the minimum

energy that can be transferred on average to the absorbing atom

in a Coulomb interaction between a charged particle and an

orbital electron. I corresponds to the situation discussed earlier

for the minimum energy transfer in a collision between the

charged particle and the orbital electron. In principle, I can be

calculated from the equation

Z ln I ¼
X

fn0 ln En � E0ð Þ [10]

where 0 and n are the ground and the final energy levels of a

target atom Z. fn0 is called the oscillator frequency and gives the

probability for transitions between levels n and 0. It is however

difficult to calculate I values theoretically, and they are often

determined experimentally. During the years, values that differ

with up to 10% have been published. This will imply uncer-

tainties in the numerical values of the stopping power. At high

particle energies, this uncertainty is not so important. At

100 MeV proton energy, an uncertainty in the I value of 1%

will result in an uncertainty in the stopping power of less than

0.2%, but at low energies and high atomic numbers, the uncer-

tainty in the I value will be fully expressed. The I value increases

with atomic number and is around I¼10Z except for low

atomic numbers.

The concept effective charge is included for low particle

energies where the particle can pick up electrons and thus the

particle charge will be decreased. An a-particle will decrease its
effective charge of 2 to 1.87 at 1 MeV and to 1.63 at 0.5 MeV. It

is this effective charge that shall be included in the expressions

for stopping power.

Bethe (1930) extended the Bohr expression to include also

hard collisions based on the Born approximation and included

relativistic effects. His expression is given in eqn [11]:
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Sel=r ¼ 4pNAr
2
emec

2z2Z

Ab2
ln

2mec
2

I
þ ln

b2

1� b2
� b2

� �
[11]

This expression gives reasonable values as compared with

experiments for energies down to about 0.5MeV but fails at

lower energies.

One reason for the failure is the impact of the atomic

electron shells. When the velocity of the charged particles is

comparable to the velocity of the orbital electron, the energy

transfer decreases as also considered by Bohr. This effect is

included in the stopping power by adding a shell correction

factor C/Z.

Another reason is that Bethe considered each atom sepa-

rately and independently. However, this is not correct. The

electric field of the incoming particle induces a distortion or

polarization of the atomic electrons. A number of dipoles are

produced. This polarization decreases the effective charge of

the incoming particle and thus reduces the stopping power.

This effect is dependent on the density of the medium and is

also called density effect. The effect becomes more important

with increasing particle energy and partly compensates the

increase in stopping power due to the Lorentz contraction.

This effect is more important for electrons and positrons and

of minor importance for heavy charged particles.

Fano (1946, 1953) included these correction factors in the

Bethe stopping power equation and obtained the expression

Sel=r ¼ 4pNAr
2
emec

2z2Z

Ab2
ln

2mec
2

I
þ ln

b2

1� b2
� b2 � C

Z
� d

� �
[12]

In Figure 3, the mass collision stopping power for protons

expressed in MeV m2 kg�1 obtained from the NIST program

PSTAR is plotted for carbon, aluminum, copper, and lead. The

data illustrate the effect due to the binding energies of the

shells, giving lower stopping power at low proton energies. At

high energies, the decrease with velocity as 1/v2 is observed.

The collision stopping power is also lower for higher atomic

numbers as the effect of the binding energies will be more

important. The relativistic effects at very high energies above

2000 MeV are also indicated.
Figure 3 Mass collision stopping powers for carbon, aluminum,
copper, and lead. Data from Berger et al. (2005b).
9.01.2.2.2 Nuclear reactions
There are also interactions with nuclei. These interaction pro-

cesses are normally not important, but can at low proton

energies be some percent of the total stopping power. For

protons, the contribution from nuclear interactions is small,

but for a-particles, there is a small but significant contribution

at low energies (Figure 4). This uncertainty is important in

radiotherapy with light-ion beams. Hultqvist et al. (2012)

had investigated the uncertainties obtained in the dose distri-

butions calculated with Monte Carlo programs due to differ-

ences in the cross sections. This implies the need for

experimental verification, and then, the use of an online PET

camera would be of interest as proposed by Lazzeroni and

Brahme (2011), who suggested the use of carbon-11 ions to

increase sensitivity. The interaction by ions with nuclei and its

impact on radiotherapy with light ions are further discussed in

Chapter 9.03, where the transport and interaction of light ions

are discussed in detail.

9.01.2.2.3 Scaling rules
Tables for proton stopping power and ranges are often easy to

find, for example, at NIST (http://nist.gov./pml/data/). With a

good approximation, the mass collision stopping power for

other heavy charged particles can be obtained from the proton

stopping power through the relation

dE
rdx

� �A
dE

rdx

� �B ¼ zA
zB

� �2

[13]

A more accurate universal energy range relation was developed

by Kempe and Brahme (2008).
9.01.2.3 Inelastic Collisions of Electrons and Positrons
with Atomic Electrons

The equations for electrons and positrons differ from the rela-

tions obtained for heavy charged particles, and further correc-

tion factors have to be added as listed:

1. Electrons and positrons can lose a large part of their energy

in one collision. This will imply that the electrons can be

scattered in large angles and that hard collisions are more

important.

2. Relativistic effects are more important.

3. Maximal energy transfer is E/2 for electrons and E for pos-

itrons, where E is the kinetic energy. An electron can transfer

all of its kinetic energy to another electron in a collision.

After the collision, there will be two electrons with different

energies, and by convention, the electron with the highest

energy is considered to be the primary one, and thus, the

maximal energy transfer will be E/2. For positrons, it is

possible to differentiate between the particles after the

collision, and thus, the maximum energy transfer is E.

4. Density effect is more important than for heavy charged

particles as discussed earlier. Figure 5 shows the density

effect for electrons for water, copper, and lead. At low

electron energies, the effect is small but increases with

increasing electron energy and is significant at energies

often met in radiotherapy. This is one of the main reasons

http://nist.gov./pml/data/


Figure 4 Mass stopping powers, (Sel/r), (Snucl/r), and (Stot/r), for protons and a-particles for carbon and lead. Data from Berger et al. (2005b).

Figure 5 Density effect parameter d for electrons in water, copper, and
lead. Data from Berger et al. (2005b).

Figure 6 Mass stopping power (Sel/r), (Srad/r), and (Stot/r) for
electrons in air, water, and lead. Data from NIST (2005).
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that the stopping power ratio water/air varies with energy,

indicating that from that point of view, the widely used air

ionization chamber is less suitable. Another comment to be

made is that many chambers have walls made of carbon as

this is an air-equivalent element. Published stopping power

tables have often tables for two forms of graphite, amor-

phous graphite with the density of 2200 kg m�3 and graph-

ite with the bulk density of 1700kg m�3 leading to different

density factors. This difference in density will change the

collision stopping power with around 0.5%.

In ICRU Report 37 (ICRU, 1984b) the mass collision stop-

ping power for electrons and positrons is expressed as

Sel=r ¼ r2e
Z

A
NA

mec
2

b2
ln

E

I

� �2

þ ln 1þ t=2ð Þ þ F� tð Þ � d

" #

[14]
F�(t) are functions to be applied for the positron and

electron, respectively, and are given by

F� tð Þ ¼ 1� b2
� 	

1þ t2=8� 2tþ 1ð Þ ln 2

 �

[15]

and

Fþ tð Þ ¼ 2 ln 2� b2=12
� 	

23þ 14= tþ 2ð Þ þ 10= tþ 2ð Þ2

þ4= tþ 2ð Þ3� [16]

t is the kinetic energy of the electron or positron expressed in

electron rest masses, t¼E/(mec
2). Figure 6 shows mass colli-

sion stopping power for air, water, and lead, together with

radiative and total stopping power. At low energies, there is

an 1/v2 dependence on energy implying a decreasing stopping

power with energy. The relativistic effects are the reason for the

increase in stopping power in the energy region 1–10MeV. For

low energies, the mass collision stopping power for water is

around 10% higher than the mass collision stopping power for

air, but due to the density effect, air will have a higher stopping

power for energies above 10MeV. For electron energies below

0.01MeV, the binding effects of the orbital electrons will be



Figure 7 Ratio of collision stopping power for positrons to electrons.

Figure 8 Cerenkov radiation is obtained when the velocity of the
charged particle, v, is larger than the velocity of light in the material, c/n,
where n is the refractive index of the material.
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important also for electrons, and the collision stopping power

will decrease with decreasing energy. In medical applications,

these energies are of less interest and also the uncertainties are

large at these energies and tables have normally 0.01MeV as a

starting energy, why this decrease is not included in the figure.

Positrons have a slightly different collision stopping power

as obtained from eqn [14]. At high energies, the difference is

small, with the collision stopping power for electrons being

slightly higher, but below approximately 1MeV, the positron

collision stopping power will become larger than the electron

stopping power. The ratio between the two collision stopping

powers increases with decreasing energy as shown in Figure 7.

9.01.2.3.1 Cerenkov radiation
A special type of collision loss is Cerenkov radiation, discov-

ered by Cerenkov (Cerenkov, 1934). If a charged particle with a

velocity larger than the velocity of light in a medium, that is, if

v� c/n (n¼ refractive index), passes through a transparent

dielectric medium, electromagnetic radiation will be emitted

(see Figure 8). The emission is due to polarized atoms in the

medium and their orbital electrons may emit radiation coher-

ently if v� c/n. The radiation, with a frequency in the UV and

blue part of the spectrum, is emitted in a cone (Figure 8). The

blue light seen above the open reactor tanks is a result of this

effect. The threshold is low for electrons, in PMMA 0.175MeV,

while for protons, the threshold is 320MeV. The energy loss is

small, around 1keV cm�1 in water for electrons, and has little

impact on the total stopping power. From Figure 8, it can be

shown that there is a relation between the light emission angle

y and the particle energy (cos y¼1/(bn) ). In this way, Ceren-

kov detectors have been used to determine particle energies.

The Cerenkov radiation can be a problem when detecting

ionizing radiation using detectors based on measuring light as

film or scintillation detectors, where unwanted Cerenkov radi-

ation can disturb the measurements.

9.01.2.3.2 Restricted mass collision stopping power
In dosimetry, one is often interested in determining the energy

transferred and the absorbed dose to a small volume, for

example, an ionization chamber. If the contribution from

secondary electrons (d-particles) can be assumed to be
absorbed directly, the absorbed dose can be obtained by mul-

tiplying the particle fluence with the mass collision stopping

power. This may be an acceptable approximation for heavy

charged particles as then the d-particles have a very low energy

and a small range. However, this does not hold for electrons

and positrons, where the secondary electrons can have energies

in the same range as the primary electrons. To take this into

consideration, the concept of restricted mass stopping power,

(Sel/r)D, which includes only energy transfers below a certain

energy limit D, is used. A common way to estimate the D-value
is to compare the range of electrons with energy D and the size

of the volume of interest. Ionization chambers are of particular

interest in medical physics applications, and for typical ioniza-

tion chambers used in radiotherapy, a D-value of 10keV is

often used.

A concept very similar to the restricted mass collision stop-

ping power is linear energy transfer (LET) or the restricted

linear electronic stopping power, which often is used to specify

radiation quality. It is defined as the quotient of dED by dl,

where dED is the mean energy lost by charged particles due to

electronic interactions in traversing a distance dl, minus the

mean sum of kinetic energies in excess of D of all the electrons

released by the charged particles; thus,

LD ¼ dED
dl

Jm�1 or keVmm�1 [17]

The SI unit for LET is J m�1, but in biological applications, still

the unit keV mm�1 is often used. D is often expressed in the unit

eV, and then, L100 means the LET with a cutoff energy of

100eV. Figure 9 shows the restricted stopping power in carbon

for cutoff energies 10 and 100keV.
9.01.2.4 Bremsstrahlung

When a charged particle experiences an acceleration, it will,

according to classical theory, emit electromagnetic radiation.

This means that when a charged particle is deflected from its

path or has its velocity changed due to an inelastic collision

with a nucleus, it will start to irradiate. This emitted electro-

magnetic radiation is often called bremsstrahlung radiation.

In classical theory, the power emitted in such a collision is

given by



Figure 9 Restricted collision stopping power in carbon for the cutoff
energies D¼10 and 100 keV.
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P ¼ dE

dt
¼ 1

6pE0

e2a2

c3
[18]

where e is the charge of the particle and a is the acceleration.

This holds for a stationary target. In a linear accelerator where

the electrons are accelerated along a waveguide, the emitted

power is given by

P ¼ dE

dt
¼ 1

6pE0

e2

m2c3
dE

dx

� �2

[19]

where the power is also proportional to the change in the

energy of the particle per unit distance in square. The acceler-

ation may be evaluated in terms of both a Coulomb and a

Newton force and is obtained from the relation

F ¼ ma ¼ zeZe

4pE0r2
) a ¼ zeZe

4mpE0r2
[20]

where Ze is the charge of the nucleus and m is the mass of the

incident particle. Equation [20] shows that the acceleration a is

proportional to the charge of the particle and the absorbing

nucleus and inversely proportional to the mass of the incident

particle and the square of the distance r between the particle

and the nucleus. This implies that bremsstrahlung can be

neglected for protons compared to electrons as mp/me¼1836,

and thus, the bremsstrahlung emission is around 4�106 less

for protons as compared to electrons.
9.01.2.4.1 Angular distribution
The angular distribution of the bremsstrahlung is given by

S r; yð Þ ¼ 1

16p2E0

e2a2

c3r2
sin 2 y

1� b cos yð Þ5 [21]

From eqn [21], one can conclude that for low energies and thus

low values of b, S(r, y) is proportional to sin2y with a maxi-

mum intensity at 90	. With increasing energy, the radiation

becomes more forward-directed and the angle for maximal

energy fluence is given by

ymax ¼ arccos
1

3b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 15b2 � 1

q� �� �
[22]
Equation [22] has the limits ymax¼90	 and 0	 when the energy

goes to 0 and 1, respectively. The variation in angular distri-

bution with electron energy is reflected in the practical produc-

tion of bremsstrahlung in medical physics. In diagnostic

radiology, where accelerating energies often are around

100keV or lower, the useful beam is at an angle of 90	 of the

impinging electrons. Linear accelerators, with electron energies

even above 20MeV, have transmission targets, and the useful

beam is in the same direction as the impinging electrons.

With high electron energies over 10MeV, ymax will be small

and less than around 1	. This indicates that with increasing

electron energy, the possibility to obtain a broad uniform

beam is difficult and it may be problematic to flatten the

bremsstrahlung beam with a traditional flattening filter. How-

ever, the equations hold for thin targets. In real targets, the

angular distribution is broadened as most of the electrons will

be scattered before they emit radiation. As the scattering power

is proportional to Z2, large-atomic-number targets will scatter

electrons more and broaden the emitted bremsstrahlung.

A simple analytic approximation for the angular distribu-

tion of the energy fluence from a target is

C yð Þ ¼ C 0ð Þ
1þ E0y

a

� 	b [23]

where a is the value of E0y when C(y)/C(0) is 0.5 and b is an

energy-related constant (Brahme and Svensson, 1979).

In stationary treatment beams, a broad uniform beam is

often requested and then large-atomic-number targets may be

of interest. For accelerators with a scanning beam, a narrow

beam with a high photon fluence in the forward direction is of

interest. For these accelerators, a low atomic target may be used

even if the total emitted radiation power is low (Svensson and

Brahme, 1996).

9.01.2.4.2 Energy distribution
The energy distribution of the emitted bremsstrahlung radia-

tion can be written as (Heitler, 1954)

dsrad
dhn

¼ ar2eB Zð ÞZ2 Eþmec
2

E

1

hn
[24]

The function B(Z) is a slowly varying function with energy and

often assumed to be constant up to the maximal photon

energy, which is equal to E. This holds for a thin target. In a

thick target, the electrons will lose energy when passing

through a target. Adding the contribution from all depths in

the target will give an approximative triangular shape when

disregarding the self attenuation of the produced bremsstrah-

lung in the target and assuming that the production of brems-

strahlung is independent of energy in this energy range

(Figure 10(a)). The distribution is given by

Chn ¼ CZ hnmax � hnð Þ [25]

where C is a constant depending on the atomic number. This

relation is sometimes called Kramer’s law. The total energy

fluence is obtained by integrating over all energies:

C ¼ CZ

ðhnmax

0

hnmax � hnð Þ d hnð Þ ¼ 1

2
CZ hnmaxð Þ2

¼ 1

2
CZ Ueð Þ2 [26]
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Figure 10 Approximative illustration of the bremsstrahlung spectrum for a thick x-ray target (a) without attenuation or (b) with attenuation in the
target and filter and including characteristic x-rays.
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where U is the applied voltage. Before the photons will hit the

patient, they will be attenuated in the target itself and also in

filters positioned between the x-ray tube and the patient, in

order to optimize the quality of the image and reduce the

absorbed dose to the patient. Low-energy photons are absorbed

more, and thus, the bremsstrahlung spectrumwill have a curved

shape as is Figure 10(b). There will also be a contribution from

characteristic x-rays, with energies depending on the target

atomic number. Most targets are made of tungsten, and charac-

teristic K x-rays with energies of around 60–70keV will be

included in the spectrum as is indicated in Figure 10(b).
Figure 11 Positron to electron ratios of radiative energy-loss cross
sections in the field of the screened nucleus.
9.01.2.4.3 Radiative stopping power
The total stopping power for inelastic collision with the

nucleus is obtained by integrating over all energies, and the

following expression is obtained:

S

r

� �
rad

¼ ar2eZ
2 NA

A
Eþmec

2
� 	

B Zð Þ [27]

The function B(Z) is as mentioned earlier a slowly varying

function with energy, and only approximate expressions are

published (Bethe and Heitler, 1934). For very low electron

energies, B(Z) can be assumed to be constant and eqn [27]

becomes

S

r

� �
rad

¼ 16

3
ar2eZ

2 NA

A
Eþmec

2
� 	

[28]

For higher energies, different expressions for B(Z) have been

proposed, and in ICRU Report 35 (1984a), the following

expression for the high-energy region is used:

S

r

� �
rad

¼ 4ar2e
b2

NA
Z Z þ 1ð Þ

A
Eþmec

2
� 	

ln 183Z�1=3 þ 1=18
� �

[29]

The factor Z(Zþ1) is included instead of Z2 because brems-

strahlung produced in collisions with electrons has been

included. (S/r)rad increases linearly with energy in the MeV

region. For energies above 20MeV, (S/r)rad may be approxi-

mated with
S

r

� �
rad

¼ E

X0
[30]

where X0 is the radiation length (for the definition, see Section

9.01.2.4.6). (S/r)rad is plotted together with (S/r)el in Figure 6.

Positrons and electrons have different radiative stopping pow-

ers due to screening of the orbital electrons, which decreases

the stopping power for positrons as illustrated in Figure 11.
9.01.2.4.4 Critical energy
From Figure 6, it is clear that collision stopping power is

dominant at lower electron energies and radiative stopping

power at higher energies. The energy where the radiative stop-

ping power becomes dominant is called the critical energy. An

approximate expression for this energy is

Ecrit ¼ 800

Z þ 1:2
[31]

If Z¼82, then Ecrit¼9.6MeV and if Z¼7, then Ecrit¼98MeV,

which agrees well with the data in Figure 6.
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9.01.2.4.5 Radiation yield
The fraction of the energy that is lost through radiation when

the electron is totally absorbed is called radiation yield, Y(E0),

where E0 is the initial kinetic energy of electron. The energy is

mainly emitted as bremsstrahlung but can also be obtained

from positron-in-flight annihilation and in the form of char-

acteristic x-rays. However, this contribution is often small and

neglected. The radiation yield is expressed as

Y E0ð Þ ¼ 1

E0

ðE0
0

Srad Eð Þ
Stot Eð Þ dE [32]

The energy Erad radiated per charged particle is then given by

Erad ¼ E0Y E0ð Þ ¼
ðE0
0

Srad Eð Þ
Stot Eð Þ dE [33]

and the energy Eel lost through ionization per charged particle

is given by

Eel ¼
ðEo
0

Sel Eð Þ
Stot Eð ÞdE [34]

Figure 12 illustrates the radiation yield for water, alumi-

num, copper, and lead. For example, a 10MeV electron loses

0.316�10¼3.16MeV as bremsstrahlung in lead but only

0.041�10¼0.41MeV in water when fully absorbed. A practi-

cal analytic approach to bremsstrahlung production was devel-

oped by Nordell and Brahme (1984), and it was further

improved by Svensson and Brahme (1996).
9.01.2.4.6 Radiation length
At high energies where bremsstrahlung is dominating and

proportional to energy, the energy lossmay be approximated by

dE

dx
¼ �kE;

dE

E
¼ �k dx; E xð Þ ¼ E 0ð Þe�kx [35]

where k a constant varying with the target material and x is the

depth in the material. The radiation energy is then decreasing

exponentially for high electron energies. The length over which

the electron energy is reduced with a factor of 1/e due to
Figure 12 Radiation yield Y3 for water, aluminum, copper, and lead.
Data from NIST Berger et al. (2003).
radiation losses is called radiation length, XR. XR decreases

with increasing atomic number (Figure 13).
9.01.2.5 Elastic Scattering

A charged particle can experience Coulomb interaction with a

nucleus without losing energy. This process is called elastic

scattering. The first experiment to show this was performed

by Geiger and Marsden (1909), where a-particles hit a gold

foil and were scattered. The results of these experiments made

Rutherford (1911) to conclude that most of the mass and

positive charge were concentrated in the atomic nucleus, with

a radius (1 fm) much smaller than the radius of the atom itself

(0.1nm). Until this experiment was performed, the existing

model proposed by Thomson assumed the mass to be uni-

formly distributed over the whole atom.

9.01.2.5.1 Rutherford scattering
The classical theory to explain the experimental results was

derived by Rutherford, and this type of scattering is called

Rutherford scattering. To this theory, corrections for spin

effects, energy transfer to the nucleus, finite size of the

nucleus, and relativistic and quantum effects have to be

added to fully explain elastic scattering for other particles and

higher energies.

Figure 14 illustrates schematically the scattering of an

a-particle with mass ma and charge ze on a nucleus with the

mass M and charge Ze. b is the impact parameter. Rutherford
Figure 13 Radiation length XR, as a function of atomic number.

Figure 14 Schematic diagram of the scattering of an a-particle on a
nucleus. y is the final scattering angle.



Interaction of Ionizing Radiation with Matter 11
made in his derivation the following assumptions: (1) Scatter-

ing of a-particles on gold nuclei is elastic. (2) Mass of gold

nucleus is much larger than the mass of the a-particle. (3)
Scattering on electrons is negligible. (4) a-particles do not

penetrate the nucleus (no nuclear reaction). (5) Classical

mechanics can be used as 5.5 MeV a-particles have the same

value of v/c (0.0543) using both classical and relativistic

expressions. Using these assumptions, Rutherford could derive

the differential cross section

ds
dO

� �
Ruth

¼ zZe2

16pE0

� �2
1

E

� �2 1

sin 4 y
2

[36]

From eqn [36], the following conclusions can be made. The

scattering is proportional to the square of the charge z of the

incoming particle and the atomic number Z of the target. It is

also inversely proportional to the square of the initial kinetic

energy E of the a-particle. The variation with scattering angle is

inversely proportional to the fourth power of sin(y/2). This
implies that scattering is most probable for high atomic num-

bers, small scattering angles, and low particle energies.

This equation has to be corrected for the screening of the

nuclear potential by the orbital electrons, minimum and max-

imum scattering angles, and the effect of the finite size of the

nucleus. Minimum and maximum scattering angles are angles

where the deviation from the Coulomb nuclear field becomes

significant. These angles are however very small and very large,

respectively, corresponding to very large and very small impact

parameters, b, which means that the basic Rutherford scattering

theory is a good approximation for many situations.

Equation [36] will however get unreasonable results when

the scattering angle y approaches zero as the factor sin(y/2)
appears in the denominator. At very small angles, y, the screen-
ing of the nuclear charge by atomic orbital electrons decreases

the differential cross section as indicated in Figure 15. For large

angles, y, the finite nuclear size or penetration through the

nucleus decreases the differential cross section at angles

above 8	 for the 5.5MeV a-particle used in the Geiger–Marsden
Figure 15 Normalized Rutherford scattering cross section
(1/sin4(y/2) ) plotted against the scattering angle y for 5.5 MeV
a-particles scattered by a gold nucleus. At low and large scattering
angles, data from eqns [37] and [38] are inserted (dashed lines).
experiment. Figure 15 shows the Rutherford cross section nor-

malized to include only the factor 1/sin4(y/2). For small angles

less than about 0.0001	 and large angles around 10	, the

Rutherford cross section has been corrected for according to

eqns [37] and [38], respectively:

ds
dO

� �
Ruth, ymin

¼ ds
dO

� �
Ruth

16 sin 4 y
2

y2 þ y2min

� 	2 [37]

ds
dO

� �
Ruth, ymax

¼ ds
dO

� �
Ruth

1

1þ sin 2y
2

y2max

� �2 [38]

The total cross section is obtained by integrating over all

angles. For the interesting scattering angles, the small-angle

approximation can be used and then the total cross section is

sRuth ¼ zZe2

16E0

� �2
1

E

� �2 1

y2min

1� 1

1þ ymax

ymin

� �2
8><
>:

9>=
>; [39]

Inserting expressions for ymin and ymax, eqn [39] may approx-

imately be expressed as

sRuth 
 pa2TF
2zZe2

4pE0hvi

� �2

[40]

where aTF is the Thomas–Fermi atomic radius, h is Planck’s

constant, and vi is the initial velocity of the a-particle.

9.01.2.5.2 Electron scattering
With electrons as impinging particles, accounts for various

parameters have to be included, in particular for high electron

energies. Such parameters are electron spin relativistic effects,

quantum effects, recoil of the nucleus–nuclear spin and the

finite size of the nucleus. These parameters make the derivation

of the cross section complex, and different approximative

expressions are derived. For low electron energies, it is possible

to use the standard Rutherford theory. The Rutherford expres-

sion for electrons is then given by

ds
dO

¼ Ze2

16pE0

� �2
1

E

� �2 1

sin 4 y=2ð Þ [41]

For higher energies, corrections have to be included and Mott

(1929, 1932) applied the relativistic theory to include quan-

tum mechanics. McKinley and Feshbach (1948) applied their

theory and proposed the expression

ds
dO

¼ zZe2

16pE0

� �2
1

mec2

� �2 1� b2

b4

� �
1

sin 4 y=2ð Þ f Z; y;bð Þ [42]

where

f Z; y; bð Þ ¼ 1� b2 sin 2 y=2ð Þ þ pbZa 1� sin y=2ð Þð Þ sin y=2ð Þ
 �
[43]

Comparing classical and quantum theories shows that for

heavy elements and intermediate scattering angles, the quan-

tum theory exceeds the classical with more than a factor of 2,

while for large angle scattering, the quantum theory can be as

little as 10% of the classical one. For very-low-energy particles,

the theories will agree.



Figure 16 Mass scattering power T/r as a function of electron energy
for PMMA, Cu, Sn, and, Pb.
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9.01.2.5.3 Multiple scattering
Equation [39] holds for a single scattering. As elastic scattering

is a very common way of interaction, the particles are normally

scattered many times even when passing through a thin foil. If

the number of scatterings is small, the situation is called plural

scattering, and if the number of scatterings is �20, then this

is called multiple scattering, which is easily obtained, often

only after a thickness of 10�2 kg m�2. All scattering events

can be assumed to be independent, except possibly in monoc-

rystalline materials. This will generally result in a Gaussian

distribution of scattering angles around the incident particle

direction. This simple multiple scattering theory was refined

by Molière resulting in a power expansion where the first term

is Gaussian followed by single scattering tails. The mean square

scattering angle y2 is calculated from the mean square angle

for a single scattering y2s . This result is based on the central

limit theorem.

The mean square multiple scattering angle for Rutherford

scattering is thus obtained by adding the mean square scatter-

ing angles for single scatterings:

y2 ¼ ny2s [44]

where n is the number of scattering events. The mean square

angle y2 after passing a mass thickness, rx, is for heavy charged
particles given by

y2N ¼ 4p
NA

A
rx

zZe2

4pE0E

� �2

ln 183Z�1=3
� �

[45]

For electrons, the corresponding equation is

y2e ¼ 16prx
NAr

2
eZ Z þ 1ð Þ 1� b2

� 	
Ab4

ln 183Z�1=3
� �

[46]

Equations [45] and [46] will give a linear increase of y2 with

increasing thickness, but this holds only for small thicknesses

as discussed in Section 9.01.5.4.

The change in mean square scattering angle with thickness

is given by the mass scattering power, T/r, defined as

T

r
¼ dy2

d rxð Þ [47]

For electrons, T/r is more accurately given by

T

r
¼ 4p

NA

A

r2eZ Z þ 1ð Þ 1� b2
� 	

b4
ln 1þ y2max

y2min

 !(

�1þ 1þ y2max

y2min

 !�1)
[48]

Figure 16 illustrates the mass scattering power T/r, as a

function of electron energies up to 10MeV for PMMA, copper,

tin, and lead. The nearly linear Z-dependence and strong

energy dependence (1/E2) are demonstrated. A similar expres-

sion for light ions was given by Kempe and Brahme (2010).

Compare also with Hollmark et al. (2008) where data unfor-

tunately are miscalculated.
9.01.2.5.4 Fermi–Eyges pencil beam model
The transport of an electron pencil beam through matter has

been described by the Fermi–Eyges transport model (Eyges,

1948; Fermi, 1940). Assume that the electrons are multiply

scattered in small angles and that the Molière multiple scatter-

ing theory is applicable. Then, the angular distribution at a

depth, z, in the matter is given by

P z; yð Þ ¼ 1

py2 zð Þ
e
� y2

y2 zð Þ [49]

where y2 zð Þ is the mean square scattering angle at depth z. The

value of y2 zð Þ can be calculated using themass scattering power

T/r with the relation

y2 zð Þ ¼ y2 0ð Þ þ T=rð Þrz [50]

where y2 0ð Þ is the mean square scattering angle at depth z¼0.

For example, if assuming y2 0ð Þ ¼ 0, y2 zð Þ will for 5MeV elec-

trons and a thickness of rz¼1.0kg m�2 be 26	 for water and

76	 for Pb. Increasing the thickness to 10kg m�2 gives instead

96	 for water and 241	 for Pb. These results are not realistic.

The simple calculations do not take into consideration the

change in T/r with depth and thus decrease in energy. This

will increase y2 zð Þ even faster. Another more important factor

is that the angular distribution will after some depth reach an

equilibrium as there are both inscatter and outscatter. This

diffusion equilibrium has a value of y2 close to 0.65rad2 or a

mean scattering angle of 46	.
Corresponding to the angular distribution, there will also

be a radial distribution of the electrons:

P z; rð Þ ¼ 1

pr2 zð Þ e
� r2

r2 zð Þ [51]

where r2 zð Þ is the mean square radius at depth z¼0. r2 zð Þ may

be calculated using the relation

r2 zð Þ ¼ r2 0ð Þ þ 2ry rzð Þ þ y2 0ð Þ rzð Þ2 þ T=rð Þr3z3=3 [52]

where r2 0ð Þ is the mean square radius at depth z¼0, that is, the

radius of the incoming electron beam (Brahme, 1975). These
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equations have been valuable for calculating and understand-

ing the transport of both electrons and heavy charged particles

in, for example, radiotherapy, and are treated in detail in

Chapter 9.03.
9.01.2.6 Ranges and Stopping Power

9.01.2.6.1 Stopping power
The total stopping power is obtained by adding the stopping

power for inelastic collisions, radiative interactions, and

nuclear interactions:

Stot
r

¼ Sel
r

þ Srad
r

þ Snucl
r

[53]

For heavy charged particles, only Sel/r and Snucl/r are of

interest, and Snucl/r will have an impact on the total stopping

power only for energies below around 1 MeV for a-particles
and 0.1MeV for protons as is indicated in Figure 4. For

electrons, only Sel/r and Srad/r will be of interest, where Sel/r
will dominate at low energies and Srad/r at high energies as

discussed and shown in Figure 6.

The uncertainties of the collision stopping power for elec-

trons tabulated in ICRU Report 37 (ICRU, 1984b) are esti-

mated to be 1–2% for energies above 100 keV. Between 10

and 100keV, they are estimated to be 2–3% in low Z-materials

and 5–10% in high Z-materials. The uncertainty of the radia-

tive stopping power is estimated to be around 2% above

50MeV. Between 2 and 50MeV, they are estimated to be

2–5% and below 2MeV around 5%. These uncertainties are

estimated to correspond to a significance of 90%.

9.01.2.6.2 Ranges
From a macroscopic point of view, it is of interest to determine

the transmission and range of charged particles in a medium.

This depends on the interaction processes and their cross

sections. Both energy losses as inelastic collisions and elastic
Figure 17 Comparison of the rcsda and the projected range for protons and
scattering processes are important. There is a difference

in transmission between heavy charged particles like protons

and electrons (Figure 1). A heavy charged particle will

undergo several very-small-angle scatterings and have

more or less a linear path with many very small energy

losses (DEmax¼4meE/M). Electrons, on the other hand, are

deflected significantly and can lose up to half of its energy in

an inelastic collision or even all of its energy in a brems-

strahlung process.

This will imply that not all particles will have the same

range, in particular for electrons but to a smaller extent also

for heavy charged particles. Due to this, several definitions of

‘ranges’ have been proposed, and it is important to specify

which range one is referring to. The total distance a particle

has traveled along its trajectory is often called the path length,

while the path length projected onto the direction of the inci-

dent particle is called range.

However, ICRU has introduced a concept called rcsda, which

is more a path length than a range according to the definition

mentioned. The CSDA range assumes that the particles lose

energy continuously and that is why this path length is called

the continuous slowing down approximation range, rcsda,

defined as

rcsda ¼
ðE0
0

dE

Stot Eð Þ [54]

where E0 is the initial kinetic energy of the particle and Stot(E)

is the total stopping power.
9.01.2.6.3 Heavy charged particles
For heavy charged particles, rcsda generally is a good approxi-

mation for the projected range. For low particle energies, there

will be a difference as shown in Figure 17 where rcsda is com-

pared with the projected range for protons and a-particles.
The difference is larger for high atomic numbers where the

scattering power is higher. The rcsda range for heavy charged
a-particles.



Figure 19 Variation of depth dose in tissue for protons with energies
between 100 and 1000 MeV. Adapted from ICRP (1973).
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particles can then be obtained using the relations for stopping

power:

rcsda ¼ 2MA

Z4pNAr2emec4z2

ðE0
0

E
Md E

M

� 	
ln 4me

I
E
M

� 	 [55]

where M is the particle mass, A is the mass number, Z is the

atomic number of the material, NA is the Avogadro constant, re
is the classical electron radius, c is the velocity of light in

vacuum, z is the charge of the particle, and E is the kinetic

energy of the particle. The range of protons and a-particles can
be calculated with the NIST programs PSTAR and ASTAR avail-

able at the NIST web page. Figure 18 shows some calculated

ranges using these programs. As expected, the ranges are

increasing with increasing atomic number as higher atomic

numbers have lower stopping power values and the scattering

power has in this situation less importance (compare with that

of electrons discussed later). For determining the range for

other heavy charged particles, it is possible to use the scaling

law given in eqn [56]. This relation is a good approximation

except for very low energies:

rz,M ¼ 1

z2
M

mp
rp [56]

rz,M is the range of a particle with charge z and massM and rp is

the range of a proton (charge¼1 andmass¼mp) with the same

velocity.

Another expression that can be used for calculating the

range for a-particles is the empirical relation

ra ¼ Eð Þ3=2A1=210�3

r
m if r in kgm�3 [57]

where A is the mass number and E the kinetic energy. An

a-particle with an energy of 5.5MeV will have a range in

air of 0.035 m or 3.5cm. This illustrates the short range for

a-particles even in air.
Figure 18 rcsda for (a) protons (carbon, aluminum, copper and lead) and (b
The variation of fluence with depth for heavy charged par-

ticles will have a rather straight plateau before it ends with a

fast gradient. Figure 19 shows some proton depth dose distri-

butions in soft tissue for proton energies between 100 and

1000MeV. The fluence is more or less flat, but there is a

variation in absorbed dose with depth, due mainly to the

change in stopping power with depth, which first increases

slowly and ends with a fast increase when the protons

approaches very low energy values. This will give rise to a

sharp peak, called the Bragg peak. This peak can be of interest

in radiotherapy with light ions, in particular for ions heavier

than protons, due to more nuclear reactions, giving rise to a
) a-particles (carbon and lead).
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higher LET in the peak. Figure 19 also indicates that to reach

more than 20cm into the body, 200MeV protons are needed.

Even if the fluence is nearly constant over most of the

particle range, the energy decreases and the energy fluence

will continuously decrease. As the energy losses are small, the

energy distribution is narrow and the energy straggling is small

as well as the range straggling.

Kempe and Brahme (2008, 2010) had developed analytic

expressions for the variation of the mean energy and the flu-

ence with depth for light-ion beams. These expressions agree

well with the data obtained through Monte Carlo calculations

and could be of interest for fast calculations needed in clinical

treatment planning.

9.01.2.6.4 Electrons and positrons
As mentioned earlier, the variation in range is large for elec-

trons and the difference between the path length and the

projected range is often significant. Figure 20 shows the ratio

between experimentally projected ranges rp and rcsda for car-

bon, aluminum, copper, silver, and uranium for electron ener-

gies up to 12MeV. For high atomic numbers and low energies,

the ratio is below 0.5, while for low atomic numbers and high

energies, the ratio is even over 1.0, due to range straggling. This

shows that for practical situations, rcsda often largely overesti-

mates the projected range and experimental-obtained ranges

are more useful, at least for radiation protection applications.

The variation of electron fluence for primary electrons with

depth is plotted in Figure 21 for water and tantalum for 5 and

10MeV electrons. For electrons, scattering and partly large

energy losses reduce the fluence directly at small depths. Note

that tantalum has a lower collision stopping power than water,

but due to the higher atomic number of tantalum, it a has a

much higher scattering power and this has a large impact on

the depth fluence distribution. The curves are calculated for the

primary electrons only. There will also be secondary electrons
Figure 20 Ratio of the projected range rp and rcsda for carbon,
aluminum, copper, silver, and uranium for electrons with energies
up to 12 MeV.
produced that will be added to the fluence. The contribution

from these electrons depends on energy and material but can

be up to 20% of the total fluence in water.

The discussion has so far been directed to fluence of

plane-parallel monoenergetic electrons. With radioactive

b sources, there are two factors that will influence the trans-

mission. One is that the b-particles are emitted with an

energy distribution. The other factor is that the b-particles
are emitted isotropically. These two factors will result in a

nearly exponential decrease of the fluence. This means that

the fluence can be calculated using empirical-determined

absorption coefficients. The mass absorption coefficient is

varying with atomic number and maximal b-particle energy.

As they are empirically obtained, different values and rela-

tions are published. Most measurements of b-particles have

been made with aluminum as absorber, and for aluminum, a

commonly used expression is

b
r
¼ 1:7

E1:4max

m2 kg�1 [58]

where Emax is expressed in MeV.

The range of b-particles does not differ that much from

monoenergetic electrons with the same energy as Emax, as

there are some b-particles with maximum energy irradiated in

the forward direction. There are several empirical relations for

determining b-particle ranges. These are mainly linear in

energy with two parameters:

rb ¼ AEmax � B [59]

where A has a value close to 0.5 and B is a small correction

factor.

Positrons have slight different interaction cross sections as

discussed. This will also result in a small difference in range. As

the cross section for positrons is both larger and smaller than

the cross section for electrons over the energy range, the differ-

ence in range will not be that large as shown in Figure 22

where the ratio of ranges for positrons to electrons is plotted.

The results reflect the variation in cross sections for the stop-

ping powers of electrons and positrons with a smaller stopping
Figure 21 Variation of the planar electron fluence with depth in water
and tantalum for 5 and 10 MeV electrons.



Figure 22 Ratio of rcsda for positrons and electrons for water,
aluminum, copper and lead.
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Figure 23 Electron depth dose curve with definitions according to ICRU
(1984a). Rp is the extrapolated range Rexp in the figure.

Figure 24 Variation of electron energy with depth using eqn [60] by
Brahme and eqn [61] by Harder.
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power at higher energies for positrons, giving large ranges, but

higher at low energies giving small ranges compared with

electrons.

9.01.2.6.5 Radiotherapy beams
In radiotherapy, it is important to have a high accuracy and an

agreement of the definitions. Figure 23 illustrates an electron

depth dose distribution and the range definitions proposed by

ICRU (1984b). R50 is the depth where the absorbed dose has

decreased to half of its maximum value at R100. This value is

used as a measure of the beam quality and shall be used instead

of the nominal accelerating energy when determining dosime-

try parameters. Rp is related to the electron energy distribution.

A narrow electron energy distribution impinging on the phan-

tom will for a certain energy result in a high dose gradient, and

Rp gives an indication of this dose gradient. It also is an

indication of the maximal range.

The depth dose distribution starts with a buildup region,

which is mainly a result of the increase in fluence due to

multiple scattering, which increases the angular distribution

and thus the fluence. There is also a production of secondary

electrons as mentioned earlier. At the high energies normally
used in radiotherapy, there is also a contribution from brems-

strahlung photons, produced not only in the treatment gantry

but also in the phantom. This contribution is seen as the tail

after the maximum range of the electrons. R50 increases with

increasing electron energy, and Brahme and Svensson (1976)

have proposed a linear relation between R50 and the mean

energy at phantom surface, E0¼2.33R50, which is in good

agreement with measurements for many electron accelerators.

For dosimetry reasons, it is also important to know the

electron energy distribution at different depths. This energy

distribution is not Gaussian but slightly skewed towards

lower energies. This distribution, that is, called Vavilov or

Landau distribution, results in that the mean energy EðzÞ
and the most probable energy Ep(z) at depth z differ. The

electron energy distribution is often calculated using Monte

Carlo methods, but sometimes, it may be of interest with just

the mean energy. Brahme (1975) has proposed an expression

for the variation of mean energy with depth in water, which

gives a good agreement with Monte Carlo-calculated values in

the first half of the depth dose curve:

E zð Þ ¼ E0 � Stot, 0
1� eSrad,0z=E0

Srad,0z=E0
[60]

Harder (1965) had earlier proposed a linear relationship

between energy and depth:

Ep zð Þ ¼ Ep, 0 1� z

Rp

� �
[61]

This equation was primarily proposed to hold for the mean

energy, but it fits better to the most probable energy. Figure 24

illustrates the variation of energy with depth according to the

Brahme and Harder relations. For ions, a similar relation is

derived by Kempe and Brahme (2008). The mean energy is

here given as

E zð Þ ¼ E0 1� kS0

E0
z

� �1=k

[62]

where the dimensionless transport parameter
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k ¼ E0
R0S0

[63]

expresses the ratio of the mean rate of energy loss over the

whole slowing down range, Ē0/R0, to the value at the phantom

surface S0. Interestingly, the first two terms in the expansion of

eqn [62] are similar to eqn [61] with Rp replaced by R0.
9.01.3 Photons

9.01.3.1 Introduction to Photon Interaction

Photon interaction with matter involves mainly the produc-

tion of secondary energetic charged particles like leptons (elec-

trons and positrons). It is these leptons that deposit energy

in the material by ionizations and excitations, and the ioniza-

tion in the primary interaction process is often neglected, when

calculating absorbed dose. For example, a 100keV electron

may produce around 3000 ionizations as compared with the

one produced by the photon emitting the electron. The energy

transferred to the leptons is sometimes considered as absorbed

energy, and the energy of the secondary photons as scattered

energy. The most important photon interaction processes can

be described as a function of the interaction target (Table 1).

The types of interaction for photons that are normally included

in tabulated values of the mass attenuation coefficient, m/r, are
photoelectric effect, coherent scattering, incoherent scattering,

and pair production in the electron and the nuclear field. For

some reasons, the nuclear cross section is normally not

included, even if it for some energies can contribute to some

percent of the total cross section.
Table 1 Overview of the different photon interaction possibilities

Target Effect of interaction

Atom Complete absorption
Coherent scattering

Atomic electron Incoherent scattering
Complete absorption
Elastic scattering

Nucleus Complete absorption
Complete absorption
Complete absorption

Figure 25 Schematic illustration of transport of photons through an absorb
The different interaction probabilities are generally given in

form of cross sections with the unit m2 per (atom, nucleus, or

electron). The mass attenuation coefficient is related to the

atomic cross section according to the relation

m
r
¼ NA

M

X
J

sJ [64]

where sJ is the component cross section relating to interaction

type J, NA is the Avogadro constant, and M is the molar mass.

The mass attenuation coefficient is obtained by adding the

cross sections of the different interaction types. m/r may thus

be expressed, if the contribution from photonuclear processes

are included, as

m
r
¼ t

r
þ scoh

r
þ sincoh

r
þ kn

r
þ ke

r
þ spn

r
[65]

where t/r is themass cross section for photoelectric effect, scoh/r
for the coherent (Rayleigh) scattering, sincoh/r for the incoherent
scattering (Compton effect), kn/r for pair production in the

nuclear field, ke/r for pair production in the electron field and

spn=r is the photonuclearmass cross section. The use of themass

attenuation coefficient m/r instead of the linear attenuation

coefficient, m, is practical for compilation purposes, and it is

always m/r that is found in the tables.

Consider a narrow photon beam hitting a material

(Figure 25). Some of the photons will transmit the material

without interaction. Other photons will interact, and in the

interaction of the photons, secondary or scattered photons,

and secondary electrons will be produced. These interacting

photons are called attenuated. The probability that a photon

is interacting in a thin layer d(rx) of the material is given
Name of interaction Notation

Photoelectric effect t
Rayleigh scattering scoh
Compton effect sincoh
Pair production in the electron field ke
Thomson scattering sTh
Pair production in the nuclear field kn
Photonuclear spn
Production of mesons sm

er.
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by (m/r)d(rx) where m/r is the mass attenuation coefficient.

Integrating the fractional reduction of the beam fluence in

a thin layer gives the transmitted fluence through a thickness

rx as

Frx, n ¼ F0 e
� m=rð Þ rxð Þ [66]

This relation holds for narrow beams that are well colli-

mated both before and after the absorbing material, and thus,

only transmitted primary photons are included. In most

situations, there is also a contribution from secondary pho-

tons, mainly incoherent scattered photons, but also annihila-

tion photons and characteristic (fluorescence) x-rays. Whether

the coherent scattered photons, with the same energy as the

primary ones, shall be considered as secondary or not can

depend on the geometry. The contribution from secondary

photons is often included by multiplying the transmitted flu-

ence with a build-up factor, B, which is the ratio of the total

transmitted fluence to the primary fluence:

Frx, b ¼ BF0 e
� m=rð Þ rxð Þ [67]

The mass attenuation coefficient of a compound is

obtained by treating the compound as consisting of indepen-

dent atoms, neglecting any molecular binding energies. Thus,

m
r

� �
comp

¼ w1
m
r

� �
1

þ w2
m
r

� �
2

þ � � � þ wj
m
r

� �
j

[68]

where w is the mass fraction of each atomic material in the

compound. This relation is sometimes called the Bragg rela-

tion. This is a good approximation except for very low photon

energies.

The different interaction processes are treated in the follow-

ing sections, where both the probability for the interaction

process and the energy and angular distributions of the sec-

ondary photons and leptons are discussed.
9.01.3.2 Photoelectric Effect

For low photon energies, below approximately 100keV, the

photoelectric effect is the dominating interaction process in

medium- and high-atomic-number materials. In a photoelec-

tric process, the photon is totally absorbed by the atom and

the energy is transferred to an atomic electron (Figure 26). The

electron cannot be a free electron, as this will not fulfill the

energy and momentum relations. These relations give
Figure 26 Schematic description of a photoelectric effect. A photon
with energy hn transfers its energy to an atomic electron, which is
emitted with the energy hn�BK,L,. . ..
pg ¼ p0
e þ p0

i; hn ¼ Bnj þ E
0
e þ E

0
i [69]

where g, e, and i represent the incoming photon, the emitted

photoelectron, and the recoil ion. Bnj is the binding energy of

the electron in shell n and subshell j. Assume now that the

electron is free. Then, pi
0 ¼Ei

0 ¼Bnj¼0. This gives

pgc ¼ hn ¼ p
0
ec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
e

� 	2 þ 2mec2E
0
e

q
> E

0
e [70]

This does not agree with the energy conservation rules for

interaction with a free electron where hn¼Ee
0
should hold.

The electron is often a K-electron, as these are the most

tightly bound electrons. About 80% of the photoelectric inter-

actions take place in the K-shell, nearly independent of the

atomic number.

The energy and momentum relations also give that

hnmin , nj ¼ Bnj 1þ Bnj

2Mxc2

 �
[71]

As Bnj�Mxc
2, this implies that the threshold energy for the

photon is equal to the binding energies in the different shells.

The electron kinetic energy will become

E
0 ¼ hn� Bnj [72]

9.01.3.2.1 Total cross section
The probability for a photoelectric effect is based approxi-

mately on calculations for a K-electron using an unscreened

Coulomb potential, for energies not too close to the binding

energies. Correction factors are then applied to take into con-

sideration the effect of the K-edge and the contributions from

L-, M-,. . . electrons and the screened potential. For low photon

energies, Heitler (1954) obtained the relation

tK ¼ 4 2ð Þ1=2a4s0 Z
5 mec

2ð Þ7=2
hnð Þ7=2

[73]

where a is the fine structure constant 1/137 and s0 is the

Thomson scattering cross section:

s0 ¼ 8

3
pr2e [74]

At high energies, relativistic corrections must be included and

an expression obtained by Sauter is

tK ¼ s0
3

2
a4

Z5mec
2

hnð Þ [75]

As is obvious from the equations for the cross sections, there is

a high dependence on both the atomic number, Z, and the

photon energy, hn. At low energies where the photoelectric

effect is dominant, the variation with energy is close to

(hn)�3. At high photon energies, the variation with energy

has decreased to (hn)�1. The variation with atomic number is,

after corrections, changing with energy between Z4 at low

energies and Z5 at very high energies.

The aforementioned cross sections hold for the photoelec-

tric effect in the K-shell. The interactions with outer shells must

be added, and if the photon energy is lower than the binding

energy of a specific shell, then the effect can only be applied to

outer shells. Figure 27 shows the relation tshell/t for the K-, L1-,
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and M1-shells as a function of atomic number for photon

energies close to the binding energy. An approximate expres-

sion for the relation t/tK is given by Hubbell (1969):

t=tK ¼ 1þ 0:01481 lnZð Þ2 � 0:00079 lnZð Þ3 [76]

Corrections to the aforementioned equations have also to

be applied due to the screening effect, which reduces the cross

section with a percentage that is rather independent of the

photon energy and around 2% for the K-shell but up to 30%

for the L-shells.

Close to the energy of the electron binding energies, there is

a large discontinuous change in the cross section because if the

energy is just below, for example, the binding energy of the

K-shell, then no K-electrons can be expelled, but with an energy

just above the binding energy, this is possible. Tables of pho-

ton cross sections always have two lines corresponding to the

binding energy. One is the value of the cross section just below
Figure 28 Cross section for photoelectric effect in water and lead as a func

Figure 27 Ratio of the cross section for photoelectric effect in different
subshells to the total cross section.
the binding energy, and one is the value of the cross section just

above the binding energy. Figure 28 illustrates the photoelec-

tric cross section for Pb and water for energies between 0.01

and 100 MeV. The discontinuities at the absorption edges for

the K- and the L-shells for Pb are clearly expressed. For water,

the binding energy is lower than 10keV.

9.01.3.2.2 Angular distribution
For calculations of the transport of the emitted photoelectrons,

it is of interest to know their angular distribution. For low

photon energies, Sauter (Brysk and Zerby, 1968) proposed,

for interactions in the K-shell, a relation for the differential

cross section in scattering into the solid angle at y:

dt=dO ¼ C sin 2y E
0
ph � p=mec

2
� 	

cos y
� ��4

[77]

where C is a normalization constant, Eph
0

is the electron energy

expressed in electron rest masses, and p is the electron momen-

tum. This relation gives a symmetrical distribution around 90	.
For higher energies, the angular distribution is more forward-

directed, and the angular distribution is given by (Brysk and

Zerby, 1968)

dt
dO

¼ C sin 2y E
0
ph � p=mec

2
� 	

cos y
� ��4

� 1� 1

2
E

0
ph � 1

� �
2� E

0
ph

� �
E

0
ph � p=mec

2
� 	

cos y
� � �

[78]

Figure 29 shows the normalized angular distribution for

some photon energies.

9.01.3.2.3 Auger electrons and characteristic x-rays
The electron vacancy produced in a photoelectric effect is

followed by an electron from a higher-level electron shell

replacing the vacancy. The new vacancy is then replaced by

new electrons from outer shells and a cascade of electron
tion of photon energy.



Figure 30 Fluorescence yields for oK and oL2 as a function of atomic
number. The probability for Auger effect in K-shell is also included
together with the probability for only K–L2L3 transition. Data taken from
Browne and Firestone (1986).

Figure 29 Angular distribution of photoelectrons from the K-shell of aluminum for various incident energies.
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vacancies is possible until a ‘free’ electron will neutralize the

atom. The transition energies obtained are emitted either as

characteristic x-rays or as electrons. These electrons are in gen-

eral called Auger electrons and, if the transitions are between

subshells, Coster–Kronig electrons.

9.01.3.2.4 Fluorescence yield
The probability that the vacancy results in characteristic x-rays

is called the fluorescent yield, o. Previously, the characteristic

x-rays had different notations according to a system developed

by M. Siegbahn, a Swedish physicist. For example, if the

vacancy is in the K-shell and the electron comes from the

L3-shell, the x-ray was called a Ka1 x-ray in the Siegbahn nota-

tion. Lately, the International Union of Pure and Applied

Chemistry has proposed a new nomenclature by just indicating

the shells. In this nomenclature, the x-ray is called xK�L3. The

energy of the characteristic x-rays is the difference between the

binding energy of the two electron shells involved. Thus, an

xK�L3 x-ray will have the energy BK�BL3. As these energies are

typical for a specific atomic number, the energy of the charac-

teristic x-rays can be used to identify the atomic composition of

unknown material. The energies and the fluorescent yields of

different characteristic x-rays can, for example, be found in the

Table of Radioactive Isotopes (Browne and Firestone, 1986).

The fluorescent yield, o, increases with atomic number and

is low for atomic numbers <10, typical in tissue, but high in,

for example, Pb. Figure 30 shows the variation of o with

atomic number for the K- and the L2-shell.

9.01.3.2.5 Auger electron yield
As the emission of Auger electrons is an alternative to the

emission of characteristic x-rays, the probability is 1�o.
There are a lot of different possible combinations. A primary

vacancy in the K-shell can, for example, be replaced by an
electron from one of the L-subshells. The transition energy

can be used to emit an electron in any L-subshell or in a

higher-order shell. In the Tables of Radioactive Isotopes,

Auger electron intensities are tabulated, and as an example,

56 different combinations are listed for the atom Pb. Figure 30

illustrates the probability for emission of a K–L2L3 Auger

electron, which is the most probable transition, as a function

of atomic number.

The energy of the Auger electrons is corresponding to the

energy of the characteristic x-rays equal to the difference in the

binding energies of the involved electrons. Thus, the energy of

a K–L2L3 electron is BK � BL2 � BL3 .



Figure 32 Schematic description of the incoherent scattering. A photon
with energy hn hits an atomic electron in an outer shell. The photon is
scattered in angle y with the energy hn0 and the electron is ejected in
angle f with the energy E0 ¼hn�hn0.
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9.01.3.3 Coherent and Incoherent Scattering

A low-energy photon can be scattered by a loosely bound or

‘free’ electron. Thomson (1933) described this with a classical

theory, where the electron starts to oscillate with the same

frequency as the incoming photon and thus emits electromag-

netic radiation with the same energy. It is thus an elastic

scattering process. The Thomson-derived differential cross sec-

tion for emission into a solid angle dO is given as

desTh
dO

¼ r2e
2

1þ cos 2y
� 	

[79]

and y is the scattering angle. The cross section is independent

of energy and symmetric with the same value 79.4�10�28m2

per (electron� steradian) at 0	 and 180	 and 39.7�10�28 m2

per (electron� steradian) at 90	. The total cross section esTh is

obtained by integrating desTh/dy over all scattering angles y:

esTh ¼
ðp
0

desTh
dy

dy ¼ 8p
3
r2e [80]

Experiments performed by Compton (Compton, 1923)

showed, however, that the energy of the scattered photon was

less than that of the primary photon. Figure 31 is taken from

his original paper (Compton, 1923), showing the wavelengths

of the primary photon spectrum and the wavelength spectrum

for photons scattered in 90	. At that time, the radiation distri-

bution was described using wavelengths instead of energies. In

the incoherent scattering process, the photon interacts with an

atomic electron, often a loosely bound electron in an outer

shell, which is emitted, and the photon is scattered with a

lower energy (Figure 32). Compton derived from the conser-

vation of energy and momentum the relation between the
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Figure 31 Spectrum of molybdenum x-rays scattered in 90	 by graphite, co
wavelength and thus a decrease in energy. Reproduced from Compton AH (1
Physical Review 21(5): 483.
scattered photon energy hn0 and scattering angle y as given by

eqn [81]:

hn
0 ¼ hn

1þ k 1� cos yð Þ [81]

where k¼hn/mec
2 is the primary photon energy expressed in

electron rest mass. Compton assumed in his derivation that the

electron was free and stationary. This is not totally correct, but

a good approximation in those situations, where the Compton

effect dominates and many theories for cross sections and

energy losses are based on these assumptions. The Compton

effect is often used as a name for this interaction process, even

if incoherent scattering is a more correct description. From

eqn [81], it is easy to derive that for a photon scattering angle

of 180	, there is a minimum in the scattered photon energy

given by
8

Broken line, spectrum of
primary x-rays from No.

Solid line, spectrum of
  Mo x-rays scattered at
  90° by graphite.
Wave-length of Ka line:
Primary   Scattered
lo= .708

lq = lo= 0.022 Å (expt)
lq - lo= h/mo
           = 0.024 Å (theory)

le= .730 Å.

9 10
Glancing angle from calcite

11 12 13 14 15°

mpared with the spectrum of the primary x-rays, showing an increase in
923) A quantum theory of the scattering of x-rays by light elements.



Figure 34 Variation of the scattered photon energy, hn0, and the
emitted Compton electron energy, E0, as a function of primary photon
energy.

Figure 35 Differential electronic cross section for Compton effect
desC

KN/dO against scattering angle y for various primary photon energies.
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hn
0
min ¼ hn

1þ 2k
[82]

With increasing primary photon energy, the backscattered pho-

ton energy will reach a limit given by

lim hn
0
min hn ! 1ð Þ ¼ mec

2

2
¼ 0:256 MeV [83]

Figure 33 illustrates the relation between scattered and

primary photon energies for some scattering angles. The min-

imum in scattered energy, mec
2/2¼0.256MeV at 180	 and

mec
2¼0.511MeV at 90	, when the primary photon energy

goes to infinity is shown. This implies that backscattered

photons in angles larger than 90	 normally have energies

less than 0.511MeV. There is however a small possibility

that backscattered photons scattered in several small scatter-

ings can have a higher energy. The low-energy distribution

of backscattered photons is important when calculating radi-

ation protection shielding in situations where only large-

angle scattered low-energy photons will hit the shielding

wall. It is also obvious that for high photon energies, the

energy transferred to the electron is high and the photon

will lose a large part of its energy, while when the photon

energy becomes lower, less and less fraction of the energy is

transferred to the electron. This means that when a high-

energy photon hits a low-atomic-number material like water,

where incoherent scattering is dominating, most of its

energy is lost in a couple of scattering events, but then, the

photon can be scattered several times, losing little energy in

each scattering event, before it may finally be absorbed by

the photoelectric effect. As an illustration, consider a 10MeV

photon that is scattered in 60	. This scattered photon will

get an energy of 0.93MeV, but with further scattering events

in 60	, the energy will slowly decrease and the energy will

approach 0.1MeV first after 10 scattering events. Thus, a

high-energy photon can be scattered several times before

being absorbed. This will influence of the transport of pho-

tons in radiotherapeutic situations. This can also be

expressed as in Figure 34 where the average energies trans-

ferred to a photon and an electron, respectively, are plotted

as a function of the primary photon energy. For low photon

energies, most of the energy is transferred to the scattered

photon, but with increasing photon energy, the energy trans-

ferred to the electron is increased.

Figure 33 Scattered photon energy against the primary photon energy.
From eqn [81], the energy, E0, of the emitted electron is

easily derived.

E
0 ¼ hnk 1� cos yð Þ

1þ k 1� cos yð Þ [84]

The electron will get a maximum energy according to

eqn [85] when it is emitted in 0	 as compared to the impinging

photon, which in this interaction will be scattered in 180	.

E
0
max ¼ hn2k

1þ 2k
[85]

9.01.3.3.1 Angular distribution
The differential electronic cross section per solid angle was

derived by Klein and Nishina (1929). Their derivation is

based on the assumption on a collision with a free and station-

ary electron and is given as

desKNc yð Þ
dO

¼ r2e
2

1

1þ k 1� cos yð Þ½ �2 �

1þ cos 2yþ k2 1� cos yð Þ2
1þ k 1� cos yð Þ

" #
m2per electron per steradian

[86]
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This equation is reduced to the Thomson cross section

when the photon energy goes to 0. Figure 35 illustrates

desc
KN(y)/dO, showing that the cross section is constant for a

scattering angle of 0	 independent of photon energy. For very

small photon energies, the cross section has the same value in

180	 and half in 90	. With increasing energy, the photons are

more and more forward-scattered. This implies that in diag-

nostic radiology with energies normally below 100keV, the

scattering angles are large and the contribution from scattered

photons will deteriorate the diagnostic image and the large

scattered contribution must be reduced by, for example,

using grids. However, in radiotherapy with energies with sev-

eral MeV, the photons are scattered in small angles and, for

example, the contribution from head scatter high up in the

treatment head will have less influence as they are scattered in

small angles and have thus an energy close to the primary

photon beam and may be treated as primary photons

(Nilsson and Brahme, 1981).

For the calculation of absorbed dose and also of the contri-

bution from emitted Compton electrons contaminating a

radiotherapeutic photon beam, the angular distribution of

the Compton electrons is of importance. This may be

calculated from the angular distribution of the photons

desc
KN(y)/dO and considering that the relation between the

electron angle and the scattered photon angle y is given by

cotF ¼ 1þ kð Þ tan y
2

[87]

9.01.3.3.2 Energy distribution
The energy distribution of the Compton electrons can be

obtained from the Klein–Nishina cross section desC
KN(y)/dO,

through the relation

desKNC
dE

¼ desKNC
dO

dO
dy

dy
dE

[88]

The energy distribution for the Compton electrons is shown

in Figure 36 for photon energies between 0.5 and 10MeV,
Figure 36 Differential electronic cross section per unit kinetic energy
plotted against the kinetic energy of the recoil electron for primary
photons energies in the range of 0.5–10 MeV.
where also the maximal Compton electron energy

Emax

0 ¼hn�hn0 is indicated. This energy distribution is, for

example, important for obtaining the pulse height distribution

in a detector irradiated with photons, as the detected pulse

height distribution will reflect the energy of the absorbed

electrons. The corresponding energy distribution for the scat-

tered photons is obtained by replacing the electron energy E by

(hn0�hn0) and dE0 by d(hn0).
9.01.3.3.3 Total cross section
The total electronic cross section esC

KN is obtained by integrat-

ing the differential cross section per unit angle y, desc
KN(y)/dy,

over all scattering angles y. It is important to distinguish this

differential cross section per scattering angle from the differ-

ential cross section per solid angle described earlier. As

dO¼2p sin y dy, the relation between the two cross sections

is given as

desKNc yð Þ
dy

¼ desKNc yð Þ
dO

2p sin y [89]

This cross section is illustrated in Figure 37. Integrating

the differential cross section, desc
KN(y)/dy, over all angles

gives

esKNC ¼
ðp
0

desKNC
dy

dy

¼2pr2e
1þk

k2
2 1þkð Þ
1þ2k

� ln 1þ2kð Þ
k

2
4

3
5þ ln 1þ2kð Þ

2k
� 1þ3k

1þ2kð Þ2

8<
:

9=
;

[90]

At low photon energies, this cross section approaches the

Thomson cross section:

s0 ¼ 8

3
pr2e [91]

For very large photon energies, the equation can be approx-

imated by

esKN ¼ pr2e
2 ln 2kð Þ þ 1

2k
[92]
Figure 37 Differential electronic cross section for Compton effect
desC

KN/dy against scattering angle y for various primary photon energies.



Figure 38 The scatter, transfer, and total Klein–Nishina electronic cross section for a free electron as a function of primary photon energy. The figure
also includes the fractional energy transferred to the scattered photon and the Compton electron (dashed lines).
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This means that the Compton cross section decreases

monotonically with energy from the Thomson cross section

and approaches a 1/hn dependence at high energies as illus-

trated in Figure 38.

The electronic Compton cross section according to Klein–

Nishina is independent of the atomic number as the binding

energies are neglected. The atomic cross section is then linearly

proportional to the atomic number, Z. As the number of

electrons per mass unit is rather constant with atomic number,

the mass Compton cross section, sC/r, has a slow variation

with the atomic number. When including the corrections for

the binding energies (see below), there will however be larger

differences at lower photon energies.
9.01.3.3.4 Mean energy transfer
The total cross section for incoherent scattering may be divided

into a scattering cross section ess and an absorption or a

transfer cross section estr. These cross sections give the average
energies of the scattered photons and the Compton electrons

through the relations

esKNs ¼esKNC
hn

0

hn
; esKNtr ¼esKNC

E
0

hn
[93]

Figure 38 illustrates ess
KN and estr

KN as a function of energy

together with the total es
KN. In the figure are also included

the fractional energies transferred to the scattered photon and

the Compton electron, respectively. From the figure, it can be

concluded that at low incident photon energies, a small part of

the energy is transferred to the Compton electron, and with

increasing energy, the fraction transferred to the Compton

electron is increasing, reaching a value of 0.794 at 100MeV

incident photon energy, as discussed earlier.
9.01.3.3.5 Corrections for binding energy
The Klein–Nishina cross section is as mentioned based on

the assumption that the electrons are free and at rest. However,

the electrons are bound to the atomic nucleus and move in the

electron orbits. This will change the cross section. If, for

example, a 200keV photon is scattered in 30	, a free electron

will obtain a kinetic energy of 10keV. If the electron is a K- or

an L-electron in Pb, then this energy is lower than the binding

energy and the electron cannot be emitted. The velocity of the

electrons in the orbit will also affect the cross section as there

will be a broadening of the scattered energy due to the Doppler

effect that will depend on the velocity and the direction of the

electron as compared with the incoming photon. These effects

will have most influence on the cross section at low photon

energies, small scattering angles, and large atom numbers of

the scattering material. To include these corrections, Hubbell

et al. (1975) introduced an incoherent scattering function

S(x, Z), where x is a transferred momentum variable and Z is

the atomic number. The scattering function expresses the prob-

ability that an atom will absorb energy and be raised to an

excited or ionized state when an incident photon transfers

momentum to any of the atomic electrons. The incoherent

scattering function S(x, Z) is plotted in Figure 39 for hydrogen,

carbon, aluminum, iron, and lead as a function of x. S(x, Z)

increases with x to reach a value equal to the atomic number at

large x values. This function is multiplied with the Klein–

Nishina cross section to get the differential incoherent cross

section:

desBDC
dO

� �
¼ S x;Zð Þ desKNC

dO

� �
[94]

Figure 40 shows the ratio of the total incoherent scattering

cross section to the integrated Klein–Nishina free electron cross



Figure 39 Incoherent scattering function S(x, Z) as a function of the momentum transfer variable, x, for hydrogen, carbon, aluminum, iron, and lead.

Figure 40 Comparison of the incoherent cross section esC
BD and the

Klein–Nishina cross section esC
KN as a function of the atomic number, Z,

for photon energies of 1, 10, and 100 keV. Figure adapted from
Hubbell JH, Veigele WJ, Briggs EA, Brown RT Cromer D, and Howerton
RJ (1975) Atomic form factors, incoherent scattering functions and
photon scattering cross sections. Journal of Physical and
Chemical Reference Data 4: 471.

Figure 41 Ratio of observed Compton scattering from K-shell electrons
to Klein–Nishina theory. Solid curves are theoretical models including
the corrections for electron velocity.
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section for 1, 10, and 100keV photons as a function of the

atomic number (Hubbell et al., 1975). For 100keV photons,

the ratio is close to unity except for high atomic numbers.

However, for 10keV photons, the influence of the binding

energy is significant even at low atomic numbers. The binding

effects will also influence the angular distribution of scattered

particles. The photons will be scattered more in the forward

direction. In Figure 41, the ratio between experimental inco-

herent scatterings from K-shell electrons to Klein–Nishina

cross section data is plotted as a function of scattering angle

for Au and Sn for 662keV photons from a 137Cs source. The

experimental data (Motz and Missoni, 1961) are plotted as
points. The solid curves are extrapolations to 180	 using the

theory of Jauch and Rorlich (1955) which takes electron veloc-

ity into consideration. For angles less than around 45	, the
experimental data are lower than the theory, and for larger

angles, the opposite holds. The corrections for the binding

effects are often small in practice as they are important for

energies and atomic numbers where the photoelectric effect

dominates, and that is why they often are neglected in the

calculations.

9.01.3.3.6 Rayleigh scattering
A photon can be scattered by the bound electrons of the atom

without neither exciting nor ionizing the atom. As there in

principle is no energy lost, this is close to an elastic or coherent



Figure 42 Atomic form factor for Rayleigh scattering plotted against
the momentum transfer x for hydrogen, carbon, aluminum, iron,
and lead.

Figure 43 Electronic coherent and incoherent scattering cross section
for hydrogen, carbon, aluminum, copper, and lead.
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scattering and the photon continues with the same energy but

is deflected. The scattering angle is often small as there are no

excitation and ionization and the energy transferred to the

atom must be small.

The differential Rayleigh atomic cross section dasR/dO per

solid angle is obtained from the product of the Thomson cross

section and an atomic form factor F(x, Z) for Rayleigh

scattering:

dasR
dO

¼ desTh
dO

F x;Zð Þ2 ¼ r2e
2

1þ cos 2y
� 	

F x;Zð Þ2 [95]

The atomic form factor F(x, Z) (Hubbell et al., 1975) is

plotted in Figure 42 for the elements hydrogen, carbon, alu-

minum, iron, and lead as a function of x¼ sin (y/2)/l. The
function decreases with x from a value equal to the atomic

number for x¼0. Data show that the Rayleigh scattering is

most important for low photon energies and high atomic

numbers. The total scattering electronic cross section is plotted

in Figure 43 where the value for hydrogen corresponds to the

incoherent Klein–Nishina scattering cross section. The cross

section for coherent scattering is higher than the cross section

for incoherent scattering for energies smaller than around

200keV for high atomic numbers down to less than 1keV for

low atomic numbers. The photon scattering angle is dependent

on the photon energy and atomic number Z of the scatterer. An

approximate expression for the angle that represents the half

angle containing 75% of the Rayleigh scattered photons is

given by

yR 
 2 arcsin
0:026Z1=3

k

� �
[96]

yR is plotted in Figure 44 for carbon, aluminum, iron, and

lead. Included are also data for amore accurate determination of

yR for C and Fe. The results show that the photon scattering

angle increases with atomic number, Z, and decreases with

energy hn. As illustrated, the approximative eqn [96] holds

mainly for energies above 0.1MeV. The importance of coherent

scattering is dependent on the applicable situation. When cal-

culating radiation protection shielding, coherent scattered
photons can often be included in the primary photon beam,

in particular for higher photon energies, as they have the same

energy as the primary photons and are scattered in small angles

and will be included in the fluence in the broad beams normally

met in radiation protection calculations. However, in diagnostic

radiology, they may be an important factor as they can give rise

to interference effects and produce maxima in the angular dis-

tribution in crystals and their contribution to the photon flu-

ence differential in both angle and energy has to be considered.

9.01.3.3.7 Double Compton scattering
There is also a small possibility that the scattering process by

an electron on a single incoming photon will result in the

emission of two photons. This process is called double Comp-

ton scattering. The probability for double Compton scattering

is smaller than for single scattering, and for high energy photon

energies, the ratio of double to single scattering is 1/137. The

cross section for double scattering is zero for the scattering

angle y¼0 resulting in an angular distribution with a maxi-

mum cross section around 20	 for 10MeV photons and around

40	 for 1MeV photons. The cross section for double scattering

is included in the total cross section for incoherent scattering as

tabulated by Higgins et al. (1991).
9.01.3.4 Pair Production

In pair production, a pair of particles is produced when a

photon is absorbed by a target particle. In this chapter, the

process, when the produced particles are an electron and a

positron and the target is a nucleus or an electron, will be

discussed. For further reading of pair production, the compi-

lations by Motz et al. (1969) and Hubbell et al. (1980) are

recommended. The process is illustrated in Figure 45.

The Dirac equation (Dirac, 1928) predicted particles of

negative energy:

E2tot ¼ p2c2 þm2
e c

4; Etot ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2

e c
4

q
[97]

Dirac (1930) interpreted these negative states as particles

of opposite charges to the charge of the electrons and he



Figure 44 Scattering angles for coherent scattered photons in carbon, aluminum, iron, and lead as a function of photon energy using eqn [96].
The dashed curves are based on more accurate calculations.

Figure 45 Schematic description of the pair production in the Coulomb
field of a nucleus and an electron.
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assumed that these particles were protons. However,

Anderson (1932) could verify that the particles were anti-

electrons or positrons.

Conservation of momentum and energy implies that this

process cannot occur in free space. If in Figure 45 only the

momentum component along the incident photon direction is

considered, the conservation of momentum gives

pg ¼ hn
c
¼ p

0
� cos y� þ p

0
þ cos yþ þ p

0
X cos yX ) hn

� p�c
0 þ p

0
þcþ p

0
Xc [98]

Using the relation

Etot ¼ Eþmec
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð Þ2c2 þm2

e c
4

q
[99]

and inserting in eqn [98], the following relation is obtained:
hn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0
�

� 	2
c2 þm2

e c
4

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
0
þð Þ2c2 þm2

e c
4

q
þ E

0
X )

hn > p�c
0 þ p

0
þcþ E

0
X [100]

The inequalities in eqns [98] and [100] would be incompat-

ible if there was no recoil particle and px
0 ¼EX

0 ¼0. This

implies that there is a need for a recoil particle, which

normally is an atomic nucleus but can also, with less prob-

ability, be an atomic electron. The pair production with an

electron is sometimes called triplet production, as after the

interaction, three leptons will be observed in a cloud cham-

ber. However, one of the electrons is the atomic electron,

which is emitted from the atom, and thus, this notation is

not formally correct.

The kinematics will also give the threshold energies that will

be obtained when the photonmomentum is shared among the

outgoing particles in ratio of their masses. This gives

hnmin ¼ 2mec
2 1þ me

mX

� �
[101]

When the target particle X is a nucleus, its mass mX is much

larger than the mass of the electron me independent of the

atomic number and thus hnmin¼2 mec
2. When the target

particle is an electron, the equation gives hnmin¼4 mec
2.
9.01.3.4.1 Energy distribution
In a pair production with the nucleus, the recoil energy to the

nucleus may be neglected and the positron and the electron

will get the photon energy minus the rest mass energy of the

electron and positron pair.



Figure 46 Dependence of the differential pair cross section dk/dEþ on
the atomic number of the nucleus Eþ for an incident energy of 2.55 MeV.
The dashed line represents the Bethe–Heitler theory.

Figure 47 The variation of the average energy of the positron in pair
production with the emission angle for photon energies 2.5, 14, 25.5, and
51.1 MeV. The energies are expressed in electron rest mass energy.

Figure 48 Approximative angular distribution, dk/dO, of the emitted
positrons in a pair production process assuming that the Bethe
approximation holds and the transferred energy are divided equally
between the positron and the electron.

28 Interaction of Ionizing Radiation with Matter
Ee� þ Eeþ ¼ hn� 2mec
2 [102]

The energy distribution for the positron can approximately

be given as

dk
dE

0
þ
¼ Z2r2e ag hn;E

0
þ;Z

� �
[103]

The function g(hn, Eþ
0
, Z) increases with increasing hn and

decreases slightly with increasing Z. The electron and the pos-

itron will share the energy, and in the first approximation, the

probability for a kinetic energy between 0 and hn�2 mec
2 is

nearly constant. However, at low photon energies, the positive

charge of the nucleus will have an effect on the energy distri-

bution resulting in a slightly higher energy of the positron

(�verb� et al., 1968). This effect is illustrated in Figure 46 for

copper and lead irradiated with 2.55MeV photons. The sym-

metrical distribution as a result of eqn [103] based on

the Bethe–Heitler–Born approximation is also included. The

energy distribution will also slightly depend on the scattering

angle. Figure 47 shows the mean energy as a function of the

scattering angle and photon energy for 2.5, 14, 25.5, and

51MeV (Nilsson and Brahme, 1983). In the figure, the energies

are expressed in electron rest mass energy. The mean energy

decreases slowly with the parameter Eþ/(k�2) from 0.7 at

small angles to 0.4 at large emission angles.

9.01.3.4.2 Angular distribution
The angular distribution of the electrons and positrons is

depending on the energy of the incoming photon, and with

higher energies, the more forward-emitted are the particles. An

expression for the cross section of the angle of divergence, D, is
in the high-energy region given by Borsellino (1953)

ds ¼ 16a Zreð Þ2f 1� fð ÞF x dx

1þ x2ð Þ2 [104]

where f¼Eþ/hn, x¼D/D0 and F is a function of the incident

photon energy and momentum transferred to the positron. If

the positron and the electron shares the energy equally,
D0¼4 mec
2/hn. In the Bethe approximation, F is a constant.

Figure 48 shows a normalized angular distribution, ds/dO, for
the positron for 5 and 10MeV photons calculated using the

Bethe approximation. The emission angles decrease with the

energy approximately as 1/hn.
9.01.3.4.3 Total cross section
The total atomic cross section for pair production akn is

obtained by starting with the Born approximation for an

unscreened point nucleus (Bethe and Heitler, 1934). This

cross section is often called akn
BH. To this cross section are

then added Coulomb correction as the nucleus is not a point

charge, screening correction from the electron shells, and radi-

ative correction due to the accelerating charge.
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Racah (1936) proposed an expression for the unscreened

point nucleus Born approximation. Equation [105] is based

on his expression

akBHn ¼ aZ2r2e
28

9
ln 2k� 218

27
þ 2

k

� �2
( )

f kð Þ [105]

This equation indicates that there is a Z2 dependence and that

the cross section slowly increases with energy k.

The Coulomb correction is small for low atomic numbers

and less than 1% for carbon. For high atomic numbers as, for

example, lead, the correction is however large, in particular at

low photon energies, and has to be included. This correction is

based on both theories and empirical methods. For high

energies, interaction may take place at large distances from the

nucleus and shell electrons can then screen the effect of the

atomic nucleus. This will reduce the cross section and the cross

section will approach a saturation value at very high photon

energies. The radiative correction is small and approaches 1%

for energies above 50MeV. An expression for the high-energy

cross section with a complete screening is given in eqn [106].

akscreenedn ¼ aZ2r2e
28

9
ln 2k� f Zð Þ

� �
[106]

The atomic cross section for pair production is plotted in

Figure 49 for aluminum and lead divided with Z2 for pair

production with the nucleus and with Z for pair production

with the electron. The figure illustrates the Z2 dependence for

the pair production with the nucleus for energies below some

MeV and the effect of screening at higher energies, which is

more important for higher atomic numbers.

9.01.3.4.4 Pair production in the field of an electron
or triplet production
The theoretical treatment of the pair production in the field of

an electron should include (Hubbell et al., 1980) atomic bind-

ing of the target electron, screening by other atomic electrons

and by the field of the nucleus, retardation which occurs when

the atomic electron recoil velocity is not negligible in
Figure 49 Atomic cross section for pair production with the nucleus
(solid curves) and electron (dashed curves) divided by Z2 and Z,
respectively. Data from Berger et al. (2005a).
comparison with the velocity of light, the g–e interaction of

the incident photon with the atomic electron, exchange terms

resulting from the difficulty to distinguish between the two

electrons, and radiative corrections. No treatment has included

all of these six effects, whichmeans that the numerical values are

based on a combination of different theoretical treatments.

Borsselino (in Roy and Reed, 1968) has derived an expression

for an unscreened atom including only corrections for

retardation.

akBHe ¼ aZr2e
28

9
ln 2k� 218

27
� f kð Þ

� �
[107]

This equation is similar to the cross section akn
BH, for pair

production in the field of a nucleus, but proportional to Z

instead of Z2. This indicates that the cross section for pair

production in the electron field is less than the one in the

field of a nucleus and the ratio may be expressed as

ake
akn

¼ 1

CZ
[108]

where C is nearly independent on the atomic number but

depends on the photon energy and is about three at low

photon energies and close to one for high energies. The cross

section divided with Z is plotted in Figure 49. The figure

illustrates in a similar way as for asn the Z dependence for

lower photon energies and the screening effect at higher

energies.

The energy distribution in a pair production with an elec-

tron is given by the relation

hn ¼ 2mec
2 þ Ee� þ Eeþ þ Eorb:el [109]

The available energy is distributed to the three particles

within the energy limits given by Perrin (1933)

E ¼ k2 � 2k� 2� k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k k� 4ð Þp

2kþ 1
mec

2 [110]

This will, for example, for a 20MeV photon, result in that

the kinetic energies of the three particles will lie between the

limits of 0.68keV and 18.7MeV. The recoil orbital electron will

often get very little kinetic energy, so most of the energy is

divided between the produced electron–positron pair.

9.01.3.4.5 Positron annihilation
A corollary reaction to pair production is annihilation. In this

process, the positron annihilates with an electron and the

energy is emitted as electromagnetic radiation. One, two, or

three photons are emitted in the process.

One quantum annihilation. If the electron is strongly bound

to the nucleus, only K-electrons are included in the theories, it

is possible with emission of a single photon, and the excess

recoil momentum is being absorbed by the atomic nucleus.

The cross section is given by Heitler (1954) as

s1 ¼ 4p
Z

aZð Þ4 Zreð Þ2f Eþð Þ [111]

This cross section has a maximum for a positron energy

around 0.25MeV and decreases fast with decreasing energy.

Generally, the cross section is small compared with two-quanta
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annihilation, but for high atomic material, s1/s2 may be sig-

nificant. If, for example, Z¼82 and the positron energy is

5MeV, s1/s2 is
0.2. One quantum annihilation is forbidden

with a free electron since conservation of energy and momen-

tum is then impossible.

Two-quanta annihilation. Two-quanta annihilation is the

most common annihilation process. In this case, the electron

is assumed to be free. Then, the momentum conservation

demands that more than one photon is emitted. Dirac has

derived an expression for two-quanta annihilation. The cross

section increases with decreasing energy. For low energies, that

is, when vþ� c, the cross section can be approximated as

s2 ¼ pr2e
c

vþ
[112]

In the limit when the positron energy and thus the velocity

are very small, the cross section would go to infinity. In this

situation, the number of annihilation processes per unit time,

P, is limited by the reciprocal of the free positron lifetime in a

medium of free electrons:

P ¼ t�1 ¼ pr2e r [113]

where r is the free electron density in the medium. For very

slow positrons in lead, t is of the order of 10�10 s.

In themost common situation, the positrons are thermalized

before they are annihilated, usually then with valence electrons.

In this situation with assumed negligible momentum input, the

two photons will have the energy 0.511MeV and they will be

emitted at directions separated by 180	. In fact the momentum

before annihilation is not completely negligible. This will imply

that the photons depart at relative angles distributed around

180	 with an angular width of about 1	. The photon energy

spread is often about 10eV if the positron energy is low.

Two-quanta annihilation for thermalized positrons is valu-

able in diagnostic nuclear medicine, as with a positron camera,

it is possible to determine the position of the annihilation

point. As the positrons emitted from radionuclides, like 11C,
15O, and 18F, that often are used in these types of investigations

have low kinetic energies, the annihilation point is close to the

positron decaying radionuclide. It is thus possible to obtain a

distribution of the radioactivity in the body. Nuclides like

carbon and oxygen are present in the body, and positron

camera investigations are of major diagnostic value.

There is, however, a probability that relativistic positrons

can annihilate in flight prior to thermalization. In this case,

one photon is emitted in the forward direction with nearly all

energy, and the other low-energy photon is observed at a large
Table 2 Photonuclear parameters for some nuclides.

Absorber Threshold for (g, n) MeV Threshold for (g, p) MeV Re

9Be 1.67 – –
12C 18.7 15.9 23
16O 15.7 12.1 –
27Al 13.1 8.3 21
63Cu 10.8 6.1 17
206Pb 8.1 7.3 13

Data from Podgorsak EB (2009) Radiation Physics for Medical Physicists. Springer: Berlin;

New York.
angle to the direction of the incident positron. The probability

for annihilation in flight is higher for high-energy positrons

but has a slow variation with atomic number. For 5MeV

positrons, the probability for annihilation in flight is 10% for

Be and 13% for U decreasing to 3% and 5% for a 1MeV

positron, respectively. One application of annihilation in flight

is that it is possible to produce nearly monoenergetic photons

that are very useful in studies of photonuclear reactions. Infor-

mation on annihilation in flight is also of importance when

calculating mass energy absorption coefficients.

Three-quanta annihilation. This is an unlikely process and is

forbidden for a free electron–positron pair, since conservation

of energy and momentum between initial and final states is

then impossible. The ratio of the three quanta to the two

quanta cross section is given as

s3
s2

¼ 1:159
a
p
¼ 2:69� 10�3 [114]
9.01.3.5 Photonuclear Reactions

Photons may react with the nucleus with the result of emission

of mainly a single neutron, but also protons, g-rays, and more

than one neutron can be emitted. The threshold energy needed

for this process is for many atomic numbers in the region of

6–16MeV except for some isotopes with low atomic number as

deuterium and beryllium with thresholds of 2.2 and 1.67MeV,

respectively. Some threshold values for (g, n) and (g, p) reac-
tions are listed in Table 2. The threshold values for (g, p) are
lower than those for (g, n) due to the Coulomb repulsion in

the nucleus, but the cross section is lower because of the large

Coulomb barrier against proton emission. Above the

threshold, the cross section can be described by a ‘giant

resonance’ giving a maximum value around 24MeV for low-

atomic-number nuclei and 12MeV in high atomic numbers

(see Table 2). The distribution does not have only one maxi-

mum point but some substructures, which often can be

described by two main peaks. The FWHM of the resonance

varies between 3 and 9MeV depending on the properties of the

nuclei.

The maximum value of the (g, n) cross section leading to

the emission of a neutron is of the order of 10�10�28m2 in

low-atomic-number materials and increases to around

400�10�28m2 for high atomic numbers. With higher photon

energies, �20–30MeV, it is possible to obtain also emission of

more than one particle, and reactions like (g, 2n) and (g, pn)
appear.
sonance peak energy (MeV) Percent of total cross section for (g, n)

–
.0 5.9

–
.5 3.9
.0 2.0
.6 2.7

Attix FH (1986) Introduction to Radiological Physics and Radiation Dosimetry. Wiley:
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In low atomic numbers, the cross section for photonuclear

reactions is always lower than some percent of the total cross

section, and in most tabulations of the photon cross sections,

this cross section is not included, partly also due to the uncer-

tainties in the numerical value of the cross section.

The (g, n) reactions will produce neutrons, and in radio-

therapy with high-energy photon beams, there will be a

neutron contribution to the absorbed dose in the patient.

This contribution is low and can normally be neglected.

However, it is important to consider these neutrons when

constructing the shielding in radiotherapy treatment rooms.

Another aspect is that as a result of these (g, n) and (g, p)
reactions, the stable target nucleus can be radioactive after

the interaction. For example, after a (g, n) reaction, 12C will

be transformed to 11C, 14N to 13N, and 16O to 15O with half

lives of 20.4min, 10.0min, and 122s, respectively. This will

imply a radiation protection problem in radiation therapy

with high photon energies, as the air in the room will be

radioactive and there is a need for a forced ventilation.

Another aspect is that the patient will be radioactive and

the activity distribution can be used for checking the given

dose distribution in the patient by measuring the patient

with a positron camera directly after treatment (Janek

et al., 2006; Janek Straat et al., 2013).
9.01.3.6 Mass Attenuation and Absorption Coefficients

As mentioned, the total macroscopic attenuation cross section

is the sum of all cross sections for the different interaction

processes (photoelectric effect, Rayleigh scattering, incoherent

scattering, pair production in the field of the nucleus, and the

electron). The photonuclear cross section is not normally

included. There are different ways of expressing the cross sec-

tions, as an electronic, an atomic, a linear, or a mass cross

section, which is the most common way to tabulate the cross

sections. In this paragraph, three different coefficients will be

discussed, the mass attenuation coefficient (m/r), the mass

energy transfer coefficient (mtr/r), and the mass energy absorp-

tion coefficient (men/r).
Figure 50 Relative contributions of various photon interactions as a functio
9.01.3.6.1 Mass attenuation coefficient
The relative contribution from the different interaction pro-

cesses varies with photon energy and atomic number. In

Figure 50, the relative fractions of the cross sections are plotted

for carbon and lead. The absolute values are plotted in

Figure 51 for the same materials. All data are taken from the

NIST data table (http://nist.gov/pml/data), where attenuation

coefficients and cross sections are tabulated. It is also possible

to calculate new cross sections for materials not included by

using the program XCOM (Berger and Hubbell, 1990). From

Figure 50 and Figure 51, some conclusions of the variation of

m/r with atomic number and energy can be made. For low-

atomic-number materials, typical for tissue, incoherent scat-

tering dominates over a large energy range, from around

10keV to more than 10MeV. Thus, for energies typical in

radiotherapy, incoherent scatter will have an important

influence of the transport of photons in soft tissue. In high-

atomic-number materials as lead, on the other hand, photo-

electric effect is dominant up to some hundred keV and pair

production will start to dominate at energies around 5MeV.

This is one of the reasons that high atomic numbers often are

good absorbers. The high dependence of the atomic number

for the photoelectric effect is also valuable in diagnostic radi-

ology, as even tissues with a small difference in atomic

number will be visible. For energies around 1MeV, m/r has

similar value in carbon and lead and thus the narrow-beam

attenuation will be close in the two materials, but due to the

different contribution from the individual cross sections, the

transport of photons through the same thickness expressed in

kg m�2 will differ significantly.

The cross sections are based both on partly approximative

calculations and also on partly experimental data, indicating

uncertainties in the tabulated values. Trubey et al. (1989)

estimated the uncertainties in the available data. Their conclu-

sions of the maximum estimated uncertainties in the total

attenuation coefficient are summarized in Table 3. For energies

normally used in diagnostic radiology and radiotherapy,

50keV to 20MeV, the uncertainties are around 2%, but for

very low energies, below 1keV, Table 3 indicates very large

uncertainties and a dependence of the phase of the material.
n of photon energy for (a) carbon and (b) lead.

http://nist.gov/pml/data


Table 3 Maximal uncertainties in the mass attenuation coefficient

Energy range Solid (%) Gas (%)

10–100 eV 1000 20
0.1–0.5 keV 100–200 10–20
0.5–1.0 keV 10–20 5
1.0–5.0 keV 5 5
5.0–100 keV 2 2
0.1–10.0 MeV 1–2 1–2
10 MeV–100.0 GeV 2–5 2–5

Water

Bone

Bone

m/
r 

(c
m

2
g-1

)

δ/
b
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Figure 52 Dependence on the phase to attenuation contrast ratio d/r
for breast tissue, water, and cortical bone and dependence on the
mass attenuation coefficient of water and cortical bone (Zhou and
Brahme (2008).

Figure 51 Mass attenuation coefficient m/r as a function of photon energy for (a) carbon and (b) lead. The separate contributions fromphotoelectric effect,
t/r, Rayleigh scattering, sR/r, incoherent scattering, sincoh/r, and pair production in the field of a nucleus, kn/r, or an electron, ke/r, are also included.
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In diagnostic radiology, the atomic number dependence of

mass attenuation coefficients is used to differentiate between

tissues. In some situations as mammography or angiography,

the contrast may however be too small. Then, x-ray phase-

contrast imaging techniques could be useful. The use of

phase contrast will increase the attenuation contrast as shown

in Figure 52 where d/b is the attenuation contrast ratio plotted

for breast, water, and bone together with the attenuation coef-

ficients for bone and water. For energies 20–80keV, the phase

contrast is large and will result in images of much higher

contrast than in traditional radiology (Zhou and Brahme

2008).

9.01.3.6.2 Mass energy transfer coefficient
In dosimetry, it is often of interest to determine the energy

transferred to the electrons in the photon interaction processes.

This is obtained by multiplying the interaction cross sections

with the relative energy transferred in each interaction. To

handle this, the mass energy transfer coefficient has been

defined (ICRU, 2011):

mtr
r

¼ 1

r dl

dRtr

R
[115]

where dRtr is the mean energy that is transferred to kinetic

energy of charged particles by interactions of the photons of
incident radiant energy R in traversing a distance dl in the

material with density r. (mtr/r) is obtained by calculating the

transferred energy in the different interaction processes as

described briefly in the following paragraphs.

Photoelectric effect. In photoelectric effect, not only

photoelectrons but also Auger electrons of different energies
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are emitted. It has been found easier to calculate the energy

transferred to the characteristic x-rays and subtract their energy

from the energy of the incoming photon instead of directly

calculate the energy to the electrons. Thus,

ttr
r

¼ t
r

1� pKoKhnK
hn

� 1� pKð ÞpLoLhnL
hn

þ � � �
 �

[116]

where pK,L is the fraction of photoelectric interactions in the

K- and the L-shell, respectively, oK,L is the fluorescence yield,

hnK,L is the energy of the characteristic x-rays, and hn is the

incoming photon energy. In this equation, the contribution

from outer shells is neglected but can be included as well,

even if this contribution normally is small.

Incoherent scattering. In coherent scattering, the electrons

will get a distribution of energies given by the Klein–Nishina

cross section as discussed earlier. Corrections for the binding

effects are included using the incoherent scattering function

S(q, Z). Then, the mass energy transfer for incoherent scattering

can be expressed as (Higgins et al., 1991)

str
r

¼ 1þ DKNð Þ
ðp
0

dsKN=dOð ÞS q;Zð Þ E

hn
dy [117]

Pair production. The fraction of photon energy transferred to

the electron positron pair is given by the photon energy sub-

tracted with the rest mass energy of the produced particles.

Thus,

ktr
r

¼ k
r
hn� 2mec

2

hn
[118]

(mtr/r) is then obtained by adding the different components:

mtr
r

¼ ttr
r
þ sincoh, tr

r
þ ktr

r
[119]

9.01.3.6.3 Mass energy absorption coefficient
Part of the energy transferred to the electrons will be lost as

electromagnetic radiation when the electrons are absorbed in

matter. It is common in dosimetry to assume that this energy is
Figure 53 Mass attenuation coefficient, m(r), mass energy transfer coefficie
of photon energy for carbon and lead.
not included in the absorbed dose at the spot where the inter-

action occurs, as the photons can travel far before they are

absorbed. The ‘locally’ absorbed energy can be determined

using the mass energy absorption coefficient. The mass energy

absorption coefficient can be obtained from the mass energy

transfer coefficient through the relation

men=r ¼ mtr=rð Þ 1� gð Þ [120]

where g is the kinetic energy lost by the electron in radiative

processes (bremsstrahlung, in-flight annihilation, and charac-

teristic x-rays) when the charged particles slow to rest in the

material.

In many situations, in particular at low photon energies

below around 500keV, a so-called charged particle equilibrium

(CPE) is assumed to exist. In this situation, the absorbed dose

to the medium can be obtained from the relation

D ¼
ð
Chn men=rð Þ d hnð Þ [121]

whereChn is the differential energy photon fluence and men/r is

the mass energy absorption coefficient.

In Figure 53, the mass attenuation coefficient, mass energy

transfer coefficient and the mass absorption coefficient are

plotted for carbon and lead as a function of the photon energy.

The different absorption coefficients agree quite well at low

photon energies where the photoelectric effect dominates.

However, in the energy region with a dominating incoherent

scattering, a large fraction of the photon energy will be trans-

ferred to the electron, with a large difference between the

attenuation and energy absorption coefficient, which is obvi-

ous, in particular for carbon. At high photon energies, the pair

production will dominate and a small part of the energy is

transferred to the electrons. At these high energies, there will

also be a difference between the mass energy transfer and mass

energy absorption coefficients, as in particular, bremsstrahlung

will become important. As bremsstrahlung production is pro-

portional to the square of the atomic number, this difference is

more evident for lead than for carbon.

In a situation when there is no CPE, it is not possible to use

eqn [121], as then, the energy contribution from electrons enter-

ing a volume, for example, a detector, will not be compensated
nt, mtr/r, and the mass energy absorption coefficient, men/r, as a function
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Figure 54 Restricted mass energy absorption coefficients for water as calculated for energy restrictions of 1, 10, and, 200 keV. At 200 keV, the
elementary contributions from photoelectric, incoherent scattering, and pair production processes are indicated. (Brahme, 1978).
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by the electron energy leaving the volume and the use of themass

energy absorption coefficient, which includes all energy depos-

ited by the photon produced electrons, is not correct. For a

situation without CPE, Brahme (1978) had proposed the use of

a restricted mass energy absorption coefficient, mD/r. This coeffi-
cient shall include only the fraction of the secondary electron

energy that is absorbed within a small volume around the pri-

mary photon track. The size of the region RD is chosen to corre-

spond to the range of the secondary electrons of some restriction

energy D. The energy restriction, D, is related to the energy

restriction of the mass stopping power to be used in the same

region. The restricted mass energy coefficient can be used in

cavity theories to calculate the fraction of the absorbed dose to
a volume that is due to photon interactions in the cavity. The

ratio of absorbed doses between the dose in the detector,Dd, and

the medium, Dm, can then be expressed as

Dd

Dm
¼ SD

r

� �d

m

þ mD
men

� �
d

men
r

� �d

m

[122]

Equation [122] is partly similar to the general cavity theory for

intermediate cavities as proposed by Burlin (1966). However,

in eqn [122], the weighting factor for the contribution of the

electrons produced in the detector is obtained directly from the

restricted mass energy absorption coefficient, while in the Bur-

lin expression, the contribution is obtained indirectly from the
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absorption of the electron slowing down spectrum. Equa-

tion [122] was applied to an ionization chamber with similar

results as for the Burlin cavity theory, indicating that this

concept could be of value for intermediate cavities. Brahme

(1978) calculated numerical values of mD for D-values between
1 and 100keV and the result is shown in Figure 54 where also

the separate contributions to mD from the different interaction

processes are indicated for D¼200keV.
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