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g Linear panel-data models: Basics

g.1 Introduction

Panel data or longitudinal data are repeated measurements at different points in time
on the same individual unit, such as person, firm, state, or country. Regressions can
then capture both variation over units, similar to regression on cress-section data, and
variation over time.

Panel-data methods are more complicated than cross-section—data methods. The
standard errors of panel-data estimators need to be adjusted because each additional
time period of data is not independent of previous periods. Panel data requires the use
of much richer models and estimation methods. Also different areas of applied statistics
use different methods for essentially the same data. The Stata xt commands, where xt
is an acronym for cross-section time series, cover many of these methods.

We focus on methods for a short panel, meaning data on many individual units and
few time periods. Examples include longitudinal surveys of many individuals and panel
datasets on many firms. And we emphasize microeconometrics methods that attempt
to estimate key marginal effects that can be given a causative interpretation.

The essential panel-data methods are given in this chapter, most notably, the impor-
tant distinction between fixed-effects and random-effects models. Chapter 9 presents
many other panel-data methods for the linear model, including those for instrumental-
variables (IV) estimation, estimation when lagged dependent variables are regressors,
estimation when panels are long rather than short, and estimation of mixed models
with slope parameters that vary across individuals. Chapter 9 also shows how methods
for short panels are applicable to other forms of clustered data or hierarchical data, such
as cross-section individual data from a survey conducted at a number of villages, with
clustering at the village level. Nonlinear models are presented in chapter 18.

8.2 Panel-data methods overview

There are many types of panel data and goals of panel-data analysis, leading to different
models and estimators for panel data. We provide an overview in this section, with
subsequent sections illustrating many of the various models and estimation methods.
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8.2.1 Some basic considerations 52 2 Some basic panel models

First, panel data are usually observed at regular time intervals, as is the case for most
time-series data. A common exception is growth cnrve analysis where, for example,
children are observed at several irregularly spaced intervals in time, and a measure such
as height or 1Q is regressed on a polynomial in age.

Second, panel data can be balanced, meaning all individual units are observed i all
time periods (T; = T for all 4), or unbalanced (T: # T for some 7). Most, xt commang

can be applied to both balanced and unbalanced data. In either case. however, estimatop

consistency requires that the sample-selection process does not lead Lo errors |Jeing
correlated with regressors. Loosely speaking, the missingtiess is for random Teasong
rather than systematic reasons.

Third, the dataset may be a short panel (few time periods and many individuals),
a long panel (many time periods and few individuals), or both (many time periods and
many individuals). This distinction has consequences for both estimation and inference.

Fourth, model errors are very likely correlated. Microeconometrics metliods emphia-
size correlation (or clustering) over time for a given individual, with independence over
individual units. For some panel datasets, such as country panels, there additionally
may be correlation across individuals. Regardless of the assumptions made, some corp-
rection to default ordinary least-squares (OLS) standard errors is usually necessary ang
efficiency gains nsing generalized least squares (GLS) may be possible.

Fifth, regression coefficient identification for some estimators can depend on regres-
sor type. Some regressors, such as gender, may be time invariant with Ty = x; for
all #. Some regressors, such as an overall time trend, may be individual invariant with
Ty = x4 for all 7. And some may vary over both time and individuals.

Sixth, some or all model coefficients may vary across individuals or over time.

Seventh, the microeconometrics literature emphasizes the fixed-effects model. This
model, explained in the next section, permits regressors to be endogenous provided
that they are correlated only with a time-invariant component of the error. Most other
branches of applied statistics instead emphasize the random-effects model that assumes
that regressors are completely exogenous.

Finally, panel data permit estimation of dynamic models where lagged dependent
variables may be regressors. Most panel-data analyses use models without this compli-
cation.

In this chapter, we focus on short panels (T fixed and N — 00) with model errors
assumed to be independent over individuals. Long panels are treated separately in
section 8.10. We consider linear models with and without fixed effects, and both static
and dynamic models. The applications in this chapter use balanced panels. Most
commands can also be applied to unbalanced panels, as demonstrated in some of the
exercises, though one should also then check for panel-attrition bias.

There are several different linear models for panel data.

The fundamental distinction is that between fixed-effects and random-effects models.
The term “fixed effects” is misleading because in both types of models individual-level
effects are random. Fixed-effects models have the added complication that Tegressors
may be correlated with the individual-level effects so that consistent estimation of re-
gression parameters requires eliminating or controlling for the fixed effects.

n dividual-effects model

The individual-specific-effects model for the scalar dependent variable y;; specifies that

Yit = i + x5, 8+ ey ’ (8.1)
where X;; are regressors, «; are random individual-specific effects, and e;; is an idiosyn- _
cratic error.

Two quite different models for the o; are the fixed-effects and random-effects models.

Fixed-effects model

In the fixed-effects (FE) model, the a; in (8.1) are permitted to be correlated V\.Iith the
regressors X;¢. This allows a limited form of endogeneity. We view the error in (8.1)
as uj = & + €5 and permit x;; to be correlated with the time-invariant component
of the error (o), while continuing to assume that x;; is uncorrelated with the idiosyn-
cratic error £5. For example, we assume that if regressors in an earnings regression
are correlated with unobserved ability, they are correlated only with the time-invariant
component of ability, captured by a;.

One possible estimation method is to jointly estimate ay,...,ay and 3. But for a
short panel, asymptotic theory relies on N — oo, and here as N — oo so too does the
number of fixed effects to estimate. This problem is called the incidental-parameters
problem. Interest lies in estimating 3, but first we need to control for the nuisance or
incidental parameters, o;.

Instead, it is still possible to consistently estimate B, for time-varying regressors,
by appropriate differencing transformations applied to (8.1) that eliminate «;. These
estimators are detailed in sections 8.5 and 8.9.

The FE model implies that E(y;|ou, xi) = a; + x;;3, assuming F(e;|ay, x4) . 0,
80 B; = OE (yut|a, X;t)/0%; . The attraction of the FE model is that we can obta.ln a
consistent estimate of the marginal effect of the jth regressor on E(y;, |evi, %41 ), provided
Tji¢ is time varying, even if the regressors are endogenous (albeit, a limited form of
endogeneity).

At the same time, knowledge of 8 does not give complete information on the pro-
¢85S generating yi¢. In particular for prediction, we need an estimate of E(y;|xs) =
Elaulx,) + x;,8, and E(a;[x;;) cannot be consistently estimated in short panels.
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In nonlinear FE models, these results need to be tempered. It is not always Possib],
to eliminate a;, which is shown in chapter 18. And even if it is, consistent estimatioyp of
B may still not lead to a consistent estimate of the marginal effect OE (y;¢]c;, Xit)/ a%, 5

Random-effects model

In the random-effects (RE) model, it is assumed that a; in (8.1) is purely random, ,
stronger assumption implying that «; is uncorrelated with the regressors.

Estimation is then by a feasible generalized least-squares (FGLS) estimator, given in
section 8.6. Advantages of the RE model are that it yields estimates of all coefficientg
and hence marginal effects, even those of time-invariant regressors, and that E(ys|x; +)
can be estimated. The big disadvantage is that these estimates are inconsistent if t},
FE model is appropriate.

e

Pooled model or population-averaged model

Pooled models assume that regressors are exogenous and simply write the error ag Uy
rather than using the decomposition a; + €;;. Then

Yie = & + X5, 8 + uge (8.2)

Note that x; here does not include a constant, whereas in cross-section chapters, x;
additionally included a constant term.

OLS estimation of the parameters of this model is straightforward, but inference
needs to control for likely correlation of the error u; over time for a given individ-
ual (within correlation) and possible correlation over individuals (between correlation).
FGLS estimation of (8.2) given an assumed model for the within correlation of ug is
presented in section 8.4. In the statistics literature, this is called a population-averaged
model. Like RE estimators, consistency of the estimators requires that regressors be
uncorrelated with ;.

Two-way—effects model

A standard extension of the individual effects is a two-way—effects model that allows
the intercept to vary over individuals and over time:

Yit = i + 7 + X B + eit (8.3)

For short panels, it is common to let the time effects 4¢ be fixed effects. Then (8.3)
reduces to (8.1), if the regressors in (8.1) include a set of time dummies (with one time
dummy dropped to avoid the dummy-variable trap).
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if the RE model is appropriate, rvicher models can permit lepe pa_ramejcers to also

over individnals or time. The mixed linear model is a hierarchical linear model
‘r”‘]': is quite flexible and permits random parameter variation to depend on observable
I\i::in];lf_-;._-., The random-coeflicients model is a special case that specifies

’
Yit = O + Xi,tlBi + €5t

K3

here (i B3)' ~ (B, E). For along panel with few individuals, c; and 3; can instead be
Wammeters that can be estimated by running separate regressions for each individual.
p

2.3 Cluster—robust inference

Various estimators for the preceding models are given in subsequent sections. These
estimators are usually based on the assumption that the i.di0§yncratic error g5 ~ (0, .
¢?). This assumption is often not satcisﬁed in panel e.xpphcatlons. The_n many panel
estimators still retain consistency, provided that £;; are independent over 4, but reported
standard errors are incorrect.

For short panels, it is possible to obtain cluster—robust standard errors under the
weaker assumptions that errors are independent across individuals and that N — oo.
Specifically, E(eiejs) = 0 for @ # j, E(ese:5) is unrestricted, and e;; may be het-
eroskedastic. Where applicable, we use cluster—robust standard errors rather than the
Stata defaults. For some, but not all, xt commands, the vce (robust) option is avail-
able. This leads to a cluster—robust estimate of the variance—covariance matrix of
the estimator (VCE) for some commands and a robust estimate of the VCE for some
commands. Otherwise, the vce(bootstrap) or vce(jackknife) options can be used
because, for xt commands, these usually resample over clusters.

8.2.4 The xtreg command

The key command for estimation of the parameters of a linear panel-data model is the
xtreg command. The command syntax is

xtreg depvar [indepvars] [zf] [m] [weight] [, options]

The individual identifier must first be declared with the xtset command.

The key model options are population-averaged model (pa), FE model (fe), RE model
(re and mle), and between-effects model (be). The individual models are discussed in
detail in subsequent sections. The weight modifier is available only for fe, mle, and pa.

The vce(robust) option provides cluster—robust estimates of the standard errors,
for all models but be and mle. Stata 10 labels the estimated VCE as simply “Robust”
because the use of xtreg implies that we are in a clustered setting.
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8.2.5 Stata linear panel-data commands The musO8psidextract.dta dataset has the following data:
Table 8.1 summarizes xt commands for viewing panel data and estimating the paran,. _  Read in dataset and describe
eters of linear panel-data models. . use musO8psidextract.dta, clear
(PSID wage data 1976-82 from Baltagi and Khanti-Akom (1990))
. describe
Table 8.1. Summary of xt commands Contains data from musO8psidextract.dta
obs: 4,165 PSID wage data 1976-82 from Baltagi
and Khanti-Akom (1990)
Data summary xtset; xtdescribe; xtsum; xtdata; xtline; xttab; xttrans vars: 22 16 Aug 2007 16:29
Pooled OLS . size: 295,715 (99.17, of memory free) (_dta has notes)
oole regr
Pooled FGLS xtgee, family(gaussian); xtgls; xtpcse storage display value )
variable name type format label variable label
Random effects xtreg, re; xtregar, re
. float %9.0 ears of full-time work
Fixed effects xtreg, fe; xtregar, fe SxP g y experience
Random slopes  xtmixed; xtrc wks float %9.0g weeks worked -
X occ float %9.0g occupation; occ==1 if in a
First-differences regress (with differenced data) blue-collar occupation
: . . ind float %9.0g industry; ind==1 if working in a
Static TV xtivreg; xthtaylor mamufacturing industry
Dynamic v xtabond; xtdpdsys; xtdpd south float %9.0g residence; south==1 if in the
South area
smsa float %9.0g smsa==1 if in the Standard
metropolitan statistical area
: ] ] c e float %9.0 arital stat
The core methods are presented in this chapter, with more spema:hzed commands ?Zm ﬂozt '/,9.0§ ?em;: o: ;alllz
presented in chapter 9. Readers with long panels should look at section 8.10 (xtgls, union float %9.0g if wage set be a union contract
xtpcse, xtregar) and data input may require first reading section 8.11. ed float %9.0g years of education
blk float %9.0g black
luage float %9.0g log wage
id float %9.0g
8.3 Panel-data summary t float 79.0g
tduml byte  %8.0g t== 1.0000
. i i . . . tdum2 byte  %8.0 t== 2.0000
In this section, we pre.sent various ways to summarize and view panel data and estimate + d$3 b;'tz vs. og iy ey
a pooled OLS regression. The dataset used is a panel on log hourly wages and other tdum4 byte %8.0g == 4.0000
variables for 595 people over the seven years 1976-1982. tdumb byte  %8.0g == 5.0000
tdum6 byte  %8.0g == 6.0000
tdum? byte  %8.0g t== 7.0000
. e . e exp2 float %9.0g
8.3.1 Data description and summary statistics
Sorted by: id t
The data, from Baltagi and Khanti-Akom (1990), were drawn from the Panel Study
of Income Dynamics (PSID) and are a corrected version of data originally used by There are 4,165 individual-year pair observations. The variable labels describe the
Cornwell and Rupert (1988). variables fairly clearly, though note that lwage is the log of hourly wage in cents, the

indicator fem is 1 if female, id is the individual identifier, t is the year, and exp?2 is the
square of exp.

(Continued on next page)
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Descriptive statistics can be obtained by using the command summarize:

. * Summary of dataset

. summarize
Variable Obs Mean Std. Dev, Min Max
exp 4165 19.85378 10.96637 1 51
wks 4165 46.81152 5.129098 5 52
occ 4165 .5111645 .4999354 0 1
ind 4165 .3954382 .4890033 0 1
south 4165 .2902761 .4539442 0 1
smsa 4165 .65637815 .475821 0 1
ms 4165 .8144058 .38882566 0 1
fem 4165 .112605 .3161473 0 1
union 4165 . 3639856 .4812023 0 1
ed 4165 12.84538 2.787995 4 17
blk 4165 .0722689 .2589637 0 1
lwage 4165 6.676346 .4615122 4.80517 8.637
id 4165 298 171.7821 1 595
t 4165 4 2.00024 1 7
tduml 4165 .1428571 . 3499691 0 1
tdum?2 4165 .1428571 .3499691 0 1
tdum3 4165 .1428571 .3499691 0 1
tdumé 4165 . 1428571 .3499691 0 1
tdumb 4165 .1428571 .3499691 0 1
tdum6 4165 .1428571 .3499691 0 1
tdum? 4165 .1428571 . 3499691 0 1
exp2 4165 514.405 496.9962 1 2601

The variables take on values that are within the expected ranges, and there are no
missing values. Both men and women are included, though from the mean of fem only
11% of the sample is female. Wages data are nonmissing in all years, and weeks worked
are always positive, so the sample is restricted to individuals who work in all seven
years.

8.3.2 Panel-data organization

The xt commands require that panel data be organized in so-called long form, with
each observation a distinct individual—time pair, here an individual-year pair. Data
may instead be organized in wide form, with a single observation combining data from
all years for a given individual or combining data on all individuals for a given year.
Then the data need to be converted from wide form to long form by using the reshape
command presented in section 8.11.

Data organization can often be clear from listing the first few observations. For
brevity, we list the first three observations for a few variables:

Panel'dam description 243

8313
¥ Organization of dataset
. 1ist id t exp wks occ in 1/3, clean
id t exp wks occ
| 11 3 32 0
5. 12 4 43 0
3 1 3 5 40 0
e first abservation is for individual | in year 1, the second observation is for individual
L vear 2, and 80 o1 These dala are thus in long form. From summarize, the panel
jn ye ) -
'11 tifier id takes on the valnes 1-595, and the time variable t takes on the values 1-7.
TR LLE 3 boy % . i . i .
; seneral; the panel identifier need just be a unique identifier and the time variable
n Hentieth 3 % i
; ,,?.] rake on values of, for example, 76-82.
eanld B2

The panel-data xt commands require that, at a minimum, the panel identifier be
declared. Many xt commands also require that the time identifier be declared. This is
(done by using the xtset command. Here we declare both identifiers:

_ % Declare individual identifier and time identifier
. xtset id t
panel variable: id (strongly balanced)
time variable: t, 1 to 7
delta: 1 unit

The panel identifier is given first, followed by the optional time identifier. The output
‘ndicates that data are available for all individuals in all time periods (strongly balanced)
and the time variable increments uniformly by one.

When a Stata dataset is saved, the current settings, if any, from xtset are also
saved. In this particular case, the original Stata dataset psidextract.dta already
contained this information, so the preceding xtset command was actually unnecessary.
The xtset command without any arguments reveals the current settings, if any.

8.3.3 Panel-data description

Once the panel data are xtset, the xtdescribe command provides information about
the extent to which the panel is unbalanced.

. * Panel description of dataset

. xtdescribe
id: 1, 2, ..., B95 n= 595
t: 1,2, ..., 7 T= 7
Delta(t) = 1 unit
Span(t) = 7 periods
(id*t uniquely identifies each observation)
Distribution of T_i: min 5% 25% 50% 75% 95% max
7 7 7 7 7 7 7
Freq. Percent Cum, Pattern

595 100.00 100.00 1111111

595 100.00 XXXXXXX
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In this case, all 595 individuals have exactly 7 years of data. The data are t']"’*”'l:—'for
balanced because, additionally, the earlier summarize command showed that thepe .“_L‘
no missing values. Section 18.3 provides an example of xtdescribe with lllll,lﬂlﬂ]l{'@t;
data. . o

8.3.4 Within and between variation

Dependent variables and regressors can potentially vary over both time and individuyg)g
Variation over time or a given individual is called within variation, and variation acroSSl
ii'u_ii\richm!s is called between variation. This distinction is important because estimators
differ in their use of within and between variation. In particular, in the FE mode] the
coefficient of a regressor with little within variation will be imprecisely estimated and
will be not identified if there is no within variation at all.

The xtsum, xttab, and xttrans commands provide information on the relatiye
importance of within variation and between variation of a variable.

We begin with xtsum. The total variation (around grand meanz = 1/NT 3", 3", Tit)
can be decomposed into within variation over time for each individual (around individug]
mean T; = 1/T )", x;;) and between variation across individuals (for Z around ;). The
corresponding decomposition for the variance is

= ﬁ D (e —T)* = ﬁ > 2 (@i — T + 7)?
ﬁ Zi (Ez - 5)2

- ﬁ Zi Zt(xit . 5)2

The second expression for s}, is equivalent to the first, because adding a constant does
not change the variance, and is used at times because x;; — T; + T is centered on T,

providing a sense of scale, whereas x;; — T; is centered on zero. For unbalanced data,
replace NT in the formulas with ), T;. It can be shown that s ~ s, + s3.

Within variance:

Il

2
Sw
Between variance: s3
2
S0

Overall variance:

The xtsum command provides this variance decomposition. We do this for selected
regressors and obtain

3.4 within and between variation 245
8.0

+ panel summary statistics: within and between variation
) xtsum id t lwage ed exp exp2 wks south tduml

variable Mean Std. Dev. Min Max Observations
id overall 298 171.7821 1 595 N= 4165
between 171.906 1 595 n = 595
within 0 298 298 T = 7
t overall 4 2.00024 1 7 N= 4165
between 0 4 4 n = 595
within 2.00024 1 7 T = 7
1wage overall 6.676346 .4615122 4.60517 8.537 N = 4165
between .3942387 5.3364 7.813596 n = 595
within .2404023 4.781808 8.621092 T = 7
ed overall 12.84538 2.787995 4 17 N = 4165
between 2.790006 4 17 n= 595
within 0 12.84538 12.84538 T = 7
exp overall 19.85378 10.96637 1 51 N = 4185
between 10.79018 4 48 n= 595
within 2.00024 16.85378 22.85378 T = 7
exp2 overall 514.405  496.9962 1 2601 N = 4165
between 489.0495 20 2308 n = 595
within 90.44581 231.405 807 .405 T = 7
wks overall 46.81152 5.129098 5 52 N = 4165
between 3.284016 31.57143 51.57143 n = 595
within 3.941881 12.2401 63.66867 T = 7
south overall .2902761 .4539442 0 1 N = 4165
between .4489462 0 1 n = 595
within .0693042 -.5668667 1.147419 T = 7
tduml overall .1428571 .3499691 0 1 N = 4165
between 0 .1428571 1428571 n = 595
within .3499691 0 1 T = 7

Time-invariant regressors have zero within variation, so the individual identifier id and
the variable ed are time-invariant. Individual-invariant regressors have zero between
variation, so the time identifier t and the time dummy tduml are individual-invariant.
For all other variables but wks, there is more variation across individuals (between vari-
ation) than over time (within variation), so within estimation may lead to considerable
efficiency loss. What is not clear from the output from xtsum is that while variable
exp has nonzero within variation, it evolves deterministically because for this sample
exp increments by one with each additional period. The min and max columns give
the minimums and maximums of z;; for overall, T; for between, and z;; — T; + T for
within.

In the xtsum output, Stata uses lowercase n to denote the number of individuals
and uppercase N to denote the total number of individual-time observations. In our
Dotation, these quantities are, respectively, N and Ziil 1.
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The xttab command tabulates data in a way that provides additional details on the

within and between variation of a variable. For example,

. * Panel tabulation for a variable
. xttab south

Overall Between Within

south Freq. Percent Freq. Percent Percent

0 2956 70.97 428 71.93 98.66

il 1209 29.03 182 30.59 94.90

Total 4165 100.00 610 102.52 97.54
(n = 595)

The overall summary shows that 71% of the 4,165 individual-year observations haq
south = 0, and 29% had south = 1. The between summary indicates that of the
595 people, 72% had south = 0 at least once and 31% had south = 1 at least once,
The between total percentage is 102.52, because 2.52% of the sampled individuals (15
persons) lived some of the time in the south and some not in the south and hence aye
double counted. The within summary indicates that 95% of people who ever lived in
the south always lived in the south during the time period covered by the panel, and
99% who lived outside the south always lived outside the south. The south variable ig
close to time-invariant.

The xttab command is most useful when the variable takes on few values, because
then there are few values to tabulate and interpret.

The xttrans command provides transition probabilities from one period to the next.
For example,

. % Transition probabilities for a variable
. xttrans south, freq

residence;
south==1 residence; south==
if in the if in the South area
South area 0 1 Total
0 2,627 8 2,535
99.68 0.32 100.00
1 8 1,027 1,035
0,77 99.23 100.00
Total 2,535 1,035 3,570
71.01 28.99 100.00

One time period is lost in calculating transitions, so 3,570 observations are used. For
time-invariant, data, the diagonal entries will be 100% and the off-diagonal entries will
be 0%. For south, 99.2% of the observations ever in the south for one period remain
in the south for the next period. And for those who did not live in the south for one
period, 99.7% remained outside the south for the next period. The south variable is
close to time-invariant.

The xttrans command is most useful when the variable takes on few values.

8.3-9

3.3.5 Time-series plots for each individual 247

Time-series plots for each individual

¢ can be useful to provide separate time-series plots for some or all individual units.

1

geparate time-series plots of a variable for one or more individuals can be obtained by
sing the xtline command. The overlay option overlays the plots for each individual
1011 the same graph. For example,

. quietly xtline lwage if 1d<=20, overlay
produces overlaid time-series plots of lwage for the first 20 individuals in the sample.

We provide time-series plots for the first 20 individuals in the sample. The default is
to provide a graph legend that identifies each individual that appears in the graph and
takes up much of the graph if the graph uses data from many indi\{iduals. This legend
can be suppressed by using the legend(off) option. Separate plots are obtained for
1wage and for wks, and these are then combined by using the graph combine command.

We have

. * Simple time-series plot for each of 20 individuals
. quietly xtline lwage if 1d<=20, overlay legend(off) saving(lwage, replace)

. quietly xtline wks if i1d<=20, overlay legend(off) saving(wks, replace)
. graph combine lwage.gph wks.gph, iscale(1)

Figure 8.1 shows that the wage rate increases roughly linearly over time, aside from
two individuals with large increases from years 1 to 2, and that weeks worked show no
discernible trend over time.
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Figure 8.1. Time-series plots of log wage against year and weeks worked against year
for each of the first 20 observations
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s 3.

8.3.6 Overall scatterplot 3.7 Within scatterplot
B_ .

data command can be used to obtain similar plots for within variation, using
fe; between variation, using option be; and RE variation (the default), using
e. The xtdata command replaces the data in memory with the specified trans-

In cases where there is one key regressor, we can begin with a scatterplot of the depey,

ahe Xb
dent variable on the key regressor, using data from all panel observations. The

( .I)I.im 1

The following command adds fitted quadratic regression and lowess regressi phion ¥
to th tt 1gt 4 s 5 Ol Curveg Fllm o vou should first preserve Lhe data and then restore the data when you are
o the scatterplot. ;
P ﬁzi‘hf“l with the transformed data.
jshed
- graph twoway (scatter lwage exp) (qfit luage exp) (lowess lwage exp) For example, the fe option creates deviations from means, so that (yix — Y, +7) is

ainst (x;: — T; + ). For lwage plotted against exp, we obtain
This produces a graph that is difficult to read as the scatterplot points are very large Plotted 26 (i ’ ) = & B

making it hard to then see the regression curves. . % Scatterplot for within variation
. . : preserve
. The following code' pregents a better-looking scatterplot‘ of lnwage on exp, along _ xtdata, fe
with the fitted regression lines. It uses the same graph options as those explained iy, . graph twoway (scatter lwage exp) (qfit lwage exp) (lowess lwage exp),
section 2.6.6. We have > plotregion(style(none)) title("Within variation: Log wage versus experience")
, restore
. * Scatterplot, quadratic fit and nonparametric regression (lowess)
- graph twoway (scatter lwage exp, msize(small) msymbol(o)) The result is given in figure 8.3. At first glance, this figure is puzzling because only
> (qfit lwage exp, clstyle(p3) lwidth(medthick)) Lo £ i i i
> (Lowess lwage exp, bwidth(0.4) clstyle(pl) lwidth(medthick)), sevenl dlStln(?t Yalues of exp appear. But the pan.el is balancec} a1‘1d' exp (yea@ of work
> plotregion(style(none)) experience) is increasing by exactly one each period for each individual in this sample
> title("Overall variation: Log wage versus experience") of people who worked every year. So (zi — T;) increases by one each period, as does
> xtitle("Years of experience”, size(medlarge)) xscale(titlegap(*5)) (zi — Ti + 7). The latter quantity is centered on T = 19.85 (see section 8.3.1), which is
> ytitle("Log hourly wage", size(medlarge)) yscale(titlegap(*5)) it . . . .
> legend(pos(4) ring(0) col(1)) legend(size(small)) the value in the middle year with ¢ = 4. Clearly, it can be very useful to plot a figure
> legend(label{(l "Actual Data") label(2 "Quadratic fit") label(3 "Lowess")) such as this.
Eac'h p.omt on figure 8.2 represents an 1nd1v1c'1urfml—year pair. Thf& dashed smooth Within variation: Log wage versus experience
curve line is fitted by OLS of lwage on a quadratic in exp (using qfit), and the solid S
line is fitted by nonparametric regression (using lowess). Log wage increases until °
thirty or so years of experience and then declines. ® ¢ g
- ke 0
Overall variation: Log wage versus experience ~4 ' I I___I___- |
- I B B
v . © 4 | I L ] S L]
@
(0] -
g © s -
r 1o o % % 2
5 years of iull-lime work experience
2 L] log wage Fitted values
§) © lowess lwage exp
Aclual Dala i
n 4 fuadfa"“" Figure 8.3. Within scatterplot of log-wage deviations from individual means against
owess 3 . . . . .
experience deviations from individual means

] 10 20 a0 40 50
Years of experience

Figure 8.2. Overall scatterplot of log wage against experience using all observations




9250 Chapter 8 Linear panel-data models: Bag;,,
S

8.3.8 Pooled OLS regression with cluster—robust standard errors

A natural starting point is a pooled OLS regression for log wage using data for al]
individuals in all years.

We include as regressors education, weeks worked, and a quadratic in experience

Education is a time-invariant regressor, taking the same value each year for a given
individual. Weeks worked is an exaniple of a time-varying regressor. Experience is also
time-varying, though it is so in a deterministic way as the sample comprises people who

work Tull-time in all years, so experience inicreases by one year as ¢ increments by one

Regressing y;; on x;; yields consistent estimates of 8 if the composite error Uit in
the pooled model of (8.2) is uncorrelated with x;;. As explained in section 8.2, the error
ug is likely to be correlated over time for a given individual, so we use cluster—robygt
standard errors that cluster on the individual. We have

. * Pooled OLS with cluster-robust standard errors
. use musO8psidextract.dta, clear
(PSID wage data 1976-82 from Baltagi and Khanti-Akom (1990))

. regress lwage exp exp2 wks ed, vce(cluster id)

Linear regression Number of obs = 4165
F( 4, 594) = 72.58
Prob > F = 0.0000
R-squared = 0.2836
Root MSE = .39082
(8td. Err. adjusted for 595 clusters in id)

Robust
lwage Coef . Std. Err. t P>|t| [95% Conf. Intervall
exp .044675 .0054385 8.21 0,000 .0339941 .055356
exp2 -.0007156 .0001285 -5.57  0.000 -.0009679  -.0004633
wks .005827 .0019284 3.02 0.003 .0020396 .0096144
ed .0760407 .0052122 14.59  0.000 .0658042 .0862772
_cons 4.907961  .1399887 35.06 0,000 4.633028 5.182894

The output shows that R? = 0.28, and the estimates imply that wages increase with
experience until a peak at 31 years [= 0.0447/(2 x 0.00072)] and then decline. Wages
increase by 0.6% with each additional week worked. And wages increase by 7.6% with
each additional year of education.

For panel data, it is essential that OLS standard errors be corrected for clustering
on the individual. In contrast, the default standard errors assume that the regression
errors are independent and identically distributed (i.i.d.). Using the default standard
errors, we obtain

7279
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+ Pooled OLS with incorrect default standard errors
. regress lwage exp exp2 wks ed i
' 4165

Source SS df MS Number of obs =
F( 4, 4160) = 411.62
Model 251.491445 4 62.8728613 Prob > F = 0.0000
Residual 635.413457 4160 .152743619 R-squared = 0.2836
Adj R-squared = 0.2829
Total 886.904902 4164 .212993492 Root MSE = .39082
. lwage Coef.  Std. Err. t P>|t] [95% Conf. Intervall
exp .044675 .0023929 18.67 0.000 .0399838 .0493663
exp2 -.0007156 .0000528 -13.56 0.000 -.0008191 -.0006121
wks .005827 .0011827 4.93 0,000 .0035084 .0081456
ed .0760407 .0022266 34.15 0.000 .0716754 . 080406
_cons 4.907961 .0673297 72.89 0.000 4.775959 5.039963

These standard errors are misleadingly small; the cluster—robust standard errors are,

respectively, 0.0054, 0.0001, 0.0019, and 0.0052.

It is likely that if log wage is overpredicted in one year for a given person, t.hen it is
likely to be overpredicted in other years. Failure to control for this etror correlation lee.Lds
to underestimation of standard errors because, intuitively, eaclr'l addltlonal. observat.lon
for a given person actually provides less than an independent piece of new information.

The difference between default and cluster—robust standard errors for pooled OLS
can be very large. The difference increases with increasing T', increasing autocorrelation
in model errors, and increasing autocorrelation of the regressor of interest. Specifically,
the standard-error inflation factor 7 ~ \/1+ pyup(T — 1), where p, is the intraclass
correlation of the error, defined below in (8.4), and p, is the intraclass correlation of the
regressor. Here p,, =~ 0.80, shown below, and for time-invariant regressor ed, p, =1, so
r~+/1+080x1x6= /5.8 ~ 2.41 for ed. Similarly the regressor exp has p, =1
because for this sample experience increases by one year as ¢ increments by one.

Cluster—robust standard errors require that N — oo and that errors are independent
over i. The assumption of independence over i can be relaxed to independence at a more
aggregated level, provided that the number of units is still large and the units nest the
individual. For example, the PSID is a household survey and errors for individuals from
the same household may be correlated. If, say, houseid is available as a household
identifier, then we would use the vce(cluster houseid) option. As a second example,
if the regressor of interest is aggregated at the state level, such as a state policy variable,
and there are many states, then it may be better to use the vce(cluster state) option.

8.3.9 Time-series autocorrelations for panel data

The Stata time-series operators can be applied to panel data when both panel and time
identifiers are set with the xtset command. Examples include L.1wage or L1.1lwage for
lwage lagged once, L2.1wage for lwage lagged twice, D. lwage for the difference in lwage
(equals lwage — L.1lwage), LD.lwage for this difference lagged once, and L2D.1wage for
this difference lagged twice.

L
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Use of these operators is the best way to ereate lagged variables because rek?vant
missing values are automatically and correctly oveated. For example, regress lwa
L2.wage will use (7 — 2) x 595 observations because forming L2.wage leads to a Jog

: : v e qe s S of
the first two years of data for each of the 595 individuals.

The corrgram command for computing autocorrelations of time-series data doeg Not
work for panel data. Instead, autocorrelations can be obtained by using the correlat,
command. For example,

. * First-order autocorrelation in a variable

. sort id t
. correlate lwage L.lwage
(obs=3570)
L.
lwage lwage
lwage
=== 1.0000
L1. 0.9189  1.0000

calculates the first-order autocorrelation coeflicient for lwage to be 0.92.

We now calculate autocorrelations at all lags (here up to six periods). Rather thay
doing so for 1wage, we do so for the residuals from the previous pooled OLS regression
for 1wage. We have

- * Autocorrelations of residual
» quietly regress lwage exp exp2 wks ed, vce(cluster id)

- predict uhat, residuals

. forvalues j = 1/6 {

2. quietly corr uhat L~ j~.uhat
3. display "Autocorrelation at lag “j~ = " %6.3f r(rho)
4. }

Autocorrelation at lag 1 = 0.884

Autocorrelation at lag 2 = 0.838
Autocorrelation at lag 3 = 0.811
Autocorrelation at lag 4 = 0.786
Autocorrelation at lag 56 = 0.750
Autocorrelation at lag 6 = 0,729

The forvalues loop leads to separate computation of each autocorrelation to maximize
the number of observations used. If instead we gave a one-line command to compute
the autocorrelations of uhat through L6.uhat, then only 595 observations would have
been used. Here 6 x 595 observations are used to compute the autocorrelation at lag
1, 5 x 595 observations are used to compute the autocorrelation at lag 2, and so on.
The average of the autocorrelations, 0.80, provides a rough estimate of the intraclass
correlation coefficient of the residuals.
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8.3-

arly. the etrors are serially correlateéd, and cluster—robust standard errors af-
1 oLs are required. The individual-effects model provides an explanation for

- ooprelation.  If the error wp = o + €;, then even if ;¢ is 1.1.d. (0, o2), we have
EI"'L',L{_ i) # 0 for 1 # s if ay # 0. The individual effect o; induces correlation over
(?”rl':{:]: E:';J,-iwn individual.

Cle

por I)Gt Jll‘.(-

(e
The preceding estimated autocorrelations are constant across years. For example,
alation of uhat with L.uhat across years 1 and 2 is assumed to be the same as

y OV .
the yss vears 2 and 3, years 3 and 4, ..., years 6 and 7. This presumes that the

plial ek 25
orrors are stationary.

In the nonstationary case, the autocorrelations will differ across pairs of years. For
cample, we consider the autocorrelations one year apart and allow these to differ across
e

the year pairs. We have

. * First-order autocorrelation differs in different year pairs
. forvalues s = 2/7 {

2. quietly corr uhat Li.uhat if t == "s~
3. display "Autocorrelation at lag 1 in year s~ = " ¥%6.3f r(rho)
4. }

Autocorrelation at lag 1 in year 2 = 0,915

Autocorrelation at lag 1 in year 3 = 0,799

Autocorrelation at lag 1 in year 4 = 0.855

Autocorrelation at lag 1 in year 5 0.867

Autocorrelation at lag 1 in year 6 = 0.894

Autocorrelation at lag 1 in year 7 = 0.893

The lag-1 autocorrelations for individual-year pairs range from 0.80 to 0.92, and their
average is 0.87. From the earlier output, the lag-1 autocorrelation equals 0.88 when it
is constrained to be equal across all year pairs. It is common to impose equality for
simplicity.

8.3.10 Error correlation in the RE model

For the individual-effects model (8.1), the combined error u;; = o; +€4. The RE model
assumes that o is i.1.d. with a variance of 0(21 and that u;; is i.i.d. with a variance of og.

Then u;; has a variance of Var(u;;) = 02+ 02 and a covariance of Cov(ust, uis) = a2,
s # 1. Tt follows that in the RE model,
pu = Cor(us, uis) = 02 /(02 + 02), for all s # (8.4)

This constant correlation is called the intraclass correlation of the error.

The RE model therefore permits serial correlation in the model error. This correlation
fan approach 1 if the random effect is large relative to the idiosyncratic error, so that
%4 is large relative to o2.

This serial correlation is restricted to be the same at all lags, and the errors w;; are
then called equicorrelated or exchangeable. From section 8.3.9, the error correlations
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were, respectively, 0.88, 0.84, 0.81, 0.79, 0.75, and 0.73, so a better model may he one

that allows the error correlation to decrease with the lag length.

8.4 Pooled or population-averaged estimators

Pooled estimators simply regress y;; on an intercept and x;;, using both between (cross.
section) and within (time-series) variation in the data. Standard errors need to adjust
for any error correlation and, given a model for error correlation, more-efficient FQLg
estimation is possible. Pooled estimators, called population-averaged estimators in the
statistics literature, are consistent if the RE model is appropriate and are inconsisten;
if the FE model is appropriate.

8.4.1 Pooled OLS estimator

The pooled OLS estimator can be motivated from the individual-effects model by rewrij.
ing (8.1) as the pooled model

Yir = o+ X8+ (o — v+ £41) (8.5)

Any time-specific effects are assumed to be fixed and already included as time dummieg
in the regressors x;;. The model (8.5) explicitly includes a common intercept, and the
individual effects a; — o are now centered on zero.

Consistency of OLS requires that the error term (o; — o + €;;) be uncorrelated with
X;¢- So pooled OLS is consistent in the RE model but is inconsistent in the FE model
because then «; is correlated with x;;.

The pooled OLS estimator for our data example has already been presented in sec-
tion 8.3.8. As emphasized there, cluster—robust standard errors are necessary in the
common case of a short panel with independence across individuals.

8.4.2 Pooled FGLS estimator or population-averaged estimator

Pooled FGLS (PFCLS) estimation can lead to estimators of the parameters of the pooled
model (8.5) that are more eflicient than OLS estimation. Again we assume that any
individual-level effects are uncorrelated with regressors, so PFGLS is consistent.

Different assumptions about the correlation structure for the errors u;: lead to dif-
ferent PFGLS estimators. In section 8.10, we present some estimators for long panels,
using the xtgls and xtregar commands.

Here we counsider only short panels with errors independent across individuals. We
need to model the T x I" matrix of error correlations. An assumed correlation structure,
called a working matrix, is specified and the appropriate PFGLS estimator is obtained.
To guard against the working matrix being a misspecified model of the error correlation,
cluster-robust standard errors are computed. Better models for the error correlation
lead to more-efficient estimators, but the use of robust standard errors means that the
estimators are not presumed to be fully efficient.

g.4.3
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In statistics literature, the pooled approach is called a population-averaged (PA)
oach, because any individual effects are assumed to be random and are averaged

apPt The PFGLS estimator is then called the PA estimator.

Out<
The xtreg, pa command

.d estimator, or PA estimator, is obtained by using the xtreg command (see
<clion 8.2.4) with the pa option. The two key additional options are corr (.), to place
;-ﬁ[]l.‘-i-'(‘m, resbrictions on the errvor .C()l'l'{!lalL.iOIlS, and vce (robust)., to obtain cluster—
polnst stanidard ervors that are valid even if corr () does not specify the correct corre-

lation model, provided that observations are independent over ¢ and N — oo.

TIW i)(]ﬂll'

Let pts = Cor(uuis), the error correlation over time for individual 7, and note.the
restriction that pgs does not vary with 7. The corr () options all :_;ef Prt :.1 bUt differ
in the model for pgs for t # s. With T time periods, the correlation ma‘.nrlx is T' x T,
and there are potentially as many as T(T — 1) unigue off-diagonal entries because it
need not necessarily be the case that pis = pst.

The corr (independent) option sets pis = 0 for s # t. Then the PA estimator equals
the pooled OLS estimator.

The corr (exchangeable) option sets pis = p for all s # ¢ so that errors are assumed
to be equicorrelated. This assumption is imposed by the RE model (see section 8.3.10),
and as a result, xtreg, pa with this option is asymptotically equivalent to xtreg, re.

For panel data, it is often the case that the error correlation p;s declines as the
time difference |t — s| increases—the application in section 8.3.9 provided an example.
The corr (ar k) option models this dampening by assuming an autoregressive process
of order k, or AR(k) process, for u;. For example, corr(ar 1) assumes that u; =
p1u; 11 + €4, which implies that ps = plltfsl. The corr(stationary g) option instead
uses a moving-average process, or MA(g) process. This sets prs = pp—g if |t — 5| < g,
and pis =01if [t —s| > g.

The corr (unstructured) option places no restrictions on pys. aside_from equality of
pits across individuals. Then Cov(ui, uis) = 1/N >, (Ui — Uy ) (U5 — Us). For small T,
this may be the best model, but for larger T', the method can fail numerically because
there are T'(T — 1) unique parameters p;s to estimate. The corr(nonstationary g)
option allows p;s to be unrestricted if [t — s| < g and sets pgs = 0 if |t — 5| > g so there
are fewer correlation parameters to estimate.

The PA estimator is also called the generalized estimating equations estimator in
the statistics literature. The xtreg, pa command is the special case of xtgee with
the family(gaussian) option. The more general xtgee command, presented in sec-
tion 18.4.4, has other options that permit application to a wide range of nonlinear panel
models.

L

[ W R, T
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8.4.4 Application of the xtreg, pa command
As an example, we specify an AR(2) error process. We have

- * Population-averaged or pooled FGLS estimator with AR(2) error
- xtreg lwage exp exp2 wks ed, pa corr(ar 2) vce(robust) nolog

GEE population-averaged model Number of obs = 4165
Group and time vars: id ¢ Number of groups = 595
Link: identity Obs per group: min = 7
Family: Gaussian avg = 7.0
Correlation: AR(2) max = 7
Wald chi2(4) N 873.28
Scale parameter: .1966639 Prob > chi2 = 0.0000
(Std. Err. adjusted for clustering on id)

Semirobust
lwage Coef.  Std. Err. z P>|z| [95% Conf. Interval]
exp .0718915 .003999 17.98  0.000 .0640535 .0797294
exp2 -.0008966  .0000933 -9.61  0.000 —-.0010794  -.0007137
wks .0002964  .0010553 0.28 0.779 -.001772 .0023647
ed .0905069  .0060161 15.04  0.000 .0787156 .1022982
_cons 4.526381 .1066897 42.83  0.000 4.319233 4.733529

The coefficients change considerably compared with those from pooled OLS. The cluster—
robust standard errors are smaller than those from pooled OLS for all regressors except
ed, illustrating the desired improved efficiency because of better modeling of the error
correlations. Note that unlike the pure time-series case, controlling for autocorrelation
does not lead to the loss of initial observations.

The estimated correlation matrix is stored in e (R). We have

- * Estimated error correlation matrix after xtreg, pa
. matrix list e(R)

symmetric e(R)[7,7]

cl c2 c3 cd cb c6 c7
ri 1
r2 ,89722058 1
r3 .84308581 .89722058 il
rd .78392846 ,.84308581 ,89722058 1
r5 .73064474 .78392846 .84308581 .89722058 1
ré .6806209 .73064474 .78392846 84308581 .89722058 1
r7 .63409777 -6806209 ,73064474 .78392846 .84308581 .89722058 1

By comparison, from section 8.3.9 the autocorrelations of the errors after pooled OLS
estimation were 0.88, 0.84, 0.81, 0.79, 0.75, and 0.73.

In an end-of-chapter exercise, we compare estimates obtained using different error-
correlation structures.

8.5

8.5.

rg9 The xtreg, fe command 957
9.

8

Within estimator

s of the parameters B of the FE model (8.1) must remove the ﬁ.xed efft?cts
!‘Iﬁ‘hr'f"{( within transform discussed in the next section does so by mean-differencing.
' 'I'hi’;.hin Itlestinml;ur performs OLS on the mgan—@ifferenc@ data. Because all the
ions of the mean-difference of a time-invariant variable are zero, we cannot

thie coefficient on a time-invariant variable.

i

;I\l“:- W
M.,_q{:l’\"i
mate N
Because the within estimator provides a cgnsistent est.imate of.the FE moc'lel, it is {)f—
lled the FE estimator, though the first-difference ejstlimatmﬁ given in section 8.9 also
e L-“.; s consistent estimates in the FE model. The within estimator is also consistent
’Hw.]:- :'-[ch‘r g1y model, but alternative estimators are more efficient in the RE model.

l“'-; I.i

ek

1 Within estimator

The fixed effects o in the model (8.1) can be eliminated by subtractio.n qf the corre-
p;11ding model for individual means 7; = X;/8 + &;, leading to the within model or
5

mean-difference model

(yie — ;) = (%t — X;)' B+ (€3¢ — &) (8.6)

where, for example, X; = Ti_1 Zle %;+. The within estimator is the OLS estimator of
this model.

Because «; has been eliminated, OLS leads to consistent estimates of B even if o
is correlated with x;, as is the case in the FE model. This result is a great advantage
of panel data. Consistent estimation is possible even Wlth endogenous regressors‘ Xit,
provided that x;; is correlated only with the time-invariant component of the error, a;,
and not with the time-varying component of the error, €.

This desirable property of consistent parameter estimation in th.e FE 'model is tem-
pered, however, by the inability to estimate the coeflicients or a time-invariant regressor.
Also the within estimator will be relatively imprecise for time-varying regressors that
vary little over time.

Stata actually fits the model
(it —Fs +7) =+ (it =X +X)B+ (60 — & +F) (8.7)

where, for example, ¥ = (1/N)y; is the grand mean of y;;. This para.me.te.rization has
the advantage of providing an intercept estimate, the average of the individual effects
«;, while yielding the same slope estimate 3 as that from the within model.

8.5.2 The xtreg, fe command

The within estimator is computed by using the xtreg command (see. section 8.2.4) with
the fe option. The default standard errors assume that after controlling for «;, the error

. o
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gt isi.i.d. The vce(robust) option relaxes this assumption and provides cluster-ro},
standard errors, provided that observations are independent over ¢ and N — oo,

8.5.3 Application of the xtreg, fe command

For our data, we obtain

. * Within or FE estimator with cluster-robust standard errors
. Xtreg lwage exp exp2 wks ed, fe vce(cluster id)
note: ed omitted because of collinearity

Fixed-effects (within) regression Number of obs = 4165
Group variable: id Number of groups = 595
R-sq: within = 0.6566 Obs per group: min = 7
between = 0.0276 avg = 7.0
overall = 0.0476 max = 7
F(3,594) = 1059.72
corr(u_i, Xb) = -0.9107 Prob > F = 0.0000
(Std. Err. adjusted for 595 clusters in id)
Robust
lwage Coef. Std. Err. t P>|t] [95% Conf. Interval]
exp .1137879 -0040289 28.24  0.000 .10587563 -1217004
exp2 -.0004244 .0000822 -5.16  0.000 -.0005858  -.0002629
wks .0008359 .0008697 0.96 0.337 -.0008721 .0025439
ed (omitted)
_cons 4.596396 .0600887 76.49  0.000 4.478384 4.714408
sigma_u 1.0362039
sigma_e .15220316
rho . 97888036 (fraction of variance due to u_i)

Compared with pooled OLS, the standard errors have roughly tripled because only within
variation of the data is being used. The sigma_u and sigma_ e entries are explained in
section 8.8.1, and the R? measures are explained in section 8.8.2.

The most striking result is that the coefficient for education is not identified. This
is because the data on education is time-invariant. In fact, given that we knew from the
xtsum output in section 8.3.4 that ed had zero within standard deviation, we should
not have included it as one of the regressors in the xtreg, fe command.

This is unfortunate because how wages depend on education is of great policy in-
terest. It is certainly endogenous, because people with high ability are likely to have
on average both high education and high wages. Alternative panel-data methods to
control for endogeneity of the ed variable are presented in chapter 9. In other panel
applications, endogenous regressors may be time-varying and the within estimator will
suffice.

Ust
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4 Least-squares dummy-variables regression

4o within estimator of @ is also called the FE estimator because it can be shovxfn
The * 4] (he estimator obtained from direct OLS estimation of ay,...,ax and 8 in
v tI{Ill-iitrll-'inell individual-eflects model (8.1). The estimates of the fixed effects are then
"_Fw:’.l;);n_. ;'c,’ﬁ In short, panels; @; is not. consistently estirilated, because it essentially
“ ’H;'l-,ln only T; observations used to form 7, and X;, but 3 is nonetheless consistently
olies
:;thﬂ“tud'
Another name for the within estimator is the least-squares dummy—variable.(LSD.V)

mator, because it can be shown to equal the estimator obtained from OLS estimation
o on ’x.'t and N individual-specific indicator variables d;;, 5 = 1,..., N, where
o ?j”: il forlthe itth observation if j = 1, and d; ;; = 0 otherwise. Thus we fit the model
i

dj,-
— E v XI (8 8)
yit o aidjﬂ't + ’L‘tlB + Eit 5

This equivalence of LSDV and within estimators does not carry over to nonlinear models.

This parameterization provides an alternative way to estimate the parameters. of the
fixed-effects model, using cross-section OLS commands. The areg command, which fits
the linear regression (8.8) with one set of mutually exclusive indicators, reports only
the estimates of the parameters 3. We have

. * LSDV model fit using areg with cluster-robust standard errors
. areg lwage exp exp2 wks ed, absorb(id) vce(cluster id)
note: ed omitted because of collinearity

Linear regression, absorbing indicators Number of obs = 41656
F(C 3, 594) = 908.44
Prob > F = 0.0000
R-squared = 0.9068
Adj R-squared = 0.8912
Root MSE N .1522
(Std. Err. adjusted for 595 clusters in id)
Robust

lwage Coef.  Std. Err. t P>|tl [95% Conf. Intervall
exp .1137879  .0043514 26.16  0.000 .1052418 1223339
exp2 -.0004244  .0000888 -4.78  0.000 -.0005988 -.00025
wks .0008359 .0009393 0.8 0,374 -.0010089 .0026806

ed (omitted)
_cons 4.596396 -0648993 70.82  0.000 4.468936 4.723856
id absorbed (595 categories)

The coefficient estimates are the same as those from xtreg, fe. The cluster-robust
standard errors differ because of different small-sample correction, and those from
xtreg, fe should be used. This difference arises because inference for areg is designed
for the case where N is fixed and T — oo, whereas we are considering the short-panel
Case, where T is fixed and N — oo.
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The model can also be fit using regress. One way to include a set of indicator VK.
ables for each individual is by inserting the i. operator before the categorical variah|,,
id. To do this, we need to increase the default setting of matsize to at least N 4 K
where K is the number of regressors in this model. The ontput from regress ig i
long because it includes coefficients for all the dwmmy variables. We instead sy
the output and use estimates table to list results for just the coefficients of int

Ver y
Pbregg
erost,
. * LSDV model fit using factor variables with cluster-robust standard errors

. set matsize 800

- quietly regress lwage exp exp2 wks ed i.id, vce(cluster id)

. estimates table, keep(exp exp2 wks ed _cons) b se b(%12.7f)

Variable active
exp 0.1137879
0.0043514
exp2 -0.0004244
0.0000888
wks 0.0008359
0.0009393
ed 0.1022134
0.0046744
_cons 4.3476807
0.0443191

legend: b/se

The coeflicient estimates and standard errors are exactly the same as those obtained
from areg, aside from the constant. For areg (and xtreg, fe), the intercept is fit so
that § — f’,@ = 0, whereas this is not the case using regress. The standard errors are

the same as those from areg, and as already noted, those from xtreg, fe should be
used.

8.6 Between estimator

The between estimator uses only between or cross-section variation in the data and is
the OLS estimator from the regression of Y, on X;. Because only cross-section variation
in the data is used, the coefficients of any individual-invariant regressors, such as time
dummies, cannot be identified. We provide the estimator for completeness, even though
it is seldom used because pooled estimators and the RE estimator are more efficient.

8.6.1 Between estimator

The between estimator is inconsistent in the FE model and is consistent in the RE model.
To see this, average the individual-effects model (8.1) to obtain the between model

U =a+X/'B+ (0 —a+E)

i 1

g7 RE estimator 26

hetween estimator is the OLS estimator in this model. Consistency requires that
f > (T - . - - . -
[he prot teri (e; — o+ E;) be uncorrelated with x;z. This is the case if a; is a random

- "‘ o - - .

l'lI.;.f-| but not if a; is a fixed effect.
plhievd

6.2 Application of the xtreg, be command

between estimator is obtained by specifying the be option of the xtreg command.
Tizre is no explicit option to obtain heteroskedasticity-robust standard errors, but these
Tan be obtained by using the vce(bootstrap) option.
c

For our data, the bootstrap standard errors differ from the default by or.lly 10%,
cause averages are used so that the complication is one of heteroskedastic errors
bether than clustered errors. We report the default standard errors that are much more
ra _
quickly computed. We have

%+ Between estimator with default standard errors
. xtreg lwage exp exp2 wks ed, be

Between regression (regression on group means) Number of obs = 4165

Group variable: id Number of groups = 595

R-sq: within = 0.1357 Obs per group: min = g

between = 0.3264 avg i 7.7
overall = 0.2723 max =

F(4,590) N 71.48

sd(u_i + avg(e_i.))= .324656 Prob > F = 0.0000

lwage Coef. Std. Err. t P>t [95% Conf. Intervall

exp .038153  .0056967 6.70  0.000 0269647 .0493412

exp2 -.0006313 .0001257 -5.02 0.000 -.0008781  -.0003844

wks .0130903 .0040659 3.22 0,001 .0051048 .0210757

ed .0737838 0048985 15.06  0.000 .0641632 .0834044

_cons 4.,683039 , 2100989 22.29  0.000 4.270407 5.095672

The estimates and standard errors are closer to those obtained from pooled OLS than
those obtained from within estimation.

8.7 RE estimator

The RE estimator is the FGLS estimator in the RE model (8.1) under the assumption
that the random effect oy is i.i.d. and the idiosyncratic error €4 is i.i.d. The RE esti-
mator is consistent if the RE model is appropriate and is inconsistent if the FE model is
appropriate.

(Continued on next page)

.
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8.7.1 RE estimator

The RE model is the individual-effects model (8.1)
Yie = X B+ (0 + e4t) (8.9)

with a; ~ (o, 02) and e ~ (0, 2). Then from (8.4), the combined error u;; = a +e,
is correlated over ¢ for the given i with

Cor(uis, uis) = 02 /(02 + o?2), for all s #£ ¢ (8.10)

The RE estimator is the FGLS estimator of 3 in (8.9) given (8.10) for the error correly.
tions.

In several different settings, such as heteroskedastic errors and AR(1) €ITors, the
FGLS estimator can be calculated as the OLS estimator in a model transformed to have
homoskedastic uncorrelated errors. This is also possible here. Some considerable algebra
shows that the RE estimator can be obtained by OLS estimation in the transformed mode]

(yie = 0:7,) = (1 — O)or + (xie — 0%,)'B + {(1 = i) + (exe — 0i71)} (8.11)
where @ is a consistent estimate of

0; =1 \/02/(T;0% + 02)

The RE estimator is consistent and fully efficient if the RE model is appropriate. It
1s inconsistent if the FE model is appropriate, because then correlation between x;; and
; implies correlation between the regressors and the error in (8.11). Also, if there are
no fixed effects but the errors exhibit within-panel correlation, then the RE estimator is
consistent but inefficient, and cluster—robust standard errors should be obtained.

The RE estimator uses both between and within variation in the data and has spe-
cial cases of pooled OLS (f; = 0) and within estimation (§; = 1). The RE estimator
approaches the within estimator as T gets large and as 02 gets large relative to o2,
because in those cases 51 — 1.

8.7.2 The xtreg, re command

Three closely related and asymptotically equivalent RE estimators can be obtained by
using the xtreg command (see section 8.2.4) with the re, mle, or pa option. These
estimators use different estimates of the variance components o2 and ¢2 and hence

different estimates 6; in the RE regression; see [XT| xtreg for the formulas.

The RE estimator uses unbiased estimates of the variance components and is obtained
by using the re option. The maximum likelihood estimator, under the additional as-
sumption of normally distributed a; and &4, is computed by using the mle option. The
RE model implies the errors are equicorrelated or exchangeable (see section 8.3.10), 80
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creg with the pa and corr (exchangeable) options yields asymptotically equivalent
pe

resultS~

For panel data, the RE estimator assumption of equicorrelated errors is usually too
trong. At the least, one should use the vce(cluster id) option to obtain cluster—
’ 1bust standard errors. And more-efficient estimates can be obtained with xtreg, pa
10

vith & better error structure than those obtained with the corr (exchangeable) option.
¥

8.7.3 Application of the xtreg, re command

For our data, xtreg, re yields

. * Random-effects estimator with cluster-robust standard errors
. xtreg lwage exp exp2 wks ed, re vce(cluster id) theta

Random-effects GLS regression Number of obs = 4165
Group variable: id Number of groups = 595
R-sq: within = 0.6340 Obs per group: min = 7
between = 0.1716 avg = 7.0
overall = 0.1830 max = 7
Random effects u_i - Gaussian Wald chi2(4) = 1598.50
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
theta = .82280511
(Std. Err. adjusted for 595 clusters in id)
Robust
lwage Coef.  Std. Err. z P>zl [95% Conf. Intervall
exp .0888609 0039992 22.22 0.000 .0810227 . 0966992
exp2 -.0007726 .0000896 -8.62 0.000 -.0009481 -.000597
wks .0009658 .0009269 1.04 0.297 -.000849 .0027806
ed .1117099 .0083954 13.31 0.000 .0952552 .1281647
_cons 3.829366 .1333931 28.71 0.000 3.567921 4.090812
sigma_u .31951859
sigma_e .15220316
rho .81505521 (fraction of variance due to u_i)

Unlike the within estimator, the coefficient of the time-invariant regressor ed is now es-
timated. The standard errors are somewhat smaller than those for the within estimator
because some between variation is also used. The entries sigma_u, sigma_e, and rho,
and the various R? measures, are explained in the next section.

The re, mle, and pa corr(exchangeable) options of xtreg yield asymptotically
equivalent estimators that differ in typical sample sizes. Comparison for these data is
left as an exercise.

(Continued on next page)
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8.8 Comparlson of estimators petween estimator best explains the between variation (R = 0.33). The within

. ator has a low R2 = 0.05 and a much higher R? = 0.91 in section 8.5.4, because

Output from xtreg includes estimates of the standard deviation of the €ITOT COmponent estit™ a

and R? measures that measure within, between. and overall fit. Prediction is possib]S Rq peglects

using the postestimation predict command. We present these estimates before turnine

to comparison of OLS, between, RE, and within estimators. & 8.3 Estimator comparison
g.0-

We compare some of the panel estimators and associated standard errors, variance
components estimates, and R2?. Pooled OLS is the same as the xtreg command with
the corr (independent) and pa options. We have

8.8.1 Estimates of variance components

Output from the fe, re, and mle options of xtreg includes estimates of the standarq

deviations of the error components. The combined error in the individual-effects mode] . = Compare OLS, BE, FE, RE estimators, and methods to compute standard errors
that we label ; + ¢y is referred to as u; + e in the Stata documentation and output . global xlist exp exp2 wks ed

Thus Stata output sigma_u gives the standard deviation of the individual effect a; an(i . quietly regress lwage $xlist, vce(cluster id)

sigma_e gives the standard deviation of the idiosyncratic error ;. ’ . estimates store OLS_rob

. . . . . . quietly xtreg lwage $xlist, be
For the RE model estimates given in the previous section, the estimated standard d

deviation of «; is twice that of £;,. So the individual-specific component of the error
(the random effect) is much more important than the idiosyncratic error.

. estimates store BE
. quietly xtreg lwage $xlist, fe

. estimates store FE

The output labeled rho equals the intraclass correlation of the error pu defined in - quietly xtreg lwage $xlist, fe vce(robust)
(8.4). TFor the RE model, for example, the estimate of 0.815 is very high. This ig - estimates store FE_rob
expected because, from section 8.3.9, the average autocorrelation of the OLS residuals - quietly xtreg lwage $xlist, re
was computed to be around 0.80. . estimates store RE

. . i . . quietly xtreg lwage $xlist, re vce(robust)
The theta option, available for the re option in the case of balanced data, reports h ’ -

i . i RE_rob
the estimate 0; = 6. Because § = 0.823, here the RE estimates will be much closer to cevinates store Anxo

estimates table OLS_rob BE FE FE_rob RE RE_rob,

the withi i i ) : :
he w1th1.n estimates than to the OLS estimates. More generally, in the unbalanced case > b se stats(N r2 r2_o r2_b r2_w sigma_u sigma_e rho) b(%7.4f)
the matrix e(theta) saves the minimum, 5th percentile, median, 95th percentile, and
maximum of 6y,. .., 0. Variable | OLS_rob  BE FE FE_rob RE RE_rob
exp 0.0447  0.0382 0.1138 0.1138 0.0889  0.0889
8.8.2 W.ithin and b _ 0.0054  0.0057 0.0025 0.0040 0.0028  0.0040
etween R-squared exp2 -0.0007  -0.00086 -0.0004 -0.0004  -0.0008  -0.,0008
The table | ) ) ) 0.0001  0.0001 0.0001 0.0001 0.0001  0.0001
e table 1ea(2ie1 from xtreg provides three R? measures, computed using the inter- wks 0.0068  0.0131 0.0008 0.0008 0.0010  0.0010
pretation of R* as the squared correlation between the actual and fitted values of the e R 1 S gk
dependent variable. wl the fi . N N ed 0.0760  0.0738  (omitted) (omitted) 0.1117  0.1117
e, where the fitted values ignore the contribution of &;. 0.0052  0.0049 0.0061  0,0084
. 3 : . . , _cons 4.9080  4.6830 4,5964 4.5964 3.8294  3.8294
, Let & and 3 be estimates obtam.ed by one of the xtreg options (be, fe, or re). Let 0.1400  0.2101 0.0389 0.0601 0.0936  0.1334
p°(z,y) denote the squared correlation between 2 and y. Then
N 4165 4165 4165 4165 4165 4165
Within R2: 20(y = 1% - r2 0.2836  0.3264 0.6566 0.6566
R ; P {(yir Ayz)’ (xi,8 —%;8)} r2_0 0.2723 0,0476 0.0476 0.1830  0.1830
Between R*:  p?*(y,,%.3) r2_b 0.3264 0.0276 0.0276 0.1716  0.1716
Overall R2: 200 ! 7 r2_w 0.1357 0.6566 0.6566 0.6340  0.6340
i P~ (yie: Xi48) sigma_u 1.0362 1.0362 0.3195  0.3195
sigma_e 0.1522 0.1522 0.1522  0.1522
2 . . . rho 0.9789 0.9789 0.8151  0.8151
The three R? measures are, respectively, 0.66, 0.03, and 0.05 for the within estimator;

0.1'4, 0.33, and 0.27 for the between estimator; and 0.63, 0.17, and 0.18 for the RE rogends b
estimator. So the within estimator best explains the within variation (R% = 0.66), and

.- .
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Several features emerge. The estimated coefficients vary considerably across esti.
mators, especially for the time-varying regressors. This reflects quite different resultg
according to whether within variation or between variation is used. The within estima.
tor did not provide a coeflicient estimate for the time-invariant regressor ed (with the
coellicient reported as 0.00). Cluster—robust standard errors for the FE and RE modelg
exceed the default standard errors by one-third to one-half. The various R? measures
and variance-components estimates also vary considerably across models.

8.8.4 Fixed effects versus random effects

The essential distinction in microeconometrics analysis of panel data is that between
FE and RE models. If effects are fixed, then the pooled OLS and RE estimators are
inconsistent, and instead the within (or FE) estimator needs to be used. The within
estimator is otherwise less desirable, because using only within variation leads to less-
efficient estimation and inability to estimate coefficients of time-invariant regressors.

To understand this distinction, consider the scalar regression of y;; on z;. Con-
sistency of the pooled OLS estimator requires that E(ui|z;:) = 0 in the model y;; =
a+ Bxs +uge. 1f this assumption fails so that z;; is endogenous, 1V estimation can yield
consistent estimates. It can be difficult to find an instrument z;; for x;; that satisfies
E(uit|zit) =0.

Panel data provide an alternative way to obtain consistent estimates. Introduce
the individual-effects model y;; = @; + Bzt + €. Consistency in this model requires
the weaker assumption that F(e;:|oy, 2;:) = 0. Essentially, the error has two compo-
nents: the time-invariant component «; correlated with regressors that we can eliminate
through differencing, and a time-varying component that, given «;, is uncorrelated with
regressors.

The RE model adds an additional assumption to the individual-effects model: «; is
distributed independently of z;;. This is a much stronger assumption because it implies
that (e, i) = E(eit|@ie), so consistency requires that E(ey|ry) = 0, as assumed
by the pooled OLS model.

For individual-effects models, the fundamental issue is whether the individual effect
is correlated with regressors.

8.8.5 Hausman test for fixed effects

Under the null hypothesis that individual effects are random, these estimators should
be similar because both are consistent. Under the alternative, these estimators diverge.
This juxtaposition is a natural setting for a Hausman test (see section 12.7), comparing
FE and RE estimators. The test compares the estimable coefficients of time-varying
regressors or can be applied to a key subset of these (often one key regressor).

The ha
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usman command

The hausman command implements the standard form of the Hausman test. We have
already stored the within estimates as FE and the RE estimates as RE, so we can imme-
diately implement the test.

For these data, the default version of the hausman FE RE command leads to a vari-
ance estimate {V(Brg)—V (Bgrg)} that is negative definite, so estimated standard errors
(;f (EJ FE — Bj,RE) cannot be obtained. This problem can arise because different esti-

o~

mates of the error variance are used in forming V(Bpg) and V(Bgrp). Similar issues
arise for a Hausman test comparing OLS and two-stage least-squares estimates.

1t is better to use the sigmamore option, which specifies that both covariance matri-
ces are based on the (same) estimated disturbance variance from the efficient estimator.

We obtain

. * Hausman test assuming RE estimator is fully efficient under null hypothesis
. hausman FE RE, sigmamore

— Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
FE RE Difference S.E.
exp .1137879 .0888609 .0249269 .0012778
exp2 -.0004244 -.0007726 .0003482 .0000285
wks .0008359 .0009658 -.0001299 .0001108

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B) "[(V_b-V_B)"(-1)](b-B)
= 1513.02
Prob>chi2 = 0.0000

The output from hausman provides a nice side-by-side comparison. For the coefficient of
regressor exp, a test of RE against FE yields ¢ = 0.0249/0.00128 = 19.5, a highly statis-
tically significant difference. And the overall statistic, here x*(3), has p = 0.000. This
leads to strong rejection of the null hypothesis that RE provides consistent estimates.

Robust Hausman test

A serious shortcoming of the standard Hausman test is that it requires the RE estimator
to be efficient. This in turn requires that the «; and ¢, are i.i.d., an invalid assumption
if cluster—robust standard errors for the RE estimator differ substantially from default
standard errors. For our data example, and in many applications, a robust version of
the Hausman test is needed. There is no Stata command for this. A panel bootstrap
Hausman test can be conducted, using an adaptation of the bootstrap Hausman test
example in section 13.4.6.

s
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Simpler is to test Hg: oy = 0 in the auxiliary OLS regression
(yie — 07;) = (1 — B)ou+ (xir — %)’ B + (X1t — X1a)'y + vae

where x; denotes only time-varying regressors. A Wald test of v = 0 can be showy,
to be asymptotically equivalent to the standard test when the RE estimator is fully
efficient under Hy and is numerically equivalent to hausman with the sigmaless Optian

A summary of related tests for fixed versus random effects is given in Baltagi (2008
72-78). '

In the more likely case that the RE estimator is not, fully efficient, Wooldridge (2002)
proposes performing the Wald test. using cluster-rohust standard errors. To implemey
this test in Stata, we need to generate the RE differences yyu — 05, and x;; — 0%;, ang
the mean-differences x4y — Xq4.

. * Robust Hausman test using method of Wooldridge (2002)
. quietly xtreg lwage $xlist, re

. scalar theta = e(theta)
. global yandxforhausman lwage exp exp2 wks ed
. sort id

. foreach x of varlist $yandxforhausman {

2. by id: egen mean"x" = mean( x")

3. generate md"x” = "x” - mean’x~

4. generate red’x” = “x° - theta*mean™x~
5. '}

- quietly regress redlwage redexp redexp2 redwks reded mdexp mdexp2 mdwks,
> vce(cluster id)

. test mdexp mdexp2 mdwks
(1) mdexp = 0

( 2) mdexp2 = 0
( 3) mdwks =0

F( 3, 594)
Prob > F

597.47
0.0000

The test strongly rejects the null hypothesis, and we conclude that the RE model is not
appropriate. The code will become more complex in the unbalanced case, because we
then need to compute 6; for each observation. The user-written command xtoverid fol-
lowing command xtreg, re vce(cluster id) implements the preceding test in both
balanced and unbalanced settings.

8.8.6 Prediction

The postestimation predict command after xtreg provides estimated residuals and
fitted values following estimation of the individual-effects model Yir = o + X0 + Eit-

The estimated individual-specific error &; = g, — ig,ﬁ is obtained by using the u
option; the estimated idiosyncratic error £;; = y; — @ — X}, is obtained by using the
e option; and the ue option gives &; + ;4.
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8.

Fitted values of the dependent variable differ according to whether the estimated
Ii\riflilid-ﬁpﬂ(:iﬁc error is used. The fitted value y;; = & +x%,3, where & = N™' 3", &;,
in o H - o~ x5 . . -
; btained by using the xb option. The fitted value y;; = @; + x5, 3 is obtained by using
s obt .

ie xbu option.

As an example, we contrast OLS and RE in-sample fitted values.

+ Prediction after OLS and RE estimation
. quietly regress lwage exp exp2 wks ed, vce(cluster id)

. predict xbols, xb

. quietly xtreg lwage exp exp2 wks ed, re
N predict xbre, xb

. predict xbure, xbu

. summarize lwage xbols xbre xbure

Variable Obs Mean Std. Dev. Min Max
lwage 4165 6.676346 .4615122 4.60517 8.537
xbols 4165 6.676346 .2457572  5.850037  7.200861

xbre 4165 6.676346 .6205324  5.028067 8.22958

xbure 4165 6.676346 .4082951 5.29993  7.968179
. correlate lwage xbols xbre xbure
(obs=4165)

lwage xbols xbre xbure

lwage 1.0000

xbols 0.5325  1.0000

xbre 0.4278 0.8034 1.0000

xbure 0.9376 0.6019 0.4836 1.0000

The RE prediction & + x;tﬁ is not as highly correlated with 1lwage as is the OLS predic-
tion (0.43 versus 0.53), which was expected because the OLS estimator maximizes this
correlation.

When instead we use &; + x;tﬁ so the fitted individual effect is included, the corre-
lation of the prediction with 1lwage increases greatly to 0.94. In a short panel, howevel;,
these predictions are not consistent because each individual prediction &; = g; — X;,8
is based on only 7" observations and 1" -+ oo.

8.9 First-difference estimator

Consistent estimation of B in the FE model requires eliminating the «;. One way to do
80 is to mean-difference, yielding the within estimator. An alternative way is to first-
difference, leading to the first-difference estimator. This alternative has the advantage
of relying on weaker exogeneity assumptions, explained below, that become important
in dynamic models presented in the next chapter. In the current chapter, the within
estimator is traditionally favored as it is the more eflicient estimator if the € are i.i.d.
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8.9.1 First-difference estimator

The first-difference (FD) estimator is obtained by performing OLS on the ﬁrst-diﬂ’"erence |
variables ¢
(Yir — Yir-1) = (Xit — Xie—1) B+ (8t —€ip—1) (8.12)

First-differencing has eliminated «;, so OLS estimation of this model leads to COnsistent
estimates of 3 in the FE model. The coeflicients of time-invariant regressors are not
identified, because then z;; — x; ;1 = 0, as was the case for the within estimator,

The FD estimator is not provided as an option to xtreg. Instead, the estimatq,
can be computed by using regress and Stata time-series operators to compute the
first-differences. We have

. sort id t

. * First-differences estimator with cluster-robust standard errors
. regress D.(lwage exp exp2 wks ed), vce(cluster id) noconstant
note: _delete omitted because of collinearity

Linear regression Number of obs = 3570
F(C 3, 594) = 1035.19
Prob > F = 0.0000
R-squared = 0.2209
Root MSE = .18156
(Std. Err, adjusted for 595 clusters in id)
Robust
D.1lwage Coef,  Std. Err, t P>t [95% Conf. Intervall
exp
D1. ,1170654 .0040974 28.57 0.000 ,1090182 .1251126
exp2
D1. -.0005321 .0000808 -6.58 0.000 -.0006908 -.0003734
wks
D1. -.0002683 .0011783 -0.23 0.820 -.0025824 .0020459
ed
D1. (omitted)

Note that the noconstant option is used. If instead an intercept is included in (8.12),
say, 6, this would imply that the original model had a time trend because §t—46(t—1) = 9.

As expected, the coefficient for education is not identified because ed here is time-
invariant. The coefficient for wks actually changes sign compared with the other esti-
mators, though it is highly statistically insignificant.

The FD estimator, like the within estimator, provides consistent estimators when the
individual effects are fixed. For panels with 7' = 2, the FD and within estimators ar¢
equivalent; otherwise, the two differ. For static models, the FE model is used because
it is the efficient estimator if the idiosyncratic error £;; is i.i.d.
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8.1u-
The FD estimator seemingly uses one less year of data compared with the within
ipator. because the Fp output lists 3,570 observations rather than 4,165. This,
ﬁ‘t\l\r@\'er. is misleading. Using the LSDV interpretation of the within estimator, the
I",: l:iln estimator essentially loses 595 observations by estimating the 7' fixed effects
T
;17 Lo O

8.0.2 strict and weak exogeneity

From (8.6), the within estimator requires that €; — &; be uncorrelated with x;; — X;.
This i8 the case under the assumption of strict exogeneity or strong exogeneity that

E(Eitlai7xi1, ey Xy s 7XiT) = 0

From (8.12), the FD estimator requires that € —€;+—1 be uncorrelated with x;; —x; 4 1.
This is the case under the assumption of weak exogeneity that

E(eit]os, X1, ..., Xq) = 0

This is a considerably weaker assumption because it permits future values of the re-
gressors to be correlated with the error, as will be the case if the regressor is a lagged
dependent variable.

As long as there is no feedback from the idiosyncratic shock today to a covariate
tomorrow, this distinction is unnecessary when estimating static models. It becomes
important for dynamic models (see section 9.4), because then strict exogeneity no longer
holds and we turn to the FD estimator.

8.10 Long panels

The methods up to this point have focused on short panels. Now we consider long
panels with many time periods for relatively few individuals (N is small and T — o).
Examples are data on a few regions, firms, or industries followed for many time periods.

Then individual fixed effects, if desired, can be easily handled by including dummy
variables for each individual as regressors. Instead, the focus is on more-efficient GLS
estimation under richer models of the error process than those specified in the short-
panel case. Here we consider only methods for stationary errors, and we only briefly
cover the growing area of panel data with unit roots and cointegration.

8.10.1 Long-panel dataset

The dataset used is a U.S. state—year panel from Baltagi, Griffin, and Xiong (2000) on
annual cigarette consumption and price for U.S. states over 30 years. The ultimate goal
Is to measure the responsiveness of per capita cigarette consumption to real cigarette
DPrices. Price varies across states, due in large part to different levels of taxation, as well
as over time.
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The original data were for N = 46 states and 7' = 30, and it is not clear whethey Weo
should treat N — oo, as we have done to date, or 7" — o0, or hoth. This situatig, is
not unusual for a panel that uses aggregated regional data over time. To make explicit
that we are considering T' — oo, we use data from only N = 10 states, similar to

. . i:].'rn‘.-
countries where there may be around 10 major regions (states or provinees).

The mus08cigar.dta dataset has the following data:

. * Description of cigarette dataset
. use musO8cigar.dta, clear

. describe

Contains data from musO8cigar.dta

obs: 300
vars: 6 13 Mar 2008 20:45
size: 8,400 (99.9% of memory free)
storage display value
variable name type format label variable label
state float %9.0g U.S. state
year float %9.0g Year 1963 to 1992
1np float %9.0g Log state real price of pack of
cigarettes
1npmin float %9.0g Log of min real price in
adjoining states
1nc float %9.0g Log state cigarette sales in
packs per capita
1ny float %9.0g Log state per capita disposable
income
Sorted by:

There are 300 observations, so each state—year pair is a separate observation because
10 x 30 = 300. The quantity demanded (1nc) will depend on price (1np), price of a
substitute (lnpmin), and income (1ny).

Descriptive statistics can be obtained by using summarize:

. * Summary of cigarette dataset
. summarize, separator(6)

Variable Obs Mean Std. Dev. Min Max
state 300 5.5 2.87708 1 10
year 300 77.5 8.669903 63 92

1lnp 300 4.518424 .1406979 4.176332 4.96916
Inpmin 300 4.4308 .1379243 4.0428 4.831303
1nc 300 4.792591 .2071792 4.212128 5.690022

1lny 300 8.731014 .6942426 7.300023 10.0385

The variables state and year have the expected ranges. The variability in per capita
cigarette sales (1nc) is actually greater than the variability in price (1np), with respective
standard deviations of 0.21 and 0.14. All variables are observed for all 300 observations,
so the panel is indeed balanced.
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8
810'2 Pooled OLS and PFGLS

A natural starting poiit is the two-way-effects model vy = a; + ¢ + x5 3 + €. When
;_11,3 panel has few individuals relative to the number of periods, the individual effects
. (here state effects) can be incorporated into x;; as dummy-variable regressors. Then
“i'lt‘l‘(" are too many time effects v, (here year effects). Rather than trying to control
:"m‘. these in ways analogous to the use of xtreg in the short-panel case, it is usually
sufficient to take advantage of the natural ordering of time (as opposed to individuals)

and stmply include a linear or gquadratic trend in time.

We therefore focus on the pooled model
Y =XuB+uy, i=1,...,N, t=1,...,T (8.13)

where the regressors x;; include an intercept, often time and possibly time-squared, and
possibly a set of individual indicator variables. We assume that IV is quite small relative

to T

We consider pooled OLS and PFGLS of this model under a variety of assumptions
about the error u;. In the short-panel case, it was possible to obtain standard errors
that control for serial correlation in the error without explicitly stating a model for
gerial correlation. Instead, we could use cluster—robust standard errors, given a small
T and N — oco. Now, however, T is large relative to N, and it is necessary to specify
a model for serial correlation in the error. Also given that N is small, it is possible to
relax the assumption that u;; is independent over 1.

8.10.3 The xtpcse and xtgls commands

The xtpcse and xtgls commands are more suited than xtgee for pooled OLS and GLS
when data are from a long panel. They allow the error u;; in the model to be correlated
over 4, allow the use of an AR(1) model for u;; over ¢, and allow u;; to be heteroskedastic.
At the greatest level of generality,

Uit = Pilhii—1 + it (8.14)

where ;; are serially uncorrelated but are correlated over i with Cor(ey, €i5) = Tys.

The xtpcse command yields (long) panel-corrected standard errors for the pooled
OLS estimator, as well as for a pooled least-squares estimator with an AR(1) model for
Ut. The syntax is

Xtpcse depuar [indepvars] [zf] [m] [weight] [, optz'ons]

| The correlation() option determines the type of pooled estimator. Pooled OLS
18 obtained by using correlation(independent). The pooled AR(1) estimator with
general p; is obtained by using correlation(psar1l). With a balanced panel, 1; —
PiYie 1 is regressed on X, = Xit — PXue,e—1 for ¢ > 1, whereas /(1 — p;)2y;1 is regressed

L
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on /(1 —p;)?xi1 for ¢ = 1. The pooled estimator with AR(1) error and p; = p iq
obtained by using correlation(arl). Then p, calculated as the average of the p; ig
used.

In all cases, panel-corrected standard errors that allow heteroskedasticity and corre.
lation over ¢ are reported, unless the hetonly option is used, in which case independence
over 1 is assumed, or the independent option is used, in which case e is ii.d.

The xtgls command goes further and obtains PFGLS estimates and associated stan-
dard errors assuming the model for the errors is the correct model. The estimators are
more efficient asymptotically than those from xtpcse, if the model is correctly specified.
The command has the usual syntax:

xtgls depvar [indepvars] [zf] [m] [weight] [, optz'ons]

The panels() option specifies the error correlation across individuals, where for
owr data an individual is a state. The panels(iid) option specifies u; to be Lid.,
in which case the pooled OLS estimator is obtained. The panels(heteroskedastic)
option specifies u;; to be independent with a variance of E(u%) = o? that can be
different for each individual. Because there are many observations for each individual,
o2 can be consistently estimated. The panels(correlated) option additionally allows
correlation across individuals, with independence over time for a given individual, so
that E(ujujs) = 045. This option requires that 7' > N.

The corr () option specifies the serial correlation of errors for each individual state.
The corr(independent) option specifies u;: to be serially uncorrelated. The corr(ar1)
option permits AR(1) autocorrelation of the error with u;; = pu; -1 + €i¢, where ¢4 is
i.i.d. The corr(psarl) option relaxes the assumption of a common AR(1) parameter to
allow wuir = pjts 1 + €44 The rhotype() option provides various methods to compute
this AR(1) parameter(s). The default estimator is two-step FGLS, whereas the igls
option uses iterated FGLS. The force option enables estimation even if observations are
unequally spaced over time.

Additionally, we illustrate the user-written xtscc command (Hoechle 2007). This
generalizes xtpcse by applying the method of Driscoll and Kraay (1998) to obtain
Newey—West-type standard errors that allow autocorrelated errors of general form,
rather than restricting errors to be AR(1). Error correlation across panels, often called
spatial correlation, is assumed. The error is allowed to be serially correlated for m lags.
The default is for the program to determine m. Alternatively, m can be specified using
the lags (m) option.

8.10.4 Application of the xtgls, xtpcse, and xtscc commands

As an example, we begin with a PFGLS estimator that uses the most flexible model
for the error u;;, with flexible correlation across states and a distinct AR(1) process for
the error in each state. In principle, this is the best estimator to use, but in practice
when T is not much larger than N, there can be finite-sample bias in the estimators
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and standard errors; see Beck and Katz (1995). Then it is best, at the least, to use the

more restrictive corr (ar1) rather than corr (psaril).

We obtain

. * Pooled GLS with error correlated across states and state-specific AR(1)
. Xxtset state year
panel variable: state (strongly balanced)
time variable: year, 63 to 92
delta: 1 unit
. xtgls 1nc 1lnp lny lopmin year, panels(correlated) corr(psarl)
Cross—sectional time-series FGLS regression

Coefficients: generalized least squares

Panels: heteroskedastic with cross-sectional correlation
Correlation: panel-specific AR(1)

Estimated covariances = 65 Number of obs = 300
Estimated autocorrelations = 10 Number of groups = 10
Estimated coefficients . 5 Time periods . 30
Wald chi2(4) = 342.15
Prob > chi2 = 0.0000
1nc Coef . Std. Err. z P>zl [95% Conf. Intervall
1np -.3260683 .0218214 -14.94  0.000 -.3688375 -.2832991
1ny .4646236 .0645149 7.20 0.000 .3381768 .5910704
lnpmin .0174759 .0274963 0.64 0.525 ~-.0364159 .0713677
year -.0397666 .0052431 -7.58  0.000 -.0500429 -.0294902
.cons 5.157994 .2753002 18.74 0.000 4.618416 5.697573

All regressors have the expected effects. The estimated price elasticity of demand for
cigarettes is —0.326, the income elasticity is 0.465, demand declines by 4% per year (the
cocfficient of year is a semielasticity because the dependent variable is in logs), and a
higher minimum price in adjoining states increases demand in the current state. There
are 10 states, so there are 10 x 11/2 = 55 unique entries in the 10 x 10 contemporaneous
error covariance matrix, and 10 autocorrelation parameters p; are estimated.

We now use xtpcse, xtgls, and user-written xtscc to obtain the following pooled
estimators and associated standard errors: 1) pooled OLS with i.i.d. errors; 2) pooled
OLS with standard errors assuming correlation over states; 3) pooled OLS with standard
errors assuming general serial correlation in the error (to four lags) and correlation over
states; 4) pooled OLS that assumes an AR(1) error and then gets standard errors that
additionally permit correlation over states; 5) PFGLS with standard errors assuming an
AR(1) error; and 6) PFGLS assuming an AR(1) error and correlation across states. In all
cases of AR(1) error, we specialize to p; = p.

. * Comparison of various pooled OLS and GLS estimators
. quietly xtpcse lnc lnp lny lopmin year, corr(ind) independent nmk

. estimates store OLS_iid
. quietly xtpcse lnc lnp lny lnpmin year, corr(ind)
« estimates store OLS_cor

. quietly xtscc lnc lnp lny lnpmin year, lag(4)
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, estimates store OLS_DK

. quietly xtpcse lnc lnp lny lnpmin year, corr(aril)

. estimates store AR1_cor

. quietly xtgls 1lnc 1lnp lny lnpmin year, corr(arl) panels(iid)

. estimates store FGLSAR1

. quietly xtgls lnc lnp lny lnpmin year, corr(arl) panels(correlated)

. estimates store FGLSCAR

. estimates table OLS_iid OLS_cor OLS_DK AR1_cor FGLSAR1 FGLSCAR, b(%7.3f) se

Variable OLS_iid OLS_cor  OLS_DK AR1_cor  FGLSAR1 FGLSCAR
1np -0.583 -0.583 -0.583 -0.266 -0.264 -0.330
0.129 0.169 0.273 0.049 0.049 0.026

lny 0.365 0.365 0.365 0.398 0.397 0.407
0.049 0.080 0.163 0.125 0.094 0.080

1npmin -0.027 -0.027 -0.027 0.069 0.070 0.036
0.128 0.166 0.252 0.064 0.059 0.034

year -0.033 -0.033 -0.033 -0.038 -0.038 -0.037
0.004 0.006 0.012 0.010 0.007 0.008

_cons 6.930 6.930 6.930 5.115 5.100 5.393
0.353 0.330 0.515 0.544 0.414 0.361

legend: b/se

For pooled OLS with ii.d. errors, the nmk option normalizes the VCE by N — k
rather than N, so that output is exactly the same as that from regress with default
standard errors. The same results could be obtained by using xtgls with the corr (ind)
panel(iid) nmk options. Allowing correlation across states increases OLS standard
errors by 30-50%. Additionally, allowing for serial correlation (OLS_DK) leads to another
50-100% increase in the standard ervors. The fourth and fifth estimators control for
at least an AR(1) error and yield roughly similar coefficients and standard errors. The
final column results are similar to those given at the start of this section, where we used
the more flexible corr(psar1) rather than corr(ar1).

8.10.5 Separate regressions

The pooled regression specifies the same regression model for all individuals in all years.
Instead, we could have a separate regression model for each individual unit:

Yir = X0 + uit
This model has VK parameters, so inference is easiest for a long panel with a small N.

For example, suppose for the cigarette example we want to fit separate regressions
for each state. Separate OLS regressions for each state can be obtained by using the
statsby prefix with the by (state) option. We have
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. * Run separate regressions for each state
. statsby, by(state) clear: regress lnc lnp lny lnpmin year
(running regress on estimation sample)
command: regress lnc lnp lny lnpmin year
by: state

Statsby groups
1 i 2 i 3 i 4 ———T*A— 5

This leads to a dataset with 10 observations on state and the five regression coefficients.
We have

. * Report regression coefficients for each state
. format _b* %9.2f

. list, clean
state _b_lnp _b_lny _b_lnp~n _b_year -b_cons

L, 1 -0.36 1.10 0.24 -0.08 2.10
2, 2 0.12 0.60 -0.45 -0.05 5.14
3. 3 -0.20 0.76 0.12 -0.056 2.72
4, 4 -0.52 -0.14 -0.21 -0.00 9.56
5. 5 -0.55 0.71 0.30 -0.07 4.76
6. 6 -0.11 0.21 -0.14 -0.02 6.20
T 7 -0.43 -0.07 0.18 -0.03 9.14
8. 8 -0.26 0.89 0.08 -0.07 3.67
9 9 -0.03 0.55 -0.36 -0.04 4.69
10, 10 -1.41 1.12 1.14 -0.08 2.70

In all states except one, sales decline as price rises, and in most states, sales increase
with income.

One can also test for poolability, meaning to test whether the parameters are the
same across states. In this example, there are 5x 10 = 50 parameters in the unrestricted
model and 5 in the restricted pooled model, so there are 45 parameters to test.

8.10.6 FE and RE models

As noted earlier, if there are few individuals and many time periods, individual-specific
FE models can be fit with the LSDV approach of including a set of dummy variables,
here for each time period (rather than for each individual as in the short-panel case).

Alternatively, one can use the xtregar command. This model is the individual-
effects model y;; = a; + %0 + u;e, with AR(1) ervor uy = pu; 1 +¢€4¢. This is a better
model of the error than the i.i.d. error model u; = g, assumed in xtreg, so xtregar
potentially will lead to more-cfficient parameter estimates.

The syntax of xtregar is similar to that for xtreg. The two key options are fe and
re. The fe option treats oy as a fixed effect. Given an estimate of p, we first transform
to eliminate the effect of the AR(1) error, as described after (8.14), and then transform
again (mean-difference) to eliminate the individual effect. The re option treats o; as a
random effect.
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We compare pooled oLS estimates, RE estimates using xtreg and xXtregar, an
within estimates using Xtreg, xtregar, and xtscc. Recall that xtscc calculateg Cithe,
the OLS or regular within estimator but then estimates the vCE assuming quite genepy)
érror correlation over time and across states. We have

- * Comparison of various RE and FE estimators
- use musO8cigar.dta, clear

- quietly xtscc 1lnc lop lny lnpmin, lag(4)
- estimates store OLS_DK

- quietly xtreg lnc Inp 1lny lnpmin, fe

. estimates store FE_REQ

- quietly xtreg lnc lnp lny lnpmin, re

- estimates store RE_REG

- quietly xtregar lnc lnp lny lnpmin, fe

- estimates store FE_REGAR

- quietly xtregar lnc lnp 1lny lnpmin, re

- estimates store RE_RECAR

- quietly xtscc 1lnc lop lny lnpmin, fe lag(4)
- estimates store FE_DK

- estimates table OLS_DK FE_REG RE_REG FE_REGAR RE_REGAR FE_DK, b(%7.3f) se

Variable OLS_DK FE_REG RE_REG FE_RE~-R  RE_RE-R FE_DK
1np -0.611 ~-1.136 -1.110 -0.260 -0.282 -1.136
0.428 0.101 0.102 0.049 0.052 0.158

1ny -0,027 -0.046 ~0.045 ~-0.066 -0.074 -0.046
0.026 0.011 0.011 0.064 0.026 0.020

Inpmin ~-0.129 0.421 0.394 -0.010 -0.004 0.421
0.338 0.101 0.102 0.057 0.060 0.168

_cons 8.357 8.462 8.459 6.537 6.708 8.462
0.633 0.241 0.247 0.036 0.289 0.464

legend: b/se

There are three distinctly different sets of coefficient estimates: those using pooled OLS,
those using xtreg to obtain FE and RE estimators, and those using xtregar to obtain
FE and RE estimators. The final set of estimates uses the fe option of the user-written
xtsce command. This produces the standard within estimator but then finds standard

errors that are robust to both spatial (across panels) and serial autocorrelation of the
error,

8.10.7 Unit roots and cointegration

If N is small, say N < 10, then seemingly unrelated equations methods can be used.
When N is large, the panel aspect becomes more important. Complications include the

8.10.7 Unit roots and cointegration 279

| to control for cross-section unobserved heterogeneity when N is large, asym.p'totlc
neet - that can vary with exactly how N and T both go to infinity, and the possibility of
{I'"’T }..e;mt;rm (l(-3]){-)'|'l;l{;'.l_l.l_tl.-?. At the same time, statistics that have nonnormal distributions
:_'m:::_:in‘.ﬂ;; time series can be averaged over cross sections to obtain statistics with a
O/ P2

numm! distribution,

Unit-root tests can have low power. Panel data may inm:ease the power because

w having time series for several cross sections. The unit-root tests can also be

N PO rest per se, such as testing purchasing power parity, as well as being relevant
;)i lf(flzequent coilsiderations of cointegration. A dynamic model with cross-section

heterogeneity is
Yit = PilYit—1 =+ ¢i1Ayi,t—1 R ¢ipi Ayi,tﬁpi + Z;tp)li + Ui

where lagged changes are introduced so that w;, i?, i..i.d. Examples of z; includ(,a mdl(i
idual effects [z, = (1)], individual effects and individual time trends [z = (11)'], an
V. = v in the case of homogeneity. A unit-root test is a test of Hy:p1 = CpN = 1.
Z;Vin, C.-F. Lin, and C.-S. J. Chu (2002) proposed a test against the alterna,tlv.e of ho—
mogeneity, Ho 1 p1 = -+ = py = p < 1, th.at is based on pooled QLS estlmatlog
using specific first-step pooled residuals, where in 1t4)oth steps homogenelt?/ (p; g ]/3) an
b = o) is imposed. The user-written 1ev-in11n con.lmand (Bornh01.st an ?ur1n
2006) performs this test. Im, Pesaran, and Shin (2003) 1nstea(.i test against an a til-
native of heterogeneity, H, : p; < 1,...,pn, < 1, for a fraction NO/TN of the p; y
averaging separate augmented DickeyFuller tests for-each Cross se(':tlon. The user-
written ipshin command (Bornhorst and Baum 2007) implements this test. .Both t?st
statistics are asymptotically normal and both assume N /T — 0 so that the time-series

dimension dominates the cross-section dimension.

As in the case of a single time series, cointegration tests are used to ensure that
statistical relationships between trending variables are not spurious. A quite general
cointegrated panel model is

7 ! :
Yie = X3 8; + 257, + wig

Xit = Xip—1 +€Ex

where z;, is deterministic and can include individual effects and time trends, al-ld Xt
are (co)integrated regressors. Most tests of cointegration are based on the OLS 1‘1681fiuals
U, but the unit-root tests cannot be directly applied if Cov(u;,e5) # 0, as is hl.<ely.
Single-equation estimators have been proposed that generalize to panels fully 1119d1ﬁed
OLS and dynamic OLS, and Johanssen’s system approach has also been ger.lera,hzed to
Panels. The user-written xtpmg command (Blackburne and Frank 2007) implements
the estimators of Pesaran and Smith (1995) and Pesaran, Shin, and Smith (1999) f01"
nonstationary heterogeneous panels with a large N and T. For references, see Baltagi
(2008) and Breitung and Pesaran (2005).
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8.11 Panel-data management

Stata xt commands require panel data to be in long form, meaning that each individug)_
time pair is a separale observation. Some datasets instead store panel data in Wwide
form, which has the advantage of using less space. Sometimes the observational unit is
the individual, and a single observation has all time periods for that individual. Ang
sometimes the observational unit is a time period, and a single observation has all
individuals for that time period.

We illustrate how to move from wide form to long form and vice versa by using the
reshape command. Our example is for panel data, but reshape can also be used in
other contexts where data are grouped, such as clustered data grouped by village rather
than panel data grouped by time.

8.11.1 Wide-form data

We consider a dataset that is originally in wide form, with each observation containing
all years of data for an individual. The dataset is a subset of the data from the previoug
section. Fach observation is a state and has all years of data for that state. We have

- * Wide form data (observation is a state)
. use musO8cigarwide.dta, clear

. list, clean
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The data contain a state identifier, state; three years of data on log price, 1np63-1npé5;
and three years of data on log sales, 1nc63-1nc65. The data are for 10 states.

8.11.2 Convert wide form to long form

The data can be converted from wide form to long form by using reshape long. The
desired dataset will have an observation as a state—year pair. The variables should be
a state identifier, a year identifier, and the current state—year observations on 1np and
Inc.

The simple command reshape long actually does this automatically, because it
interprets the suflixes 63-65 as denoting the grouping that needs to be expanded to
long form. We use a more detailed version of the command that spells out exactly what
we want to do and leads to exactly the same result as reshape long without arguments.
We have
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. % Convert from wide form to long form (observation is a state-year pair)
. reshape long lnp lnc, i(state) j(year)
(note: j = 63 64 65)

Data wide -> long
Number of obs. 10 -> 30
Number of variables 7 -> 4
j variable (3 values) ->  year

xij variables:
1np63 1np64 1np65 -> 1np
1nc63 1nc64 1ncé5 -> Inc

The output indicates that we have expanded the dataset from 10 observations (10
states) to 30 observations (30 state—year pairs). A year-identifier variable, year, has
peen created. The wide-form data 1np63-1np65 have been collapsed to lnp in long
form, and 1nc63-1nc65 have been collapse to 1lnc.

We now list the first six observations of the new long-form data.

. * Long-form data (observation is a state)
. list in 1/6, sepby(state)

state year 1lnp 1nc
1. 1 63 4.5 4.5
2. i 64 4.6 4.6
3. 1 65 4.5 4.6
4. 2 63 4.4 4.8
5. 2 64 4.3 4.8
6. 2 65 4.3 4.8

Any year-invariant variables will also be included in the long-form data. Here the state-
identifier variable, state, is the only such variable.

8.11.3 Convert long form to wide form

Going the other way, data can be converted from long form to wide form by using
reshape wide. The desired dataset will have an observation as a state. The constructed
variables should be a state identifier and observations on 1np and 1lnc for each of the
three years 63—65.

The reshape wide command without arguments actually does this automatically,
because it interprets year as the relevant time-identifier and adds suffixes 63—65 to the
variables 1np and lnc that are varying with year. We use a more detailed version of
the command that spells out exactly what we want to do and leads to exactly the same
result. We have

(Continued on next page)
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* Reconvert from long form to wide form (observation is a state)
. reshape wide lnp lnc, i(state) j(year)
(note: j = 63 64 65)

Data long -> wide
Number of obs. 30 > 10
Number of variables 4 > 7
j variable (3 values) year ->  (dropped)

xij variables:
lnp -> 1np63 1lnp64 1np65
Inc -> 1nc63 1nc64 1lnc65

The output indicates that we have collapsed the dataset from 30 observations (30 state
year pairs) to 10 observations (10 states). The year variable has been dropped. The
long-form data 1np has been expanded to 1np63—-1np65 in wide form, and 1nc has beey,
expanded to 1nc63-1nc65.

A complete listing of the wide form dataset is

. list, clean

state  1np63 Inc63 1np64 1nc64 1np65  1ncéb
1. 1 4.5 4.5 4.6 4.6 4.5 4.6
2. 2 4.4 4.8 4.3 4.8 4.3 4.8
3. 3 4.5 4.6 4.5 4.6 4.5 4.6
4. 4 4.4 5.0 4.4 4.9 4.4 4.9
5. 5 4.5 5.1 4.5 5.0 4.5 5.0
6. 6 4.5 5.1 4.5 5.1 4,5 5.1
7. 7 4.3 5.5 4.3 5.5 4.3 5.5
8. 8 4.5 4.9 4.6 4.8 4,5 4.9
9. 9 4.5 4.7 4.5 4.7 4,6 4.6
10. 10 4.5 4.6 4.6 4.5 4,5 4.6

This is exactly the same as the original mus08cigarwide.dta dataset, listed in sec-
tion 8.11.1.

8.11.4 An alternative wide-form data

The wide form we considered had each state as the unit of observation. An alternative
is that each year is the observation. Then the preceding commands are reversed so that
we have i(year) j(state) rather than i(state) j(year).

To demonstrate this case, we first need to create the data in wide form with year
as the observational unit. We do so by converting the current data, in wide form with
state as the observational unit, to long form with 30 observations as presented above,
and then use reshape wide to create wide-form data with year as the observational
unit.
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, * Create alternative wide-form data (observation is a year)
. quietly reshape long lnp lnc, i(state) j(year)

. reshape wide lnp lnc, i(year) j(state)
(note: J =123456789 10)

Data long -> wide

Number of obs. 30 > 3

Number of variables 4 > 21

j variable (10 values) state ->  (dropped)

xij variables:
Inp -> 1npl 1np2 ... 1lnpl0
1nc -> 1nci 1nc2 ... 1lnclO

. list year 1lnpl 1np2 1lncl 1nc2, clean
year 1lnpi 1np2 1ncl 1Inc2

1. 63 4.5 4.4 4.5 4.8
24 64 4.6 4.3 4.8 4.8
3. 65 4.5 4.3 4.6 4.8

The wide form has 3 observations (one per year) and 21 variables (1np and 1nc for each
of 10 states plus year).

We now have data in wide form with year as the observational unit. To use xt
commands, we use reshape long to convert to long-form data with an observation for
each state—year pair. We have

. * Convert from wide form (observation is year) to long form (year-state)
. reshape long lnp lnc, i(year) j(state)
(note: j=123456789 10)

Data wide -> 1long
Number of obs. 3 -> 30
Number of variables 21 -> 4
j variable (10 values) -> state
xij variables:
1npl 1np2 ... 1lnpl0 -> 1np
Incl 1nc2 ... 1lncl0 -> Inc

. list in 1/6, clean

year state 1np Inc

1. 63 1 4.5 4.5
2, 63 2 4.4 4.8
3. 63 3 4.5 4.6
4, 63 4 4.4 5.0
5. 63 5 4.5 5.1
6, 63 6 4.5 5.1

The data are now in long form, as in section 8.11.2.
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8.12 Stata resources .

FE and RE estimators appear in many econometries texts. Panel texts with completg
coverage of the basic material are Baltagi (2008) and Hsiao (2003). The key Stata,
reference is |XT] Longitudinal/Panel-Data Reference Manual, especially [XT] xt ang
[xT] xtreg. Useful online help categories include xt and xtreg. For estimation wity
long panels, a useful Stata user-written command is xtscc, as well as several otherg
mentioned in section 8.10.

8.13 Exercises

1. For the data of section 8.3, use xtsum to describe the variation in occ, smsa, ing
ms, union, fem, and blk. Which of these variables are time-invariant? Use xttab’
and xttrans to provide interpretations of how occ changes for individuals ovey
the seven years. Provide a time-series plot of exp for the first ten observationg
and provide interpretation. Provide a scatterplot of 1wage against ed. Is this plog
showing within variation, between variation, or both?

2. For the data of section 8.3, manually obtain the three standard deviations of
lwage given by the xtsum command. For the overall standard deviation, use
summarize. For the between standard deviation, compute by id: egen meanwage
= mean (1lwage) and apply summarize to (meanwage-grandmean) for t==1, where
grandmean is the grand mean over all observations. For the within standard devia-
tion, apply summarize to (lwage-meanwage). Compare your standard deviations
with those from xtsum. Does s =~ s%, + s37

3. For the model and data of section 8.4, compare PFGLS estimators under the fol-
lowing assumptions about the error process: independent, exchangeable, AR(2),
and MA(6). Also compare the associated standard-error estimates obtained by
using default standard errors and by using cluster-robust standard errors. You
will find it easiest if you combine results using estimates table. What happens
if you try to fit the model with no structure placed on the error correlations?

4. For the model and data of section 8.5, obtain the within estimator by apply-
ing regress to (8.7). Hint: For example, for variable z, type by id: egen
avex = mean(z) followed by summarize z and then generate mdx = z - avex
+ r(mean). Verify that you get the same estimated coefficients as you would with
xtreg, fe.

5. For the model and data of section 8.6, compare the RE estimators obtained by using
xtreg with the re, mle, and pa options, and xtgee with the corr (exchangeable)
option. Also compare the associated standard-error estimates obtained by using
default standard errors and by using cluster—robust standard errors. You will find
it easiest if you combine results using estimates table.

6. Consider the RE model output given in section 8.7. Verify that, given the estimated
values of e_sigma and u_signma, application of the formulas in that section leads

to the estimated values of rho and theta.
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Make an unbalanced panel dataset by using the data of section 8.4 but then typing
set seed 10101 and drop if runiform() < 0.2. This will randomly drop 20% of
the individual—year observations. Type xtdescribe. Do you obtain the expected
patterns of missing data? Use xtsum to describe the variation in id, t, wage, ed,
and south. How do the results compare with those from the full panel? Use xttab
and xttrans to provide interpretations of how south changes for individuals over
time. Compare the within estimator with that in section 8.5 using the balanced
panel.



