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Abstract

Background: Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In
the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current
with the relevant literature is often difficult.

Methods: This paper is an ongoing update of the sports nutrition review article originally published as the lead paper
to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-
referenced overview of the current state of the science related to optimization of training and performance
enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which
the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and
performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary
supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are
legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.)
General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current
understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of
various dietary and supplemental approaches.

Conclusions: This updated review is to provide ISSN members and individuals interested in sports nutrition
with information that can be implemented in educational, research or practical settings and serve as a foundational
basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.

Keywords: Sports nutrition, Performance nutrition, Position stand, Review, Recommendations, Efficacy, Double-blind,
Randomized, Placebo-controlled, Dietary supplements, Ergogenic aids, Weight gain, Hypertrophy, Strength, Capacity,
Power

Background
Evaluating the scientific merit of articles and advertise-
ments about exercise and nutrition products is a key
skill that all sports nutrition professionals must possess.
To assist members and other advocates of the
International Society of Sports Nutrition (ISSN) in
keeping up to date about the latest findings in sports
nutrition, the ISSN Exercise & Sports Nutrition

Review: Research & Recommendations has been up-
dated. The initial version of this paper was the first
publication used to help launch the Journal of the
International Society of Sports Nutrition (JISSN, ori-
ginally called the Sports Nutrition Review Journal).
This paper provides a definition of ergogenic aids
and dietary supplements and discusses how dietary
supplements are legally regulated. Other sections
highlight how to evaluate the scientific merit of nu-
tritional supplements and provide general nutritional
strategies to optimize performance and enhance re-
covery. Finally, a brief overview of the efficacy sur-
rounding many supplements commonly touted to
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promote skeletal muscle hypertrophy and improve phys-
ical performance is provided. Based upon the available sci-
entific literature testing the efficacy and safety of the
nutritional supplements discussed herein, all nutritional
supplements discussed in this paper have been placed into
three categories based upon the quality and quantity of
scientific support available:

A) Strong Evidence to Support Efficacy and Apparently
Safe

B) Limited or Mixed Evidence to Support Efficacy
C) Little to No Evidence to Support Efficacy and/or

Safety

Since the last published version of this document in
2010 [1], the general approach to categorization has not
changed, but several new supplements have been intro-
duced to the market and are subsequently reviewed in
this article. In this respect, many supplements have had
additional studies published that has led to some supple-
ments being placed into a different category or removed
from the review altogether. We understand and expect
that some individuals may not agree with our interpreta-
tions of the literature or what category we have assigned
a particular supplement, but it is important to appreciate
that some classifications may change over time as more
research becomes available.

Definition of an ergogenic aid
An ergogenic aid is any training technique, mechanical
device, nutritional ingredient or practice, pharmacological
method, or psychological technique that can improve
exercise performance capacity or enhance training adapta-
tions [2–4]. Ergogenic aids may help prepare an individual
to exercise, improve exercise efficiency, enhance recovery
from exercise, or assist in injury prevention during intense
training. Although this definition seems rather straightfor-
ward, there is considerable debate regarding the ergogenic
value of various nutritional supplements. A consensus
exists to suggest that a nutritional supplement is ergogenic
if peer-reviewed studies demonstrate the supplement
significantly enhances exercise performance following
weeks to months of ingestion (e.g., promotes increases in
maximal strength, running speed, and/or work during a
given exercise task). On the other hand, a supplement
may also have ergogenic value if it acutely enhances the
ability of an athlete to perform an exercise task or
enhances recovery from a single exercise bout. The ISSN
has adopted a broader view regarding the ergogenic value
of supplements. While the muscle building and perform-
ance enhancing effects of a supplement on a single bout
of exercise may lead to eventual ergogenic effects or opti-
mized training adaptations, our view is that such evidence
does not warrant “Excellent Evidence to Support Efficacy”

if there is a lack of long-term efficacy data. Herein, we have
adopted the view that a supplement is clearly ergogenic if
most of human studies support the ingredient as being
effective in promoting further increases in muscle hyper-
trophy or performance with exercise training. Conversely,
supplements that fall short of this standard and are only
supported by preclinical data (e.g., cell culture or rodent
studies) are grouped into other categories.

Definition and regulation of dietary supplements
The Dietary Supplement Health and Education Act (DSHEA)
and the safety of dietary supplements
Congress passed the Dietary Supplement Health and Edu-
cation Act of 1994 (DSHEA), placing dietary supplements
in a special category of “foods”. In October 1994, President
Clinton signed DSHEA into law. This statute was enacted
amid claims that the Food and Drug Administration (FDA)
was distorting the then-existing provisions of the Food,
Drug, and Cosmetic Act (FDCA) to improperly deprive the
public of safe and popular dietary supplement products.
The law defines a “dietary supplement” as a product that

is intended to supplement the diet and contains a “dietary
ingredient”. By definition, “dietary ingredients” in these
products may include vitamins, minerals, herbs or other
botanicals, amino acids, and substances such as enzymes,
organ tissues, and glandular extracts. Further, dietary ingre-
dients may also include extracts, metabolites, or concen-
trates of those substances. Dietary supplements may be
found in many forms such as tablets, capsules, softgels, gel-
caps, liquids, or powders, but may only be intended for oral
ingestion. Dietary supplements cannot be marketed or pro-
moted for sublingual, intranasal, transdermal, injected, or
in any other route of administration except oral ingestion.
A supplement can be in other forms, such as a bar, as long
as the information on its label does not represent the prod-
uct as a conventional food or a sole item of a meal or diet.
Indeed, DSHEA clearly defines “dietary supplements”

and “dietary ingredients,” it sets certain criteria for “new
dietary ingredients,” and the law prevents the FDA from
overreaching. Additionally, and contrary to widespread
opinion, DSHEA did not leave the industry unregulated.
The dietary supplement industry is in fact regulated by
the FDA as a result of DSHEA. The law ensures the au-
thority of the FDA to provide legitimate protections for
the public health. The Federal Trade Commission (FTC)
also continues to have jurisdiction over the marketing
claims that dietary supplement manufacturers or compan-
ies make about their products. The FDA and FTC operate
in a cooperative fashion to regulate the dietary supple-
ment industry. In this respect, the extent to which infor-
mation is shared and jurisdiction between these two
entities overlaps with regard to marketing and advertising
dietary supplements continues to increase.
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In the United States, dietary supplements are classified
as food products, not drugs, and there is generally no
mandate to register products with the FDA or obtain FDA
approval before producing or selling supplements to con-
sumers. However, if a dietary supplement manufacturer is
making a claim about their product, the company must
submit the claims to FDA within 30 days of marketing the
product. Compare this, for example, with Canada where
under the Natural Health Product (NHP) Regulations
enacted in 2004 supplements must be reviewed, approved,
and registered with Health Canada. The rationale for the
U.S. model is based on a presumed long history of safe use;
hence there is no need to require additional safety data.
DSHEA also requires supplement marketers to include

on any label displaying structure/function claims (i.e.,
claims that the product affects the structure or function of
the body) the mandatory FDA disclaimer “This statement
has not been evaluated by the Food and Drug Administra-
tion. This product is not intended to diagnose, treat, cure,
or prevent any disease.” Opponents of dietary supplements
often cite this statement as evidence that the FDA does
not review or approve dietary supplements. However, most
dietary ingredients have been “grandfathered in” as
DSHEA-compliant ingredients due to a long history of safe
use, and those products containing new ingredients must
be submitted by a notification to the FDA for a safety re-
view prior to being brought to market. Although many
dietary ingredients have been introduced into dietary sup-
plements since October 1994 and have not been submitted
to the FDA for a safety review, nutritional supplementation
writ large is generally safe. In this regard, while there are
over 50,000 dietary supplements registered with the Office
of Dietary Supplement’s “Dietary Supplement Label Data-
base”, a 2013 Annual Report (released in 2015) of the
American Association of Poison Control Centers revealed
zero fatalities occurred due to dietary supplements
compared to 1692 deaths due to drugs [5]. Perhaps more
alarming is a 2015 report by the Centers for Disease
Control suggesting 2,287,273 emergency room visits were
due to prescription drug-related events which dwarfs the
3266 emergency room visits due to dietary supplements
(adjusted from 23,000 visits after excluding cases of older
adults choking on pills, allergic reactions, unsupervised
children consuming too many vitamins, and persons con-
suming ingredients not defined by DSHEA as a dietary
supplement) [5]. Furthermore, a recent Healthcare Cost
and Utilization Project Statistical Brief by Lucado et al. [6]
reported approximately one in six Americans suffered
from food borne illnesses in 2010, and food borne illnesses
were associated with over 3.7 million treat-and-release
emergency department visits, 1.3 million inpatient hospital
stays, and 3000 deaths. Notwithstanding, there have been
case reports of liver and kidney toxicity potentially caused
by supplements containing herbal extracts [7] as well as

overdoses associated with pure caffeine anhydrous inges-
tion [8]. Collectively, the aforementioned statistics and case
reports demonstrate that while generally safe, as with food
or prescription drug consumption, dietary supplement
consumption can lead to adverse events in spite of DSHEA
and current FDA regulations described below.

New dietary ingredients
Recognizing that new and untested dietary supplement
products may pose unknown health issues, DSHEA distin-
guishes between products containing dietary ingredients
that were already on the market and products containing
new dietary ingredients that were not marketed prior to
the enactment of the law. A “new dietary ingredient”
(NDI) is defined as a dietary ingredient that was not mar-
keted in the United States before October 15, 1994.
DSHEA grants the FDA greater control over supplements
containing NDIs. A product containing an NDI is deemed
adulterated and subject to FDA enforcement sanctions un-
less it meets one of two exemption criteria: either (1) the
supplement in question contains “only dietary ingredients
which have been present in the food supply as an article
used for food in a form in which the food has not been
chemically altered”; or (2) there is a “history of use or other
evidence of safety” provided by the manufacturer or dis-
tributor to the FDA at least 75 days before introducing the
product into interstate commerce. The first criterion is si-
lent as to how and by whom presence in the food supply
as food articles without chemical alteration is to be estab-
lished. The second criterion—applicable only to new diet-
ary ingredients that have not been present in the food
supply—requires manufacturers and distributors of the
product to take certain actions. Those actions include sub-
mitting, at least 75 days before the product is introduced
into interstate commerce, information that is the basis on
which a product containing the new dietary ingredient is
“reasonably expected to be safe.” That information would
include: (1) the name of the new dietary ingredient and, if
it is an herb or botanical, the Latin binomial name; (2) a
description of the dietary supplement that contains the
new dietary ingredient, including (a) the level of the new
dietary ingredient in the product, (b) conditions of use of
the product stated in the labeling, or if no conditions of
use are stated, the ordinary conditions of use, and (c) a
history of use or other evidence of safety establishing that
the dietary ingredient, when used under the conditions
recommended or suggested in the labeling of the dietary
supplement, is reasonably expected to be safe.
In July 2011, the FDA released a Draft Guidance for

Industry, entitled “Dietary Supplements: New Dietary
Ingredient Notifications and Related Issues.” While a
guidance does not carry the authority or the enforceabil-
ity of a law or regulation, the FDA’s NDI draft guidance
represented the agency’s current thinking on the topic.
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The guidance prompted great controversy, and FDA
agreed to issue a revised draft guidance to address some
of the issues raised by industry. In August 2016, FDA re-
leased a revised Draft Guidance that replaced the 2011
Draft Guidance. The purpose of the 2016 Draft Guid-
ance was to help manufacturers and distributors decide
whether to submit a premarket safety notification to
FDA, help prepare NDI notifications in a manner that
allows FDA to review and respond more efficiently and
quickly, and to improve the quality of NDI notifications.
The 2016 Draft Guidance has been criticized by industry
and trade associations for its lack of clarity and other
problems. Some of these issues include the lack of clarity
regarding Pre-DSHEA, (Grandfathered), ingredients and
FDA requiring an NDI notification even if another
manufacturer has submitted a notification.
The lack of clarity surrounding the “new” Draft Guid-

ance has led to many NDI notifications being rejected by
FDA for lack of safety data and other issues. Other com-
panies have opted to utilize the “Self-Affirmed Generally
Recognized as Safe (GRAS)” route in order to “bypass” the
NDI notification process. Self-Affirmed GRAS is when a
company has a team of scientific experts evaluate the safety
of their ingredient. There is no requirement that the safety
dossier be submitted to FDA but is used by the company
as an internal document that may be relied upon if the
ingredient is challenged by the FDA. FDA has expressed
its concern with this practice and does not encourage diet-
ary supplement manufacturers to use Self-Affirmed GRAS
to avoid submitting NDI notifications. In any event, the
likelihood of another revised Draft Guidance from FDA
becoming available in the future is high, and possibly more
enforcement actions taken against companies that market
an NDI without submitting a notification.

Adverse event reporting
In response to growing criticism of the dietary supplement
industry, the 109th Congress passed the first mandatory
Adverse Event Reporting (AER) legislation for the dietary
supplement industry. In December 2006, President Bush
signed into law the Dietary Supplement and Nonprescrip-
tion Drug Consumer Protection Act, which took effect on
December 22, 2007. After much debate in Congress and
input from the FDA, the American Medical Association
(AMA), many of the major supplement trade associations,
and a host of others all agreed that the legislation was ne-
cessary and the final version was approved by all. In short,
the Act requires that all “serious adverse events” regarding
dietary supplements be reported to the Secretary of Health
and Human Services. The law strengthens the regulatory
structure for dietary supplements and builds greater con-
sumer confidence, as consumers have a right to expect
that if they report a serious adverse event to a dietary
supplement marketer the FDA will be advised about it.

An adverse event is any health-related event associated
with the use of a dietary supplement that is adverse. A
serious adverse event is an adverse event that (A) results in
(i) death, (ii) a life-threatening experience, (iii) inpatient
hospitalization, (iv) a persistent or significant disability or
incapacity, or (v) a congenital anomaly or birth defect; or
(B) requires, based on reasonable medical judgment, a
medical or surgical intervention to prevent an outcome
described under subparagraph (A). Once it is determined
that a serious adverse event has occurred, the manufac-
turer, packer, or distributor (responsible person) of a dietary
supplement whose name appears on the label of the
supplement shall submit to the Secretary of Health and
Human Services any report received of the serious adverse
event accompanied by a copy of the label on or within the
retail packaging of the dietary supplement. The responsible
person has 15 business days to submit the report to FDA
after being notified of the serious adverse event. Following
the initial report, the responsible person must submit
follow-up reports of new medical information that they
receive for one-year.

Adulterated supplements
The FDA has various options to protect consumers from
unsafe supplements. The Secretary of the Department of
Health and Human Services (which falls under FDA over-
sight) has the power to declare a dangerous supplement to
be an “imminent hazard” to public health or safety and
immediately suspend sales of the product. The FDA also
has the authority to protect consumers from dietary
supplements that do not present an imminent hazard to
the public but do present certain risks of illness or injury
to consumers. The law prohibits introducing adulterated
products into interstate commerce. A supplement shall be
deemed adulterated if it presents “a significant or unrea-
sonable risk of illness or injury”. The standard does not
require proof that consumers have actually been harmed
or even that a product will harm anyone. It was under this
provision that the FDA concluded that dietary supplements
containing ephedra, androstenedione, and DMAA pre-
sented an unreasonable risk. Most recently, FDA imposed
an importation ban on the botanical Mitragyna speciose,
better known as Kratom. In 2016, FDA issued Import Alert
#54–15, which allows for detention without physical exam-
ination of dietary supplements and bulk dietary ingredients
that are, or contain, Kratom. Criminal penalties are present
for a conviction of introducing adulterated supplement
products into interstate commerce. While the harms asso-
ciated with dietary supplements may pale in comparison to
those linked to prescription drugs, recent pronouncements
from the U.S. Department of Justice confirm that the
supplement industry is being watched vigilantly to protect
the health and safety of the American public.
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Good manufacturing practices
When DSHEA was passed in 1994, it contained a
provision requiring that the FDA establish and enforce
current Good Manufacturing Practices (cGMPs) for diet-
ary supplements. However, it was not until 2007 that the
cGMPs were finally approved, and not until 2010 that the
cGMPs applied across the industry, to large and small
companies alike. The adherence to cGMPs has helped
protect against contamination issues and should serve to
improve consumer confidence in dietary supplements.
The market improved as companies became compliant
with cGMPs, as these regulations imposed more stringent
requirements such as Vendor Certification, Document
Control Procedures, and Identity Testing. These compli-
ance criteria addressed the problems that had damaged
the reputation of the industry with a focus on quality con-
trol, record keeping, and documentation.
However, it does appear that some within the industry

continue to struggle with compliance. In Fiscal Year 2017,
it was reported that approximately 23.48% of the FDA’s
656 total cGMP inspections resulted in citations for failing
to establish specifications for the identity, purity, strength,
and composition of dietary supplements. Further, 18.47%
of those inspected were cited for failing to establish and/
or follow written procedures for quality control opera-
tions. Undoubtedly, relying on certificates of analysis from
the raw materials supplier without further testing, or fail-
ing to conduct identity testing of a finished product, can
result in the creation of a product that contains something
it should not contain such as synthetic chemicals or even
pharmaceutical drugs. All members of the industry need
to ensure compliance with cGMPs.

Marketing claims
According to the 1990 Nutrition Labeling and Education
Act (NLEA), the FDA can review and approve health
claims (claims describing the relationship between a food
substance and a reduced risk of a disease or health-related
condition) for dietary ingredients and foods. However,
since the law was passed it has only approved a few claims.
The delay in reviewing health claims of dietary supplement
ingredients resulted in a lawsuit, Pearson v. Shalala, filed
in 1995. After years of litigation, in 1999 the U.S. Court of
Appeals for the District of Columbia Circuit ruled that
qualified health claims may be made about dietary supple-
ments with approval by FDA, as long as the statements are
truthful and based on adequate science. Supplement or
food companies wishing to make health claims or qualified
health claims about supplements can submit research
evidence to the FDA for review.
The FTC also regulates the supplement industry. Un-

substantiated claims invite enforcement by the FTC (along
with the FDA, state district attorney offices, groups like
the Better Business Bureau, and plaintiff ’s lawyers who file

class action lawsuits). The FTC has typically applied a sub-
stantiation standard of “competent and reliable scientific
evidence” to claims about the benefits and safety of dietary
supplements. FTC case law defines “competent and reliable
scientific evidence” as “tests, analyses, research, studies, or
other evidence based on the expertise of professionals in
the relevant area, that has been conducted and evaluated
in an objective manner by persons qualified to do so, using
procedures generally accepted in the profession to yield
accurate and reliable results.” The FTC has claimed that
this involves providing at least two clinical trials showing
efficacy of the actual product, within a population of
subjects relevant to the target market, supporting the
structure/function claims that are made. While the exact
requirements are still evolving, the FTC has acted against
several supplement companies for misleading advertise-
ments and/or structure/function claims.

A safer industry ahead
As demonstrated, while some argue that the dietary
supplement industry is “unregulated” and/or may have
suggestions for additional regulation, manufacturers and
distributors of dietary supplements must adhere to several
federal regulations before a product can go to market. Fur-
ther, before marketing products, they must have evidence
that their supplements are generally safe to meet all the
requirements of DSHEA and FDA regulations. For this
reason, over the last 20 years, many established supple-
ment companies have employed research and develop-
ment directors who help educate the public about
nutrition and exercise, provide input on product develop-
ment, conduct preliminary research on products, and/or
assist in coordinating research trials conducted by inde-
pendent research teams (e.g., university-based researchers
or clinical research sites). These companies also consult
with marketing and legal teams with the responsibility to
ensure structure/function claims do not misrepresent re-
sults of research findings. This has increased job oppor-
tunities for sports nutrition specialists as well as enhanced
external funding opportunities for research groups inter-
ested in exercise and nutrition research.
While some companies have falsely attributed research

on different dietary ingredients or dietary supplements to
their own products, suppressed negative research findings,
and/or exaggerated results from research studies, the
trend in the sports nutrition industry has been to develop
scientifically sound supplements. This trend toward
greater research support is the result of: (1) attempts to
honestly and accurately inform the public about results;
(2) efforts to obtain data to support safety and efficacy on
products for the FDA and the FTC; and/or, (3) endeavors
to provide scientific evidence to support advertising claims
and increase sales. While the push for more research is
due in part to greater scrutiny from the FDA and FTC, it
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is also in response to an increasingly competitive market-
place where established safety and efficacy attracts more
consumer loyalty and helps ensure a longer lifespan for
the product in commerce. Companies that adhere to these
ethical standards tend to prosper while those that do not
will typically struggle to comply with FDA and FTC guide-
lines resulting in a loss of consumer confidence and an
early demise for the product.

Product development and quality assurance
A common question posed by athletes, parents, and profes-
sionals surrounding dietary supplements relates to how
they are manufactured and perceived supplement quality.
In several cases, established companies who develop dietary
supplements have research teams who scour the medical
and scientific literature looking for potentially effective
nutrients. These research teams often attend scientific
meetings and review the latest patents, research abstracts
presented at scientific meetings, and research publications.
Leading companies invest in basic research on nutrients
before developing their supplement formulations and often
consult with leading researchers to discuss ideas about diet-
ary supplements and their potential for commercialization.
Other companies wait until research has been presented in
patents, research abstracts, or publications before develop-
ing nutritional formulations featuring the nutrient. Upon
identification of new nutrients or potential formulations,
the next step is to contact raw ingredient suppliers to see if
the nutrient is available, if it is affordable, how much of it
can be sourced and what is the available purity. Sometimes,
companies develop and pursue patents involving new pro-
cessing and purification processes because the nutrient has
not yet been extracted in a pure form or is not available in
large quantities. Reputable raw material manufacturers
conduct extensive tests to examine purity of their raw in-
gredients. When working on a new ingredient, companies
often conduct series of toxicity studies on the new nutrient
once a purified source has been identified. The company
would then compile a safety dossier and communicate it to
the FDA as a New Dietary Ingredient submission, with the
hopes of it being allowed for lawful sale.
When a powdered formulation is designed, the list of in-

gredients and raw materials are typically sent to a flavoring
house and packaging company to identify the best way to
flavor and package the supplement. In the nutrition indus-
try, several main flavoring houses and packaging companies
exist who make many dietary supplements for supplement
companies. Most reputable dietary supplement manufac-
turers submit their production facilities to inspection from
the FDA and adhere to GMP, which represent industry
standards for good manufacturing of dietary supplements.
Some companies also submit their products for independ-
ent testing by third-party companies to certify that their
products meet label claims and that the product is free of

various banned ingredients. For example, the certification
service offered by NSF International includes product test-
ing, GMP inspections, ongoing monitoring and use of the
NSF Mark indicating products comply with inspection
standards, and screening for contaminants. More recently,
companies have subjected their products for testing by
third party companies to inspect for banned or unwanted
substances. These types of tests help ensure that the dietary
supplement made available to athletes do not contained
substances banned by the International Olympic Commit-
tee or other athletic governing bodies (e.g., NFL, NCAA,
MLB, NHL, etc.). While third-party testing does not guar-
antee that a supplement is void of banned substances, the
likelihood is reduced (e.g., Banned Substances Control
Group, Informed Choice, NSF, etc.). Moreover, consumers
can request copies of results of these tests and each prod-
uct that has gone through testing and earned certification
can be researched online to help athletes, coaches and sup-
port staff understand which products should be consid-
ered. In many situations, companies who are not willing to
provide copies of test results or certificates of analysis
should be viewed with caution, particularly for individuals
whose eligibility to participate might be compromised if a
tainted product is consumed.

Evaluation of nutrition ergogenic aids
The ISSN recommends that potential consumers under-
take a systematic process of evaluating the validity and sci-
entific merit of claims made when assessing the ergogenic
value of a dietary supplement [1, 4]. This can be accom-
plished by examining the theoretical rationale behind the
supplement and determining whether there is any well-
controlled data showing the supplement is effective. Sup-
plements based on sound scientific rationale with direct,
supportive research showing effectiveness may be worth
trying or recommending. However, those based on un-
sound scientific results or offer little to no data supporting
the ergogenic value of the actual supplement/technique
may not be worthwhile. Sports nutrition specialists should
be a resource to help their clients interpret the scientific
and medical research that may impact their welfare and
help them train more effectively. The following are recom-
mended questions to ask when evaluating the potential
ergogenic value of a supplement.

Does the theory make sense?
Most supplements that have been marketed to improve
health or exercise performance are based on theoretical
applications derived from basic science or clinical research
studies. Based on these preliminary studies, a dietary
approach or supplement is often marketed to people
proclaiming the benefits observed in these basic research
studies. Although the theory may appear relevant, critical
analysis of this process often reveals flaws in the scientific
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logic or that the claims made do not quite match up with
the cited literature. By evaluating the literature one can
discern whether or not a dietary approach or supplement
has been based on sound scientific evidence. To do so, one
is recommended to first read reviews about the training
method, nutrient, or supplement from researchers who
have been intimately involved in the available research and
consult reliable references about nutritional and herbal
supplements [1, 9]. To aid in this endeavour, the ISSN has
published position statement on topics related to creatine
[10], protein [11], beta-alanine [12], nutrient timing [13],
caffeine [14], HMB [15], meal frequency [16], energy drinks
[17], and diets and body composition [18]. Each of these
documents would be excellent resources for any of these
topics. In addition, other review articles and consensus
statements have been published by other researchers and
research groups that evaluate dietary supplements, offer
recommendations on interpreting the literature, and
discuss the available findings for several ingredients that
are discussed in this document [19–21]. We also advise
consumers to conduct a search on the nutrient, key ingre-
dients or the supplement itself on the National Library of
Medicine’s Pub Med Online (https://www.ncbi.nlm.nih.-
gov/pubmed/). A quick look at these references will often
help determine if the theoretical impetus for supplement-
ing with an ingredient is plausible or not. Proponents of
ergogenic aids often overstate claims made about training
devices and dietary supplements while opponents of ergo-
genic aids and dietary supplements are often either un-
aware or are ignorant of research supporting their use.
Sports nutrition specialists have the responsibility to know
the literature and search available databases to evaluate
the level of merit surrounding a proposed ergogenic aid.

Is the supplement legal and safe?
An initial question that should be asked is whether the
supplement is legal and/or safe. Some athletic associations
have banned the use of various nutritional supplements
(e.g., prohormones, ephedra that contains ephedrine,
“muscle building” supplements, etc.) and many professional
sports organization have now written language into their
collective bargaining agreements that products made avail-
able by the team must be NSF certified as safe for sport.
Obviously, if the supplement is banned, the sports nutrition
specialist should discourage its use. In addition, many sup-
plements lack appropriate long-term safety data. People
who consider taking nutritional supplements should be
well aware of the potential side effects so they can make an
informed decision whether to use a supplement. Addition-
ally, they should consult with a knowledgeable physician to
see if any underlying medical problems exist that may
contraindicate its use. When evaluating the safety of a sup-
plement, it is suggested to determine if any side effects
have been reported in the scientific or medical literature. In

particular, we suggest determining how long a particular
supplement has been studied, the dosages evaluated, and
whether any side effects were observed. We also recom-
mend consulting the Physician’s Desk Reference (PDR) for
nutritional supplements and herbal supplements to see if
any side effects have been reported and/or if there are any
known drug interactions. If no side effects have been re-
ported in the scientific/medical literature, we generally will
view the supplement as safe for the length of time and dos-
ages evaluated. Unfortunately, many available supplements
have not had basic safety studies completed that replicate
the length of time and dosages being used.

Is there any scientific evidence supporting the ergogenic value?
The next question to ask is whether any well-controlled
data are available showing effectiveness of the proposed
ergogenic aid in athletic populations or people regularly
involved in exercise training. The first place to look is the
list of references cited in marketing material supporting
their claims. Are the abstracts or articles cited just general
references or specific studies that have evaluated the
efficacy of the nutrients included in the formulation or of
the actual supplement? From there, one can critically
evaluate the cited abstracts and articles by asking a series
of questions:

� Are the studies basic research done in animals/clinical
populations or have the studies been conducted on
athletes/trained subjects? For perspective, studies
reporting improved performance in rats or an
individual diagnosed with type 2 diabetes may be
insightful, but research conducted on non-diabetic
athletes is much more practical and relevant.

� Were the studies well controlled? For ergogenic aid
research, the gold standard study design is a
randomized, double-blind, placebo controlled
clinical trial. This means that neither the researcher
nor the subject is aware which group received the
supplement or the placebo during the study and that
the subjects were randomly assigned into the
placebo or supplement group. An additional element
of rigor is called a cross-over design, where each
subject, at different times (separated by an interval
known as a “washout period”), is exposed to each of
the treatments. While utilization of a cross-over
design is not always feasible, it reduces the element
of variability within a participant and subsequently,
increases the strength of study’s findings. At times,
supplement claims have been based on poorly
designed studies (i.e., small groups of subjects, no
control group, use of unreliable tests, etc.) or
testimonials which make interpretation more
difficult. Well-controlled clinical trials provide
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stronger evidence as to the potential ergogenic value
and importantly how the findings can best be used.

� Do the studies report statistically significant results
or are claims being made on non-significant means
or trends? Appropriate statistical analysis of research
results allows for an unbiased interpretation of data.
Although studies reporting statistical trends may be
of interest and lead researchers to conduct additional
research, studies reporting statistically significant
results are obviously more convincing. With this said,
it is important for people to understand that
oftentimes the potential effect a dietary supplement or
diet regimen may have above and beyond the effect
seen from the exercise bout or an accepted dietary
approach is quite small. In addition, many studies
examining a biochemical or molecular biology
mechanism can require invasive sampling techniques
or the study population being recruited is unique
(very highly trained) resulting in a small number of
study participants. When viewed together, the
combination of these two considerations can result in
statistical outcomes that do not reach statistical
significance even though large mean changes were
observed. In these situations, the reporting of
confidence intervals on the mean change, individual
responses from all participants to the investigated
treatment and/or effect sizes are additional pieces of
information that can allow for a more accurate
interpretation. In all such cases, additional research is
warranted to further examine the potential ergogenic
aid before conclusions can be made.

� Do the results of the cited studies match the claims
made about the supplement or do they accurately
portray the response of the supplement against an
appropriate placebo or control group? It is not
unusual for marketing claims to greatly exaggerate
the results found in the actual studies and do so by
focusing upon just the outcomes within the
supplement (treatment) group as opposed to how
the supplement group changed in comparison to
how a placebo group changed. Similarly, it is not
uncommon for ostensibly compelling results, that
may indeed be statistically significant, to be
amplified while other relevant findings of significant
consumer interest are obscured or omitted (e.g. a
dietary supplement showing statistically significant
increases in circulating testosterone yet changes in
body composition or muscular performance were
not superior to a placebo). The only way to
determine this is to read the entire article versus
focusing an entire study’s interpretation on the
provided abstract or even the article citation, and
compare results observed in the studies to the
available marketing claims. Reputable companies

accurately and completely report results of studies
so that consumers can make informed decisions
about using a product.

� Were results of the study presented at a reputable
scientific meeting and/or published in a peer-reviewed
scientific journal? At times, claims are based on
research that has either never been published or only
published in an obscure journal. The best research is
typically presented at respected scientific meetings
and/or published in reputable peer-reviewed journals.
Three ways to determine a journal’s reputation is
either: 1) identify the publisher, 2) the “impact factor”
of the journal or 3) whether or not the journal is
indexed and subsequently available for review on Pub
Med (https://www.ncbi.nlm.nih.gov/pubmed/). Many
“peer-reviewed” journals are published by companies
with ties to, or are actually owned by, companies that
do business with various nutritional products (even
though they may be available on PubMed). Therefore,
we recommend looking up the publisher’s website
and see how many other journals they publish. If you
see only a few other journals this is a suggestion that
the journal is not a reputable journal. Additionally,
one can also look up how many articles have been
published by the journal in the last 6–12 months and
how many of these articles are well-conducted studies.
Alternatively, one can also inquire about the impact
factor, a qualitative ranking determined by the
number of times a journal’s articles are cited. Impact
factors are determined and published by Thomson
Reuters under Journal Citation Reports® (a
subscription service available at most university
libraries). Most journals list their impact factor on the
journal home page. Historically, those articles that are
read and cited the most are the most impactful
scientifically.

� Have the research findings been replicated? If so,
have the results only been replicated at the same
laboratory? The best way to know an ergogenic aid
works is to see that results have been replicated in
several studies preferably by several separate, distinct
research groups. The most reliable ergogenic aids
are those in which multiple studies, conducted at
different labs, have reported similar results of safety
and efficacy. Additionally, replication of results by
different, unaffiliated labs with completely different
authors also removes or reduces the potentially
confounding element of publication bias (publication
of studies showing only positive results) and
conflicts of interest. A notable number of studies on
ergogenic aids are conducted in collaboration with
one or more research scientists or co-authors that
have a real or perceived economic interest in the
outcome of the study. This could range from being a
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co-inventor on a patent application that is the
subject of the ergogenic aid, being paid or receiving
royalties from the creation of a dietary supplement
formulation, providing consulting services for the
company or having stock options or shares in a
company that owns or markets the ergogenic aid
described in the study. An increasing number of
journals require disclosures by all authors of
scientific articles, and including such disclosures
in published articles. This is driven by the aim of
providing greater transparency and research
integrity. It is important to emphasize that disclosure
of a conflict of interest does not alone discredit or
dilute the merits of a research study. The primary
thrust behind public disclosures of potential conflicts
of interest is first and foremost transparency to the
reader and second to prevent a later revelation of
some form of confounding interest that has the
potential of discrediting the study in question, the
findings of the study, the authors, and even the
research center or institution where the study was
conducted.

Classifying and categorizing supplements
Dietary supplements may contain carbohydrate, protein,
fat, minerals, vitamins, herbs, enzymes, metabolic interme-
diates (i.e., select amino acids), or various plant/food
extracts. Supplements can generally be classified as
convenience supplements (e.g., energy bars, gels, blocks,
meal replacement powders, or ready to drink supplements)
designed to provide a convenient means of meeting neces-
sary energy or macronutrient needs while also providing
support towards attempts at managing caloric intake,
weight gain, weight loss, and/or performance enhancement.
As discussed previously, evaluating the available scientific
literature is an important step in determining the efficacy of
any diet, diet program or dietary supplement. In consider-
ing this, nutritional supplements can be categorized in the
following manner:

I. Strong Evidence to Support Efficacy and
Apparently Safe: Supplements that have a sound
theoretical rationale with the majority of available
research in relevant populations using appropriate
dosing regimens demonstrating both its efficacy and
safety.

II. Limited or Mixed Evidence to Support Efficacy:
Supplements within this category are characterized
as having a sound scientific rationale for its use, but
the available research has failed to produce consistent
outcomes supporting its efficacy. Routinely, these
supplements require more research to be completed
before researchers can begin to understand their
impact. Importantly, these supplements have no

available evidence to suggest they lack safety or
should be viewed as harmful.

III. Little to No Evidence to Support Efficacy and/or
Safety: Supplements within this category generally
lack a sound scientific rationale and the available
research consistently shows it to lack efficacy.
Alternatively, supplements that may be harmful to
one’s health or to lack safety are also placed in this
category.

Several factors are evaluated when beginning to counsel
individuals who regularly complete exercise training. First,
a clear understanding of the athlete’s goals and the time
with which they have to meet those goals is important. In
addition to monitoring load and recovery, an evaluation of
the individual’s diet and training program should also be
completed. To accomplish this, one should make sure the
athlete is eating an energy balanced, nutrient dense diet
that meets their estimated daily energy needs and that
they are training intelligently. Far too many athletes or
coaches focus too heavily upon supplementation or appli-
cations of supplementation and neglect these key funda-
mental aspects. Following this, we suggest that they
generally only recommend supplements in category I (i.e.,
‘Strong Evidence to Support Efficacy and Apparently
Safe’). If an athlete is interested in trying supplements in
category II (i.e., ‘Limited or Mixed Evidence to Support
Efficacy’), the athlete should make sure they understand
these supplements are more experimental and they may
or may not see the type of results claimed. Obviously, the
ISSN does not support athletes taking supplements in
category III (i.e., ‘Little to No Evidence to Support Efficacy
and/or Safety’). We believe this approach is scientifically
substantiated and offers a balanced view as opposed to
simply dismissing the use of all dietary supplements.

General dietary guidelines for active individuals
A well-designed diet that meets energy intake needs and
incorporates proper timing of nutrients is the foundation
upon which a good training program can be developed
[22, 23]. Research has clearly shown that lacking suffi-
cient calories and/or enough of the right type of macro-
nutrients may impede an athlete’s training adaptations,
while athletes who consume a balanced diet that meets
energy needs can augment physiological training adapta-
tions. Moreover, maintaining an energy deficient diet
during training may lead to loss of muscle mass,
strength, and bone mineral density in addition to an in-
creased susceptibility to illness and injuries, disturbances
in immune, endocrine and reproductive function, and an
increased prevalence of overreaching and/or overtrain-
ing. Incorporating good dietary practices as part of a
training program is one way to help optimize training
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adaptations and prevent overtraining. The following is
an overview of energy intake recommendations and
major nutrient needs for active individuals.

Energy needs
The primary component to optimize training and perform-
ance through nutrition is to ensure the athlete is consum-
ing enough calories to offset energy expenditure [22–26].
People who participate in a general fitness program (e.g.,
exercising 30–40 min per day, 3 times per week) can typic-
ally meet nutritional needs following a normal diet (e.g.,
1800–2400 kcals/day or about 25–35 kcals/kg/day for a
50–80 kg individual) because their caloric demands from
exercise are not too great (e.g., 200–400 kcals/session).
However, athletes involved in moderate levels of intense
training (e.g., 2–3 h per day of intense exercise performed
5–6 times per week) or high volume intense training (e.g.,
3–6 h per day of intense training in 1–2 workouts for 5–
6 days per week) may expend 600–1200 kcals or more per
hour during exercise [24]. For this reason, their caloric
needs may approach 40–70 kcals/kg/day (2000–7000
kcals/day for a 50–100 kg athlete). For elite athletes, energy
expenditure during heavy training or competition will
further exceed these levels [27, 28]. For example, energy
expenditure for cyclists to compete in the Tour de France
has been estimated as high as 12,000 kcals/day (150–200
kcals/kg/day for a 60–80 kg athlete) [29, 30]. Additionally,
caloric needs for large athletes (i.e., 100–150 kg) may range
between 6000 and 12,000 kcals/day depending on the
volume and intensity of different training phases [31].
Although some argue that athletes can meet caloric

needs simply by consuming a well-balanced diet, it is often
very difficult for larger athletes and athletes engaged in
high volume/intense training to be able to eat enough food,
on a daily basis, to meet caloric needs [2, 29, 30, 32–34].
This point was clearly highlighted in a review by Burke
who demonstrated that carbohydrate needs are largely un-
met by high-level athletes [22]. Additionally it is difficult to
consume enough food and maintain gastrointestinal com-
fort to train or race at peak levels [35]. Maintaining an
energy deficient diet during training often leads to a num-
ber of physical (i.e., loss of fat-free mass, illness, reduced
sleep quality, incomplete recovery, hormonal fluctuations,
increased resting heart rate, etc.) and psychological (i.e.,
apathy towards training, heightened stress) adverse out-
comes [23, 27]. Nutritional analyses of athletes’ diets have
revealed that many are susceptible to maintaining negative
energy intakes during training. It is still a question whether
there may be specific individualized occasions when nega-
tive energy balance may enhance performance in the days
prior to running performance [36]. Populations susceptible
to negative energy balance include runners, cyclists, swim-
mers, triathletes, gymnasts, skaters, dancers, wrestlers,
boxers, and athletes attempting to lose weight too quickly

[37]. Additionally, female athletes are at particular risk of
under fueling due to both competitive and aesthetic
demands of their sport and their surrounding culture. Fe-
male athletes have been reported to have a high incidence
of eating disorders [38]. Low or reduced energy availability
(LEA) is linked to functional hypothalamic oligomenor-
rhea/amenorrhea (FHA), which is frequently reported in
weight sensitive sports. This makes LEA a major nutri-
tional concern for female athletes [39]. Consequently, it is
important for the sports nutrition specialist working with
athletes to assess athletes individually to ensure that ath-
letes are well fed according to the goals of their sport and
their health, and consume enough calories to offset the in-
creased energy demands of training, and maintain body
weight. Although this sounds relatively simple, intense
training often suppresses appetite and/or alters hunger
patterns so that many athletes do not feel like eating
[37, 38]. Some athletes prefer not to exercise within sev-
eral hours after eating because of sensations of fullness
and/or a predisposition to cause gastrointestinal distress.
Further, travel and training schedules may limit food avail-
ability or the types of food athletes are accustomed to eat-
ing. This means that care should be taken to plan meal
times in concert with training, as well as to make sure ath-
letes have sufficient availability of nutrient dense foods
throughout the day for snacking between meals (e.g.,
fluids, carbohydrate/protein-rich foods and supplemental
bars, etc.) [2, 33, 40]. For this reason, sports nutritionists’
often recommend that athletes consume four to six meals
per day and snacks in between meals to meet energy
needs. Due to these practical concerns, the use of nutrient
dense energy foods, energy bars and high calorie carbohy-
drate/protein supplements provides a convenient way for
athletes to supplement their diet in order to maintain en-
ergy intake during training.

Carbohydrate
Beyond optimal energy intake, consuming adequate
amounts of carbohydrate, protein, and fat is important for
athletes to optimize their training and performance. In par-
ticular and as it relates to exercise performance, the need
for optimal carbohydrates before, during and after intense
and high-volume bouts of training and competition is evi-
dent [41]. Excellent reviews [42, 43] and original investiga-
tions [44–49] continue to highlight the known dependence
on carbohydrates that exists for athletes competing to win
various endurance and team sport activities. A complete
discussion of the needs of carbohydrates and strategies to
deliver optimal carbohydrate and replenish lost muscle and
liver glycogen extend beyond the scope of this paper, but
the reader is referred to several informative reviews on the
topic [23, 41, 50–53].
As such, individuals engaged in a general fitness program

and are not necessarily training to meet any type of

Kerksick et al. Journal of the International Society of Sports Nutrition  (2018) 15:38 Page 10 of 57



performance goal can typically meet daily carbohydrate
needs by consuming a normal diet (i.e., 45–55% CHO [3–
5 g/kg/day], 15–20% PRO [0.8–1.2 g/kg/day], and 25–35%
fat [0.5–1.5 g/kg/day]). However, athletes involved in mod-
erate and high-volume training need greater amounts of
carbohydrate and protein (discussed later) in their diet to
meet macronutrient needs [50]. In terms of carbohydrate
needs, athletes involved in moderate amounts of intense
training (e.g., 2–3 h per day of intense exercise performed
5–6 times per week) typically need to consume a diet con-
sisting of 5–8 g/kg/day or 250–1200 g/day for 50–150 kg
athletes of carbohydrate to maintain liver and muscle
glycogen stores [23, 24, 50]. Research has also shown that
athletes involved in high volume intense training (e.g.,
3–6 h per day of intense training in 1–2 daily workouts for
5–6 days per week) may need to consume 8–10 g/day of
carbohydrate (i.e., 400–1500 g/day for 50–150 kg athletes)
in order to maintain muscle glycogen levels [50]. Prefera-
bly, the majority of dietary carbohydrate should come from
whole grains, vegetables, fruits, etc. while foods that empty
quickly from the stomach such as refined sugars, starches
and engineered sports nutrition products should be
reserved for situations in which glycogen resynthesis needs
to occur at accelerated rates [53]. In these situations, the
absolute delivery of carbohydrate (> 8 g of carbohydrate/
kg/day or at least 1.2 g of carbohydrate/kg/hour for the
first four hours into recovery) takes precedence over other
strategies such as those that may relate to timing or con-
comitant ingestion of other macronutrients (e.g., protein)
or non-nutrients (e.g., caffeine) or carbohydrate type (i.e.,
glycemic index) [50].
When considering the carbohydrate needs throughout

an exercise session, several key factors should be consid-
ered. Previous research has indicated athletes undergoing
prolonged bouts (2–3 h) of exercise training can oxidize
carbohydrates at a rate of 1–1.1 g per minute or about 60 g
per hour [41]. Several reviews advocate the ingestion of
0.7 g of carbohydrate/kg/hr. during exercise in a 6–8% so-
lution (i.e., 6–8 g per 100 ml of fluid) [41, 42, 50, 54]. It is
now well established that different types of carbohydrates
can be oxidized at different rates in skeletal muscle due to
the involvement of different transporter proteins that result
in carbohydrate uptake [55–59]. Interestingly, combina-
tions of glucose and sucrose or maltodextrin and fructose
have been reported to promote greater exogenous rates of
carbohydrate oxidation when compared to situations when
single sources of carbohydrate are ingested [55–63]. These
studies generally indicate a ratio of 1–1.2 for maltodextrin
to 0.8–1.0 fructose seems to support the greatest rates of
carbohydrate oxidation during exercise. Additional re-
search on high molecular weight amylopectin indicates that
there may be a benefit to the lower osmolality of the starch,
allowing for greater consumption (100 g/hour) and pos-
sibly greater oxidation rates and performance improvement

[64–67]. In addition to oxidation rates and carbohydrate
types, the fasting status and duration of the exercise bout
also function as key variables for athletes and coaches to
consider. When considering duration, associated reviews
have documented that bouts of moderate to intense exer-
cise need to reach exercise durations that extend well into
90th minute of exercise before carbohydrate is shown to
consistently yield an ergogenic outcome [41, 68, 69]. Of
interest, however, not all studies indicate that shorter (60–
75 min) bouts of higher intensity work may benefit from
carbohydrate delivery. Currently the mechanisms sur-
rounding these findings are, respectively, thought to be re-
placement of depleted carbohydrate stores during longer
duration of moderate intensity while benefits seen during
shorter, more intense exercise bouts are thought to operate
in a central fashion. Moreover, these reviews have also
pointed to the impact of fasting status on documentation
of ergogenic outcomes [41, 68, 69]. In this respect, when
studies require study participants to commence exercise in
a fasted state, ergogenic outcomes are more consistently
reported, yet other authors have questioned the ecological
validity of this approach for competing athletes [43].
As it stands, the need for optimal carbohydrates in the

diet for those athletes seeking maximal physical perform-
ance is unquestioned. Daily consumption of appropriate
amounts of carbohydrate is the first and most important
step for any competing athlete. As durations extend into
2 h, the need to deliver carbohydrate goes up, particularly
when commencing exercise in a state of fasting or incom-
plete recovery. Once exercise ceases, several dietary strat-
egies can be considered to maximally replace lost muscle
and liver glycogen, particularly if a limited window of re-
covery exists. In these situations, the first priority should
lie with achieving aggressive intakes of carbohydrate while
strategies such as ingesting protein with lower carbohy-
drate amounts, carbohydrate and caffeine co-ingestion or
certain forms of carbohydrate may also help to facilitate
rapid assimilation of lost glycogen.

Protein
Considerable debate exists surrounding the amount of
protein needed in an athlete’s diet [70–74]. Initially, it was
recommended that athletes do not need to ingest more
than the RDA for protein (i.e., 0.8 to 1.0 g/kg/d for
children, adolescents and adults). However, research
spanning the past 30 years has indicated that athletes
engaged in intense training may benefit from ingesting
about two times the RDA of protein in their diet (1.4–
1.8 g/kg/d) to maintain protein balance [11, 70, 71, 73,
75–80]. If an insufficient amount of protein is consumed,
an athlete will develop and maintain a negative nitrogen
balance, indicating protein catabolism and slow recovery.
Over time, this may lead to muscle wasting, injuries,
illness, and training intolerance [76, 77, 81].
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For people involved in a general fitness program or sim-
ply interested in optimizing their health, recent research
suggests protein needs may also be above the RDA. Phillips
and colleagues [76], Witard et al. [82], Jager et al. [11] and
Tipton et al. [79] report that current evidence indicates op-
timal protein intakes in the range of 1.2–2.0 g/kg/day
should be considered. In this respect, Morton and investi-
gators [83] performed a meta-review and meta-regression
involving 49 studies and 1863 participants and concluded
that a daily protein intake of 1.62 g/kg/day may be an ideal
place to start, with intakes beyond that providing no further
contribution to increases in fat-free mass. In addition and
in comparison to the RDA, non-exercising, older individ-
uals (53–71 years) may also benefit from a higher daily pro-
tein intake (e.g., 1.0–1.2 g/kg/day of protein). Recent
reports suggest that older muscle may be slower to respond
and less sensitive to protein ingestion, typically requiring
40 g doses to robustly stimulate muscle protein synthesis
[84–86]. Studies in younger individuals, however, have indi-
cated that in the absence of exercise, a 20 g dose can
maximize muscle protein synthesis [87, 88] and if con-
sumed after a multiple set workout consisting of several ex-
ercises that target large muscle groups a 40 g dose might be
needed [89]. Consequently, it is recommended that athletes
involved in moderate amounts of intense training consume
1.2–2.0 g/kg/day of protein (60–300 g/day for a 50–150 kg
athlete) while athletes involved in high volume, intense
training consume 1.7–2.2 g/kg/day of protein (85–330 g/
day for a 50–150 kg athlete) [78, 90]. This protein need
would be equivalent to ingesting 3–15 three-ounce servings
of chicken or fish per day for a 50–150 kg athlete [78]. Al-
though smaller athletes typically can ingest this amount of
protein, on a daily basis, in their normal diet, larger athletes
often have difficulty consuming this much dietary protein.
Additionally, a number of athletic populations are
known to be susceptible to protein malnutrition (e.g.,
runners, cyclists, swimmers, triathletes, gymnasts,
dancers, skaters, wrestlers, boxers, etc.) and conse-
quently, additional counseling and education may be
needed to help these athletes meet their daily protein
needs. To this point, the periods of energy restriction
to meet weight or aesthetic demands of their sports
that are seemingly a part of the sport’s fabric creates an
arguably greater need to understand that protein intake,
quality and timing as well as combination with carbo-
hydrate is particularly important to maintain lean body
mass, training effects, and performance [25]. Overall, it
goes without saying that care should be taken to ensure
that athletes consume a sufficient amount of quality
protein in their diet to maintain nitrogen balance.
Proteins differ based on their source, amino acid pro-

file, and the methods of processing or isolating the pro-
tein undergoes [11]. These differences influence the
availability of amino acids and peptides, which may

possess biological activity (e.g., α-lactalbumin, ß-lacto-
globulin, glycomacropeptides, immunoglobulins, lacto-
peroxidases, lactoferrin, etc.). Additionally, the rate of
digestion and/or absorption and metabolic activity of the
protein also are important considerations [91]. For
example, different types of proteins (e.g., casein, whey,
and soy) are digested at different rates, which may affect
whole body catabolism and anabolism and acute stimu-
lation of muscle protein synthesis (MPS) [91–96]. There-
fore, care should be taken not only to make sure the
athlete consumes enough protein in their diet but also
that the protein is high quality. The best dietary sources
of low fat, high quality protein are light skinless chicken,
fish, egg whites, very lean cuts of beef and skim milk
(casein and whey) while protein supplements routinely
contain whey, casein, milk and egg protein. In what is
still an emerging area of research, various plant sources
of protein have been examined for their ability to stimu-
late increases in muscle protein synthesis [77, 97] and
promote exercise training adaptations [98]. While amino
acid absorption from plant proteins is generally slower,
leucine from rice protein has been found to be absorbed
even faster than from whey [99], while digestive enzymes
[100], probiotics [101] and HMB [102] can be used to
overcome differences in protein quality. Preliminary
findings suggest that rice [98] and pea protein [103] may
be able to stimulate similar changes in fat-free mass and
strength as whey protein, although the reader should
understand that many other factors (dose provided,
training status of participants, duration of training and
supplementation, etc.) will ultimately impact these
outcomes and consequently more research is needed.
While many reasons and scenarios exist for why an ath-

lete may choose to supplement their diet with protein pow-
ders or other forms of protein supplements, this practice is
not considered to be an absolute requirement for increased
performance and adaptations. Due to nutritional, societal,
emotional and psychological reasons, it is preferable for
the majority of daily protein consumed by athletes to occur
as part of a food or meal. However, we recognize and
embrace the reality that situations commonly arise where
efficiently delivering a high-quality source of protein takes
precedence. Jager and colleagues [11] published an updated
position statement of the International Society of Sports
Nutrition that is summarized by the following points:

1) An acute exercise stimulus, particularly resistance
exercise and protein ingestion both stimulate muscle
protein synthesis (MPS) and are synergistic when
protein consumption occurs before or after resistance
exercise

2) For building and maintaining muscle mass, an overall
daily protein intake of 1.4–2.0 g/kg/d is sufficient for
most exercising individuals
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3) Higher protein intakes (2.3–3.1 g/kg fat-free mass/
d) may be needed to maximize the retention of lean
body weight in resistance trained subjects during
hypocaloric periods

4) Higher protein intakes (> 3.0 g protein/kg body
weight/day) when combined with resistance exercise
may have positive effects on body composition in
resistance trained individuals (i.e., promote loss of fat
mass)

5) Optimal doses for athletes to maximize MPS are
mixed and are dependent upon age and recent
resistance exercise stimuli. General recommendations
are 0.25–0.55 g of a high-quality protein per kg of
body weight, or an absolute dose of 20–40 g.

6) Acute protein doses should contain 700–3000 mg
of leucine and/or a higher relative leucine content,
in addition to a balanced array of the essential
amino acids (EAAs)

7) Protein doses should ideally be evenly distributed,
every 3–4 h, across the day

8) The optimal time period during which to ingest
protein is likely a matter of individual tolerance;
however, the anabolic effect of exercise is
long-lasting (at least 24 h), but likely diminishes
with increasing time post-exercise

9) Rapidly digested proteins that contain high
proportions of EAAs and adequate leucine, are
most effective in stimulating MPS

10) Different types and quality of protein can affect
amino acid bioavailability following protein
supplementation; complete protein sources deliver all
required EAAs

Fat
The dietary recommendations of fat intake for athletes are
similar to or slightly greater than dietary recommendations
made to non-athletes to promote health. Maintenance of
energy balance, replenishment of intramuscular triacylglyc-
erol stores and adequate consumption of essential fatty
acids are important for athletes, and all serve as reasons
for an increased intake of dietary fat [104]. Depending
upon the athlete’s training status or goals, the amount of
dietary fat recommended for daily intake can change. For
example, higher-fat diets appear to maintain circulating
testosterone concentrations better than low-fat diets
[105–107]. Additionally, higher fat intakes may provide
valuable translational evidence to the documented testos-
terone suppression which can occur during volume-type
overtraining [108]. Generally, it is recommended that ath-
letes consume a moderate amount of fat (approximately
30% of their daily caloric intake), while proportions up to
50% of daily calories can be safely ingested by athletes dur-
ing regular high-volume training [104]. In situations where
an athlete may be interested in reducing their body fat,

dietary fat intakes ranging from 0.5 to 1 g/kg/day have
been recommended results in situations where daily fat in-
take might comprise as little as 20% of total calories in the
diet [2]. This recommendation stems largely from avail-
able evidence in weight loss studies involving non-athletic
individuals that people who are most successful in losing
weight and maintaining the weight loss are those who in-
gest reduced amounts of fat in their diet [109, 110] al-
though this is not always the case [111]. Strategies to help
athletes manage dietary fat intake include teaching
them which foods contain various types of fat so that
they can make better food choices and how to count
fat grams [2, 33].
For years, high-fat diets have been used by athletes with

the majority of evidence showing no ergogenic benefit and
consistent gastrointestinal challenges [112]. In recent
years, significant debate has swirled regarding the impact
of increasing dietary fat. One strategy, “train low, compete
high”, refers to an acute pattern of dietary periodization
whereby an athlete first follows a high-fat, low carbohy-
drate diet for one to 3 weeks while training before
reintroducing carbohydrates back into the diet. While
intramuscular adaptations result that may theoretically
impact performance [113, 114], no consistent, favorable
impact on performance has been documented [112, 115].
A variant of high-fat diets, ketogenic diets, have increased
in popularity. While no exact prescription exists, nearly all
ketogenic diet prescriptions derive at least 70–80% of their
daily calories from dietary fat, prescribe a moderate
amount of protein (20–25% total calories or 2.0–2.5 g/kg/
day) and are largely devoid of carbohydrate (10–40 g per
day). This diet prescription leads to a greater reliance on
ketones as a fuel source. Currently, limited and mixed evi-
dence remains regarding the overall efficacy of a ketogenic
diet for athletes. In favor, Cox et al. [116] demonstrated
that ketogenic dieting can improve exercise endurance by
shifting fuel oxidation while Burke and colleagues [115]
failed to show an increase in performance in a cohort of
Olympic-caliber race walkers. Additionally, Jabekk and col-
leagues [117] reported decreases in body fat with no
change in lean mass in overweight women who resistance
trained for 10 weeks and followed a ketogenic diet. In light
of the available evidence being limited and mixed, more
human research needs to be completed before appropriate
recommendations can be made towards the use of high fat
diets for athletic performance.

Strategic eating and refueling
In addition to the general nutritional guidelines described
above, research has also demonstrated that timing and
composition of meals consumed may play a role in opti-
mizing performance, training adaptations, and preventing
overtraining [2, 25, 40]. In this regard, it takes about 4 h
for carbohydrate to be digested and assimilated into
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muscle and liver tissues as glycogen. Consequently,
pre-exercise meals should be consumed about four to 6 h
before exercise [40]. This means that if an athlete trains in
the afternoon, breakfast can be viewed to have great
importance to top off muscle and liver glycogen levels. Re-
search has also indicated that ingesting a light carbohy-
drate and protein snack 30 to 60 min prior to exercise (e.g.,
50 g of carbohydrate and 5 to 10 g of protein) serves to in-
crease carbohydrate availability toward the end of an in-
tense exercise bout [118, 119]. This also serves to increase
availability of amino acids, decrease exercise-induced
catabolism of protein, and minimize muscle damage
[120–122]. Additionally, athletes who are going through
periods of energy restriction to meet weight or aesthetic
demands of sports should understand that protein intake,
quality and timing as well as combination with carbo-
hydrate is particularly important to maintain lean
body mass, training effects, and performance [25].
When exercise lasts more than 1 h and especially as
duration extends beyond 90 min, athletes should in-
gest glucose/electrolyte solutions (GES) to maintain
blood glucose levels, prevent dehydration, and reduce
the immunosuppressive effects of intense exercise [40,
123–128]. Notably, this strategy becomes even more
important if the athlete is under-fueled prior to the
exercise task or is fasted vs. unfasted at the start of
exercise [68, 69, 129]. Following intense exercise, ath-
letes should consume carbohydrate and protein (e.g.,
1 g/kg of carbohydrate and 0.5 g/kg of protein)
within 30 min after exercise and consume a high
carbohydrate meal within 2 h following exercise [2, 74].
This nutritional strategy has been found to accelerate
glycogen resynthesis as well as promote a more ana-
bolic hormonal profile that may hasten recovery
[120, 130, 131], but as mentioned above only when
rapid glycogen restoration is needed or if the carbo-
hydrate intake in the diet is adequate (< 6 g/kg/day)
[53, 132]. In other words, the total carbohydrate
consumption and timing of carbohydrate consump-
tion should be individualized to each athlete’s needs
according to the goals of the training cycle and bout
[112]. Finally, for two to 3 days prior to competition, ath-
letes should taper training by 30 to 50% and consume an
additional 200 to 300 g of carbohydrate each day in their
diet. This eating strategy has been shown to supersaturate
carbohydrate stores prior to competition and improve en-
durance exercise capacity [2, 40]. Thus, the type of meal,
amount of carbohydrate consumed, and timing of eating
are important factors to maximize glycogen storage and in
maintaining carbohydrate availability during training while
also potentially decreasing the incidence of overtraining.
The ISSN has adopted a position stand on nutrient timing
in 2008 [133] that has been subsequently revised [13] and
can be summarized with the following points:

1. Intramuscular and hepatic glycogen stores are best
maximized by consumption of a high-carbohydrate
diet (8–12 g/kg/day). Strategies such as aggressive
carbohydrate feedings (~ 1.2 g/kg/hour) that favor
high-glycemic (> 70) carbohydrates, addition of
caffeine (3–8 mg/kg) and combining a moderate
carbohydrate dose (0.8 g/kg/h) with protein (0.2–
0.4 g/kg/h) have been shown to promote rapid
restoration of glycogen stores.

2. High intensity (> 70% VO2Max) exercise bouts that
extend beyond 90 min challenge fuel supply and
fluid regulation. In these situations, it is advisable to
consume carbohydrate at a rate of 30–60 g of
carbohydrate/hour in a 6–8% carbohydrate-electrolyte
solution (6–12 fluid ounces) every 10–15 min
throughout the entire exercise bout. The importance
of this strategy is increased when poor feeding or
recovery strategies were employed prior to exercise
commencement. Consequently, when carbohydrate
delivery is inadequate, adding protein may help
increase performance, mitigate muscle damage,
promote euglycemia, and facilitate glycogen
re-synthesis.

3. Consuming a diet that delivers adequate energy
(minimum of 27–30 kcal/kg) and protein (1.6–
1.8 g/kg/day), preferably with evenly spaced (every
3–4 h) protein feedings (0.25–0.40 g/kg/dose)
during the day, should be considered for all exercising
individuals.

4. Ingesting efficacious doses (10–12 g) of essential
amino acids (EAAs) either in free form or as a
protein bolus in 20–40 g doses (0.25–0.40 g/kg/
dose) will maximally stimulate muscle protein
synthesis (MPS).

5. Pre- and/or post-exercise nutritional interventions
(carbohydrate + protein or protein alone) can be an
effective strategy to support improvements in strength
and body composition. However, the size (0.25–
0.40 g/kg/dose) and timing (0–4 h) of a pre-exercise
meal may impact the benefit derived from the
post-exercise protein feeding.

6. Post-exercise ingestion (immediately-post to 2 h
post) of high-quality protein sources stimulates
robust increases in MPS. Similar increases in MPS
have been found when high-quality proteins are
ingested immediately before exercise.

Vitamins
Vitamins are essential organic compounds that serve to
regulate metabolic and neurological processes, energy
synthesis, and prevent destruction of cells. Fat-soluble
vitamins include vitamins A, D, E, & K and the body stores
fat-soluble vitamins in various tissues, which can result in
toxicity if consumed in excessive amounts. Water-soluble
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vitamins consist of the entire complex of B-vitamins and
vitamin C. Since these vitamins are water-soluble, excessive
intake of these vitamins are eliminated in urine, with few
exceptions (e.g. vitamin B6, which can cause peripheral
nerve damage when consumed in excessive amounts).
Table 1 describes the RDA, proposed ergogenic benefit,
and summary of research findings for fat and water-soluble
vitamins. Research has demonstrated that specific vitamins
possess various health benefits (e.g., Vitamin E, niacin, folic
acid, vitamin C, etc.), while few published studies have re-
ported to find an ergogenic value of vitamins for athletes
[134–138]. Alternatively, if an athlete is deficient in a vita-
min, supplementation or diet modifications to improve
vitamin status can consistently improve health and per-
formance [139]. For example, Paschalis and colleagues
[140] supplemented individuals who were low in vitamin C
for 30 days and reported these individuals had significantly
lower VO2Max levels than a group of males who were high
in vitamin C. Further, after 30 days of supplementation,
VO2Max significantly improved in the low vitamin C co-
hort as did baseline levels of oxidative stress of oxidative
stress. Importantly, one must consider that some vitamins
may help athletes tolerate training to a greater degree by
reducing oxidative damage (Vitamin E, C) and/or help to
maintain a healthy immune system during heavy training
(Vitamin C). Alternatively, conflicting evidence has accu-
mulated that ingesting high doses of Vitamins C and E
may negatively impact intracellular adaptations seen in re-
sponse to exercise training [141–144], which may conse-
quently negatively impact an athlete’s performance.
Furthermore, while optimal levels of vitamin D have been
linked to improved muscle health [145] and strength [146]
in general populations, research studies conducted in ath-
letes generally fail to report on the ergogenic impact of
vitamin D in athletes [147, 148]. However, equivocal evi-
dence from Wyon et al. [149] suggests vitamin D supple-
mentation in elite ballet dancers improved strength and
reduced risk for injuries. The remaining vitamins reviewed
appear to have little ergogenic value for athletes who con-
sume a normal, nutrient dense diet. Since dietary analyses
of athletes commonly indicate that athletes fail to consume
enough calories and subsequently may not be consuming
adequate amounts of each vitamin, many sport dietitians
and nutritionists recommend that athletes consume a
low-dose daily multivitamin and/or a vitamin enriched
post-workout carbohydrate/protein supplement during pe-
riods of heavy training [150]. Finally, athletes may desire to
consume a vitamin or mineral for various health (non-per-
formance) related reasons including niacin to elevate high
density lipoprotein (HDL) cholesterol levels and decrease
risk of heart disease (niacin), vitamin E for its antioxidant
potential, vitamin D for its ability to preserve musculoskel-
etal function, or vitamin C to promote and maintain a
healthy immune system.

Minerals
Minerals are essential inorganic elements necessary for
a host of metabolic processes. Minerals serve as struc-
ture for tissue, important components of enzymes and
hormones, and regulators of metabolic and neural con-
trol. In athletic populations, some minerals have been
found to be deficient while other minerals are reduced
secondary to training and/or prolonged exercise. Not-
ably, acute changes in sodium, potassium and magne-
sium throughout a continued bout of moderate to high
intensity exercise are considerable. In these situations,
athletes must work to ingest foods and fluids to replace
these losses, while physiological adaptations to sweat
composition and fluid retention will also occur to pro-
mote a necessary balance. Like vitamins, when mineral
status is inadequate, exercise capacity may be reduced
and when minerals are supplemented in deficient ath-
letes, exercise capacity has been shown to improve
[151]. However, scientific reports consistently fail to
document a performance improvement due to mineral
supplementation when vitamin and mineral status is
adequate [134, 152, 153]. Table 2 describes minerals
that have been purported to affect exercise capacity in
athletes. Of the minerals reviewed, several appear to
possess health and/or ergogenic value for athletes
under certain conditions. For example, calcium supple-
mentation in athletes susceptible to premature osteo-
porosis may help maintain bone mass [151]. For years,
the importance of iron status in female athletes has
been discussed [154] and more recent efforts have
highlighted that iron supplementation in athletes prone
to iron deficiencies and/or anaemia can improve exer-
cise capacity [155, 156]. Sodium phosphate loading can
increase maximal oxygen uptake, anaerobic threshold,
and improve endurance exercise capacity by 8 to 10%
[157]. Increasing dietary availability of salt (sodium
chloride) during the initial days of exercise training in
the heat helps to maintain fluid balance and prevent
dehydration. The American College of Sports Medicine
(ACSM) recommendations for sodium levels (340 mg)
represent the amount of sodium in less than 1/8 tea-
spoon of salt and recommended guidelines for sodium
ingestion during exercise (300–600 mg per hour or
1.7–2.9 g of salt during a prolonged exercise bout)
[158–161]. Finally, zinc supplementation during train-
ing can support changes in immune status in response
to exercise training. Consequently, several minerals
may enhance exercise capacity and/or training adapta-
tions for athletes under certain conditions. However,
there is little evidence that boron, chromium, magne-
sium, or vanadium affect exercise capacity or training
adaptations in healthy individuals eating a normal diet.
Sport nutritionists and dietitians should be aware of
the specialized situations in which different types of
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minerals may provide support to bolster an athlete’s
health or physical performance.

Water
The most important nutritional ergogenic aid for ath-
letes is water and limiting dehydration during exercise is
one of the most effective ways to maintain exercise cap-
acity. Before starting exercise, it is highly recommended
that individuals are adequately hydrated [162]. Exercise
performance can be significantly impaired when 2% or
more of body weight is lost through sweat (i.e., a 1.4 kg
body weight loss from a 70-kg athlete). When one con-
siders that average sweat rates are reported to be 0.5–
2.0 L/hour during exercise and training [128, 162], per-
formance losses due to water loss can occur after just
60–90 min of exercise. Further, weight loss of more than
4% of body weight during exercise may lead to heat ill-
ness, heat exhaustion, heat stroke, and possibly death
[128]. For this reason, it is critical that athletes adopt a
mind set to prevent dehydration first by promoting opti-
mal levels of pre-exercise hydration. Throughout the day
and without any consideration of when exercise is occur-
ring, a key goal is for an athlete to drink enough fluids
to maintain their body weight. Next, athletes can pro-
mote optimal pre-exercise hydration by ingesting
500 mL of water or sports drinks the night before a
competition, another 500 mL upon waking and then an-
other 400–600 mL of cool water or sports drink 20–
30 min before the onset of exercise. Once exercise com-
mences, the athlete should strive to consume a sufficient
amount of water and/or glucose-electrolyte solutions
(i.e., sports drinks) during exercise to maintain hydration
status. Consequently, to maintain fluid balance and pre-
vent dehydration, athletes need to plan on ingesting 0.5
to 2 L/hour of fluid to offset weight loss. This requires
frequent (every 5–15 min) ingestion of 12–16 fluid
ounces of cold water or a sports drink during exercise
[128, 163–166]. Athletes should not depend on thirst to
prompt them to drink because people do not typically
get thirsty until they have lost a significant amount of
fluid through sweat. Additionally, athletes should weigh
themselves prior to and following exercise training to
monitor changes in fluid balance and then can work to re-
place their lost fluid [128, 163–166]. During and after exer-
cise, athletes should consume three cups of water for every
pound lost during exercise to promote adequate rehydra-
tion [128]. A primary goal soon after exercise should be to
completely replace lost fluid and electrolytes during a train-
ing session or competition. Additionally, sodium intake in
the form of glucose-electrolyte solutions (vs. only drinking
water) and making food choices and modifications (added
salt to foods) should be considered during the rehy-
dration process to further promote euhydration [167].
Athletes should train themselves to tolerate drinking

greater amounts of water during training and make
sure that they consume more fluid in hotter/humid
environments. Beyond nutrition, allowing one’s physi-
ology the chance to acclimatize to the exercising en-
vironment for 10–14 days can help improve heat
tolerance and promote thermoregulation. Finally, in-
appropriate and excessive weight loss techniques (e.g.,
cutting weight in saunas, wearing rubber suits, severe
dieting, vomiting, using diuretics, etc.) are considered
dangerous and should be prohibited. Sport nutrition-
ists, dietitians, and athletic trainers can play an im-
portant role in educating athletes and coaches about
proper hydration methods and supervising fluid intake
during training and competition.

Dietary supplements and athletes
Educating athletes and coaches about nutrition and how to
structure their diet to optimize performance and recovery
are key areas of involvement for sport dietitians and nutri-
tionists. Currently, use of dietary supplements by athletes
and athletic populations is widespread while their overall
need and efficacy of certain ingredients remain up for
debate. Dietary supplements can play a meaningful role in
helping athletes consume the proper amount of calories,
macro- and micronutrients. Dietary supplements are not
intended to replace a healthy diet. Numerous dietary ingre-
dients have been investigated for potential benefits in an
athletic population, to enhance training, recovery and/or
performance. Supplementation with these nutrients in
clinically validated amounts and at opportune times can
help augment the normal diet to help optimize perform-
ance or support adaptations towards a training outcome.
Sport dietitians and nutritionists must be aware of the
current data regarding nutrition, exercise, and performance
and be honest about educating their clients about results of
various studies (whether pro or con). Currently, misleading
information is available to the public and this position
stand is intended to objectively rate many of the available
ingredients. Additionally, athletes, coaches and trainers
need to also heed the recommendations of scientists when
recommendations are made according to the available lit-
erature and what will hopefully be free of bias. Throughout
the next two sections of this paper, various nutritional sup-
plements often taken by athletes will be categorized into
three categories: Strong Evidence to Support Efficacy and
Apparently Safe, Limited or Mixed Evidence to Support Ef-
ficacy, Little to No Evidence to Support Efficacy and/or
Safety. Based on the available literature, the resulting classi-
fication and analysis focuses primarily on whether the pro-
posed nutrient has been found to affect exercise and/or
training adaptations through an increase in muscle hyper-
trophy and later for the supplement’s ergogenic potential.
We recognize that some ingredients may exhibit little
potential to stimulate training adaptations or operate in an
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ergogenic fashion, but may favorably impact muscle recov-
ery or exhibit health benefits that may be helpful for some
populations. These outcomes are not the primary focus of
this review and consequently, will not be discussed with
the same level of detail.

Convenience supplements
Convenience supplements are commonly found in the
form of meal replacement powders (MRP’s), ready to drink
supplements (RTD’s), energy bars, and energy gels. These
products are typically fortified with vitamins and minerals
and differ on the amount of carbohydrate, protein, and/or
fat they contain. Uniqueness of these products come from
the additional nutrients they contain that are purported to
promote weight gain, alter body composition, enhance
recovery, and/or improve performance. Most people view
these supplements as a nutrient dense snack and/or use
them to help control caloric intake when trying to gain
and/or lose weight. MRP’s, RTD’s, and energy bars/gels
can provide a convenient way for people to meet specific
dietary needs and/or serve as good alternatives to fast food,
foods of lower nutritional quality, and during times when
travel or a busy schedule preclude the ability to consume
fresh or other forms of whole food. Use of these types of
products are particularly helpful in providing carbohydrate,
protein, and other nutrients prior to and/or following exer-
cise to optimize nutrient intake when an athlete doesn’t
have time to sit down for a good meal or wants to
minimize food volume. Consequently, meal replacements
should be used in place of a meal during unique situations
and are not intended to replace all meals. Care should also
be taken to make sure they do not contain any banned or
prohibited nutrients.

Muscle building supplements
The following section provides an analysis of the scientific
literature regarding nutritional supplements purported to
promote skeletal muscle accretion in conjunction with the
completion of a well-designed exercise-training program.
An overview of each supplement and a general interpret-
ation of how they should be categorized is provided
throughout the text. Table 3 summarizes how every supple-
ment discussed in this article is categorized. However,
within each category all supplements are ordered alphabet-
ically. The reader is encouraged to consider that gains or
losses in body masses may positively or negatively impact
an individual’s athletic performance. For example, increases
in body mass and lean mass are desired adaptations for
many American football or rugby players and may improve
performance in these activities. In contrast, decreases in
body mass or fat mass may promote increases in perform-
ance such as cyclists and gymnasts whereby athletes such
as wrestlers, weightlifters and boxers may need to rapidly

reduce weight while maintaining muscle mass, strength
and power.

Strong evidence to support efficacy and apparently safe

β-hydroxy β-methylbutyrate (HMB) HMB is a metabol-
ite of the amino acid leucine. It is well-documented that
supplementing with 1.5 to 3 g/day of calcium HMB during
resistance training can increase muscle mass (+ 0.5–1 kg
greater than controls during 3–6 weeks of training) and
strength particularly among untrained subjects initiating
training [168–173] and the elderly [174]. The currently
established minimal effective dose of HMB is 1.5 g per day,
with 3 g per day offering additional benefits on lean body
mass, while 6 g per day do not provide any additional gains
in lean mass beyond what was reported with a 3 g dose
[169]. To optimize HMB retention, its recommend to split
the daily dose of 3 g into three equal doses of 1 g each
(with breakfast, lunch or pre-exercise, bedtime) [174]. From
a safety perspective, dosages of 1.5–6 g per day have been
well tolerated [15, 169, 170]. The effects of HMB supple-
mentation in trained athletes are less clear with selected
studies reporting non-significant gains in muscle mass
[175–177]. In this respect, it has been suggested by Wilson
and colleagues [15] that program design (periodized resist-
ance training models) and duration of supplementation
(minimum of 6 weeks) likely operate as key factors. In
2015, Durkalec-Michalski and investigators [178] supple-
mented highly trained rowers (n = 16) in a randomized,
double-blind, crossover fashion with either 3 g per day of
calcium-HMB or a placebo. Before and after each supple-
mentation period, body composition and performance pa-
rameters were assessed. When HMB was provided, fat
mass was significantly reduced while changes in lean mass
were not significant between groups. The same research
group published data of 58 highly trained males athletes
who supplemented with either 3 g of calcium-HMB or pla-
cebo for 12 weeks in a randomized, double-blind, crossover
fashion [179]. In this report, fat mass was found to be
significantly reduced while fat-free mass was significantly
increased. Finally, Durkalec-Michalski and investigators
[180] supplemented 42 highly-trained combat sport ath-
letes for 12 weeks with either a placebo or 3 g of
calcium-HMB in a randomized, double-blind, crossover
fashion. When HMB was provided, fat-free mass was
shown to increase (p = 0.049) while fat mass was signifi-
cantly reduced in comparison to the changes seen when
placebo was provided. In conclusion, a growing body of lit-
erature continues to offer support that HMB supplementa-
tion at dosages of 1.5–3 g for durations as short as three to
4 weeks in untrained populations and longer durations
(12 weeks) in trained populations can lead to improve-
ments in fat mass and fat-free mass while participating in
various forms of exercise training.
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Creatine monohydrate In our view, the most effective
nutritional supplement available to athletes to increase high
intensity exercise capacity and muscle mass during training
is creatine monohydrate. Numerous studies have indicated
that creatine supplementation increases body mass and/or
muscle mass during training [181, 182]. Body mass in-
creases are typically one to two kilograms greater than con-
trols during 4–12 weeks of training [182]. The gains in
muscle mass appear to be a result of an improved ability to
perform high intensity exercise enabling an athlete to train
harder and thereby promote greater training adaptations
and muscle hypertrophy [183–186]. The only clinically sig-
nificant side effect occasionally reported from creatine
monohydrate supplementation has been the potential for
weight gain [181, 182, 187, 188]. Although concerns have
been raised about the safety and possible side effects of
creatine supplementation [189, 190], multiple shorter
[191–193] and long-term safety studies have reported no
apparent side effects [188, 194, 195] and/or that creatine
monohydrate may lessen the incidence of injury during

training [196–199]. Consequently, supplementing the diet
with creatine monohydrate and/or creatine containing
formulations seems to be a safe and effective method to
increase muscle mass. The ISSN position stand on creatine
monohydrate [10] summarizes their findings as this:

1. Creatine monohydrate is the most effective
ergogenic nutritional supplement currently
available to athletes in terms of increasing
high-intensity exercise capacity and lean body
mass during training.

2. Creatine monohydrate supplementation is not only
safe, but has been reported to have a number of
therapeutic benefits in healthy and diseased populations
ranging from infants to the elderly. There is no
compelling scientific evidence that the short- or
long-term use of creatine monohydrate (up to 30 g/
day for 5 years) has any detrimental effects on otherwise
healthy individuals or among clinical populations who
may benefit from creatine supplementation.

Table 3 Summary of categorization of dietary supplements based on available literature

Category Muscle building supplements Performance enhancement

I. Strong Evidence to Support Efficacy and
Apparently Safe

• HMB
• Creatine monohydrate
• Essential amino acids (EAA)
• Protein

• β-alanine
• Caffeine
• Carbohydrate
• Creatine Monohydrate
• Sodium Bicarbonate
• Sodium Phosphate
• Water and Sports Drinks

II. Limited or Mixed Evidence to Support
Efficacy

• Adenosine-5′-Triphosphate (ATP)
• Branched-chain amino acids (BCAA)
• Phosphatidic acid

• L-Alanyl-L-Glutamate
• Arachidonic acid
• Branched-chain amino acids (BCAA)
• Citrulline
• Essential amino acids (EAA)
• Glycerol
• HMB
• Nitrates
• Post-exercise carbohydrate and
protein

• Quercetin
• Taurine

III. Little to No Evidence to Support Efficacy
and/or Safety

• Agmatine sulfate
• Alpha-ketoglutarate
• Arginine
• Boron
• Chromium
• Conjugated linoleic acids (CLA)
• D-Aspartic acid
• Ecdysterones
• Fenugreek extract
• Gamma oryzanol (Ferulic acid)
• Glutamine
• Growth-hormone releasing peptides and
Secretogogues

• Isoflavones
• Ornithine-alpha-ketoglutarate
• Prohomones
• Sulfo-polysaccharides
• Tribulus terrestris
• Vanadyl sulfate
• Zinc-magnesium aspartate

• Arginine
• Carnitine
• Glutamine
• Inosine
• Medium-chain triglycerides (MCT)
• Ribose
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3. If proper precautions and supervision are provided,
creatine monohydrate supplementation in children
and adolescent athletes is acceptable and may
provide a nutritional alternative with a favorable
safety profile to potentially dangerous anabolic
androgenic drugs. However, it is recommended that
creatine supplementation only be considered for use
by younger athletes who: a) are involved in serious/
competitive supervised training; b) are consuming a
well-balanced and performance enhancing diet; c)
are knowledgeable about the appropriate use of
creatine; and d) do not exceed recommended
dosages.

4. Label advisories on creatine products that caution
against usage by those under 18 years old, while
perhaps intended to insulate their manufacturers
from legal liability, are likely unnecessary given the
science supporting creatine’s safety, including in
children and adolescents.

5. At present, creatine monohydrate is the most
extensively studied and clinically effective form of
creatine for use in nutritional supplements in terms
of muscle uptake and ability to increase high-intensity
exercise capacity.

6. The addition of carbohydrate or carbohydrate and
protein to a creatine supplement appears to increase
muscular uptake of creatine, although the effect on
performance measures may not be greater than using
creatine monohydrate alone.

7. The quickest method of increasing muscle creatine
stores appears to be to consume ~ 0.3 g/kg/day of
creatine monohydrate for 5–7 days followed by
3–5 g/day thereafter to maintain elevated stores.
Initially, ingesting smaller amounts of creatine
monohydrate (e.g., 3–5 g/day) will increase muscle
creatine stores over a three to 4 week period,
however, the initial performance effects of this
method of supplementation are less supported.

8. Clinical populations have been supplemented with
high levels of creatine monohydrate (0.3–0.8 g/kg/
day equivalent to 21–56 g/day for a 70-kg
individual) for years with no clinically significant
or serious adverse events.

9. Further research is warranted to examine the
potential medical benefits of creatine monohydrate
and precursors like guanidinoacetic acid on sport,
health and medicine.

Essential amino acids (EAA) Research examining the
impact of the essential amino acids on stimulating muscle
protein synthesis is an extremely popular area. Collectively,
this data indicates that ingesting 6–12 g of the essential
amino acids (EAA) in the absence of feeding [200] and
prior to [201, 202] and/or following resistance exercise

stimulates protein synthesis [202–208], with this response
being largely independent of the protein source or food
type [209]. Theoretically, this may enhance increases in
fat-free mass, but to date limited evidence exists to demon-
strate that supplementation with non-intact sources of
EAAs (e.g., free form amino acids) while resistance training
positively impacts fat-free mass accretion. Moreover, other
research has indicated that changes in muscle protein
synthesis may not correlate with phenotypic adaptations to
exercise training [210]. An abundance of evidence is avail-
able, however, to indicate that ingestion of high-quality pro-
tein sources can heighten adaptations to resistance training
[211]. While various methods of protein quality assessment
exist, most of these approaches center upon the amount of
EAAs that are found within the protein source, and in
nearly all situations, the highest quality protein sources are
those containing the highest amounts of EAAs. To this
point, a number of published studies are available that state
the EAAs operate as a prerequisite to stimulate peak
rates of muscle protein synthesis [212–215]. To better
understand the impact of ingesting free-form amino
acids versus an intact protein source, Katsanos et al.
[216] administered similar doses of the essential amino
acids (6.72 g) as part of an intact protein (15 g of whey
protein isolate) source or as free amino acids while
completing a resistance training program in elderly
adults. Protein accrual was greater when the amino acid
dose was provided in an intact source. While the age of
the participants in this study may have impacted out-
comes [217], this study’s results do highlight the need
for more research to better understand to what extent
training adaptations are due to the EAA content or if
additional benefits are present from ingesting an intact
protein source.
While the EAAs are comprised of nine separate amino

acids, some individual EAAs have received considerable
attention for their potential role in impacting protein trans-
lation and muscle protein synthesis. In this respect, the
branched-chain amino acids have been highlighted for their
predominant role in stimulating muscle protein synthesis
[218, 219]. To this point, Karlsson and colleagues [220]
demonstrated significantly higher increases in p70s6k
expression in recovery from a single bout of lower-body
resistance exercise in seven male participants after ingest-
ing a BCAA solution containing 100 mg/kg BCAA when
compared to ingesting a placebo. Interestingly, Moberg
and investigators [221] had trained volunteers complete a
standardized bout of resistance training in conjunction
with ingestion of placebo, leucine, BCAA or EAA while
measuring changes in post-exercise activation of p70s6k.
They concluded that EAA ingestion led to a nine-fold
greater increase in p70s6k activation and that these results
were primarily attributable to the BCAAs. Finally, a 2017
study by Jackman et al. [222] compared the ability of a
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5.6 g dose of BCAAs (versus a placebo) to stimulate in-
creases in muscle protein synthesis. Myofibrillar muscle
protein synthesis rates were increased significantly (~ 20%,
p < 0.05) in comparison to a placebo. While significant, this
magnitude of change was notably less than the
post-exercise MPS responses seen when doses of whey pro-
tein that delivered similar amounts of the BCAAs were
consumed [88, 223]. These outcomes led the authors to
conclude that the full complement of EAAs was advised to
maximally stimulate increases in MPS.
Of all the interest captured by the BCAAs, leucine is

accepted to be the primary driver of acute changes in pro-
tein translation. In this respect, Dreyer et al. [224] and
others [225] have reported that providing leucine after
completion of resistance exercise can further potentiate
increases in mTOR signalling and protein translation. In
this respect, Jager et al. [11] have highlighted that an ideal
dose of leucine to stimulate increases in protein transla-
tion is likely somewhere between 1.7–3.5 g.

Protein A growing body of literature is available that
suggests higher amounts of protein are needed by exer-
cising individuals to optimize exercise training adapta-
tions [11, 83, 211, 226]. Collectively, these sources
indicate that people undergoing intense training with
the primary intention to promote accretion of fat-free
mass should consume between 1.4–2.0 g of protein per
kilogram of body weight per day [83, 226]. Tang and col-
leagues [95] conducted a classic study that examined the
ability of three different sources of protein (hydrolyzed
whey isolate, micellar casein and soy isolate) to stimulate
acute changes in muscle protein synthesis both at rest
and after a single bout of resistance exercise. These au-
thors concluded that all three protein sources signifi-
cantly increased muscle protein synthesis rates both at
rest and in response to resistance exercise. When this re-
sponse is extrapolated over the course of several weeks,
multiple studies have reported on the ability of different
forms of protein to significantly increase fat-free mass
while resistance training [70, 227–232]. Cermak et al.
[211] performed a meta-analysis that examined the im-
pact of protein supplementation on changes in strength
and fat-free mass. Data from 22 separate published stud-
ies that included 680 research participants were included
in the analysis. These authors concluded that protein
supplementation demonstrated a positive effect of
fat-free mass and lower-body strength in both younger
and older participants. Similarly, Morton and investiga-
tors [83] published results from a meta-analysis that also
included a meta-regression approach involving data from
49 studies and 1863 participants. They concluded that
the ability of protein to positively impact fat-free mass
accretion increases up to approximately 1.62 g of protein
per kilogram of body weight per day whereby higher

amounts beyond that do not appear to promote greater
gains in fat-free mass. Although more research is necessary
in this area, evidence clearly indicates that protein needs of
individuals engaged in intense training are elevated and
consequently those athletes who achieve higher intakes of
protein while training promote greater changes in fat-free
mass. Beyond the impact of protein to foster greater
training-induced adaptations such as increases in
strength and muscle mass, several studies have exam-
ined the ability of different types of protein to stimu-
late changes in fat-free mass [229, 231, 233–235]
while several studies and reviews have critically ex-
plored the role protein may play in achieving weight
loss in athletes [236, 237] as well as during periods of
caloric restriction [238, 239]. Therefore, it is simplistic and
misleading to suggest that there is no data supporting
contentions that athletes need more protein in their diet
and/or there is no potential ergogenic value of incorporat-
ing different types of protein into the diet. It is the pos-
ition stand of ISSN that exercising individuals need
approximately 1.4 to 2.0 g of protein per kilogram of
bodyweight per day [11].

Limited or mixed evidence to support efficacy

Adenosine − 5′-triphosphate (ATP) ATP is the primary
intracellular energy source and in addition, has extensive
extracellular functions including the increase in skeletal
muscle calcium permeability and vasodilation. While intra-
venous administration of ATP is bioavailable [240], several
studies have shown that oral ATP is not systematically bio-
available [241]. However, chronic supplementation with
ATP increases the capacity to synthesize ATP within the
erythrocytes without increasing resting concentrations in
the plasma, thereby minimizing exercise-induced drops in
ATP levels [242]. Oral ATP supplementation has demon-
strated initial ergogenic properties, after a single dose, im-
proving total weight lifted and total number of repetitions
[243]. ATP may increase blood flow to the exercising
muscle [244] and may reduce fatigue and increase peak
power output during later bouts of repeated bouts exercise
[242]. ATP may also support greater recovery and lean
mass maintenance under high volume training [245], how-
ever, this has only been reported in one previous study. In
addition, ATP supplementation in clinical populations has
been shown to improve strength, reduce pain after knee
surgery, and reduce the length of the hospital stay [246].
However, given the limited number of human studies of
ATP on increasing exercise-induced gains in muscle mass,
more chronic human training studies are warranted.

Branched chain amino acids (BCAA) BCAA supple-
mentation has been reported to decrease exercise-induced
protein degradation and/or muscle enzyme release (an
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indicator of muscle damage) possibly by promoting an
anti-catabolic hormonal profile [118, 247, 248] and more
recent studies support their ability to favorably promote
responses to damaging eccentric muscle contractions
[249, 250]. Leucine, in particular, is recognized as a key-
stone of sorts that when provided in the correct amounts
(3–6 g) activates the mTORC1 complex resulting in favor-
able initiation of translation [251]. To highlight this im-
pact for leucine, varying doses of whey protein and
leucine levels were provided to exercising men at rest and
in response to an acute bout of lower-body resistance ex-
ercise to examine the muscle protein synthetic response.
Interestingly, when a low dose of whey protein (6.25 g)
was enriched with leucine to equal the leucine content
found in a 25-g dose of whey protein, the ability to stimu-
late muscle protein synthesis was retained. While the 25-g
dose of whey protein did favorably sustain the increases in
muscle protein synthesis, the added leucine highlights an
important role for leucine in stimulating muscle protein
synthesis in response to resistance exercise [223]. For these
reasons, it has been speculated that the leucine content of
whey protein and other high-quality protein sources have
been suggested to be primary reasons for their ability to
stimulate favorable adaptations to resistance training
[252, 253]. Theoretically, BCAA supplementation during
intense training may help minimize protein degradation
and thereby lead to greater gains in (or limit losses of)
fat-free mass, but only limited evidence exists to support
this hypothesis. For example, Schena and colleagues [254]
reported that BCAA supplementation (~ 10 g/d) during
21-days of trekking at altitude increased fat free mass
(1.5%) while subjects ingesting a placebo had no change in
muscle mass. Bigard and associates [255] reported that
BCAA supplementation appeared to minimize loss of
muscle mass in subjects training at altitude for 6 weeks.
Finally, Candeloro and coworkers [256] reported that
30 days of BCAA supplementation (14 g/day) promoted a
significant increase in muscle mass (1.3%) and grip
strength (+ 8.1%) in untrained subjects. Alternatively, Spil-
lane and colleagues [257] reported that 8 weeks of resist-
ance training while supplementing with either 9 g of
BCAAs or placebo did not impact body composition or
muscle performance. Most recently, Jackman et al. [222]
examined the ability of an acute dose of branched-chain
amino acids to stimulate increases in muscle protein syn-
thesis. While acute ingestion of BCAAs did promote a
22% greater increase in muscle protein synthesis when
compared to a placebo, the determined rates were 50%
lower than what is commonly seen when a dose of whey
protein containing similar amounts of BCAAs is ingested.
As mixed outcomes cloud the ability to make clear
determinations, studies strongly suggest a mechanistic
role for BCAAs and in particular leucine, yet transla-
tional data fails to consistently support the need for

BCAA supplementation. Alternatively, multiple studies
do support BCAAs ability to mitigate recovery from
damaging exercise while their ability to favorably im-
pact resistance training adaptations needs further re-
search. This will be discussed in a later section.

Phosphatidic acid Phosphatidic acid (PA) is a diacyl-gly-
cerophospholipid that is enriched in eukaryotic cell mem-
branes and it can act as a signalling lipid [258].
Interestingly, PA has been repeatedly shown to activate the
mammalian target of rapamycin (mTOR) signalling in
muscle; an effect which ultimately leads to increases in
muscle protein synthesis. For instance, Fang et al. [259]
demonstrated that PA activates mTOR in vitro.
Hornberger et al. [260] also reported that mechanical
stretching of skeletal muscle in situ promotes an in-
crease in intramuscular PA levels and this effect was
associated with the activation of mTOR signalling. To
date, two chronic human supplementation studies
have been performed whereby PA supplementation
(750 mg/day) occurred in subjects engaged in resist-
ance training. Hoffman et al. [261] reported that PA
supplementation increased whole-body lean body
mass (LBM) by 1.7 kg, whereas the placebo group
demonstrated no relative change in LBM (0.1 kg; p =
0.065 between groups). Joy et al. [262] performed a
similar eight-week study with more participants and
supervised training sessions, and reported that PA
supplementation significantly increased LBM by 2.4 kg,
whereas the placebo group demonstrated marginal in-
creases in LBM (1.2 kg; p < 0.05 between groups). A third
study confirmed the beneficial effects of PA on
exercise-induced gains in lean body mass [263]. The cur-
rently established dose of PA is 750 mg per day and an-
other study investigating lower doses, 375 and 250 mg per
day, failed to show significant benefits on lean body mass
[264]. Hence, preliminary human research suggests that
PA supplementation can increase anabolic signalling in
skeletal muscle and enhance gains in muscle mass with re-
sistance training. Given that PA supplementation studies
are in their infancy relative to other muscle-building sup-
plements (e.g., whey protein, creatine, HMB, etc.), future
studies are needed in order to determine the optimal dos-
age, timing, and duration of supplementation needed for
optimal muscle mass gains.

Little to no evidence to support efficacy and/or safety
Agmatine sulfate
Agmatine, the decarboxylation product of the amino
acid L-arginine, has shown different biological effects in
different in vitro and animal models [265] indicating
potential benefits in an athletic population. Agmatine is
thought to improve insulin release and glucose uptake,
assist in the secretion of luteinizing hormone, influence
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the nitric oxide signalling pathway, offer protection from
oxidative stress, and is potentially involved in neuro-
transmission [266]. It is mostly found in fermented foods
[267], with higher levels found in alcoholic beverages.
Currently, nearly all research involving agmatine is com-
monly from animal research models and no human studies
have been conducted to examine its impact on blood flow
or impacting resistance training adaptations such as
strength and body composition. There does not appear to
be any scientific evidence that Agmatine supports increases
in lean body mass or muscular performance.

α-ketoglutarate (α-KG)
α-ketoglutarate (α-KG) is an intermediate in the Krebs
cycle that is involved in aerobic energy metabolism and
may function to stimulate nitric oxide production. There
is some clinical evidence that α-KG may serve as an
anticatabolic nutrient after surgery [268, 269]. However,
it is unclear whether α-KG supplementation during
training may affect training adaptations. Very little
research has been conducted on just alpha-ketoglutarate
in humans to examine exercise outcomes. For example,
Little and colleagues [270] supplemented with creatine, a
combination of creatine, α-KG, taurine, BCAA and
medium-chain triglycerides, or a placebo. The combin-
ation of nutrients increased the maximal number of
bench press repetitions completed and Wingate peak
power while no changes were reported in the placebo
group. Campbell and investigators [271] supplemented
35 healthy trained men with 2 g of arginine and 2 g of
α-KG or placebo in a double-blind manner while resist-
ance training for 8 weeks. Supplementation with arginine
+ α-KG increased bench press strength and Wingate peak
power, but did not impact body composition. Finally, Wil-
loughby and colleagues [272] examined the results of
arginine α-KG supplementation in relation to increasing
nitric oxide production (vasodilation during resistance
exercise), hemodynamics, brachial artery flow, circulating
levels of l-arginine, and asymmetric dimethyl arginine in
active males. This study found that although plasma
L-arginine increased, there was no significant impact of
supplementation on nitric oxide production after a bout
of resistance exercise. Due to the lack of research on
α-KG examining its impact on exercise training adapta-
tions, its use cannot be recommended at this time.

Arginine
Arginine is commonly classified as a conditionally essential
amino acid and has been linked to nitric oxide production
and increases in blood flow that are purported to then
stimulate enhanced nutrient and hormone delivery and
favorably impact resistance training adaptations [273]. To
date, few studies have examined the independent impact of
arginine on the ability to enhance fat-free mass increases

while resistance training. Tang and colleagues [274] used
an acute model to examine the ability of an oral 10-g dose
of arginine to stimulate changes in muscle protein synthe-
sis. These authors reported that arginine administration
failed to impact muscle protein synthesis or femoral artery
blood flow. Growth hormone levels did rise in response to
arginine ingestion, which contrasts with the findings of
Forbes et al., [275] who reported a blunting of growth hor-
mone production after acute ingestion of arginine in
strength trained males. Regardless, the Tang study [274]
and others [276, 277] failed to link the increase in growth
hormone to changes in rates of muscle protein synthesis.
Notably, other studies have also failed to show a change in
blood flow after arginine ingestion, one of its key pur-
ported benefits [272, 278]. Campbell and colleagues pub-
lished outcomes from an 8 week resistance training study
that supplemented healthy men in a double-blind fashion
with either a placebo or 2 g of arginine and 2 g of
α-ketoglutarate. No changes in fat mass or fat-free mass
were reported in this study. Therefore, due to the limited
data of arginine supplementation on stimulating further
increases of exercise in muscle mass, its use for is not rec-
ommended at this time.

Boron
Boron is a trace mineral whose physiological role is not
clearly understood. A number of proposed functions have
been touted for boron: vitamin D metabolism, macromin-
eral metabolism, immune support, increase testosterone
levels and promote anabolism [279]. Due to a lack of
scientific evidence surrounding boron, no official Daily
Reference Intake (DRI) is established. Several studies have
evaluated the effects of boron supplementation during
training on strength and body composition alterations.
However, these studies (conducted on male bodybuilders)
indicate that boron supplementation (2.5 mg/d) had no
significant impact on muscle mass or strength [280, 281].
Further, two investigations [282, 283] examined the impact
of boron supplementation on bone mineral density in
athletic and sedentary populations. In both investigations,
boron supplementation did not significantly influence
bone mineral density. Therefore, due to the limited
findings on boron supplementation, its use is not recom-
mended, and more research is warranted to determine its
physiological impact.

Chromium
Chromium is a trace mineral that is actively involved in
macronutrient metabolism. Clinical studies have sug-
gested that chromium potentiates the effects of insulin,
particularly in diabetic populations. Due to its close
interaction with insulin, chromium supplementation has
been theorized to impact anabolism and exercise training
adaptations. Initial research was promising with chromium
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supplementation being associated with increases in muscle
and strength, particularly in women [284–286]. Subsequent
well-controlled research studies [287] since that time have
consistently failed to report a benefit for chromium supple-
mentation (200–800 μg/d for 4–16 weeks) [288–294].
Most recently, chromium supplementation was investi-
gated for its ability to impact glycogen synthesis after
high-intensity exercise and was found to exert no impact
over recovery of glycogen [295]. In summary, chromium
supplementation appears to exert very little potential for
its ability to stimulate or support improvements in fat-free
mass. Therefore, due to the limited data of arginine supple-
mentation on stimulating further increases of exercise in
muscle mass, its use for is not recommended at this time.

Conjugated linoleic acids (CLA)
Animal studies indicate that adding CLA to dietary feed
decreases body fat, increases muscle and bone mass, has
anti-cancer properties, enhances immunity, and inhibits
progression of heart disease [296–298]. Although animal
studies are impressive [299–301], human studies, at best,
suggest a modest ability, independent of exercise or diet
changes, of CLA to stimulate fat loss [302–305]. More-
over, very little research has been conducted on CLA to
better understand if any scenario exists where its use
may be justified. Initial work by Pinkoski et al. [306] sug-
gested that CLA supplementation may help minimize
catabolism while resistance training, but overall im-
provements in body composition from this study failed
to yield positive outcomes. Two studies are available that
supplemented exercising younger [307] and older indi-
viduals [308] with a combination of CLA and creatine
and reported significant improvements in strength and
body composition, but these results are thought to be
the result of creatine. Currently, it seems there is little
evidence that CLA supplementation during training can
affect lean tissue accretion and has limited efficacy [309].

D-aspartic acid
Also known as aspartate, aspartic acid is a non-essential
amino acid. Two isomers exist within aspartic acid:
L-Aspartic acid and D-Aspartic acid. D-Aspartic acid is
thought to help boost athletic performance and function as
a testosterone booster. It is also used to conserve muscle
mass. While limited research is available in humans
examining D-aspartic, Willoughby and Leutholtz [310]
published a study to determine the impact of D-aspartic
acid in relation to testosterone levels and performance in
resistance-trained males. The results showed D-aspartic
acid did not impact testosterone levels nor did it improve
any aspect of performance. In agreement, Melville and
colleagues [311] had participants supplement with either
three or 6 g of D-aspartic acid and concluded that neither
dose of D-aspartic acid stimulated any changes in

testosterone and other anabolic hormones. Later, Melville
et al. [312] supplemented 22 men in a randomized,
double-blind fashion with either a placebo or 6 g of
D-aspartic acid and concluded that 12 weeks of supple-
mentation exerted no impact on resting levels of free or
total testosterone and all changes observed in strength
or hypertrophy were similar to what was experienced in
the placebo group. Based on the currently available litera-
ture, D-aspartic acid is not recommended to improve
muscle health.

Ecdysterones
Ecdysterones (also known as ectysterone, 20 β-Hydro-
xyecdysterone, turkesterone, ponasterone, ecdysone, or
ecdystene) are naturally derived phytoecdysteroids (i.e.,
insect hormones). They are typically extracted from the
herbs Leuza rhaptonticum sp., Rhaponticum cartha-
moides, or Cyanotis vaga. They can also be found in
high concentrations in the herb Suma (also known as
Brazilian Ginseng or Pfaffia). Initial interest was gener-
ated for ecdysterones due to reports of research from
Russia and Czechoslovakia that indicated a potential
physiological benefit in insects and animals [313–316].
A review by Bucci on various herbals and exercise per-
formance also mentioned suma (ecdysterone) [317].
Unfortunately, the initial work was available in obscure
journals with sub-standard study designs and presentation
of results. In 2006, Wilborn and coworkers [318] com-
pleted what remains as the only study in humans to exam-
ine the impact of ecdysterones while resistance training.
Herein, a 200 mg daily dose of 20-hydroxyecdysone over
8 weeks yielded no impact on changes in fat free mass or
anabolic/catabolic hormone status. Ecdysterones are not
recommended for supplementation to increase training
adaptations or performance.

Fenugreek extract
Fenugreek (trigonella foenum-graecum) is an Ayurvedic
herb historically used to enhance masculinity and libido.
Fenugreek extract has been shown to increase testoster-
one levels by decreasing the activity of the aromatase en-
zyme metabolizing testosterone into estradiol [319, 320].
Initial research by Poole et al. [321] supplemented resist-
ance trained men in a randomized, double-blind fashion
with a placebo or 500 mg of Fenugreek extract. After
8 weeks of supplementing and resistance training, signifi-
cantly greater improvements in body fat, lower body
strength, and upper body strength were observed.
Wankhede and colleagues [320] reported a significant
increase in repetitions performed to failure using the
bench press and a reduction in body fat when 600 mg
Fenugreek extract was consumed while following a resist-
ance training program. Initial research using Fenugreek
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extract suggests it may help improve resistance-training
adaptations, but more research in different populations is
needed before any further recommendations can be made.

Gamma oryzanol (ferulic acid)
Gamma oryzanol is a mixture of a plant sterol and ferulic
acid theorized to increase anabolic hormonal responses,
strength and muscle mass during training [322, 323]. Al-
though data are limited, one study reported no effect of
0.5 g/d of gamma oryzanol supplementation on strength,
muscle mass, or anabolic hormonal profiles during 9 weeks
of training [324]. Most recently, Eslami and colleagues
[325] supplemented healthy male volunteers with either
gamma oryzanol or placebo for 9 weeks while resistance
training. In this study, changes in body composition were
not realized, but a significant increase in strength was
found in the bench press and leg curl exercise. With limited
research of mixed outcomes at this point, no conclu-
sive recommendation can be made at this time as
more research is needed to fully determine what im-
pact, if any, gamma oryzanol supplementation may
have in exercising individuals.

Glutamine
Glutamine is the most plentiful non-essential amino acid
in the body and plays several important physiological roles
[74, 326, 327]. Glutamine has been reported to increase
cell volume and stimulate protein [328–330] and glycogen
synthesis [331]. Despite its important role in physiological
processes, there is no compelling evidence to support the
use of glutamine supplementation in terms of increasing
lean body mass and a 2008 review by Gleeson concluded
that minimal evidence is available to support glutamine’s
purported role in exercise and sport training [332]. Initial
research by Colker and associates [333] reported that sub-
jects who supplemented their diet with glutamine (5 g)
and BCAA (3 g) enriched whey protein (40 g) during
resistance training promoted about a two pound greater
gain in muscle mass and greater gains in strength than
ingesting whey protein alone. In contrast, Kerksick and
colleagues [232] reported no additional impact on
strength, endurance, body composition and anaerobic
power of combining 5 g of glutamine and 3 g of BCAAs to
40 g of whey protein in healthy men and women who
resistance trained for 10 weeks. In addition, Antonio et al.
[334] reported that high-dose glutamine ingestion (0.3 g/
kg) offered no impact of the number of repetitions
completed using the leg press or bench press exercises. In
a well-designed investigation, Candow and co-workers
[335] studied the effects of oral glutamine supplementa-
tion combined with resistance training in young adults.
Thirty-one participants were randomly allocated to receive
either glutamine (0.9 g/kg of lean tissue mass) or a malto-
dextrin placebo (0.9 g/kg of lean tissue mass) during

6 weeks of total body resistance training. The authors con-
cluded glutamine supplementation during resistance train-
ing had no significant effect on muscle performance, body
composition or muscle protein degradation in young
healthy adults. While there may be other beneficial uses
for glutamine supplementation (i.e. gastrointestinal health
and peptide uptake in stressed populations [336] and, as
mentioned previously, mitigation of soreness and recovery
of lost force production [337]), there does not appear to be
any scientific evidence that it supports increases in lean
body mass or muscular performance.

Growth hormone releasing peptides (GHRP) and secretagogues
Growth hormone releasing peptides (GHRP) and other
non-peptide compounds (secretagogues) facilitate growth
hormone (GH) release [338, 339], and can impact sleep
patterns, food intake and cardiovascular functioning [340]
along with improvements in lean mass in clinical wasting
states [341]. These observations have served as the basis
for development of nutritionally-based GH stimulators
(e.g., amino acids, pituitary peptides, “pituitary substances”,
Macuna pruriens, broad bean, alpha-GPC, etc.) and con-
tinue to capture interest by sporting populations for their
potential to impact growth hormone secretion, recovery
and robustness of training [342]. Although there is clinical
evidence that pharmaceutical grade GHRP’s and some
non-peptide secretagogues can increase GH and IGF-1
levels at rest and in response to exercise, it has not been
demonstrated that such increases lead to an increase in
skeletal muscle mass [343]. Finally, Chromiak and Antonio
[344] reported that oral ingestion of many secretagogues
fail to consistently stimulate hormone increases in growth
hormone and fail to stimulate greater changes in muscle
mass or strength. Currently, there is no convincing scien-
tific evidence that secretagogues support increases in lean
body mass or muscular performance.

Isoflavones
Isoflavones are naturally occurring non-steroidal
phytoestrogens that have a similar chemical structure as
ipriflavone (a synthetic flavonoid drug used in the treat-
ment of osteoporosis) [345–347]. For this reason, soy
protein (which is an excellent source of isoflavones) and
isoflavone extracts have been investigated in the possible
treatment of osteoporosis as well as their role in body
composition changes and changes in cardiovascular
health markers. In this respect, multiple studies have
supported the ability of isoflavone supplementation in
older women alone [348] and in combination with ex-
ercise over the course of 6–12 months to improve
various body composition parameters [349–351].
Findings from these studies have some applications to
sedentary, postmenopausal women. However, there
are currently no peer-reviewed data indicating that
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isoflavone supplementation affects exercise, body compos-
ition, or training adaptations in physically active individ-
uals. For example, Wilborn and colleagues [318] reported
that 8 weeks of supplementing with isoflavones with re-
sistance training did not significantly impact strength or
body composition.

Ornithine-α-ketoglutarate (OKG)
OKG (via enteral feeding) has been shown to significantly
shorten wound healing time and improve nitrogen balance
in severe burn patients [352, 353]. A 2004 review by Cyno-
ber postulated that OKG may operate as a precursor to
arginine and nitric oxide, but the overall lack of efficacy
for arginine and other precursors limits the potential of
OKG. Because of its ability to improve nitrogen balance,
OKG may provide some value for athletes engaged in
intense training. A study by Chetlin and colleagues [354]
reported that OKG supplementation (10 g/day) during
6 weeks of resistance training significantly increased upper
body strength. However, no significant differences were
observed in lower body strength, training volume, gains in
muscle mass, or fasting insulin and growth hormone.
Since the previously published version of this review, no
additional human research has been published and conse-
quently, no further recommendations can be made regard-
ing OKG’s potential as an ergogenic aid.

Prohormones and anabolic steroids
Testosterone and growth hormone are two primary hor-
mones in the body that serve to promote gains in muscle
mass (i.e., anabolism) and strength while decreasing muscle
breakdown (catabolism) and fat mass [355–362]. Testoster-
one also promotes male sex characteristics (e.g., hair, deep
voice, etc.) [356]. Low level anabolic steroids are often pre-
scribed by physicians to prevent loss of muscle mass for
people with various diseases and illnesses [363–374]. It is
well known that athletes have experimented with large
doses of anabolic steroids in an attempt to enhance train-
ing adaptations, increase muscle mass, and/or promote
recovery during intense training [356–358, 361, 362, 375].
Research has generally shown that use of anabolic steroids
and growth hormone during training can promote gains in
strength and muscle mass [355, 360, 362, 368, 371,
376–383]. However, a number of potentially life threaten-
ing adverse effects of steroid abuse have been reported in-
cluding liver and hormonal dysfunction, hyperlipidemia
(high cholesterol), increased risk to cardiovascular disease,
and behavioral changes (i.e., steroid rage) [378, 384–388].
Some of the adverse effects associated with the use of
these agents are irreversible, particularly in women [385].
For these reason, anabolic steroids have been banned by
most sport organizations and should be avoided unless
prescribed by a physician to treat an illness.

Prohormones (e.g., androstenedione, 4-androstenediol,
19-nor-4-androstenedione, 19-nor-4-androstenediol, 7-keto
DHEA, and DHEA, etc.) are naturally derived precursors to
testosterone or other anabolic steroids. Their use has been
suggested to naturally boost levels of these anabolic hor-
mones. While data is available demonstrating increases in
testosterone [389, 390], virtually no evidence exists demon-
strating heightened training adaptations in younger men
with normal hormone levels. In fact, most studies indicate
that they do not affect testosterone and that some may ac-
tually increase estrogen levels and reduce HDL-cholesterol
[378, 389, 391–396]. On a related note, studies have exam-
ined the ability of various ingredients to increase testoster-
one via inhibition of aromatase and 5-alpha-reductase
[397]. Rohle et al. [398] and Willoughby et al. [399]
reported that significant increases in free testosterone and
dihydrotesterone occurred, but soft tissue composition
either was not measured [398] or wasn’t changed as a result
of supplementation [399]. Consequently, although there
may be some potential applications for older individuals to
replace diminishing androgen levels, it appears that prohor-
mones have no training value. Since prohormones are
“steroid-like compounds”, most athletic organizations have
banned their use. Use of nutritional supplements contain-
ing prohormones will result in a positive drug test for
anabolic steroids. Use of supplements (knowingly or
unknowingly) containing prohormones have been believed
to have contributed to a number of recent positive drug
tests among athletes. Consequently, care should be taken to
make sure that any supplement an athlete considers taking
does not contain prohormone precursors particularly if
their sport bans and tests for use of such compounds.
Companies such as Informed Choice (www.informed-choi
ce.org) and National Sanitation Foundation, NSF (aka, NSF
Certified for Sport) www.nsf.org) have developed assurance
programs to test and screen various nutrition products.
Moreover, several professional sporting organizations have
incorporated language into the collective bargaining that
requires all products provided by teams or sporting organi-
zations must provide products that have achieved certain
3rd party approvals for safety, banned substances and/or
label claims. It is noteworthy to mention that many prohor-
mones are not lawful for sale in the USA since the passage
of the Anabolic Steroid Control Act of 2004. The distinctive
exception to this is dehydroepiandrosterone (DHEA),
which has been the subject of numerous clinical studies in
aging populations.

Sulfo-polysaccharides (myostatin inhibitors)
Myostatin or growth differentiation factor 8 (GDF-8) is a
transforming growth factor known as a negative regulator
of skeletal muscle hypertrophy [400]. In humans, inhibiting
myostatin gene expression has been theorized as a way to
prevent or slow down muscle wasting in various diseases,
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speed up recovery of injured muscles, and/or promote in-
creases in muscle mass and strength in athletes [401].
Since 2010, no additional research has been published that
examined the impact of any nutritional ingredient or strat-
egy to inhibit myostatin expression. In humans, myostatin
clearly plays a role in regulating skeletal muscle mass. For
example, a study by Ivey and colleagues [401] reported that
female athletes with a less common myostatin allele experi-
enced greater gains in muscle mass during training and
reduced atrophy during detraining. Interestingly, no such
changes were reported for men. Willoughby and colleagues
[402] supplemented untrained males with 1200 mg/day of
Cytoseira Canariensis (a form of sea algae), a purported
myostatin inhibitor, and reported no changes for fat-free
mass, strength and blood concentrations of myostatin.
These results were corroborated by Wilborn et al. [318]
who reported no impact of sulfo-polysaccaride supplemen-
tation on body composition or performance changes. As it
stands, there is currently no published data supporting the
use of sulfo-polysaccharides or any other ingredient touted
to act as a myostatin inhibitor for their ability to increase
strength or muscle mass.

Tribulus terrestris
Tribulus terrestris (also known as puncture weed/vine or
caltrops) is a plant extract that has been suggested to
stimulate leutinizing hormone which stimulates the natural
production of testosterone [403]. Consequently, tribulus is
marketed as a supplement that can increase testosterone
and promote greater gains in strength and muscle mass
during training. In human research models, several studies
have indicated that tribulus supplementation alone
[404, 405] or in combination with other segragotogues and
androgen precusors [406, 407] appears to have no effects on
body composition or strength during resistance training.

Vanadyl sulfate (vanadium)
Vanadyl sulfate is a trace mineral that has been found to
affect insulin-sensitivity (similar to chromium) and may
affect protein and glucose metabolism [403, 408]. In this
regard, reports have highlighted the potential efficacy
and support for vanadium to improve insulin sensitivity
[409] and assist with the management of diabetes [410].
In relation to its potential ability to impact protein and
glucose metabolism, vanadyl sulfate supplementation has
been purported to positively impact strength and muscle
mass [74, 411]. However, no studies are available that
support the ability of vanadyl sulfate supplementation to
impact strength or muscle mass in non-diabetic individ-
uals who are currently resistance training [412, 413].

Zinc/magnesium aspartate (ZMA)
The main ingredients in ZMA formulations are zinc
monomethionine aspartate, magnesium aspartate, and

vitamin B-6. ZMA supplementation is based upon the ra-
tionale that zinc and magnesium deficiency may reduce the
production of testosterone and insulin like growth factor
(IGF-1). Consequently, ZMA supplementation is advocated
for its ability to increase testosterone and IGF-1, which is
further suggested to promote recovery, anabolism, and
strength during training. Two studies with contrasting out-
comes have examined the ability of acute ZMA administra-
tion to increase anabolic hormone concentrations. Initially,
Brilla and Conte [414] reported that a zinc-magnesium for-
mulation increased testosterone and IGF-1 (two anabolic
hormones) leading to greater strength gains in football
players participating in spring training while Koehler et al.
[415] reported that ZMA supplementation increased
serum zinc and excretion, but failed to change free and
total testosterone levels. Wilborn et al. [416] had resistance
trained males ingest a ZMA supplement or placebo in a
double-blind fashion and resistance train for 8 weeks and
found no change in free or total testosterone, strength or
fat-free mass (via DXA). It is noted that previous deficien-
cies in zinc may negatively impact endogenous production
of testosterone secondary to its role in androgen metabol-
ism and steroid receptor interaction [417]. To this point,
Brilla and Conte [414] did report depletions of both zinc
and magnesium, thus increases in testosterone levels
could have been attributed to deificient nutritional status
rather than a pharmacologic effect. More research is
needed to further evaluate the role of ZMA on body com-
position and strength during training before definitive
conclusions can be drawn.

Performance enhancement supplements
Several nutritional supplements have been proposed to
enhance exercise performance. Throughout this section,
emphasis is placed upon results that directly measured
some attribute of performance. In situations where a
nutrient is purported to stimulate increases in fat-free
mass and enhance performance (i.e., creatine), a large,
more developed section is available while a shorter, more
concise section is available in the other category. Table 3
categorizes the proposed ergogenic nutrients into:
Strong Evidence to Support Efficacy and Apparently
Safe, Limited or Mixed Evidence to Support Efficacy,
Little to No Evidence to Support Efficacy and/or Safety.

Strong evidence to support efficacy and apparently safe

ß-alanine ß-alanine, a non-essential amino acid, has er-
gogenic potential based on its role in carnosine synthesis
[12]. Carnosine is a dipeptide comprised of the amino
acids, histidine and ß-alanine, that naturally occur in
large amounts in skeletal muscles. Carnosine is believed
to be one of the primary muscle-buffering substances
available in skeletal muscle. Studies have demonstrated
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that taking four to 6 g of ß-alanine orally, in divided
doses, over a 28-day period is effective in increasing car-
nosine levels [418, 419], while more recent studies have
demonstrated increased carnosine and efficacy up to
12 g per day [420]. According to the ISSN position state-
ment, evaluating the existing body of ß-alanine research
suggests improvements in exercise performance with more
pronounced effects on activities lasting one to 4 min; im-
provements in neuromuscular fatigue, particularly in older
subjects, and lastly; potential benefits in tactical personnel
[12]. Other studies have shown that ß-alanine supplemen-
tation can increase the number of repetitions one can do
[421], increase lean body mass [422], increase knee exten-
sion torque [423], and increase training volume [421]. In
fact, one study also showed that adding ß-alanine to creat-
ine improves performance over creatine alone [424]. While
it appears that ß-alanine supplementation can improve
performance, other studies have failed to demonstrate a
performance benefit [425, 426].

Caffeine Caffeine is a naturally derived stimulant found
in many nutritional supplements typically as guarana,
bissey nut, or kola. Caffeine can also be found in coffee,
tea, soft drinks, energy drinks, and chocolate. Caffeine has
also been shown to be an effective ergogenic aid for aer-
obic and anaerobic exercise with a documented ability to
increase energy expenditure and promote weight loss [14].
Research investigating the effects of caffeine on time trial
performance in trained cyclists found that caffeine im-
proved speed, peak power, and mean power [427]. Similar
results were observed in a recent study that found cyclists
who ingested a caffeine drink prior to a time trial demon-
strated improvements in performance [428, 429]. Studies
indicate that ingestion of caffeine (e.g., 3–9 mg/kg taken
30–90 min before exercise) can spare carbohydrate use
during exercise and thereby improve endurance exercise
capacity [430, 431]. In addition to the apparent positive ef-
fects on endurance performance, caffeine has also been
shown to improve repeated sprint performance benefiting
the anaerobic athlete [432–434]. Research examining caf-
feine’s ability to increase maximal strength and repetitions
to fatigue are largely mixed in their outcomes. For ex-
ample, Trexler, et al. [434] reported that caffeine can im-
prove repeated sprint performance but failed to impact
maximal strength and repetitions to fatigue using both
upper-body and lower-body exercises. In agreement,
Astorino and colleagues [435] revealed no change in
upper-body and lower-body strength after resistance
trained males ingested 6 mg/kg of caffeine. Similarly, Beck
and investigators [436] provided resistance trained males
with 201 mg caffeine (2.1–3.0 mg/kg) and reported no
impact on lower-body strength, lower-body muscular en-
durance or upper-body muscular endurance. Maximal
upper-body strength, however, was improved. In contrast,

other studies have indicated that caffeine may favorably
impact muscular performance. For example, Goldstein et
al. [437] reported that caffeine ingestion (6 mg/kg) signifi-
cantly increased bench press strength in a group of
women but did not impact repetitions to fatigue. Studies
by Duncan and colleagues [438–441] have examined the
impact of caffeine on strength and endurance perform-
ance as well various parameters of mood state while per-
forming maximal resistance exercise. Briefly, these authors
have reported improvements in strength and repetitions
to failure using the bench press [438, 439] and other exer-
cises [440, 441]. In addition to potential ergogenic impact,
these authors also reported that caffeine significantly im-
proved various indicators of mood state [438, 440], low-
ered ratings of perceived exertion and decreased
perception of muscle pain [439, 441] when acute doses of
caffeine (5 mg/kg) were provided before maximal resist-
ance exercise. As illustrated, when evaluating the research
on caffeine for its ability to impact strength and muscular
performance, the findings are equivocal, and, subse-
quently, more research is needed to better determine what
situations may best predict caffeine’s ability to impact
strength performance. For example, trained subjects have
demonstrated more ergogenic effects compared to un-
trained subjects [442, 443]. Also, people who drink caffein-
ated drinks regularly, however, appear to experience less
ergogenic benefits from caffeine [444]. Some concern has
been expressed that ingestion of caffeine prior to exercise
may contribute to dehydration, although several studies
have not supported this concern [430, 445, 446]. Caffeine,
from anhydrous and coffee sources are both equally ergo-
genic [434]. Caffeine doses above 9 mg/kg can result in
urinary caffeine levels that surpass the doping threshold
for many sport organizations. In summary, consistent
scientific evidence is available to indicate that caffeine
operates as an ergogenic aid in several sporting situations.

Carbohydrate One of the best ergogenic aids available
for athletes and active individuals alike, is carbohydrate.
Optimal carbohydrate in the diet on a daily basis, in the
hours leading up to exercise, throughout exercise and in
the hours after exercise can ensure endogenous glycogen
stores are maintained and support many types of exercise
performance [41–43, 50]. In this respect, athletes and ac-
tive individuals should consume a diet high in carbohydrate
(e.g., 55–65% of calories or 5–8 g/kg/day) to maintain
muscle and liver carbohydrate stores [41, 50, 54]. Research
has clearly identified carbohydrate as an ergogenic aid that
can prolong exercise [41, 68]. For example, Below and col-
leagues [447] provided research that ingesting carbohydrate
throughout a time to exhaustion protocol after nearly
an hour of moderate intensity cycling can significantly
extend the time cycling is performed. Moreover,
Widrick et al. [129] systematically examined all four
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possible combinations of high and low pre-exercise
intramuscular glycogen levels with and without carbo-
hydrate provision before a standard bout of cycling
exercise. When carbohydrate was provided, performance
was improved. In addition to traditional endurance exer-
cise models, Williams and Hawley [42] summarized the
literature involving carbohydrate delivery and perform-
ance of team sports that are typically characterized by
variable intensities and intermittent periods of heavy exer-
tion and concluded that carbohydrate intake can increase
performance. Pochmuller et al. [68] and Colombani et al.
[69] have critically pointed to the duration of the involved
exercise bout, the intensity of exercise involved, and the
fasting status of the individuals as key factors that may im-
pact exercise performance. Further, Burke and colleagues
[23, 50], Hawley et al. [43] and Rodriguez et al. [54] have
all emphasized the importance of optimal carbohydrate
delivery throughout various types of sport and recovery
scenarios to support performance. Beyond ingestion, a
growing body of literature has drawn attention to the po-
tential impact of carbohydrate mouth rinsing as an ergo-
genic strategy. Initial work by Carter and colleagues [448]
where they demonstrated an increase in time to exhaus-
tion performance while cycling after rinsing (but not swal-
lowing) the oral cavity with a carbohydrate solution versus
a no carbohydrate rinse revealed that receptors in the
brain might be linked to the mere presence of carbohy-
drate in the mouth, which subsequently can work to im-
prove various types of exercise performance. While this
concept is still emerging, some [449–452] but not all
[453–455] of the studies have supported the ability of
carbohydrate mouth rinsing to increase performance. An-
other carbohydrate manipulation strategy has included
utilizing high molecular weight carbohydrates solutions,
in contrast to traditional low molecular weight beverages,
to theoretically accelerate glucose absorption and energy
availability. Importantly, the majority of the literature sug-
gests that utilizing a high molecular weight solution can
impart changes in oxidized substrates, or patterns of fuel
usage, but appears to have no ergogenic effect on per-
formance in males or females [63, 456–459].

Creatine monohydrate As indicated earlier, creatine
supplementation is a well-supported strategy to increase
muscle mass and strength during training. However, cre-
atine has also been reported to improve exercise capacity
in a variety of settings [182, 460–462]. Specifically, and
as discussed by Kreider et al. [10], studies have docu-
mented improvements in: a) single and multiple sprints,
b) work completed across multiple sets of maximal ef-
fort, c) anaerobic threshold, d) glycogen loading, e) work
capacity, f ) recovery, and g) greater training tolerance.
Consequently, team sports, individual activities or sports
that consist of high intensity, intermittent exercise such

as soccer, tennis, basketball, lacrosse, field hockey and
rugby can all benefit from creatine use [182]. Moreover,
a 2009 study found that in addition to high intensity
interval training creatine improved critical power [460].
Less research is available involving creatine supplemen-
tation and endurance exercise, but creatine’s ability to
promote glycogen loading [463] and storage of carbohy-
drate [464–466], key fuels during endurance exercise,
may translate into improved endurance exercise
performance. Indeed, a 2003 study found that ingesting
20 g of creatine for 5 days improved endurance and
anaerobic performance in elite rowers [467]. Since creat-
ine has been reported to enhance interval sprint
performance, creatine supplementation during training
may improve training adaptations in endurance and
anaerobic athletes, anaerobic capacity, and allow athletes
to complete greater volumes of training at or above
anaerobic threshold [468, 469]. Notably, for athletes who
struggle to maintain their body mass throughout their
competitive season, creatine use may help athletes in
this respect. Importantly and in addition to creatine
being an effective ergogenic aid in a wide variety of
sports, studies have documented these outcomes
(improvements in acute exercise capacity, work com-
pleted during multiple sets and training adaptations) in
adolescents [470–474], younger adults [231, 424, 462,
475–483], and older individuals [484–490]. Regarding
creatine and athletic performance, there appears to be a
misunderstanding that creatine may result in muscle
cramps and dehydration. However, based on many avail-
able studies, there is no clinical evidence that creatine
supplementation will increase susceptibility of dehydra-
tion, muscle cramps, or heat related illness [196, 491].

Sodium bicarbonate (baking soda) During high inten-
sity exercise, acid (H+) and carbon dioxide (CO2) accu-
mulate in the muscle and blood. The bicarbonate system
is the primary means the body rids itself of the acidity
and CO2 via their conversion to bicarbonate prior to
subsequent removal in the lungs. Bicarbonate loading
(e.g., 0.3 g per kg taken 60–90 min prior to exercise or
5 g taken two times per day for 5 days) as sodium bicar-
bonate has been shown to be an effective way to buffer
acidity during high intensity exercise lasting one to
3 min in duration [431, 492–494]. Matson et al. [495]
reported improvements in exercise capacity in events
like the 400–800 m run while Lindh and colleagues
[496] reported that bicarbonate can improve 200 m free-
style swimming performance in elite male swimmers.
Similarly, studies have reported the ability of bicarbonate
to improve 3 km cycling time trials [497]. Marriott et al.
[498] published findings that sodium bicarbonate signifi-
cantly improved intermittent running performance by
23% and reduced perceived exertion in male team-sport
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athletes. Interestingly, Percival and investigators [499]
reported that sodium bicarbonate supplementation
resulted in significantly higher levels of PGC-1-α, a key
protein known to drive mitochondrial adaptations.
Finally, a meta-analysis by Peart and investigators [500]
involving sodium bicarbonate reported the overall treat-
ment effect to be moderate at improving performance
with nearly all measured ergogenic outcomes being in-
fluenced by the training status of the participants.
In addition, other studies have examined the potential

additive benefit of ingesting sodium bicarbonate with either
caffeine or beta-alanine. In this respect, Kilding et al. [497]
reported significant independent effects of caffeine and
bicarbonate on three-kilometer cycling time trial perform-
ance, but no additive benefit. Alternatively, Tobias and
associates [501] also reported a significant improvement in
upper-body power production in trained martial arts
athletes after ingesting either beta-alanine or sodium bicar-
bonate, but noted a distinct synergistic improvement in
upper-body power and performance when beta-alanine
and sodium bicarbonate were ingested together. In con-
trast, Danaher et al. [502] had eight healthy males supple-
ment with either beta-alanine, sodium bicarbonate or their
combination for 6 weeks in a crossover fashion before
completing a repeated sprint ability test while cycling.
While buffering capacity was increased, performance was
only improved when beta-alanine was provided. Due to the
mixed outcomes and relative lack of available studies, more
research is recommended examining the synergistic impact
of sodium bicarbonate and other ingredients. It is import-
ant to highlight that a common complaint surrounding the
ingestion of sodium bicarbonate is gastrointestinal distress,
thus athletes should experiment with its use prior to
performance to evaluate tolerance.

Sodium phosphate Phosphate is best known as an
essential mineral found in many common food sources
(e.g., red meat, fish, dairy, cereal, etc.) with key functions
in bone, cell membranes, RNA/DNA structure and as
backbones of phosphocreatine and various nucleotides.
In addition, phosphate has been suggested to operate in
an ergogenic fashion due to its potential to improve
oxygen transport through modulation of 2,3-diphospho-
glycerate (DPG) and other lactic-acid-buffering compo-
nents. Sodium phosphate (NaPO4) supplementation has
been reported in multiple studies to improve aerobic
capacity by 5–12% [503–505], anaerobic threshold by 5–
10% [504–507], mean power output [503, 508] and inter-
mittent running performance [509–511]. Collectively
these studies have employed a dosing regimen that re-
quired 1 g of NaPO4 to be taken four times daily for
three to 6 days. Not all studies, however [512–514], have
reported ergogenic outcomes while factors that impact
phosphate absorption, training status and gender posed

as potential reasons why supplementation has not uni-
versally impacted performance. Brewer and colleagues
[513] reported modest (non-significant) effects of NaPO4

supplementation on repeated supplementation regimens
in trained cyclists completing a time trial. Furthermore,
West and investigators [514] used a mixed gender co-
hort and concluded no change in VO

2
Max resulted after

supplementation. Buck et al. [515] were the first to solely
examine the impact of NaPO4 in female athletes when
they had 13 trained female cyclists complete a 500-kJ
time trial after supplementing with either 25, 50, or
75 mg/kg of NaPO4 in a randomized, double-blind
manner. No significant impact of supplementation
was seen at any dosage leading the authors to con-
clude that females may not respond in the same man-
ner as men. However, the same authors on two
occasions [510, 511] examined the impact of NaPO4
in female team sport athletes completing repeated
bouts of sprint running and found that NaPO4 sig-
nificantly improved best and total sprint times when
compared to a placebo. Consequently, the impact of
gender on the ergogenic potential of NaPO4 remains
unclear with consistent benefits in females when re-
peated sprints are performed but no such benefits
during time-trial work.

Water and sports drinks Adopting strategies to limit
the loss of body mass due to sweating is critical to main-
tain exercise performance (particularly in hot/humid envi-
ronments). People engaged in intense exercise or work in
the heat are commonly recommended to regularly ingest
water or sports drinks (e.g., 12–16 fluid ounces every 10–
15 min) with the overarching goal being to minimize the
loss of body mass commonly seen as a result of exercising
in a hot and humid environment [516]. Below and col-
leagues [447] demonstrated the independent ability of
both fluid (no carbohydrate) and carbohydrate ingestion
to significantly increase cycling performance. Moreover,
when the two treatments were combined a synergistic
impact on performance was observed. Studies show
that ingestion of sports drinks during exercise in hot/
humid environments can help prevent dehydration
and improve endurance exercise capacity [517–519].
Of note and like carbohydrate, it appears that exercise
factors such as the duration and intensity of the exer-
cise bout operate as strong predictors of cycling
time-trial performance [520, 521]. Consequently, fre-
quent ingestion of water and/or sports drinks during
exercise is one of the easiest and most effective ergo-
genic aids due to its ability to support thermoregula-
tion and reduce cardiovascular strain during
prolonged bouts of exercise, particularly when com-
pleted in hot and humid conditions [162, 516].
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Limited or mixed evidence to support efficacy

L-alanyl-L-glutamine Operating under the same theor-
etical framework as glutamine, interest in supplement-
ing with L-alanyl-L-glutamine has increased in recent
years. The ingredient has two parts: L-alanine and
L-glutamine, both of which are amino acids that are
mainstays in the transamination processes involving
amino acids. Rogero and colleagues [522] supplemented
rats with L-alanyl-L-glutamine for the final 21 days of a
six-week exercise training program. Supplementation did
not impact time to exhaustion performance, but higher
levels of glutamine were found when compared to a
control group. Cruzat and Tirapequi [523] also reported
increases in plasma and intramuscular glutamine along
with an improved antioxidative profile in blood, muscle
and liver tissue samples of laboratory rats. These results
were extended in 2010 to also report an attenuation of
inflammation and plasma creatine kinase levels in labora-
tory rats after exercise training [523].
Since 2010, five peer-reviewed studies have been pub-

lished using human subjects. Hoffman and colleagues
[524] reported, in a group of ten physically active males,
that L-alanyl-L-glutamine increased time to exhaustion
on a cycle ergometer when exposed to mild dehydration
stress. Two years later, the same research group reported
that rehydration with L-alanyl-L-glutamine after 2.3%
dehydration in a basketball scrimmage led to an
improvement in basketball skill performance and visual
reaction time when compared to water [525]. A 2016
study indicated that L-alanyl-L-glutamine maintained
reaction time in an upper and lower-body activities after
an exhaustive bout of treadmill running [526]. Finally, a
2015 paper determined that L-alanyl-L-glutamine signifi-
cantly improved treadmill running performance when
compared to no hydration [527]. Collectively this
research indicates that L-alanyl-L-glutamine at dosages
ranging 300–1000 mg per 500 mL of fluid can favorably
influence hydration status and performance when com-
pared to no fluid ingestion or water only ingestion.

Arachidonic acid Arachidonic acid (ARA) is a long-
chain polyunsaturated fatty acid (20:4, n-6) that resides
within the phospholipid bi-layer of cell membranes at con-
centrations that are dependent upon dietary intake [528].
ARA is not found in high amounts in the typical American
diet [529]. However, as little as 1.5 g per day of supplemen-
tation over a 50-day period has been shown to increase
tissue cell membrane stores of ARA [530]. In skeletal
muscle, there is evidence that ARA drives some of the
inflammatory response to strength training via en-
hanced prostaglandin signalling [531]. Specifically, exer-
cise liberates ARA from the muscle cell membrane via
phospholipase A2 activation. Resultant free intracellular

ARA is subsequently converted into certain prostaglan-
dins (i.e., PGE2 or PGF2α) via cyclooxygenase (COX)
enzymes [532], and these prostaglandins can signal as-
sociated receptors in an autocrine and paracrine man-
ner to up-regulate signalling associated with increases
in muscle protein synthesis. Roberts and colleagues
[533] were the first group to examine the impact of ARA
supplementation on changes in strength and body com-
position. Over an eight-week period, resistance-trained,
college-aged males were supplemented in a double-blind
fashion with either a placebo or ARA at a dosage of 1 g per
day in conjunction with 90 g/day of whey protein. A sig-
nificant increase in anaerobic peak power was found in the
ARA group, but no other changes in strength or body
composition were found. The second study by DeSouza et
al. [534] investigated the effects of ARA supplementation
(0.6 g/d vs. placebo) in strength-trained college-aged males
for 8 weeks with concomitant resistance training and with-
out protein supplementation. These authors reported that
lean body mass (2.9%, p < 0.05), upper-body strength (8.7%,
p < 0.05), and anaerobic peak power (12.7%, p < 0.05) sig-
nificantly increased only in the ARA group. Mitchell and
colleagues [535] have also published data in 19
resistance-trained men who supplemented, in a double-
blind, placebo-controlled fashion, with 1.5 g per day of ARA
for 4 weeks and found that ARA supplementation did not
impact acute changes in muscle protein synthesis and other
mechanistic links to protein translation. The authors con-
cluded that ARA supplementation did not support a mech-
anistic link between ARA supplementation and short-term
anabolism, but may increase translation capacity. Given the
limited human data and inconsistent nature (two positive
outcomes, one negative outcome) of the findings regarding
the efficacy of ARA, it is too early to recommend ARA at
this time. In this respect, more chronic human studies test-
ing different doses of ARA supplementation are needed to
fully examine its safety and potential efficacy as a perform-
ance enhancing or muscle building aid. From a safety per-
spective and due to ARA being a known pro-inflammatory
fatty acid, use of ARA may be contraindicated in popula-
tions that have compromised inflammatory health (i.e.,
inflammatory bowel syndrome, Chron’s disease, etc.).

Branched chain amino acids (BCAA) Ingestion of
BCAA (e.g., 6–10 g per hour) with sports drinks during
prolonged exercise has long been suggested to improve
psychological perception of fatigue (i.e., central fatigue).
Accordingly, Mikulski and investigators [536] used 11
endurance trained men to examine the impact of ingest-
ing 16 g of BCAAs and 12 g of ornithine aspartate over
a 90-min cycling exercise bout and found that the amino
acid combination significantly improved reaction time,
but no ergogenic impact was seen when BCAAs were
ingested independently. Although a strong rationale and
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data exist to support an ergogenic outcome, mixed out-
comes currently prevail as other studies have failed to
report an ergogenic impact of BCAAs [247, 537]. Conse-
quently, more research is needed to fully determine the
ergogenic impact, if any, of BCAAs. An important point
to highlight surrounding BCAAs is the growing body of
literature supporting their ability to mitigate outcomes
surrounding muscle damage. In this respect, multiple
studies have investigated and offered support for BCAA’s
ability to promote recovery, mitigate soreness and at-
tenuate losses in force production [249, 250, 537, 538].

Citrulline Citrulline (2-Amino-5-(carbamoylamino)pen-
tanoic acid or L-Carnitine) is endogenously produced
from ornithine and carbamoyl phosphate in the urea cycle.
In the body, citrulline is efficiently recycled into arginine
for subsequent nitric oxide production through the
citrulline-nitric oxide cycle [539]. Unlike arginine, citrul-
line catabolism is limited in the intestines [540] as well as
its extraction from hepatic tissue [541] resulting in the
majority of citrulline passing into systemic circulation
before conversion to arginine [542]. Due to this and its
non-competitive uptake for cell transport [542], oral
citrulline supplementation has been shown to be more
effective in increasing arginine [543, 544] and activation of
nitric oxide synthase (NOS) [544] as well as various
biomarkers of nitric oxide [545]. Multiple studies have
employed aerobic exercise models to examine citrulline’s
impact on performance. Suzuki et al. [546] showed that
2.4 g/day of L-citrulline for 7 days increased plasma nitric
oxide metabolites, plasma arginine and 4-km time trial
performance. Using a finger flexor exercise model and P31
nuclear magnetic resonance spectroscopy, Bailey and col-
leagues [547] reported that 7 days of citrulline (6 g/day)
significantly increased plasma arginine and nitrite levels
and significantly improved VO2 kinetics and exercise per-
formance. However, not all studies reported an ergogenic
effect whereby Cunniffe et al. [548] reported no impact of
12 g of citrulline malate on the performance of a single
bout of high-intensity cycling. In addition to aerobic exer-
cise research, three studies examined the impact of an 8-g
citrulline dose while resistance training on various per-
formance outcomes [549–551]. One study [550] evaluated
the effects on the number of repetitions performed for
chin-ups, reverse chin-ups, and push-ups to failure in
trained males. A second study [551] evaluated the effect of
citrulline supplementation on the number of repetitions
performed for five sequential sets (60% 1RM) to failure on
the leg press, hack squat, and leg extension exercises in
trained males. The third study [549] evaluated the effects
of citrulline supplementation on the number of repetitions
performed during six sets each of bench press and leg
press exercises to failure at 80% 1RM in trained females.
In all three studies, citrulline malate was shown to

significantly increase performance during upper- and
lower-body multiple-bout resistance exercise performance.
Alternatively, Cultrufello and colleagues [552] reported
that a 6 g dose of L-citrulline failed to impact both aerobic
and anaerobic indicators of exercise performance. The role
of malate in combination with citrulline is largely undeter-
mined. Since malate is an important tricarboxylic acid
cycle intermediate, this could possibly account for im-
provements in muscle function [553]. Therefore, it is pres-
ently unclear whether these benefits can be solely
attributed to citrulline, as well as what role citrulline may
play in aerobic and anaerobic performance.

Essential amino acids (EAA) Research exploring the
impact of essential amino acids with various forms of exer-
cise has exploded. To date, it is well accepted that ingestion
of at least 2 g of the essential amino acid, leucine, is
required to stimulate cellular mechanisms controlling
muscle hypertrophy [225, 554] and that ingestion of
6–12 g of a complete essential amino acid mixture are
needed to maximize muscle protein synthesis [201–208,
555]. However, their impact on performance remains
largely unexplored. While sound theoretical rationale exists
and multiple acute study designs provide supportive evi-
dence, it is currently unclear whether following this strat-
egy would lead to greater training adaptations and/or
whether EAA supplementation would be better than sim-
ply ingesting carbohydrate and a quality protein following
exercise. Moreover, very little research is available that has
examined the ability of EAAs to impact exercise perform-
ance. For these reasons, many authors and review articles
have encouraged the prioritization of intact protein sources
over ingestion of free form amino acids [11, 13, 54, 222] to
promote accretion of fat-free mass, but, as mentioned, the
impact of this recommendation on performance changes
remains undetermined.

Glycerol Ingesting glycerol with water has been reported
to increase fluid retention, and maintain hydration status
[556–558]. Theoretically, this should help athletes prevent
dehydration and improve thermoregulatory and cardio-
vascular changes. Although studies indicate that glycerol
can significantly enhance body fluid, results are mixed on
whether it can improve exercise capacity [166, 559–564].
Regarding endurance performance Coutts and investiga-
tors [565] had ten trained endurance athletes complete an
Olympic distance triathlon under both placebo and gly-
cerol hyperhydration (1.2 g/kg) + 25 mL/kg fluid solution)
2 h before completion of each triathlon and reported that
completion time was significantly improved with glycerol
hyperhydration over placebo. These findings were corrob-
orated by Goulet et al. [566] when they had six
endurance-trained subjects hyperhydrate with glycerol or
water 2 h before a prolonged (2 h) bout of cycling at 65%
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VO2max in hot conditions (26-27 °C) followed two-minute
intervals at 80% VO2max and concluded that glycerol
hyperhydration significantly improved performance. In con-
trast, Marino et al. [567] reported that a similar glycerol
hyperhydration protocol did not improve the total distance
covered when moderately trained cyclists completed a
variable-intensity cycling protocol. Additionally, Goulet et
al. [568] combined a hyperhydration strategy (1.2 g/kg gly-
cerol + 26 mL/kg water) 2 h before commencing a
two-hour cycling bout at 66% VO2max and 25 °C with con-
suming (500 mL/hour) a sports drink and reported that gly-
cerol hyperhydration failed to impact cardiovascular or
thermoregulatory functions as well as endurance perform-
ance. McKenna and investigators [569] were one of the
only research groups to examine glycerol’s potential to im-
pact anaerobic power after glycerol hyperhydration. After
following a double-blind hyperhydration protocol, male col-
legiate wrestlers lost 3% of their body mass from fluid and
completed an anaerobic test where no impact on perform-
ance was found. Variable outcomes surrounding glycerol
continue to undermine its potential and the ability to offer
a recommendation for its use. Consequently, as pointed
out by Goulet et al. [556], it is concluded that more re-
search needs to be completed to work through the nuance
surrounding glycerol’s potential efficacy, a key point previ-
ously summarized by Nelson et al. [570].

β-hydroxy β-methylbutyrate (HMB) For several years,
beta-hydroxy-beta-methyl-butyrate (HMB) has received
interest for its ability to enhance training adaptations and
performance while also delaying or preventing muscle
damage [15, 168, 571]. Initial work by Nissen and
colleagues [171] showed significant increases in lean body
mass and strength with doses 1.5 and 3 g/day in untrained
males, with the 3 g dose showing additional benefits over
the lower dose. Gallagher and colleagues [169] indicated
that a dose of 38 mg/kg/day (approximately 3 g/day)
promoted improvements in fat-free mass, peak isometric
force and isokinetic torque production, while no changes
in maximal strength were seen. In agreement, Thomson
and researchers [572] had 22 resistance trained men
supplement, in a double-blind fashion, with either HMB or
placebo for 9 weeks and concluded that HMB was
responsible for a significant increase in lower-body
strength. Not all studies, however, have provided support.
For example, Kreider et al. [175] used a dose-response,
placebo-controlled approach and concluded that three or
6 g of calcium-HMB did not impact body composition or
strength adaptations in individuals experienced with resist-
ance exercise after 4 weeks of supplementation and resist-
ance training. Similarly, Hoffman and colleagues [573]
reported that HMB supplementation failed to improve
anaerobic power production in collegiate football players, a

conclusion which aligns with other previous studies [172,
574]. Differences in training regimens (intensities),
randomization, and supervision varied in the initial studies
and may have contributed to the mixed results. HMB
appears to have the greatest effects on performance when
training intensity is maximized.
While many of the previous studies have examined, with

mixed results, the ergogenic potential of calcium-HMB
supplementation in active, recreationally active individ-
uals, Durkalec-Michalski and colleagues completed three
investigations [178–180] that all sought to determine the
impact of calcium-HMB supplementation in different
athlete types. For instance, HMB supplementation (3 g/
day) in elite rowers over a 12-week period significantly
improved aerobic (VO2max, time to reach ventilatory
threshold) performance markers and decreased fat mass
when compared to changes seen with placebo [178]. Later,
Durkalec-Michalski and Jeszka [179] required 58 highly
trained males to supplement with calcium-HMB (3 g/day)
for 12 weeks. In this study, fat-free mass increased and fat
mass decreased along with multiple markers of aerobic
capacity when HMB was provided in comparison to a
placebo. Most recently, HMB supplementation over
12 weeks in highly-trained combat sport athletes signifi-
cantly increased (in comparison to placebo) several indica-
tors of aerobic and anaerobic exercise performance [180].
The recent studies by Durkalec-Michalski and colleagues
confirmed earlier works by Vukovich [575] and Lamboley
[576] that HMB does have a positive effect on increasing
aerobic capacity.
HMB is available as calcium-HMB and as free acid. In

comparison to calcium HMB, HMB-free acid shows
greater and faster absorption (approx. 30 min vs. 2–3 h)
[577]. Much of the initial research used calcium-HMB
with largely mixed outcomes while studies using the free
acid form are more limited. Studies by Wilson and col-
leagues using the free acid form have indicated robust
changes in strength, vertical jump power and skeletal
muscle hypertrophy while heavy resistance training
alone [578] and in combination with supplemental ATP
[579], but others have critically questioned these
outcomes [580]. A recent systematic review by Silva and
investigators [581] concluded that the free acid form of
HMB may improve muscle and strength and attenuate
muscle damage when combined with heavy resistance
training but stated that more research is needed before
definitive conclusions can be determined.

Nitrates Nitrate supplementation has received much
attention due to their effects on vasodilation, blood pres-
sure, improved work efficiency, modulation of force pro-
duction, and reduced phosphocreatine degradation
[582–584] all of which can potentially improve sports per-
formance. Nitrate supplementation is most commonly
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consumed two to 3 h prior to exercise as beetroot juice or
sodium nitrate [585] and is prescribed in both absolute
and relative amounts ranging from 300 to 600 mg [585]
or 0.1 mmol per kilogram of body mass per day, respect-
ively [583, 586]. These dosing amounts appear to be well
tolerated when consumed as both supplemental [587] and
supplemental sources [588] without significant alterations
in hemodynamics or clinical boundaries of hepatorenal
and muscle enzyme status [478, 589]. Supplementing
highly trained cyclists with sodium nitrate (10 mg per kilo-
gram of body mass) significantly reduced VO2peak without
influencing time to exhaustion or maximal power outputs
[590]. Additionally, 600 mg of nitrate supplementation
(given 2 h prior) non-significantly improved the perform-
ance of a 500-m time trial performance in elite-level kayak
athletes by 2 s [591]. Of practical significance, it should be
noted that first place and last place in the 2008 Beijing
Olympics, was separated by 1.47 s in the 500-m men’s
canoe/kayak flatwater race. Amateur cyclists at simulated
altitude (~ 2500 m) observed improved 16.1 km time trial
performance with a concomitant decrease in oxygen con-
sumption after beetroot juice (310 mg nitrate) supplemen-
tation [592]. Not all findings, however, have reported
performance benefits with nitrate supplementation. Nitrate
supplementation (~ 385 mg nitrate) 2.5 h before a 50-mile
time trial in well-trained cyclists failed to improve perform-
ance [593], which was also reported by MacLeod et al.
[594] after examining nitrate supplementation (~ 400 mg
nitrate) on 10-km time trial performance in normoxia or
simulated altitude (~ 2500 m). In well-trained runners, ni-
trate supplementation (~ 430 mg nitrate) did not improve
performance during an incremental exercise test to exhaus-
tion (simulated altitude 4000 m) or a 10-km time trial
(simulated altitude, 2500 m) [595] and Nyakayiru et al.
[596] reported no impact of nitrate supplementation on
changes in VO2 and time trial performance in highly
trained cyclists. Other studies have also reported an addi-
tive or synergistic effects of high-intensity intermittent ex-
ercise, endurance exercise, or resistance training when
nitrate supplementation is combined with sodium phos-
phate [511], caffeine [597], or creatine [478], respectively. It
is important to mention that dietary nitrates have a health
benefit in some, but not all populations [598]. Daily con-
sumption of beetroot juice (~ 320–640 mg nitrate/d) sig-
nificantly decreased resting systolic blood pressure in older
adults by approximately 6 mmHg [599, 600]. Nitrate
supplementation (560 mg – 700 mg nitrate) signifi-
cantly increased blood flow to working muscle and
exercise time in older adults with peripheral artery
disease [601] as well as significantly improved endo-
thelial function via increased flow-mediated dilation
and blood flow velocity in older adults with risk fac-
tors of cardiovascular disease [602]. Collectively, these
results indicate that nitrate supplementation may improve

aerobic exercise performance and cardiovascular health in
some populations.

Post-exercise carbohydrate and protein Ingesting
carbohydrate with protein following exercise has been a
popular strategy to heighten adaptations seen as part of
a resistance training program. The rationale behind this
strategy centers upon providing an energy source to
stimulate MPS via key signal transduction pathways.
Additionally, carbohydrate intake will impact insulin sta-
tus which could promote MPS, limit protein breakdown
or both [603–605]. Furthermore, combining carbohy-
drate with protein can heighten glycogen resynthesis
rates, particularly when carbohydrate intake is not opti-
mal [120] and can improve muscle damage responses
after exhaustive exercise [606]. A key point for readers
to consider when interpreting findings from this litera-
ture is the amount of protein, essential amino acids or
leucine being delivered by the protein source [11]. In the
last few years many studies have agreed that post work-
out supplementation is vital to recovery and training ad-
aptations [133, 230, 232, 607, 608]. However, the need
for adding carbohydrate to protein to maximize hyper-
trophic adaptations continues to be questioned. For ex-
ample, Staples and investigators [605] used an acute
study design involving stable isotope methodology to in-
vestigate the impact of adding 50 g of carbohydrate to 25 g
of whey protein ingestion after a single bout of lower body
resistance exercise. The authors concluded that the com-
bination of carbohydrate and protein was no more effective
at stimulating muscle protein synthesis or blunting rates of
muscle protein breakdown than protein alone. Further-
more, Hulmi and colleagues [609] had participants resist-
ance train for 12 weeks and supplement with equivalent
doses of whey protein, carbohydrate or whey protein +
carbohydrate while having strength and body composition
assessed. Overall, changes in strength were similar in all
groups while changes in fat-free mass were greater in the
protein group when compared to the carbohydrate group.
Fat mass was found to significantly decrease in both groups
that contained protein in comparison to carbohydrate, but
no differences between the two protein-containing groups
were noted. In conclusion, these findings underscore the
importance of ingesting adequate protein to stimulate re-
sistance training adaptations. Whether or not the addition
of carbohydrate can heighten these changes at the current
time seems unlikely. This outcome, however, should not
distract the reader from appreciating the fact that optimal
carbohydrate delivery will absolutely support glycogen
recovery, aid in mitigating soreness and inflammation and
fuel other recovery demands.

Quercetin Quercetin is a flavonoid commonly found in
fruits, vegetables and flowers, and is known for having
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some health benefits with therapeutic use. In addition,
quercetin has been purported in both animal and human
models to improve endurance performance. In this
respect, Cureton and colleagues [610] supplemented 30
recreationally active, but not highly trained men in a
double-blind fashion to ingest either quercetin (1 g/day)
or placebo. No changes in total work performed, substrate
utilization, or perception of effort were found after supple-
mentation. Similarly, Bigelman and investigators [611]
supplemented ROTC cadets with either 1 g of quercetin
or a placebo and concluded that VO2max was unchanged
as a result. These results correspond with the outcomes of
other studies that failed to document ergogenic potential
for quercetin [612, 613]. In contrast, Nieman et al. [614]
supplemented untrained adult males with 1 g of quercetin
in a double-blind fashion for 2 weeks and reported that
treadmill performance and markers of mitochondrial bio-
genesis were improved. Similarly, Patrizio et al. [615] used
a resistance exercise model and reported quercetin may
improve neuromuscular performance while Davis et al.
[616] had 12 study participants supplement with either
quercetin and placebo and found that quercetin may im-
prove VO2max and endurance capacity. A meta-analysis
was completed by Pelletier and researchers [617] to
summarize the potential impact of quercetin supplemen-
tation on endurance performance. This analysis involved
seven published studies representing 288 research partici-
pants. Only in untrained participants was quercetin found
to significantly increase endurance performance. A 2011
meta-analysis by Kressler et al. [618] drew a similar con-
clusion whereby they indicated quercetin does have bene-
fit, but the size of this effect is trivial and small.
Consequently, more research needs to be completed to
better identify what situations may exist that support
quercetin’s ability to impact exercise performance.

Taurine Taurine is an amino acid found in high abun-
dance in human skeletal muscle [619, 620] derived from
cysteine metabolism that plays a role in a wide variety of
physiological functions [621–623]. Studies have indi-
cated that training status (higher in trained vs. untrained
muscle, reviewed in [624]) and fiber type (higher in type
I vs. type II, reviewed in [619]) impact the amount of
taurine found in muscle. It has been reported in some
[625, 626] but not all studies [627, 628] that taurine may
improve exercise performance and mitigate recovery
from damaging and stressful exercise [629]. In recent
years, many studies have examined the impact of taurine
ingestion on various types of exercise performance. In
accordance with previous work, ergogenic outcomes re-
lated to taurine administration continue to be mixed.
Milioni and investigators [628] failed to show an improve-
ment in performance with a 6 g dose of taurine while
completing high-intensity treadmill running. Similarly,

Balshaw et al. [625] indicated that taurine failed to posi-
tively impact 3-km running performance in trained run-
ners. In contrast, a 2017 study by Warnock et al. [630]
reported that a 50 mg/kg dose of taurine outperformed
caffeine, placebo and caffeine + taurine on performance
changes after repeated Wingate anaerobic capacity tests.
Finally, a 2018 meta-analysis by Waldron et al. [631] re-
ported that single daily dosages ranging from one to 6 g
for up to 2 weeks can significantly improve endurance ex-
ercise performance in a range of study participants. Two
studies [632, 633] have been completed that examined
taurine’s ability to mitigate decrements associated with
muscle damage and resistance exercise performance. Not-
ably, oral ingestion at a dosage of 50 mg/kg for 14 days
prior to damage and for 7 days after damage significantly
increased strength, and decreased soreness and markers of
muscle damage [633]. Finally, studies have also supported
the ability of taurine to function in an anti-oxidative role,
which may promote an improved cellular environment to
tolerate exercise stress [634, 635]. While more research
continues to be published involving taurine, the consensus
of these outcomes continue to be mixed regarding tau-
rine’s potential to enhance physical performance.

Little to no evidence to support efficacy and/or safety

Arginine Arginine is known as a conditionally essential
amino acid which has been linked with the ability to in-
crease exercise performance, increase growth hor-
mone production, support immune function, increase
training tolerance and promote accretion of fat-free
mass [273, 636]. Several studies have sought to exam-
ine the ergogenic potential of arginine using both en-
durance and resistance exercise models with largely
mixed results. For example, Greer and investigators [637]
examined the ability of arginine + alpha-ketoglutarate and
reported that the combination did not significantly impact
muscle endurance and significantly reduced the number
of chin-ups completed. Similar outcomes were found by
Aguiar et al. [638] in older women whereby arginine sup-
plementation failed to impact muscle performance.
Sunderland et al. [639] supplemented 18 endurance-
trained cyclists for 28 days with either arginine (12 g/day)
or corn starch and concluded that arginine did not impact
VO2Max or ventilatory threshold. In accordance, several
other studies have failed to positively report on the ability
of arginine to operate as an ergogenic aid [278, 640–644].
Alternatively, a few studies have provided evidence of er-
gogenic potential for arginine. For example, Campbell and
researchers [271] supplemented 35 resistance-trained
males in a double-blind fashion with arginine (2 g) +
alpha-ketoglutarate (2 g) or a placebo and concluded
that maximal upper-body strength and wingate peak
power were significantly increased after supplementation.
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Similarly, Bailey and colleagues [645] concluded that acute
arginine supplementation reduced the oxygen cost of
moderate-intensity exercise and increased tolerance to
high-intensity training. Moreover, Pahlavani et al.
[646] supplemented male athletes with arginine in a
double-blind fashion and concluded that arginine sup-
plementation significantly increased sport perform-
ance. As it stands, most of the published literature
that has examined the ability of arginine to operate in
an ergogenic fashion has failed to report positive out-
comes. While more research is certainly indicated,
consumers should exercise caution when using arginine to
enhance exercise performance.

Carnitine Carnitine is produced endogenously by the
liver and kidneys and plays a pivotal role in lipid metabol-
ism. Consequently, many are led to believe that carnitine
ingestion will increase the concentration of endogenous
carnitine, thereby increasing lipid metabolism and
decrease adipose reserves. To date, the majority of the data
continues to suggest that carnitine supplementation does
not markedly affect muscle carnitine content [647–649],
fat metabolism [648, 650, 651], exercise performance
[648, 649, 652, 653], or weight loss in overweight
[650, 654], obese [651, 655, 656] or trained subjects
[657]. For example, Burrus and investigators [658] had ten
cyclists ingest combinations of carbohydrate and carnitine
while completing a 40-min ride at 65% VO2peak before
completing an exhaustion ride at 85% VO2Peak. No differ-
ences in power outputs or times to exhaustion were found
with cycling at 85% VO2Peak. Of note, studies have sug-
gested that co-ingesting carnitine with carbohydrate can
lead to significant increases in intramuscular carnitine
[659, 660]. Later, Wall and colleagues [661] reported that
endurance exercise performance was improved and
improvements in fuel selection appeared to occur.
While interesting, more research is needed regarding
changes in performance before further recommenda-
tions can be made.

Glutamine As outlined above, a strong theoretical
framework exists for glutamine’s ability to help an individ-
ual tolerate stress, particularly when relying on animal
studies. A close examination into the available human
research on glutamine makes it more challenging to
characterize glutamine’s potential. Theoretically, glutam-
ine supplementation during training should enhance gains
in strength and muscle mass, but evidence in this respect
has not been consistent. Glutamine supplementation has
been shown to improve glycogen stores which could go
on to impact certain types of exercise performance [331]
and two recent studies suggest that glutamine provision
may help support recovery from damaging resistance
exercise. In this respect, Street and colleagues [662]

concluded that adding glutamine (0.3 g/kg) to a carbohy-
drate drink significantly improved muscle soreness and
force production, but did not impact changes in creatine
kinase, when compared to carbohydrate only ingestion. A
similar outcome was found by Legault and colleagues
[337] who reported that glutamine supplementation sig-
nificantly lowered perceived soreness levels and led to im-
proved recovery of force production after a damaging
bout of eccentric muscle contractions. From an ergogenic
perspective, limited research is available, but Antonio et
al. [334] reported that 0.3 g/kg glutamine ingestion did
not impact the number of repetitions completed with the
leg press or bench press exercises. Consequently, minimal
research is available to support glutamine’s ability to oper-
ate as an ergogenic aid.

Inosine Inosine is a building block for DNA and RNA
that is found in muscle. Inosine possesses important roles
that may enhance training and/or exercise performance
[663]. Although there is some theoretical rationale, avail-
able studies indicate that inosine supplementation has no
apparent effect on aerobic or anaerobic exercise perform-
ance [664–666].

Medium chain triglycerides Medium chain triglycerides
(MCT’s) are shorter chain fatty acids known to readily
enter the mitochondria and be converted to energy
through beta-oxidation [667]. Studies are mixed as to
whether MCT’s are ergogenic and can serve as an effective
source of fat during exercise [667–671]. A 2001 study
found that 60 g/day of MCT oil for 2 weeks did improve
running performance [672]. Additionally, Van Zyl and
colleagues [671] reported that while MCTs negatively
influenced cycling time trial performance when ingested
alone in comparison to carbohydrate ingestion, perform-
ance was improved when MCTs were combined with
carbohydrate. Using a similar exercise model, Goedecke et
al. [668] also reported that MCT administration through-
out a two-hour moderate intensity cycle ride resulted in a
similar performance in completing a 40-km time trial by
trained cyclists. A similar outcome was also reported by
Vistisen et al. [673]. Beyond equivocal findings, Goedecke
et al. [674] and Jeukendrup et al. [667] both reported ergo-
lytic outcomes of MCT administration on sprint perform-
ance in trained cyclists and cycling time trial performance,
respectively, while the incidence of gastrointestinal com-
plaints increased in both studies. These findings have been
confirmed by others that MCT oils are not sufficient to
induce positive training adaptations and may cause gastric
distress [675, 676]. Consequently, it does not appear likely
that MCT favorably impacts acute exercise performance
and no evidence exists that training adaptations may be
positively impacted either, while multiple studies have
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reported that MCT ingestion may cause gastrointestinal
upset and decrease exercise performance.

Ribose Ribose is a 5-carbon carbohydrate that is involved
in the synthesis of adenosine triphosphate (ATP) and
other adenine nucleotides. Clinical studies have shown
that ribose supplementation can increase exercise capacity
in heart patients [677–681] leading to the development of
theories that it can operate as ergogenic aid for athletes.
Of the available research, most fail to show an ergogenic
value for ribose supplementation on exercise capacity in
healthy untrained or trained populations [682–684]. A
2006 study [685] investigated the effects of supplementing
with either ribose or dextrose over 8 weeks on rowing per-
formance and concluded that ribose was outperformed by
the dextrose control [685]. Kreider and associates [684]
and Kerksick and colleagues [686] investigated ribose sup-
plementation on measures of anaerobic capacity in trained
cyclists and concluded ribose had no positive impact on
performance. In 2017, Seifert and investigators [687] had
26 healthy subjects supplement with either 10 g of ribose
or 10 g of dextrose for 5 days while completing a single
bout of interval exercise and a two-minute power output
test. When splitting the participants into high vs. low oxy-
gen uptake levels, the people with low peak VO2 experi-
enced significant increases in mean and peak power
output along with reductions in ratings of perceived exer-
tion and creatine kinase. No such changes were reported
in individuals with high peak VO2. As it stands, clinical
findings provide support while studies in healthy, trained
populations generally fail to report a positive outcome for
ribose supplementation. Healthy individuals with lower
fitness levels may afford some benefit.

Supplements to promote general health
In addition to the supplements previously described, sev-
eral nutrients have been suggested to help athletes stay
healthy during intense training. For example, the Ameri-
can Medical Association has recommended that all
Americans ingest a daily low-dose multivitamin in order
to ensure that people get a sufficient level of vitamins
and minerals in their diet [688, 689]. Although daily
vitamin and mineral supplementation has not been
found to improve exercise capacity in athletes, it may
make sense to take a daily vitamin supplement for health
reasons. Vitamin D is often recommended to athletes,
especially those participating in indoor sports or in
cloudy geographies [690]. Although direct evidence link-
ing vitamin D with performance is equivocal, it is clear
that vitamin D has a role in regulating immune function,
cardiovascular health, and growth and repair. Dosing
should be dependent upon baseline levels, which can be
measured by any physician [691]. Glucosamine and chon-
droitin have been reported to slow cartilage degeneration

and reduce the degree of joint pain in active individuals
which may help athletes postpone and/or prevent joint
problems [692, 693]. Meanwhile, other ingredients includ-
ing undenatured type II collagen (UC-II) may be helpful
as well although more research is needed involving ath-
letic applications [694, 695]. Supplemental vitamin C, glu-
tamine, echinacea, quercetin, and zinc have been reported
to enhance immune function [125, 696–699]. However,
consuming carbohydrate during prolonged strenuous ex-
ercise attenuates rises in stress hormones and appears to
limit the degree of exercise-induced immune depression
[699]. Similarly, although additional research is necessary,
vitamin E, vitamin C, selenium, alpha-lipoic acid and
other antioxidants may help restore overwhelmed antioxi-
dant defenses exhibited by athletes [700]. One countering
argument against higher doses is the potential for these to
interfere with adaptive responses to training [699]. Finally,
the omega-3 fatty acids docosahexaenoic acid (DHA) and
eicosapantaenoic acid (EPA), in supplemental form, are
now endorsed by the American Heart Association for
heart health in certain individuals stemming from initial
scientific statements made in 2002 [701]. This sup-
portive supplement position stems from: 1) an inabil-
ity to consume cardio-protective amounts by diet
alone; and, 2) the mercury contamination sometimes
present in whole-food sources of DHA and EPA
found in fatty fish. For general health, dosing recom-
mendations range from 3000 mg-5000 mg daily of
deep, cold water fish [702]. Consequently, prudent
use of these types of nutrients at various times during
training may help athletes stay healthy and/or tolerate
training to a greater degree.
High intensity exercise can compromise an athlete’s

immune health. Infection risk and exercise workload follow
a J-Shape curve with moderate intensity exercise reducing
the infection risk, and high intensity exercise actually in-
creasing the risk of infection [703]. Immune suppression in
athletes further worsens by the psychological stress, foreign
travel, disturbed sleep, environmental extremes, exposure
to large crowds or an increase exposure to pathogens due
to elevated breathing during exercise or competition.
Athletes have several nutritional options to reduce the risk
and symptoms of upper respiratory tract infections, includ-
ing probiotics and baker’s yeast beta-glucan. Beta-glucan is
a natural gluco polysaccharide derived from the cell walls
of highly purified yeast (Saccharomyces cerevisiae) and has
been shown to significantly decrease upper-respiratory
tract infection symptoms in men and women participating
in the Carlsbad marathon [704]. Probiotics, often referred
to as “friendly” or “good” bacteria, are live microorganisms
which when administered in adequate amounts confer a
health benefit on the host. An estimated 70% of our im-
mune system is located in your digestive system indicating
the importance of a balanced gut microflora on immune
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health. Probiotics have been shown to reduce the number,
duration and severity of upper-respiratory tract infections
and gastrointestinal distress in the general population and
in athletes, certain strains of probiotics have been shown to
significantly reduce the number of upper-respiratory tract
infection episodes a well as their severity [705]. Health
benefits of probiotics are strain specific and dose
dependent, and some strains have failed to show benefi-
cial effects in athletes [706]. Also, consuming carbohy-
drate during prolonged strenuous exercise attenuates
rises in stress hormones and appears to limit the degree
of exercise-induced immune depression [699].

Conclusion
Several factors operate as cornerstones to enhance athletic
performance and optimize training adaptations including
the consumption of a balanced, nutrient and energy dense
diet, prudent training, and obtaining adequate rest. Use of
a limited number of nutritional supplements that research
has supported to improve energy availability (e.g., sports
drinks, carbohydrate, creatine, caffeine, β-alanine, etc.)
and/or promote recovery (carbohydrate, protein, essential
amino acids, etc.) can provide additional benefit in certain
instances. Dietitians and sport nutritionists should stay up
to date on current research regarding the role of nutrition
on exercise so they can provide honest and accurate infor-
mation to their students, clients, and/or athletes about the
role of nutrition and dietary supplements on performance
and training. Furthermore, these professionals should
actively participate in exercise nutrition research, write
unbiased scholarly reviews for journals and lay publica-
tions, and help disseminate the latest research findings to
the public. Through these actions, consumers and other
professionals can make informed decisions about
appropriate methods of exercise, dieting, and/or whether
various nutritional supplements can affect health, per-
formance, and/or training. In all situations, individuals are
expected and ethically obligated to disclose any commer-
cial or financial conflicts of interest during such promul-
gations. Finally, companies selling nutritional supplements
or promoting exercise, diet or supplementation protocols
should develop scientifically based products, conduct re-
search on their products, and honestly market the results
of studies so consumers can make informed decisions.
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