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Introduction

Phytate/phytic acid [myo-inositol(1,2,3,4,5,6)hexakisphos-
phate (IUPAC–IUB, 1968)] is a common constituent of 
plant-derived foods. Phytic acid is the principal storage 
form of phosphorus (P) and inositol in cereals, legumes, 
and oilseeds representing ~60–90% of the total phosphorus 
content in plants. Phytic acid was found for the first time by 
Pfeffer (1872) in the aleurone layers of rice grains. A calcium–
magnesium salt of phytic acid is named as phytin, while the 
mono to dodeca anion of phytic acid is known as phytate. 
Phytate amounts to ~50% of the total P in nuts, peanuts, cob-
nuts, almonds, and coconuts (McCance and Widdowson, 
1935). Cocoa and chocolate were also estimated to contain 
24% of the total P as phytin. Both legume and cereal grains 
were found to contain ~5% phytate by weight (de Boland, 
Garner, and O’Dell, 1975). Phytates are known to occur in 
the form of a polyanion at pH 1–6 with 3–6 negative charges, 
in the crop, proventriculus, and gizzard of poultry, as well 
as the stomach of humans and swine (Bebot-Brigaud et al., 
1999). Phytic acid—a polyanionic chelating agent—forms 

complexes with several divalent cations of major nutritional 
significance, such as Ca2+, Mg2+, Zn2+, Cu2+, Fe2+, and Mn2+ 
(Harland and Oberleas, 1999). Phytates are known to form 
complexes with proteins under both acidic and alkaline 
pH conditions. These interactions were found to affect the 
protein structure, thus decreasing the enzymatic activity, 
protein solubility, and proteolytic digestibility (Kies et al., 
2006).

Phytases (myo-inositol hexakisphosphate phospho-
hydrolases) catalyze the hydrolysis of phytates to myo-
inositol pentakisphosphate (IP

5
) or to less phosphorylated 

myo-inositol phosphates IP
3
 (Hara et al., 1985; Kerovuo, 

Rouvinen, and Hatzack, 2000a; Quan et al., 2004) or IP 
(Wyss et al., 1999a). The complete hydrolysis of phytate 
produces one molecule of inositol and six molecules of 
inorganic phosphate, while partial hydrolysis results in myo-
inositol intermediates, namely, mono-, di-, tri-, tetra-, and 
pentaphosphates besides inorganic phosphate (Figure 1). 
Phytases are broadly classified into three types depending 
on the initiation site of dephosphorylation of the phytate, 
namely, 3-phytases, 6-phytases, and 5-phytases (Cosgrove, 
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1970). 3-Phytases (EC 3.1.3.8) isolated from Aspergillus niger, 
Neurospora crassa, Pseudomonas, Klebsiella sp. ASR1, and 
so on initiate the hydrolysis of phytate at the third phos-
phate group (Sajidan et al., 2004). However, 6-phytases (EC 
3.1.3.26) extracted from Escherichia coli, Paramecium, and 
so on initiate the hydrolysis of phytate at the sixth phosphate 
group (Greiner, Kontietzny, and Jany, 1993; Van der Kaay and 
Van Haastert, 1995), whereas 5-phytases (EC 3.1.3.72) from 
Medicago sativa, Phaseolus vulgaris, and Pisum sativum ini-
tiate phytate hydrolysis at the fifth phosphate group.

On the basis of the catalytic mechanism, phytases can 
be classified into three groups (Tye et al., 2002). Group 1 
includes histidine acid phosphatases or acid phosphatases 
(EC 3.1.3.2), Group 2 includes -propeller phytases (EC 
3.1.3.8), and Group 3 includes purple acid phosphatases or 
cysteine phytases (EC 3.1.3.2). Phytases from fungi and E. coli 
belong to the histidine acid phosphatases. These enzymes 
share the same active site sequence (RHGXRXP), the cata-
lytic dipeptide, and 10 cysteine residues. The enzymes in 
Group 2 are mainly Bacillus phytases. These enzymes have a 
six-bladed propeller folding architecture. There are six calci-
um-binding sites in each protein molecule and the enzyme 
activity is dependent on calcium. Purple acid phosphatase 
is found as a homodimeric glycoprotein in mainly plant 
species, with a Fe(III)–Zn(II) active site (Dionisio, Holm, 
and Brinch-Pendersen, 2007). Cysteine phytases represent 
a new class of phytases described in the anaerobic ruminal 
bacterium Selenomonas ruminantium (Chu et al., 2004). 
According to the conserved domain database (CDD) of the  
NCBI, the conserved domains in acid phosphatases (Group 
1), phytases (Group 2), and purple acid phosphatases 
(Group 3) are designated as pfam00328, pfam02333, and 
pfam02227, respectively.

Phytases are varied and widespread in nature, occur-
ring in plants, microorganisms, and animal tissues  
(Table 1). Phytase was identified for the first time in the 
rice bran, which could mediate the production of various 
phosphatidyl inositols as intermediates or as end products 
(Suzuki, Yoshimura, and Takaishi, 1907). The occurrence 

of phytases was reported in the calf liver and blood by 
McCollum and Hart (1908). Phytates when fed to rabbits 
were hydrolyzed by phytases secreted by the microflora 
present in the intestine (Plimmer, 1913). In addition, differ-
ent phytases were identified in negligible quantities in the 
mucosal extracts of small intestine of rats, humans, rabbits, 
and guinea pigs (Iqbal, Lewis, and Cooper, 1994; Marounek, 
Duskova, and Skrivanova, 2003).

The first commercial product containing phytase as 
animal feed additive was released ~9 decades later (1994) 
under the trade name Natuphos in Europe by Gist-Brocades 
(now DSM) and was sold by BASF. In recent years, the mar-
ket volume of phytases is estimated to be 150 million Euros 
(Haefner et al., 2005).

Previous reviews dealt with parameters involved in 
phytase production and purification, its biochemical 
properties, substrate specificities, and applications (Lei 
and Stahl, 2001; Vohra and Satyanarayana, 2003; Oh et al., 
2004). A recent review describes about the production, 
characterization, and applications of yeast phytases (Kaur, 
Kunze, and Satyanarayana, 2007). The present communi-
cation focuses on recent developments and gives a com-
prehensive account on diverse sources of phytases, their 
expression in heterologous hosts, molecular  characteristics, 
physicochemical properties, besides various applications 
of phytases in animal and human nutrition, aquaculture, 
transgenic animals and plants, as a soil amendment, and 
other uses.

Molecular and biophysical characteristics of 
phytases

Phytases have been isolated from diverse sources, expressed 
in a wide range of hosts, purified, and refolded using vari-
ous biochemical methods. Depending on the source and/
or expression host, phytases are known to show distinctive 
biophysical and biochemical properties. The molecular and 
biophysical characteristics of phytases are summarized in 
Table 1.
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Figure 1. Schematic diagram showing end products resulting from phytate hydrolysis mediated by different phytases.
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Table 1. Source and properties of phytase.

Phytase source Production strain Specific activity
Molecular weight 

(kDa)
Temperature 

optimum (°C) pH optimum K
m

 (µM) Reference

Agrocybe pediades Aspergillus oryzae 400 U mg−1 59 50 5.0–6.0 – Lassen et al. 
(2001)

Aspergillus niger Escherichia coli 1.5 mol 
min− 1 mg−1

56 43–50 5.1 96 Phillippy and 
Mullaney 
(1997)

A. niger Saccharomyces 
cerevisiae

4.0 U mg−1 120 55–60 2–2.5;5–5.5 – Han et al. 
(1999)

A. niger van Teighem – 22,592 U mg−1 66 52–55 2.5 606 Vats and 
Banerjee (2005)

A. niger Pichia pastoris 25–65 U mL−1 95 60 2.5, 5.5 – Han and Lei 
(1999)

Aspergillus fumigatus P. pastoris 43 U mg−1 – 60 6.0 – Rodriguez et al. 
(2000a)

Aspergillus ficuum Potato – 67.5–81.6 58 5.0 124 Ullah et al. 
(2003)

A. niger Soybean – 69–71 63 5.0 – Li et al. (1997a)

A. ficuum Alfalfa 3761 nKat mg−1 73–100 58 5.0 50 Ullah et al. 
(2002)

A. ficuum Tobacco – 76 50 2.0, 5.5 730 Zhang et al. 
(2004)

A. fumigatus – – 60 – 4.0, 6.0–6.5 – Pasamontes 
et al. (1997)

A. fumigatus – 28 U mg−1 60–76 60 5.0–6.0 – Wyss et al. 
(1999a)

A. niger – 102.5 U mg−1 66–100 – – – Wyss et al. 
(1999a)

Aspergillus terreus – 142–196 60 70 5.0–5.5 – Wyss et al. 
(1999a)

A. oryzae A. oryzae RIB40  
niaD−

2 U mL−1 74 50 5.5–6.0 – Uchida et al. 
(2006)

Rhizomucor pusillus – – – 70 5.4 – Chadha et al. 
(2004)

Aspergillus Canola – 70 – – – Peng et al. 
(2006)

Peniophora lycii A. oryzae 1080 ± 110 U 
mg−1

72 50–55 4.0–5.0 – Lassen et al. 
(2001)

Ceriporia sp. A. oryzae 700 ± 80 U mg−1 59 55–60 5.5–6.0 – Lassen et al. 
(2001)

Peniophora lycii P. pastoris 10,540 U mL−1 70–110 50 4.5 – Xiong et al. 
(2006)

Schwanniomyces  
occidentalis

Rice – 70 70 4.5 – Hamada et al. 
(2005)

Trametes pubescens A. oryzae 1210 ± 30 U 
mg−1

62 50 5.0–5.5 – Lassen et al. 
(2001)

Bacillus sp.  16 U mg−1 40 55 7.0 392 Rao et al. 
(2008)

Bacillus subtilis – 8.5 U mg−1 36.5 60 7–.5 350 Powar and 
Jagannathan 
(1982)

B. subtilis – 35 U mL−1 44 55 7.0 – Tye et al. (2002)

B. subtilis – 9–15 U mg−1 43 55 7.0 – Kerovuo et al. 
(1998)

Bacillus laevolacticus – 12.69 U mg−1 41–46 70 7.0–8.0 526 Gulati et al. 
(2007)

Bacillus sp. KHU-10 – 36 U mg−1 44 40 6.5–8.5 50 Choi et al. 
(2001)

Bacillus sp. DS11 – – 44 70 – – Kim et al. 
(1998b)

Bacillus licheniformes – – 47 65 7.0 – Tye et al. (2002)

Table 1. Continued on next page
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Table 1. Continued.

Phytase source Production strain Specific activity
Molecular weight 

(kDa)
Temperature 
optimum (°C) pH optimum K

m
 (µM) Reference

Lactobacillus pentosus – – 69 50 5.0 – Palacios et al. 
(2005)

E. coli – – 42 55 4.5 – Greiner et al. 
(1993)

E. coli E. coli – 44 60 4.5 – Golovan et al. 
(2000)

Lactobacillus plantarum – 0.463 U mg−1 52 65 5.5 – Zamudio, 
Gonzalez, and 
Medina (2001)

Pantoea agglomerans – – 42 60 4.5 340 Greiner (2004)

Emericella nidulans – 29–33 66 – 6.5 – Wyss et al. 
(1999a)

Myceliophthora thermophila – – 62 – 5.5 – Wyss et al. 
(1999b)

Talaromyces  
thermophilus

– – 128 – – – Wyss et al. 
(1999b)

Thermomyces  
lanuginosus

– 110 U mg−1 60 65 6.0 – Berka et al. 
(1998)

Yersinia intermedia P. pastoris 3960 U mg−1 45 55 4.5 – Huang et al. 
(2006)

Klebsiella sp. ASR1 E. coli 99 U mg−1 – 45 5.0 280 Sajidan et al. 
(2004)

Selenomonas  
ruminantium

– – 46 50–55 4.0–5.5 – Yanke et al. 
(1999)

Enterobacter sp. 4 – – – 50 7.0–7.5 – Yoon et al. 
(1996)

Obesumbacterium  
proteus

E. coli 310 U mg−1 45 40–45 4.9 340 Zinin et al. 
(2004)

Citrobacter braakii E. coli 1122 U mg−1 49 – – – Kim et al. 
(2006)

C. braakii S. cerevisiae 658 U mg−1 110–160 – – – Kim et al. 
(2006)

Penicillium oxalicum  
PJ3

P. pastoris 306.6 U mg−1 62.5 55 4.5 370 Lee et al. (2007)

Pseudomonas syringae MOK1 E. coli 2.514 U mg−1 – – – – Cho et al. 
(2005)

Candida krusei – – – 40 2.5, 5.5 30 Quan et al. 
(2001)

C. krusei WZ-001 – – 330 40 4.6 30 Quan et al. 
(2002)

Penicillium simplicissimum – 3.8 U mL−1 65 55 4.0 – Tseng YH, 
Fang, and 
Tseng SM 
(2000)

Cladosporium sp. FP-1 – 909.5 U mg−1 32.6 40 3.5 15.2 Quan et al. 
(2004)

Lactobacillus sanfranciscensis – – – 45 4.0 – De Angelis 
et al. (2003)

Pichia anomala – – 64 60 4.0 200 Vohra and 
Satyanarayana 
(2002)

Rye – – 67 45 6.0 300 Greiner et al. 
(1997)

Spelt – 262 µmol 
min− 1 mg−1

68 45 6.0 400 Konietzny et al. 
(1995)

Lilium longiflorum – 0.066 U mg−1 88 55–60 8.0 7.2 Scott and 
Loewus (1986)

Triticum aestivum E. coli – 54 65 4.5 246 ± 38 Dionisio et al. 
(2007)

Table 1. Continued on next page
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Gram-negative bacteria are known to produce phytase 
intracellularly while gram-positive bacteria and fungi pro-
duce it extracellularly (Greiner et al., 1993; Jareonkitmongkol 
et al., 1997; Pasamontes et al., 1997; Kaur et al., 2007). The fun-
gal and E. coli phytases exhibit no apparent sequence simi-
larity to each other and other known phosphatases, except 
for the septapeptide, RHGXRXP motif, conserved in the high 
molecular weight acid phosphatases (Ullah and Dischinger, 
1993; Ullah and Sethumadhavan, 1998; Lim et al., 2000). The 
histidine residue (His) of fungal phytases has been proposed 
to serve as a nucleophile in the formation of phosphohisti-
dine intermediate. The other hallmark of fungal phytases is 
the C-terminal HD motif (His361 and Asp362), which was 
recognized by Van Etten et al. (1991). Ostanin and Van Etten 
(1993) reported an equivalent His residue in E. coli acid 
phosphatase, which causes the nucleophilic attack on the 
scissile phosphoester bond, and an equivalent Asp residue, 
which might protonate the substrate leaving group. Whereas, 
Bacillus phytases lack the conserved RHGXRXP active 
site motif of histidine acid phosphatases and do not show 
homology to any of the known phytases. Metal dependency 
for structural integrity is another unique feature of this group 
of phytases. These enzymes have a six-bladed -propeller 
folding architecture (Figure 2A and 2B) (Ha et al., 2000; Rao 
DECS, Rao KV, and Reddy, 2008). The TS-phytase of Bacillus 
amyloliquefaciens is a -propeller, comprising five 4-stranded 
and one 5-stranded antiparallel -sheets, aligned around a 
pseudo sixfold symmetry axis lying on the shaft of the pro-
peller, which serves as a distinct central channel filled with 

Table 1. Continued.

Phytase source Production strain Specific activity
Molecular weight 

(kDa)
Temperature 

optimum (°C) pH optimum K
m

 (µM) Reference

Hordeum vulgare E. coli – 54 65 4.5 334 ± 31 Dionisio et al. 
(2007)

Soybean – – – 40–60 3.0–5.8 – Hamada (1996)

Soybean – – 70–72 58 4.5–5.0 61 Hegeman and 
Grabau (2001)

Soybean – 0.5 U mg−1 – 60 4.8 2400 Sutardi and 
Buckle (1986)

Maize root – 5.7 U mg−1 71 40 5.0 – Hubel and 
Beck (1996)

Maize seedlings   76 55 4.8 117 Laboure et al. 
(1993)

Tomato root – 205 U mg−1 – 50 4.3 – Li et al. (1997b)

Allium fistulosum L. – 500 µmol 
min− 1 mg−1

72 51 5.5 200 Phillippy (1998)

Phaseolus vulgaris – – – – 8.0 – Scott (1991)

Pisum sativum – – – – 8.0 – Scott (1991)

Medicago sativa – – – – 8.0 – Scott (1991)

Rat intestine – – 70, 90 – 7.5 – Yang et al. 
(1991)

Hybrid striped bass – 4.8 U mg−1 – – 3.5–4.5 2500 Ellestad, Angel, 
and Soares 
(2002)

E. coli Mice – 55 – – – Golovan et al. 
(2001a)

E. coli Pig – 55 – – – Golovan et al. 
(2001b)

Figure 2. (A) -Propeller structure of Bacillus phytase. (B) Bacillus phytase 
proteins with domain insertion between Leu179 and Asp180. 

pRPHY
(NSRHGARYP)

pGPHY
(NSGNAHRDG)
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many ordered water molecules. This enzyme binds seven 
calcium ions, two of which are located at the periphery, one 
in the middle of the central channel, while the other four are 
bound at the top of the molecule. Unlike other -propeller 
structures, it does not show any conserved sequence repeat 
in the -strands (Shin et al., 2001). S. ruminantium phytase 
was distinct and showed no structural similarity to that of 
E. coli and B. amyloliquefaciens phytases. The S. ruminan-
tium phytase assumes a football-like shape and its crystal 
structure revealed a phytase-fold of the dual specificity 
phosphatase type (Chu et al., 2004). Soybean phytase was 
found to contain motifs characteristic of a large group of 
phosphoesterases including purple acid phosphatases and 
lacks the RHGXRXP-motif (Hegeman and Grabau, 2001). 
Different purple acid phosphatases of plants are known 
to contain conserved metal-ligating residues required for 
enzyme function. Maize phytase, except for a homologous 
region of 33 amino acids including RxGxRxP-motif, showed 
no apparent sequence similarity to that of A. niger phytase 
(Maugenest et al., 1999). Phytase from Arabidopsis thaliana 
contains a septapeptide active sequence RHGXRXP as well 
as the dipeptide HD region required for phosphatase activity 
(Mullaney and Ullah, 1998).

Most of the phytase enzymes consist of monomeric pro-
tein, while phytases from maize roots (Hubel and Beck, 1996) 
and maize seedlings (Laboure, Gagnon, and Lescure, 1993) 
are homodimeric in nature. Molecular masses of phytases 
are highly variable ranging from ~32 to ~330 kDa (Table 1). 
The higher molecular weight of fungal and yeast phytases 
is attributed to the glycosylation of these enzymes in the 
host system. Phytase from Citrobacter braakii, expressed in 
Saccharomyces cerevisiae, showed higher molecular weight 
as compared to the recombinant phytase expressed in E. coli, 
owing to N-glycosylation of the protein in the yeast system. 
The hyperglycosylated phytase also showed enhanced ther-
mostability in comparison with the unglycosylated counter-
part (Kim et al., 2006). Similarly, phytase from A. niger, when 
expressed in S. cerevisiae, exhibited an increased protein 
mass and high thermotolerance, as compared to the phytase 
expressed in the native A. niger, because of N-glycosylation 
of the recombinant phytase. Penicillium oxalicum phytase 
when expressed in Pichia pastoris produced ~62.5 kDa pro-
tein with 25% increase in mass, caused by N-glycosylation 
in the host system (Lee et al., 2007). A. niger phyA gene, 
expressed in P. pastoris and S. cerevisiae, produced phytase 
enzymes of ~95 kDa and ~120 kDa, respectively, owing to 
lesser glycosylation of the protein in P. pastoris compared 
to S. cerevisiae (Han and Lei, 1999; Han, Wilson, and Lei, 
1999). Phytase gene from Peniophora lycii, upon expression 
in Aspergillus oryzae and P. pastoris, produced ~72 kDa and 
~110 kDa proteins, respectively, resulting from higher glyco-
sylation in P. pastoris, without any change in the thermotol-
erance of the proteins (Lassen et al., 2001; Xiong et al., 2006). 
In vitro deglycosylation of the phytase from Peniophora lycii 
had a limited effect on the equilibrium heat denaturation 
of the enzyme. The glycans of glycosylated phytase were 
shown to strongly promote the kinetic stability (i.e., reduced 

rate of irreversible denaturation) of the protein, while leav-
ing the equilibrium denaturation temperature largely unal-
tered (Rasmus et al., 2006). Recombinant fungal phytases, 
expressed in different hosts like A. niger, Hansenula poly-
morpha, and S. cerevisiae, with varied levels of glycosylation 
did not show significant differences in their thermostabil-
ity, protein folding, or specific activity. Thermostability of 
phytases cannot be attributed to glycosylation of the protein 
alone but needs to be studied in relation to various other 
factors like host–protein interaction, buffer systems used for 
thermostability assays, and the relative purity of the enzymes 
(Wyss et al., 1998, 1999b).

Expression of Aspergillus ficuum phytase in alfalfa and 
potato produced stable enzyme with lower molecular mass 
caused by reduced glycosylation in the plant systems. Further, 
the enzyme expressed in the heterologous hosts showed 
increased specific activity with reduced K

m
 value, and a shift 

in pH optima from 5.5 and 2.5 to 5.0 and 2.0, respectively; 
however, the phytase expressed in alfalfa was more sensi-
tive to thermal denaturation than the native phytase. The 
variation observed in enzyme properties, despite identical 
primary structure, was attributed to the differential glyco-
sylation and folding of the phytase in fungi and plants (Ullah 
et al., 2002, 2003). Expression of A. ficuum (AS3.324) phytase 
in tobacco showed enzyme properties similar to that of 
native phytase; however, the difference observed in the 
mass of A. ficuum (AS3.324) phytase (~68.5 kDa) and recom-
binant phytase (~76 kDa) was attributed to higher glycosyla-
tion of the protein in the plant system (Zhang et al., 2004). 
Conversely, A. niger phytase expressed in soybean disclosed 
a lesser molecular mass (~71 kDa) when compared to the 
native (~85 kDa) enzyme (Li et al., 1997a).

In our laboratory, full-length (sphy) and truncated (phy) 
phytase genes of Bacillus were cloned independently into the 
bacterial expression vector pET21a(+) downstream to the T7 
promoter at NdeI and BamHI sites, which were introduced 
into E. coli BL21(DE3) host cells. The complete sphy sequence 
has been deposited in GenBank with the accession number 
EF536824. Molecular weights of the proteins encoded by the 
full-length (pSPHY) and truncated phytase (pPHY), as esti-
mated by SDS–PAGE, were ~43 kDa and ~40 kDa, respectively. 
Both the expressed proteins were found in the insoluble 
cytoplasmic fraction as inclusion bodies. The proteins were 
purified and solubilized in 8.0 M urea. Among the various co-
solutes used for refolding, only proline proved effective both 
in aggregation suppression and in enhancing refolding of 
the denatured protein. Nonfunctionality of the refolded full-
length protein and activity exhibited by the refolded truncated 
protein indicate the probable interference of the first 27 amino 
acids of full-length protein in attaining the conformation of 
active phytase. EDTA inhibited enzyme activity suggesting 
metal dependency of phytase. A requirement of Ca2+ ions was 
found essential for both refolding and activity of the enzyme. 
Bacillus phytase exhibited the specific activity of 16 U mg−1 
protein. The K

m
 value of phytase for the hydrolysis of sodium 

phytate has been determined as 0.392 mM. Bacillus phytase 
also revealed broad pH and temperature ranges of 5.0–8.0 
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and 25–70°C, respectively. The pH and temperature optima of 
phytase activity were 7.0 and 55°C, respectively. The enzyme 
exhibited ample thermostability, in the presence of calcium 
ions, upon exposure to high temperatures ranging from 75°C 
to 95°C, indicating that its heat denaturation is a reversible 
process. After 9 h of cultivation of transformed E. coli in the 
bioreactor, cell biomass reached 26.81 g wet weight (gww) L−1 
accounting for 4289 U enzyme activity compared to 1.978 gww 
L−1 producing 256 U activity in shake flask cultures. In silico 
analysis revealed the -propeller structure of phytase. The site 
between the 179th amino acid leucine and the 180th amino 
acid asparagine has been identified as the favorable region 
that offers scope for insertion of small peptides/domains for 
the production of chimeric genes without altering enzyme 
activity (Rao et al., 2008).

Escherichia coli Appa2 phytase, when expressed in  
S. cerevisiae, Schizosaccharomyces pombe, and P. pastoris, 
revealed similar molecular mass, glycosylation, pH profile, 
temperature profile, and phytate hydrolysis efficiency (Lee 
et al., 2005). The E. coli appA phytase expressed in P. pastoris 
showed an increase in the molecular mass by 5–10 kDa in 
comparison with the unglycosylated native form (Greiner 
et al., 1993; Rodriguez, Mullaney, and Lei, 2000a; Rodriguez 
et al., 2000b). Expression of the fungal phytases in the E. 
coli in active form proved futile owing to the absence of gly-
cosylation precluding active conformation of the enzyme 
(Phillippy and Mullaney, 1997). E. coli phytase expressed 
in transgenic mice and pigs showed higher mass (~55 kDa) 
compared with the native phytase (45 kDa), resulting from 
N-glycosylation of the protein in mammalian systems. 
Furthermore, glycosylated phytase showed altered kinetic 
properties (K

m
 = 0.37 mM, k

cat
 = 1401 s−1, k

cat
/K

m
 =  3787 s−1 

mM−1) when compared to the unglycosylated native 
enzyme (K

m
 = 0.79 mM, k

cat
 = 2378 s−1, k

cat
/K

m
 = 3010 s−1 mM−1) 

(Golovan et al., 2001a, 2001b).
Phytases from diverse plants (Table 1), exhibiting pH 

optima ranging from 3.0 to 6.0, were classified as acidic 
phytases. Whereas phytases from Lilium longiflorum (Scott 
and Loewus, 1986), Lupin seed (Silva and Trugo, 1996) 
Phaseolus vulgaris, P. sativum, and M. sativa (Scott, 1991) 
exhibited a pH optima of 8.0, and were designated as alka-
line phytases. Fungal, bacterial, and plant phytases, in gen-
eral, have acidic pI values with the exception of Aspergillus 
fumigatus phytase with a pI of ~8.6.

Nutritional significance of the phytases led to investiga-
tions dealing with their resistance to the action of proteo-
lytic enzymes. Recombinant phytases from A. niger and E. 
coli exhibited differential sensitivity to trypsin and pepsin in 
vitro. r-PhyA from A. niger proved resistant to trypsin while 
r-AppA from E. coli showed resistance to pepsin (Rodriguez 
et al., 1999). High stability of the E. coli phytase against inac-
tivation caused by pepsin was also confirmed by Golovan 
et al. (2000). A. niger phytase, compared to wheat phytase, 
was found to be more stable in the presence of pepsin or 
pancreatin (Phillippy, 1999). Bacillus phytase was extremely 
resistant to papain, pancreatin, and trypsin, but was found 
susceptible to pepsin (Kerovuo et al., 2000a; Kerovuo, 

Lappalainen, and Reinikainen, 2000b). Gene site saturation 
mutagenesis of the E. coli phytase gene resulted in a mutant 
version of the enzyme with a 3.5-fold increase in the gastric 
stability and a better thermal tolerance as compared to the 
wild-type enzyme (Garrett et al., 2004).

Effectors of phytase activity
Phytases exhibit differences in their requirement of metal 
ions for enzyme activity. Phytase activities of Bacillus sp. (Rao 
et al., 2008), Bacillus subtilis (Shimizu, 1992; Kerovuo et al., 
2000b), Bacillus sp. DS11 (Kim et al., 1998a), and Bacillus sp. 
KHU-10 (Choi, Suh, and Kim, 2001) were found to be Ca2+-
dependent. Metal depletion caused by EDTA in B. subtilis 
phytase resulted in complete enzyme inactivation owing to 
a conformational change, as evidenced by the differences 
observed in the circular dichroism spectra of the holozyme 
versus metal-depleted enzyme (Kerovuo et al., 2000b). An 
aliquot of 2 mM each of EDTA, Zn2+, Cd2+, Ba2+, Cu2+, Fe2+, 
and Al3+ inhibited the phytase activity of B. subtilis natto-77 
(Shimizu, 1992). Similarly, the phytase activity of Bacillus 
sp. KHU-10 was inhibited by EDTA and Ba2+, Cd2+, Co2+, Cr2+, 
Cu2+, Hg2+, and Mn2+ ions (Choi et al., 2001). Enterobacter 
sp. 4 phytase was moderately inhibited by Mg2+ and Mn2+ 
ions and completely inhibited by Zn2+, Cd2+, Al3+, EDTA at 1 
mM (Yoon et al., 1996); while the phytase activity of Yersinia 
was inhibited by Fe2+ and Zn2+ ions (Huang et al., 2006). The 
phytase activity of S. ruminantium was completely inhibited 
by Zn2+, Cu2+, Fe2+, Fe3+, and Hg2+ ions, and was significantly 
reduced by Zn2+ ions at 5 mM; conversely, 5 mM of Pb2+ 
ions caused high stimulatory effect on the phytase activity 
(Yanke, Selinger, and Cheng, 1999). In the presence of Cu2+, 
Zn2+ ions, or EDTA (5 mM), the phytase activity of Bacillus 
laevolacticus was moderately inhibited (Gulati, Chadha, 
and Saini, 2007). In addition, phytase activities of Emericella 
nidulans and Aspergillus terreus CBS were depressed by 1 
mM Cu2+ ions (Wyss et al., 1999a). Phytase from A. fumigatus 
was inhibited by Cu2+, Zn2+, Ca2+, Co2+, Mn2+, Ni2+, or Fe3+ ions 
(1 mM), while EDTA (1 mM and 10 mM) stimulated (~50%) 
enzyme activity (Wyss et al., 1999a).

Likewise, activities of wheat and barley phytases were 
inhibited by various metal ions, namely, Cu2+, Zn2+, Ca2+, 
Co2+, Mg2+, Mn2+, Ni2+, Fe2+, Fe3+, Na+, or Li+(1 mM) (Dionisio 
et al., 2007); while soybean phytase activity was inhibited 
by Zn2+, Cu2+, and Hg2+ ions (Sutardi and Buckle, 1986). 
Whereas, activity of maize-seedling phytase was stimulated 
by Ca2+ and inhibited by Zn2+ and Fe2+ ions (Laboure et al., 
1993). Mg2+ and Ca2+ ions had no significant effect on the 
phytase activity of rye, while Hg2+, Cu2+, Zn2+, Mn2+, and Co2+ 
could inhibit the enzyme activity (Greiner, Kontietzny, and 
Jany, 1997). Analogous to Bacillus phytases, enzymes from 
the pollen grains of L. longiflorum (Scott and Loewus, 1986) 
and Typha latifolia (Hara et al., 1985) were activated by Ca2+ 
(2 mM) ions.

Substrate specificity of phytases
Phytases with acidic pH optima, in general, are known 
to show broad substrate specificity. Enzymes from  
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A. niger (Casey and Walsh, 2003), A. fumigatus, E. nidu-
lans, Myceliophthora thermophila (Wyss et al., 1999a), rye, 
wheat, spelt, and Enterobacter (Herter et al., 2006) were 
found to show broad substrate specificity for InsP

6
, glucose-

1-phosphate, glucose-6-phosphate, fructose-1-phosphate, 
fructose-6-phosphate, p-nitrophenyl phosphate, AMP, ADP, 
ATP, 1-naphthylphosphate, 2-naphthylphosphate, and phe-
nyl phosphate.

Phytases from Bacillus sp., Bacillus KHU-10, Bacillus 
DS11, B. subtilis, Klebsiella pneumoniae sub sp., Pneumoniae 
XY-5, and E. coli exhibited high substrate specificity for 
phytates (Powar and Jagannathan, 1982; Greiner et al., 1993; 
Jareonkitmongkol et al., 1997; Kim et al., 1998a; Choi et al., 
2001; Wang et al., 2004; Rao et al., 2008). Phytases from lily 
pollen (Baldi et al., 1988), cattail pollen (Hara et al., 1985), 
and A. terreus CBS and A. terreus 9A1 (Wyss et al., 1999a) 
revealed similar substrate specificity for phytates. Using site-
directed mutagenesis approach, an increase in the specific 
activity of A. terreus phytase was achieved without affecting 
the broad substrate specificity and activity over a broad pH 
range of the enzyme (Tomschy et al., 2000).

Thermostability of phytases
Thermostability of phytases has a crucial role in animal 
feed applications, where the enzyme is normally incor-
porated into the grains before pelletization, and the feed 
briefly reaches processing temperatures of 85–90°C. The 
requirement of higher enzyme thermostability led to the 
cloning of phytase genes from thermophilic fungi. Phytase 
isolated from the thermophilic Rhizomucor pusillus showed 
optimum enzyme activity at 70°C (Chadha et al., 2004). 
Thermomyces lanuginosus phytase retained its activity at 
75°C and demonstrated superior catalytic efficiency when 
compared to the activity of fungal phytases at 65°C (Berka 
et al., 1998). A heat-stable phytase from A. fumigatus could 
withstand temperatures of up to 100°C for 20 min, with a 10% 
loss in the enzyme activity (Pasamontes et al., 1997). The 
thermostability of A. fumigatus phytase, A. niger phytase, 
and A. niger acid phosphatase was investigated based on 
circular dichroism, fluorescence studies, and enzyme activ-
ity. A. fumigatus phytase alone could refold into a fully active 
native conformation even after heat denaturation at 90°C. In 
feed pelleting experiments performed at 85°C, the recovery 
of enzyme activity was significantly higher for A. fumigatus 
phytase (51%) than that of A. niger phytase (31%) or A. niger 
acid phosphatase (14%) (Wyss et al., 1998). Fungal phytases 
from Peniophora lycii, Agrocybe pediades, Ceriporia sp., and 
Trametes pubescens showed high degree of refolding after 
thermal unfolding, as evidenced by differential scanning 
calorimetric studies (Lassen et al., 2001). Thermal stability 
of fungal phytases is often attributed to the high reversible 
thermal unfolding rather than to their intrinsic thermosta-
bility (Wyss et al., 1998).

Aspergillus niger phytase expressed in P. pastoris, upon 
glycosylation, revealed enhanced (60%) thermostability in 
comparison to the unglycosylated form (Han and Lei, 1999). 
The higher thermal tolerance disclosed by A. fumigatus 

phytase was attributed to the differences in the post-trans-
lational modifications rather than to the primary structure 
of the enzyme (Mullaney et al., 2000). In Enterobacter sp. 
4 phytase, a residual activity of 60% at 60°C after 20 h was 
observed, while a complete loss in activity was recorded 
at 70–80°C after 20 h (Yoon et al., 1996). A 4.6-fold increase 
in the activity (at 80°C) of transgenic tobacco phytase, 
compared to the native A. ficuum (AS3.324) phytase, was 
attributed to the enhanced glycosylation of the enzyme in 
the heterologous host (Zhang et al., 2004). A. niger phytase, 
expressed in soybean, showed a 20% reduction in enzyme 
activity (at 63°C), when compared to 60% reduction in the 
activity of native enzyme. The enhanced thermal stability 
was attributed to differences in the glycosylation profiles of 
the protein in plant and fungal systems and/or to the addi-
tion of two amino acids at the translational fusion site (Li 
et al., 1997a).

Phytase (phyL) from Bacillus licheniformis exhibited 
higher thermostability (at 95°C for 15 min) with a recovery 
of 61% of its activity, compared to thermostable phytase 
of B. amyloliquefaciens and phytase of Bacillus sp. DS11, 
which could recover ~50% activity after denaturation at 
90°C for 10 min (Kim et al., 1998b; Ha et al., 2000; Tye et al., 
2002). The half-life of phytases from Bacillus sp. DS11 and 
A. ficuum (at 80°C) were 42.1 min and 0.2 min, respectively, 
which amply indicate the higher thermostability of the 
Bacillus phytase (Kim et al., 1999). Bacillus sp. phytase (phy) 
upon renaturation before denaturation for 10 min at 75°C, 
85°C, and 95°C exhibited the restoration of 86%, 54%, and 
37% activity, respectively, in the presence of 5 mM CaCl

2
 

(Rao et al., 2008). B. subtilis phytase (phyC) retained ~90% 
and ~95% of its activity at 60°C for 10 min in the presence 
of 5 mM and 10 mM Ca2+, respectively, owing to the strong 
stabilizing effect of calcium against thermal denaturation of 
the enzyme (Kerovuo et al., 2000b). Whereas B. laevolacticus 
phytase alone revealed ~80% activity, at 70ºC for 3 h, both in 
the presence and in the absence of 5 mM CaCl

2
, thus sug-

gesting its calcium-independent nature (Gulati et al., 2007). 
Employing 13 diverse fungal phytases, a consensus synthetic 
phytase was developed, which showed substantial increase 
in its thermostability by 15–26°C compared to the parental 
phytases used in its design (Lehmann et al., 2000). A chimeric 
gene, with a secretory signal sequence for 13 amino acids—
coding for bifunctional enzyme endowed with endoglu-
canase and phytase activities—has been constructed and 
expressed in heterologous host E. coli in soluble form. The 
resultant stable, functional fusion protein of 73 kDa exhib-
ited dual enzyme activities with temperature and pH ranges 
of 25–75ºC and 4–8, respectively (Reddy et al., 2009).

Diverse applications of phytases

Phytases in animal nutrition
Monogastric animals such as swine, fish, and poultry show 
negligible or no phytase activity in their digestive tracts. 
Consequently, phytates cannot be metabolized by the 
animals, thus creating a need to enhance phosphate and 
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mineral bioavailability via phytase supplementation of ani-
mal feed. Of late, phytases are also viewed as environment-
friendly products, which can reduce the level of phosphate 
pollution in intensive livestock management areas by avoid-
ing the addition of exogenous phosphate (Vats et al., 2005). 
Undigested phytate of monogastric manure is washed off 
the farmland that imperils adjacent waterways by eutrophi-
cation (Common, 1989; Pen et al., 1993; Woodzinski and 
Ullah, 1996).

During the past two decades, there has been significant 
increase in the use of phytases as feed additive in pig, poul-
try, and fish diets (Table 2). In numerous studies, the efficacy 
of microbial phytases to release phytate-bound P has been 
demonstrated in various animals (Cromwell et al., 1995b; 
Ravindran, Bryden, and Kornegay, 1995; Camden et al., 2001; 
Zyla et al., 2004; Onyango, Bedford, and Adeola, 2005; Fritts 
and Waldroup, 2006; McClung et al., 2006). Phytases were 
also found to enhance the utilization of different minerals 

like Zn2+, Mg2+, Fe2+, and so on (Sebastian, Touchburn, and 
Chavez, 1998; Mohanna and Nys, 1999; Viveros et al., 2002; 
Silversides, Scott, and Bedford, 2004). Besides improving 
mineral availability, microbial phytases were also shown 
to ameliorate protein digestibility often reduced by phytate 
(Sebastian et al., 1997; Ravindran et al., 1999; Selle et al., 2000; 
Cowieson, Acamovic, and Bedford, 2006). Supplementation 
of poultry diets with phytase showed positive effects on 
growth performance, bone ash, toe ash, egg production, and 
egg quality (Gordon and Roland, 1998; Onyango et al., 2005; 
Pintar et al., 2005; Wu et al., 2006; Ebrahimnezhad et al., 
2008).

Phytases from different sources have been evaluated indi-
vidually and in combination for their efficacy as feed addi-
tives in poultry (Wu et al., 2001, 2006; Payne, Lavergne, and 
Southern, 2005; Elkhalil et al., 2007; Chauynarong et al., 2008; 
Perić et al., 2008). Bacterial phytases with neutral pH optima 
are being developed for use as feed additives. Preliminary 

Table 2. Use of phytases in animal nutrition.

Phytase Animal Diet/feed Response criteria Reference

Escherichia coli Poultry Maize–soybean Increased intake of apparent metabolizable energy 
(AME) and metabolizable N, P, and amino acids

Pirgozliev et al. (2008)

E. coli Pig Maize–wheat–soybean Improved growth performance and energy  
utilization

Olukosi, Sands, and 
Adeola (2007)

Quantum 2500D Poultry Corn–soybean meal Increased feed intake, weight gain, AME, gross  
energy metabolizability coefficient, and dry matter  
digestibility coefficient

Pirgozliev et al. (2007)

Natuphos 
Aspergillus niger 
phytase

Pig Barley-based diet Improved P digestibility and utilization and  
decreased P excretion

Htoo et al. (2007)

Phyzyme XP 
phytase

Pig Corn–wheat–soy–canola- 
based diet

Improved P digestibility and P retention Olukosi et al. (2007)

Natuphos Rat AIN-93 formulation  
(low-zinc diet)

Improved zinc status, increased body weight,  
and bone strength

McClung et al. (2006)

Natuphos Poultry – Increased plasma levels of Ca and P and  
reduced activity of alkaline phosphatase

Tsokova et al. (2006)

Microbial phytase Fish Plant-based basal diet Significant increase of bone Na, Ca, K, P, and  
Fe contents

Baruah et al. (2005)

E. coli Poultry Corn–soybean meal Improved growth performance, bone characteristics,  
and retention of P, Ca, N, and amino acids

Onyango et al. (2005)

E. coli Poultry Corn–soybean meal Improved growth performance, bone  
mineralization, P utilization

Dilger et al. (2004)

NovoNordisk Poultry Cereal–soybean meal Increased body weight gain and feed consumption Pintar et al. (2005)

E. coli Poultry Wheat–canola–soybean meal Positive effect on growth, nutrient digestibility,  
and toe ash

Silversides et al. (2004)

Ronozyme Fish Soybean meal based diet Enhanced protein and P utilization; decreased  
phytic acid in excreta

Vielma et al. (2004)

Allzyme Poultry wheat–soybean Improved P utilization, apparent metabolizable  
energy, and ileal nitrogen digestibility

Wu et al. (2001)

Natuphos 500 Poultry Corn–soybean meal Improved Ca, P, Mg, Zn retentions, tibia weight,  
tibia ash, Mg and Zn content in tibia

Viveros et al. (2002)

Finnfeed Poultry Maize–soybean Improved ileal digestibility of nitrogen, amino acids, 
starch, and lipids

Camden et al. (2001)

Natuphos and 
Phytaseed

Poultry Corn–soybean meal Increased body weight gain, feed intake, gain:feed, 
retention of dry matter, P and Ca; decreased P  
excretion

Zhang et al. (2000)

Microbial phytase Fish Fish meal–soybean meal Positive effect on P digestibility and retention Van Weerd et al. (1999)

Recombinant A. 
niger phytase

Pig Corn–soybean meal Improved bioavailability of phytate P Cromwell et al. (1995a)

Allzyme Pig Corn–soybean meal Improved bioavailability of P Cromwell et al. (1995b)
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studies have proved that they are on par with fungal phytases 
in their biological activity when supplemented with feed. Use 
of both bacterial and fungal phytases together as feed addi-
tive would be another promising alternative in improving the 
phosphorus utilization and alleviation of mineral deficiency, 
owing to their synergistic activities throughout the gastroin-
testinal tract of the animals (Elkhalil et al., 2007).

Experiments evaluating the efficacy of Bacillus phytase 
on 1-day-old chicks over a period of 28 days have been con-
ducted using randomized block design with three replica-
tions, each with five birds (Rao, 2008). Four treatments com-
prising normal diet of adequate non-phytate phosphorus 
(positive control); deficient diet containing 50% non-phytate 
phosphorus (negative control); and test treatments of defi-
cient diet supplemented with either 200 U or 400 U phytase 
per kg feed. Phytase supplementation at 400 U kg−1 feed 
resulted in significant increases in both body weight gain 
and feed utilization efficiency of birds. Birds fed on deficient 
diet showed impaired locomotor activity while the birds fed 
with phytase-supplemented diets showed normal behavior 
and unimpaired locomotor activity.

Increased levels of ionized calcium in the plasma of birds 
fed with phosphate-deficient diet depressed the release of 
parathyroid hormone and reduced tubular reabsorption of 
phosphate, resulting in the maintenance of ion homeostasis. 
Also, imbalances occurring in P:Ca in the plasma led to the 
resorption of calcium from the bone, resulting in fragility 
and elasticity of bones. Supplementation of phytase to defi-
cient diet increased the levels of plasma phosphorus with 
a concomitant decrease in plasma calcium. Birds fed with 
phytase-supplemented diets also showed increased plasma 
magnesium and zinc levels when compared to the birds fed 
on deficient diet. Increase in mineral nutrient uptake and 
assimilation was attributed to the hydrolysis of phytate by 
the recombinant phytase and subsequent release of miner-
als chelated to phytate.

Supplementation of Bacillus phytase to deficient diet 
increased tibia ash content, indicating improved bone min-
eralization due to enhanced bioavailability of phosphorus 
and calcium. Phosphorus content of tibia ash was compara-
ble in birds fed with normal diet (13.51%) followed by birds 
fed with 400 U (13.33%) and 200 U (13.01%) phytase-supple-
mented diets, while it was reduced (12.63%) in birds fed on 
deficient diet. Increased calcium content in tibia ash was 
observed in birds fed with 400 U (32.60%), 200 U (30.95%) 
phytase-supplemented diets and normal diet (30.74%) com-
pared with birds fed with deficient diet (28.32%).

No significant difference was observed between the 
phytate phosphorus content in the excreta of birds fed with 
either normal diet or deficient diet. However, phytase sup-
plementation at 200 U kg−1 and 400 U kg−1 reduced phytate 
phosphorus excretion by 44.30% and 47.50%, respectively, 
compared to that of normal diet. Non-phytate phospho-
rus in excreta was reduced by 16.27%, 25.30%, and 30.12% 
in birds fed with deficient diet, 200 U, and 400 U phytase- 
supplemented diets, respectively, compared to birds fed 
on normal diet. These observations amply suggest that 

exogenous addition of recombinant phytase resulted in 
the hydrolysis of phytate and subsequent utilization of the 
released inorganic phosphorus. Histopathological analysis 
of liver, spleen, and kidney showed no disease lesions and no 
differences were observed among various treatments. Thus, 
the recombinant Bacillus phytase proved to be nontoxic and 
can serve as a safe feed additive (Rao, 2008).

Broilers fed with low-phytate corn grains showed 
increased available P, enhanced growth performance, and 
decreased P excretion into the environment (Jang et al., 
2003). Transgenic soybean with A. niger phytase, when fed 
to broilers, exhibited enhanced phytate phosphorus utiliza-
tion as evidenced by increased body weight gain, toe ash, 
feed efficiency, and so on (Denbow et al., 1998).

Phytases in human nutrition
Mineral deficiency of diets, caused by radical changes in food 
habits, is a major concern for developing countries. Phytate 
present in cereal-based and legume-based complementary 
foods has been found to inhibit mineral absorption (Hurrell 
et al., 2003). The human small intestine has limited ability to 
digest undegraded phytates, resulting in adverse nutritional 
consequences with respect to metabolic cation imbalances 
(Iqbal et al., 1994). Phytic acid (PA)—containing 12 dissoci-
able protons with pK

a
 values ranging from ~1.5 to 10—is a 

highly reactive and potent chelator of many mineral ions 
such as Ca2+, Mg2+, Zn2+, and Fe2+. PA forms insoluble salts, 
at normal acidity (pH 3.0–6.8), in the human digestive tract, 
thereby reducing the bioavailability of these critical mineral 
nutrients for absorption (Costello, Glonek, and Myers, 1976; 
Harland and Oberleas, 1999). Mucosal phytase and alkaline 
phosphatases, even if present in the human small intestine, 
do not seem to play a significant role in the phytate diges-
tion, while dietary phytase serves as an important factor in 
phytate hydrolysis (Sandberg and Anderson, 1988).

Use of phytases for alleviation of mineral deficiency 
caused by phytate has been extensively studied. The addi-
tion of A. niger phytase to the phytate-containing meal 
before consumption was found to promote marked increase 
(14–26%) in iron absorption (Sandberg, Hulthen, and Turk, 
1996). Low Zn2+ uptake from soy formula was improved 
by reducing the phytate level in the diets of infant rhesus 
monkeys and suckling rat pups, caused by decreased chela-
tion of zinc by phytic acid (Lonnerdal et al., 1988). Phytate 
was degraded through food processing techniques, such as 
soaking, malting, and fermentation, by enhancing natural 
phytase activity or by phytase pretreatment of legume and 
cereal grains (Greiner and Konietzny, 1998, 1999, 2006). 
Release of phosphorus was significantly higher in malted 
oats compared to untreated oats, owing to reduction in the 
phytate levels (Larsson and Sandberg, 1995). Endogenous 
phytase of wheat bran, rather than the intestinal phytase, 
was found to play a key role in phytate degradation in the 
stomach and small intestine of humans (Sandberg and 
Anderson, 1988). In addition, micronutrient malnutri-
tion could be reduced through introduction of phytase 
genes into rice and wheat grains, the principal staple food 
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of many populations in the world. Undersimulated acidic 
conditions of stomach, the transgenic rice grains, express-
ing A. niger phytase, retained the same enzymatic activity 
as before acidic treatment (Lucca, Hurrell, and Potrykus, 
2001). However, further research needs to be envisaged for 
alleviation of mineral deficiency in humans by consumption 
of cereal grains expressing phytase genes.

Furthermore, A. niger phytase was found to serve as 
a potential bread-making additive (Haros, Rosell, and 
Benedito, 2001). Phytase used in various bread formula-
tions containing fiber leads to accelerated bread proof-
ing, improved crumb texture and shape besides increased 
specific volume. Addition of phytase reduced the phytate 
content in dough and fresh bread besides reducing  
the  fermentation time without affecting the dough pH. In 
whole wheat bread-making process, both lactobacilli and 
bifidobacterium strains, used as starters, disclosed high 
phytate degrading activity (Palacios et al., 2005, 2006, 2008a, 
2008b).

Phytases in aquaculture
A major concern in aquaculture is the utilization of dietary 
phosphates which critically affects fish growth as well as the 
aquatic environment. An efficient utilization of feed leading 
to optimum fish growth serves as a benchmark of success-
ful aquaculture worldwide. High concentration of dietary 
phytic acid decreased the growth of Chinook salmon, food 
and protein efficiency and thyroid function, increased mor-
tality, promoted cataract formation, and induced anomalies 
in pyloric cecal structure (Richardson et al., 1985). In trials 
conducted on African catfish (Clarias gariepinus), phytase 
supplementation revealed positive effects, particularly on 
phosphorus digestibility, retention, and phosphorus con-
version efficiency (Van Weerd et al., 1999). Atlantic salmon 
(Salmo salar) fed with phytase-supplemented meal exhib-
ited enhanced growth and neutralized the negative effect of 
phytate on protein digestibility (Sajjadi and Carter, 2004). 
Addition of phytase to plant-based diets of Labeo rohita 
juveniles enhanced the bioavailability of minerals thereby 
leading to increased bone mineralization (Baruah et al., 
2005). The positive effects of phytase were further increased 
by adding 3% citric acid to the feed. Pangasius pangasius fin-
gerlings, fed with diets containing 35% crude protein, added 
with phytase, disclosed improved growth, dry matter, and 
crude protein digestibility (Debnath et al., 2005). Studies 
using phytase as feed additive in aquaculture amply establish 
that phytase supplementation could enhance the bioavail-
ability of P, nitrogen, and other minerals, thereby decreasing 
phosphorus-load in the aquatic environment (Vielma et al., 
2004; Baruah et al., 2007; Nwanna and Schwarz, 2007).

Transgenic plants expressing microbial phytases
Transgenic plants can serve as bioreactors for the produc-
tion of phytases, and for harnessing the solar energy into 
metabolic energy. Expression of phytases in plants has 
enormous potential in improving plant phosphorus acquisi-
tion and phytoremediation. Transgenics expressing phytase 

genes can be directly used as animal feed, thereby reducing 
the downstream processing and formulation costs involved 
in the commercial production of phytases. Production of 
transgenics with substrate-specific phytases would be ideal, 
since the introduction of phytases with broad substrate 
specificity might disturb the metabolic pathways in plants, 
leading to decreased yields. Phytases have been expressed in 
several dicotyledonous plants like tobacco (Pen et al., 1993), 
A. thaliana (Richardson, Hadobas, and Hayes, 2001a; Xiao, 
Harrison, and Wang, 2005), alfalfa (Ullah et al., 2002), canola 
(Ponstein et al., 2002), soybean (Li et al., 1997a; Chiera, 
Finer, and Grabau, 2004), and so on. Stable transgenic rice 
and wheat plants, expressing fungal phytases, exhibited 
enhanced bioavailability of phosphate and iron (Lucca 
et al., 2001; Brinch-Pedersen et al., 2003; Hong et al., 2004). 
Transgenic rice grains expressing A. fumigatus phytase, 
when boiled for 20 min, retained only 8% of the phytase 
activity, while rice flour added with A. fumigatus phytase, 
when incubated under same conditions, retained 59% of the 
enzyme activity (Lucca et al., 2001). A. fumigatus phytase 
expressed in tobacco exhibited high thermostability and 
retained 28.7% of the initial activity even after incubation at 
90°C for 15 min (Wang et al., 2007). Schwanniomyces occiden-
talis phytase expressed in rice exhibited increased thermal 
stability as compared to the native yeast phytase. After pre-
incubation of the crude extract from transgenic rice leaves 
at 66°C, 70°C, and 73°C for 15 min, 98%, 96%, and 86% of 
the activity remained for the heterologous phytase, whereas 
91%, 84%, and 71% of the activity remained for the yeast 
phytase (Hamada et al., 2005). Two Aspergillus phytase genes 
have been expressed independently in potato leaves (Ullah 
et al., 2003) and tobacco seeds and leaves (Pen et al., 1993; 
Verwoerd et al., 1995), which could serve as feed additives. 
In wheat seeds, recombinant A. niger phytase along with the 
native phytase revealed concerted action on phytic acid deg-
radation (Brinch-Pedersen et al., 2003). Supplementation of 
broiler diets with transgenic tobacco (Pen et al., 1993) and 
rice seeds (Hong et al., 2004) resulted in an improved growth 
rate comparable to the diets added with fungal phytase or 
phosphorus alone. Aspergillus phytase expressed in maize 
seeds exhibited an increase in iron bioavailability, as evi-
denced by in vitro digestion and Caco-2 cell model stud-
ies (Drakakaki et al., 2005). Compared to untransformed 
rice grains, two transgenic lines expressing A. fumigatus 
phytase gene produced seeds with doubled phytase activ-
ity, whereas a third line exhibited ~130-fold increase (from 
72 to 9415 phytase units per gram of rice) in the phytase 
activity (Lucca et al., 2001). Transgenic tobacco, expressing 
B. subtilis phytase gene, disclosed increased plant growth 
when compared with the untransformed control plants (Yip 
et al., 2003). Expression of heterologous phytases in trans-
genic Trifolium subterraneum and Nicotiana tabacum was 
shown to improve the acquisition of organic phosphorus 
from the rhizosphere (George et al., 2004, 2005a, 2005b; 
Xiao et al., 2005). Thermotolerance of in planta synthesized 
heterologous phytase from A. fumigatus and an engineered 
consensus phytase expressed in transgenic wheat showed 
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low denaturation temperature (62.5°C) but a high refold-
ing capacity. High levels of endosperm-specific expression 
were ensured by the wheat high molecular weight glutenin 
1DX5 promoter. Immunodetection using light and electron 
microscopes showed that the heterologous phytase was 
deposited in the vacuole. Evaluation of heat stability prop-
erties and kinetic properties unraveled that, under these 
deposition conditions, heat stability based on high unfold-
ing temperature is superior to high refolding capacity. The 
thermostable phytase expressed in transgenic wheat proved 
effective for enhanced phosphate and mineral bioavailabil-
ity in cereal-based feed and food (Brinch-Pedersen et al., 
2006). Expression levels of heterologous phytase in diverse 
transgenic plants are presented in Table 3.

An alternative approach to address nutritional and envi-
ronmental problems entails reducing phytic acid levels in 
cereal grains and oilseeds by the production of low-phytate 
crops (Shi et al., 2007). However, the major concerns encoun-
tered in the development of low-phytate maize and soybean 
crops have been drastic reduction in grain yield, reduced 
seed dry weight, retarded vegetative growth, poor germina-
tion, and seedling establishment under field conditions 
(Meis, Fehr, and Schnebly, 2003; Bregitzer and Raboy, 2006).

Transgenic animals expressing phytases
Transgenic animals producing endogenous phytase along with 
other digestive enzymes are known to increase the assimilation 
of phosphorus and other mineral nutrients, thereby checking 
environmental pollution by reducing phosphate output in 
the manure. A transgenic mouse model has been developed 
with appA phytase gene from E. coli, driven by the upstream 

promoter of pig parotid secretory protein gene. Expression 
of the salivary phytase in transgenic mouse resulted in the 
reduction of fecal phytate by 8.5–12.5% (Yin et al., 2006). The 
transgenic Enviropig, expressing E. coli appA phytase, could 
secrete active phytase into saliva, and showed substantial 
reduction (60%) in the excretion of phosphorus as compared 
to the nontransgenic animals (Forsberg et al., 2003). Mice 
expressing appA phytase secreted active phytase into saliva, 
and compared to the normal mice showed 11% reduction 
in the fecal phosphorus (Golovan et al., 2001a). Transgenic 
pigs, expressing bacterial phytase in salivary glands, exhibited 
normal growth on feed devoid of inorganic phosphorus, and 
showed marked reduction (75%) in the excretion of phospho-
rus as compared to the nontransgenic animals (Golovan et al., 
2001b). These findings amply indicate that the expression of 
phytase in monogastric animals obviates the need for phos-
phate supplementation of animal diets, and mitigate phos-
phorus pollution resulting from animal agriculture.

Role of phytases in soil amendment
Phosphorus is an essential plant nutrient that limits agricul-
tural production on a global scale. Approximately 30–80% of 
the total P in soils is bound in organic form (Harrison, 1987). 
Phytate constitutes ~50% of the total organic P pool in the soil 
and is poorly utilized by plants (Anderson, 1980). Extracellular 
phytase activities have been reported under phosphate stress 
conditions, in diverse plant species, namely, tobacco (Lung 
and Lim, 2006), barley (Asmar, 1997), tomato, alfalfa (Li et al., 
1997c), and so on. The ability of plants to use phosphorus 
from low phosphate or phytate containing media and/or from 
soil is improved when soil/media are inoculated with micro-
organisms that possess the ability to exude phytase, or when a 
purified phytase is added (Hayes, Simpson, and Richardson, 
2000; Richardson, Hadobas, and Hayes, 2000; Richardson 
et al., 2001b). Under limited phosphorus conditions, as com-
pared to the control plants sans bacterial inoculums in the 
soil, plants inoculated with B. amyloliquefaciens FZB45 with 
extracellular phytase activity revealed significant growth stim-
ulation (Idriss et al., 2002). Engineering the trichoblasts of the 
root–soil interface with a synthetic phytase gene, and secretion 
of the enzyme in adequate amounts released phosphate from 
the phytate present in the soil (Zimmermann et al., 2003).

Phytases for the production of lower myo-inositol 
phosphates
Saccharomyces cerevisiae phytase was used extensively in the 
preparation of medicinally important compounds, namely, 
d-myo-inositol-1,2,6-triphosphate, d-myo-inositol-1,2,5-
triphosphate, l-myo-inositol-1,3,4-triphosphate, and myo-
inositol-1,2,3-triphosphate (Siren et al., 1986a, 1986b). Lower 
phosphorylated derivatives of phytate were found to play an 
important role as intracellular secondary messengers (Berridge 
and Irvine 1984; Dasgupta et al., 1996).   Different isomers of 
myo-inositol phosphates have shown  pharmacological effects 
for the prevention of diabetic complications, anti-inflamma-
tory effects (Claxon et al., 1990; Carrington et al., 1993), and 
antiangiogenic and antitumor effects (Maffucci et al., 2005). 

Table 3. Expression of phytase in transgenic plants.

Transgenic 
plant

Source of 
phytase

Tissue 
expressed Enzyme activity Reference

Tobacco Aspergillus 
niger

Seeds 15 FTU g−1 Pen et al. 
(1993)

Tobacco A. niger Leaves 2400 ng mg−1 
DW−1

Verwoerd 
et al. (1995)

Soybean A. niger Cell 
suspension 
culture

920 pKat g−1 
protein

Li et al. 
(1997a)

Alfalfa A. ficuum Leaves 389.3 nKat g−1 
FW−1

Ullah et al. 
(2002)

Potato A. ficuum Leaves 29.79 nKat  
mg−1 protein

Ullah et al. 
(2003)

Wheat Aspergillus Seeds 1353 FTU kg−1 Brinch-
Pedersen 
 et al. (2003)

Tobacco A. ficuum Plant 17.6% of total 
protein

Zhang et al. 
(2004)

Trifolium sub-
terraneum L.

A. niger Shoots 30.5 nKat g−1 
FW−1

George et al. 
(2004)

Rice Yeast Leaves 10.6 U g−1 FW−1 Hamada 
 et al. (2005)

Arabidopsis Medicago 
truncatula

Roots >150 mU mg−1 
protein

Xiao et al. 
(2005)

Canola Aspergillus Seeds 41 FTU g−1 Peng et al. 
(2006)
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Myo-inositol phosphates are also known to ameliorate heart 
disease conditions by controlling hypercholesterolemia and 
atherosclerosis (Jariwalla et al., 1990), and also prevent renal 
stone formation (Grases et al., 2000).

Conclusions and perspectives

Use of phytases in animal nutrition has been increasing world-
wide over the years. The expanding role of phytase, not only as 
a feed additive but also as a nutraceutical, has led to signifi-
cant progress in this area. The growing demand for phytase 
is amply reflected by the multitude of sources screened for 
phytases with desired attributes. Identification of various 
phytases from diverse sources and their expression in heter-
ologous systems need to be worked out not only to enhance 
the enzyme production but also to decrease the cost of pro-
duction. Physicochemical properties of phytases, namely, 
broad pH range to survive under varied pH conditions in 
animal digestive tract, resistance to proteolytic degradation, 
thermal stability to resist higher temperatures during feed 
pelleting and substrate specificity, and so on need thorough 
evaluations to design versatile “second-generation” phytases 
with wider applicability. Modification and upgradation  
of enzymatic properties can be achieved through adoption 
of genetic and protein engineering methods. Combination of 
fungal and bacterial phytases as feed additives might improve 
the bioavailability of phosphorus and minerals owing to their 
synergistic activity in animal digestive system.

Development of transgenic plants expressing phytase 
and production of low-phytate crops to avoid the expensive 
and time-consuming downstream processing is garnering 
increased acceptance. Expression of phytases in transgenic 
crops not only obviates the problem of mineral malnutrition, 
phosphate uptake, and assimilation in animals and humans, 
but also mitigates the environmental pollution. Transgenic 
animals with tissue-specific expression of phytase have been 
developed which need further investigation and evaluation. 
Production of functional foods and food supplements with 
health benefits, especially for women and children for allevia-
tion of mineral deficiency, is another aspect wherein phytases 
can find applications. Manipulation of phytate-hydrolysis 
products, to produce desired specific isomers of lower myo-
inositol phosphates, has enormous potential for use in trans-
membrane signaling processes, and for calcium mobiliza-
tion from the intracellular store of animal and plant tissues. 
Further intensive investigations, using diverse phytases, need 
to be undertaken for designing and producing pharmacologi-
cally important lower myo-inositol phosphates.
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