Nome:	
-------	--

Exercício 1: Suponha que os valores da Tabela 1 sejam as medidas de diâmetro e altura (e respectivas incertezas) para dois cilindros de uma das caixas do laboratório didático. Calcule o volume e incerteza para cada um dos cilindros. Para o cálculo da incerteza use a fórmula com as incertezas relativas derivada durante a aula:

$$\frac{\sigma_{V}}{V} = \sqrt{\left(2\frac{\sigma_{diam}}{diam}\right)^{2} + \left(\frac{\sigma_{alt}}{alt}\right)^{2}}$$

Tabela 1: Medidas de diâmetro e altura para dois cilindros e respectivas incertezas relativas

Peça	Diâmetro $\pm \sigma_D$ (cm)	σ _D /Diâmetro	Altura $\pm \sigma_A$ (cm)	σ _A /Altura
1	$2,470 \pm 0,002$		$8,029 \pm 0,003$	
2	$4,007 \pm 0,002$		$5,106 \pm 0,003$	

Tabela 2: Incerteza relativa e resultado final para volume das peças

Peça	σ _∨ /Volume	Volume $\pm \sigma_V$ (cm ³)
1		
2		

Cálculo de Z
$$Z = \frac{|y_1 - y_2|}{\sqrt{\sigma_{y_1}^2 + \sigma_{y_2}^2}}$$

Tabela 3: Nível de compatibilidade entre dois experimentadores

Aluno 1	Aluno 2	Z	Compatibilidade
$2,10 \pm 0,01$	$2,13 \pm 0,01$		
$0,9873 \pm 0,0001$	$0,9875 \pm 0,0001$		

Nome:	
-------	--

Exercício 1: Suponha que os valores abaixo sejam as medidas de diâmetro e altura (e respectivas incertezas) para dois cilindros de uma das caixas do laboratório didático. Calcule o volume e incerteza para cada um dos cilindros. Para o cálculo da incerteza use a fórmula com as incertezas relativas derivada durante a aula e apresentada abaixo:

$$\frac{\sigma_{V}}{V} = \sqrt{\left(2\frac{\sigma_{diam}}{diam}\right)^{2} + \left(\frac{\sigma_{alt}}{alt}\right)^{2}}$$

Tabela 1: Medidas de diâmetro e altura para dois cilindros e respectivas incertezas relativas

Peça	Diâmetro $\pm \sigma_D$ (cm)	σ _D /Diâmetro	Altura $\pm \sigma_A$ (cm)	σ _A /Altura
1	$3,95 \pm 0,02$		$3,082 \pm 0,004$	
2	$4,039 \pm 0,002$		$6,701 \pm 0,002$	

Tabela 2: Incerteza relativa e resultado final para volume das peças

Peça	$\sigma_{\rm V}/{ m Volume}$	Volume $\pm \sigma_V$ (cm ³)
1		
2		

Cálculo de Z
$$Z = \frac{|y_1 - y_2|}{\sqrt{\sigma_{y_1}^2 + \sigma_{y_2}^2}}$$

Tabela 3: Nível de compatibilidade entre dois experimentadores

Aluno 1	Aluno 2	Z	Compatibilidade
$3,449 \pm 0,009$	$3,563 \pm 0,004$		
$0,3986 \pm 0,0001$	$0,3988 \pm 0,0001$		

Nome:	
-------	--

Exercício 1: Suponha que os valores abaixo sejam as medidas de diâmetro e altura (e respectivas incertezas) para dois cilindros de uma das caixas do laboratório didático. Calcule o volume e incerteza para cada um dos cilindros. Para o cálculo da incerteza use a fórmula com as incertezas relativas derivada durante a aula e apresentada abaixo:

$$\frac{\sigma_{V}}{V} = \sqrt{\left(2\frac{\sigma_{diam}}{diam}\right)^{2} + \left(\frac{\sigma_{alt}}{alt}\right)^{2}}$$

Tabela 1: Medidas de diâmetro e altura para dois cilindros e respectivas incertezas relativas

Peça	Diâmetro $\pm \sigma_D$ (cm)	σ _D /Diâmetro	Altura $\pm \sigma_A$ (cm)	σ _A /Altura
1	$2,459 \pm 0,009$		$0,426 \pm 0,001$	
2	$4,89 \pm 0,03$		$3,049 \pm 0,006$	

Tabela 2: Incerteza relativa e resultado final para volume das peças

Peça	σ _v /Volume	Volume $\pm \sigma_V$ (cm ³)
1		
2		

Cálculo de Z
$$Z = \frac{|y_1 - y_2|}{\sqrt{\sigma_{y_1}^2 + \sigma_{y_2}^2}}$$

Tabela 3: Nível de compatibilidade entre dois experimentadores

Aluno 1	Aluno 2	Z	Compatibilidade
$1,202 \pm 0,009$	$1,247 \pm 0,004$		
$0,8546 \pm 0,0001$	$0,8548 \pm 0,0001$		

Nome:	
-------	--

Exercício 1: Suponha que os valores abaixo sejam as medidas de diâmetro e altura (e respectivas incertezas) para dois cilindros de uma das caixas do laboratório didático. Calcule o volume e incerteza para cada um dos cilindros. Para o cálculo da incerteza use a fórmula com as incertezas relativas derivada durante a aula e apresentada abaixo:

$$\frac{\sigma_{V}}{V} = \sqrt{\left(2\frac{\sigma_{diam}}{diam}\right)^{2} + \left(\frac{\sigma_{alt}}{alt}\right)^{2}}$$

Tabela 1: Medidas de diâmetro e altura para dois cilindros e respectivas incertezas relativas

Peça	Diâmetro $\pm \sigma_D$ (cm)	σ _D /Diâmetro	Altura $\pm \sigma_A$ (cm)	σ _A /Altura
1	$3,639 \pm 0,006$		$4,709 \pm 0,002$	
2	$2,412 \pm 0,002$		$0,357 \pm 0,002$	

Tabela 2: Incerteza relativa e resultado final para volume das peças

Peça	σ _∨ /Volume	Volume $\pm \sigma_V$ (cm ³)
1		
2		

Cálculo de Z
$$Z = \frac{|y_1 - y_2|}{\sqrt{\sigma_{y_1}^2 + \sigma_{y_2}^2}}$$

Tabela 3: Nível de compatibilidade entre dois experimentadores

Aluno 1	Aluno 2	Z	Compatibilidade
3,452 ± 0,009	$3,331 \pm 0,004$		
$33,4 \pm 0,2$	$31,57643 \pm 0,00002$		