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CRACKS IN SOLIDS 

G, P. CHEREPANOV 

Institute of Mechanical Problems, Academy of Sciences of the USSR, Moscow 

Abstract-The subject of this paper is the application of basic ideas and methods of continuum mechanics to 
the crack propagation processes. The crack extension is governed by an additional condition at the crack-tip. 
As a consequence of this a problem of "fine" structure of the crack-tip is considered. The general additional 
condition for any model of continuum is obtained making use of the energy conservation law and of the physical 
concept about the fracture energy. Dynamic cracks in elastic solids and quasi-static cracks in elastic- and 
rigid-plastic solids are briefly considered, as well as a problem of the crack extension in dissipating viscoelastic 
bodies. The general approach is also applied to the case of fatigue and "fluctuation" cracks. 

INTRODUCTION 

CONSIDER a solid which has displacement discontinuity surfaces (cracks), deformations 
being small. To be certain we shall confine ourselves to the case of opening mode cracks 
for which the local symmetry condition holds. Single out a vicinity of an arbitrary point ° 
on the smooth contour of the crack which is small compared to the characteristic linear 
size of the crack. Let xyz be a cartesian coordinate system with the point 0, as a center, 
y-axis being perpendicular to the crack surface and z-axis being directed along the 
boundary. The vicinity under consideration ("fine" structure of the crack) is represented 
on the xy-plane as an infinite domain which has a load-free cut along the negative direction 
of x-axis, (Fig. 1). It is clear that the parameters describing the state of the medium in this 
small vicinity are independent of z. 
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Let the singular solution of the problem formulated above be determined for any 
given rheological model of the body with an accuracy of one free parameter N independen t 
of x and y. The singular solution is certainly to satisfy a natural physical requirement of 
the energy flux finiteness at the crack-tip, i.e. at the point O. We shall make a general 
assumption on the existence of some physical law governing the monotonous propagation 
of the crack; the latter can be written in the form of some mathematical relationship 
between parameters of the medium and/or their functional time and spatial characteristics 
in the small vicinity of the crack-tip (the assumption oflocal fracture). This trivial assump
tion is generally accepted. Since all the parameters of the medium in the neighborhood of 
the point 0 depend 6n N, any relationship is inevitably reduced to the following one 

cDN = 0 (0.1) 

where cD is a time operator specific to the given material. A solution of the operator 
equation (0.1) exists and is unique due to the same assumption; it can be written in the 
form 

(0.2) 

Here t is time, N o( t, C 1 , C 2 ... ) is a function (the same for the given material), C 1 , C 2 ... 

are values determined by initial data. Notice that No is also a function of regular para
meters of state at the point 0, e.g. temperature or concentration of components for a 
solid solution. The function No includes, of course, some physical constants of the material 
distinguishing a fracture mechanism and depending on the crack velocity. 

For the particular case of brittle and quasibrittle bodies, from a generally accepted 
assumption on the existence of the law which governs the crack extension and is inde
pendent of time, one obtains the following limiting condition 

N = Kc (0.3) 
where Kc is a universal material constant (constant of Irwint). As N in this case one usually 
takes the stress intensity factor. The condition equation (0.3) represents the basic concept 
of brittle and/or quasibrittle fracture. The latter is thus not dependent on the physical 
nature of fracture and is accounted for purely logical reasons. 

Let us briefly recall how various authors came to this condition. 
In accordance with most natural and general physical concepts by Griffith-Irwin

Orowan to form a unit of the crack surface one must spend some energy y *' which repre
sents a material constant [1-3]. The mathematical formulation of these view points given 
by Irwin [4, 5J resolves itself into the limiting condition 

Ey 
N 2 = -* (plane stresst) 

n 

N 2 = Ey * (plane strain) 
n(l- v2 ) 

(0.4) 

where E is Young's modulus, v is Poisson's ratio. Williams connected the crack extension 
with the limiting radius of curvature of the crack at its tip [6]. Neuber advanced the con
ception of the "plastic" particle, which can be reformulated as follows: the size d of the 
plastic region near the end of the crack is a structure material constant [7]. Leonov and 
Panasyuk accepted that on a length along the crack line prolongation the stress (fy equals 

t With the accuracy of a constant factor. 
t For the plates of finite thickness 1'* depends on the plate thickness. 
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to the theoretical strength and the displacement v of the opposite coasts, at the point 0 
equals to a material constant [8]. The stress (iy on an interval of the length d along the crack 
line prolongation as well as the value d are believed by Barenblatt to be material character
istics [9]. McClintock assumed for the case of shear, that at an interval d ahead of the 
crack-tip in the plastic region the deformation attains a limiting value [10]. For all the 
cases the constants d are thought to be small in comparison with the crack length. All 
the concepts mentioned above lead to the limiting condition equation (0.3) first derived 
by Irwin [4, 5]. (Neuber and McClintock did not point out explicitly this condition). 

1. THE LIMITING CONDITION AT THE CRACK-TIP 

To find the function No theoretically, we apply the most natural and general physical 
concepts about specific surface energy and/or fracture energy y*, which are analogous 
to the Griffith-Irwin-Orowan concepts. By y* we shall imply the work of irreversible 
deformations in the vicinity of the crack boundary which are not taken into account in 
the assumed model of continuum. 

Let us confine ourselves to processes with contribution by mechanical and heat energy 
only. Let C be the circle of radius R with point 0 as the center (Fig. 1). The radius R is 
held small as compared to the crack length, but very large in the singular problem (as the 
region D was under the microscope). Let us fix the circle C and study the deformation and 
fracture process of the continuum D, located inside C. Let rO be polar coordinates with 
the origin at the point O. 

According to the energy conservation law the power A of the external forces plus the 
heat input rate Q is equal to the rate of increase of the sum of the kinetic K and intrinsic 
(W + Ii) energy of the body in the domain D 

A = R t+"lt [((i x cos 0 + Txy sin O)U + (Txy cos 0 + (iy sin O)v] dO 

+ Lp(FxU+FyV)dXdY 

f
+lt 

Q = R -It (qxcosO+qysinO)dO 

K = ~ :t L p(u
2 + v2

) dx dy 

. df w= dt pUdxdy 

(Ll) 

Here u, v are displacements, (ix, (iy, Txy are stresses, qx, qy are components of the heat flux, 
(Fx, Fy) is the volume force, p and U are the mass and intrinsic energy densities, I is the 
crack extension velocity. 

Convert the condition (Ll) into the more convenient form [11], the singular solution 
at the point 0 being dependent on one free parameter N. Let the crack length I play the 
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role of time. Then the energy conservation law can be written as 

(
bA bQ bK OW) dN (bA bQ bK oW ) 
bN+ bN- bN- oN ~1~Odt+ M+Tt----g[---af- 2y* ~N~O = o. (1.2) 

The factor at dNldl in equation (1.2) equals zero because of the energy conservation 
law for the fixed crack. The equation (1.2) results in the form [11] 

R L+,," [(PU+K*-PH)COsO+T(qxCoso+qySinO)-A*J dO = 2y* 

K* = ~pf2[(~~r + (;:rJ (1.3) 

A* = (O"x cos 0+ "t"xy sin 0) ~~ + ("t"XY cos 0+ O"y sin 0) ;: 

pH = Jp(Fx~~ + Fy;:) dx. 

Here all the values are calculated directly from the singular solution which corresponds to 
the crack-tip state at the point 0, N being constant. 

With the use of the local energy conservation law [12] 

. . 2 . oqx oqy U· (1 4) O"xex+O"yey+ "t"xyeXY+fu+ay = P . 

and by means of the divergence theorem the equation (1.3) can be reduced to the follow
ing most convenient form in which only stress and strain distributions in the neighbor
hood of the crack boundary are present 

R t+,," [(3 + K* .-: pH) cos 0 - A*] dO = 2y * 

(1.5) 

3 = J O"xdex+O"ydey+2"t"xydexy· 

It is noteworthy that mechanical and heat properties of the medium were not involved; 
we used only its continuity. Evidently, the crack will not extend (i.e. I will be zero) if the 
left-hand side of the equation (1.5) will be less than 2y *. 

Each term in the integrand in equation (1.5) has to have a singularity of the type of l/r 
at the crack-tip, so that its contribution to the total sum would be finite. Singularities of 
the order r- A (A. > 1) are not allowed as they would cause the violation of the energy con
servation law. Terms with weaker singularity r-). (A. < 1) fall out, obviously. 

One can demonstrate that the equation (1.5) is also valid for finite strains of the con
tinuum, if one repeats the calculations of the work [11] and uses the local energy conserva
tion law for the case of finite deformations [13] (3 will stand there for the strain-energy). 

2. A CONSEQUENCE OF THE SECOND LAW OF THERMODYNAMICS 

Among the fundamental laws only the energy conservation law was used above. The 
utilization of basic laws of irreversible thermodynamics (first of all, the Gibbs equation 
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and the second law of thermodynamics [14,12]) allows one to obtain further results. Here 
we shall confine ourselves to the quasistatic cracks for which K* = O. Denote 

av (av) (av) ax = ax e + ax i 

(2.1) 

Here the index e indicates the corresponding reversible (elastic) components and the 
index i marks the irreversible ones. The value Y represents the reversible part of the total 
fracture energy y* (the effective specific surface energy). For the case of crystalline and 
polycrystalline bodies y seems to be equal to the true surface energy; for polymers it can 
be evidently much more than the latter. The value Yi equals to the irreversible deformation 
work in the surface layer; the layer thickness and the magnitude of Yi are prescribed by the 
degree of adequacy of the chosen model to the properties of the real body in question. 
Particularly, Yi equals zero identically if the mathematical model describes quite exactly 
the mechanical and heat properties of the body. It must be emphasized that the thickness 
of the above-mentioned surface layer is assumed to be zero for the present formulation 
of the problem (i.e. it is considered to be small compared to R). 

In the case under consideration one can write the Gibbs equation on the basis of 
equations (1.3) and (2.1) as follows 

1+" 1+" R -It [(pU-pHe)cosO-A*eJdO+TR -7[ pl]cosOdO = 2y. (2.2) 

Here I] is the entropy density at a point of the domain D which forms the thermo
dynamical system under study. The absolute temperature T near the crack-tip is assumed 
to be finite. Because of equations (2.2) and (1.3) the entropy flux into the D per unit time 
equals to 

(2.3) 

The second term in the right-hand side of equation (2.3), taken with inverse sign, repre
sents the flux of the intrinsic increment of entropy per unit time. According to the second 
law of thermodynamics this flux must be non-negative. 

(2.4) 

Since the quantity in square brackets is the dissipation energy rate and is therefore essen
tially positive, equation (2.4) results in the irreversibility condition for the crack extension 

1>0. (2.5) 

Within the framework of irreversible thermodynamics the crack expansion velocity I can 
be treated as a thermodynamical flux and the term in square brackets divided by T as a 
thermodynamical force. 
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The phenomenological linearity postulate accepted in Onsager's theory [14, 12J leads 
to the following expression 

1= ;[2Yi+R L:" (PHiCOSO+A*i)dO] (2.6) 

where (J( is a material constant. 

3. DYNAMIC CRACKS IN AN ELASTIC BODY 

Consider a crack in an ideal elastic body, the contour of the crack extending at an 
arbitrary velocity less than that of transverse waves. For a sufficiently small time interval 
one can, clearly, always choose such a small vicinity of any fixed point 0 of the contour 
that the stress and strain distribution in this vicinity would correspond to the constant 
propagation velocity of the crack. It follows that the stress and strain distribution near 
any point of the dynamic crack boundary at any moment will be exactly the same as for 
the case of a semi-infinite straight cut moving at constant speed v ("the microscope 
principle"). 

The stresses and displacements in the stationary dynamical problem of the theory of 
elasticity for the cut y = 0, x < vt (the singular solution) can be easily found with the help 
of the Galin's method [15, 16J 

where 

au N [AT cos t arc tg(Kl tg 0) BM cos t arc tg(K1 tg 0)] 
ax = .Jr(MH-GT) - (COS10+KI sin10)* + (COS10+K~ sin10)* 

av N [CT sin tarc tg(Kl tg 0) DM sin tarc tg(K1 tg 0)] 
ax = .Jr(MH-GT) (COS10+KIsin10)t (coslO+K~sinlO)* 

N [LT cos t arc tg(K 1 tg 0) F M cos t arc tg(K1 tg 0)] 
ax = .Jr(MH-GT) - (COS10+KI sin10)t + (COS10+K~ sin10)* 

N [GT cos t arc tg(Kl tg 0) MH cos t arc tg(Kl tg 0)] 
a)'= .Jr(MH-GT) - (cOS20+KIsin10)* + (cos20+K~sin20)t 

NMT [Sin t arc tg(Kl tg 0) sin t arc tg(Kl tg 0)] 
Lxy = .Jr(MH-GT) (COS 20+KI sin20)* (COS20+K~ sin20)t 

A- --~ 1--~m 1 J( 1-2v 2) 
- 1-2v 2-2v 

C=-~ 1--~m 1 ( 1-2v 2) 
1-2v 2-2v 

1.J 2 B = --~ (l-m) 
1-2v 

1 
D=-~ 

1-2v 

L - - l+-~ l--~m E ( vm
2 )J( 1-2v 2) 

- (1+v)(1-2v) 2-2v 2-2v 

E J 2 
H=-F=(1+v)(1_2v) (l-m) 

(3.1) 

(3.2) 
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E 1 2 
T = (1+v)(1_2v)(l-Zm) 

(l-v)E 
ci=---:-----::--

(1 + v)(l- 2v)p 
E d=-:::-c---

2(1+v)p· 

817 

Following Irwin, the free parameter N will be referred to as the stress intensity factor 

as () = 0, r -. ° (3.3) 

The parameter N is a function of time, boundary conditions, body configuration, crack 
speed and acceleration, coordinates of the point 0 in a fixed coordinate system; this func
tion is determined from the solution of the problem as a whole. For the stationary problem 
N is independent of time and the crack velocity. The curve y = arc tg(K tg ()) in the interval 
of interest, - n < () < n, behaves itself roughly as shown in Fig. 2. 

y 

(} 

FIG. 2 

Now we show the simplest form of the general condition equation (1.5). Making use 
of the procedure of the work [11] the following equation can be derived by varying the 
contour C 

(3.4) 

as R -.0, {)/R -.0. 
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Next we calculate the following integral 

fTC sin! arc tg( K 2 tg (}) . cos 1- arc tg( K 1 tg (}) d(} n 
o sin (}(COS2(}+KI sin2(})t(cos2(}+K~ sin2(})t = 2' (3.5) 

By virtue of equations (3.1), (3.2) and (3.5) the condition at the crack boundary (3.4) 
can be wri tten as 

N 2 = R(m, v)<l>(m, v)Ey* (3.6) 
where 

R(m, v) = J [(1-m2)( 1-~=~: m2) ] _(I_!m2)2 

4 
<I>(m, v) = 2J 2 • 

n(1 + v)m {l- [(1- 2v)/(2 - 2v)]m } 

The value 2N2/(ER(m, v)<I>(m, v» has the meaning of the total energy flux into the moving 
crack-tip. The condition equation (3.6) implies that the Rayleigh velocity mR' which is a 
root of the equation R(mR' v) = 0, is an unattainable limit for the crack-speed because it 
takes an infinitely great energy flux to the crack-tip to keep such a speed of the crack 
propagation. In homogeneous materials the maximum velocity is limited even earlier by 
the value m*, at which the crack-twinning occurs. The function m*(v), plotted in Fig. 3, 
can be easily found by means of equation (3.1)(see [16]). This qualitative result was obtained 
first by loffe [17]. 

E' 

0,25 

o ()25 0·50 

FIG. 3 

The condition equation (3.6) plays a part of the boundary one for dynamic cracks; 
given further knowledge on the dependence of y* on the crack velocity (and on time for 
the non-steady case), this condition allows one to make the formulation of the problem 
closed. The present state of the dynamical crack problem is outlined in the work [18] by 
Irwin and Krafft. 
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4. QUASISTATIC CRACKS IN AN ELASTIC BODY 

Let a crack in a linearly elastic body extend at a velocity much lower tha.n that of sound, 
so that inertia terms can be neglected. In this case the general condition equation (1.5) 
and/or equation (3.4) results in the Irwin's condition equation (0.4) after substituting a 
proper singular solution of static elasticity (see [11, 19J). According to this condition a 
crack does not grow, if N < Kc; the equation N = Kc corresponds to the crack develop
ment. Notice that Irwin obtained the limiting condition by means of the more particular 
procedure applicable only for linearly elastic bodies. If the crack surface is known before
hand, the Irwin's approach reduces the brittle-crack extension problem to the stress 
analysis near the crack boundary. At present this branch of the crack theory is developed 
most. There is a well selected list of works, mainly by British and American authors, in 
excellent reviews by Paris and Sih [20J, by Weiss and Yukawa [21J, and in earlier lectures 
by Sneddon [22]. 

5. CURVED BRITfLE CRACKS 

If no special symmetry conditions are imposed, a brittle crack will develop on a surface, 
which is to be determined in the process of solution. We shall establish an additional 
condition determining the crack curvature radius at each point. Denote the parameter 
of the external load as p, and the crack length, measured from a fixed point, as 1 (for simpli
city we confine ourselves to the plane problem). Let the equation of the crack line be 
x = xo(l), y = yo(l). Suppose that the values of the parameters t, p and I + ill, p + ilp cor-

-respond to the crack-tip state at points 0 and 0 1, respectively (Fig. 4). The direction of 

y 
(l +Lll,p+Llp) 

0, 

° (l, p) 

FIG. 4 

the extension of a brittle crack from the point 0 is governed by the following rule [23-25], 
well confirmed experimentally: the crack is deflected in the direction of the maximum 
tension stress (To, which is calculated in the neighborhood of the point 0 for the values 
t, p+ilp, when lim[.Jr(To)maxJ = Kc as r --+ O. 

The general singular solution of the theory of elasticity for the semi-infinite cut can be 
readily found by means of the Muskhelishvili's method [26J 

(Tx+(Ty = ]r~[(N+iN1)e-tiOJ 
(5.1) 
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Here N l(P, I) is a second stress intensity factor which is also determined only from the 
solution of the problem as a whole (for the case of the local symmetry N 1 = 0), Ro is a 
curvature radius on the left from the point 0 (Fig. 4). According to equation (5.1) the stress 
(10 equals to 

1 ~'O '>"0 
(10 = -;~[3(N+iNl)e-·1 +(N-3iN1)e· l

]. 

4v r 

Hence the angle I1fJ of the crack deflection can be found from the equation 

N(sin 111fJ + sin MfJ) = N 1 (3 cos 111fJ + cos il1fJ). 

(5.2) 

(5.3) 

The angle I1fJ can be finite, if only the parameter P jumps or the crack-tip state at the 
point 0 corresponds to an initial crack. For the case of the continuous variation of p and 1 
the crack line will be smooth, and at the crack boundary the local symmetry condition 
will be satisfied. We then divide the process of the crack development into a finite number 
of steps, so that I1p and 111 would correspond to each step and the crack extension would 
be discontinuous. Performing a limiting process I1p -4 0, 111 -+ 0, I1fJ -+ 0 from equation 
(5.3) we obtain 

2 (d:e1 

)/=consl = N. (5.4) 

Here dN 1 is an increment N 1 at the point 0 which corresponds to the load increase by dp, 
the crack being fixed (remember that N I(P, l) = 0). 

Next, differentiate the identity N[p, I(p)] = K which is true at any moment according 
to the Irwin's and local symmetry conditions. 

dl _ ON/ON 
dp - - dp di' (5.5) 

The equations (5.4--5.5) allow us to find the curvature radius of the smooth crack line at 
any point 

(5.6) 

The applied finite-differences method is convenient for a numerical solution of prob
lems of the curved crack development; the conditions N = Kc and equations (5.4--5.6) 
play there a part of the boundary one's at the crack border. It must be stressed that the 
local symmetry condition alone would be insufficient for solving the problem. 

6. THE STABILITY OF THE BRITTLE-CRACK GROWTH 

Let an increase of an external load and the growth of the crack correspond to an 
increase of the parameters p and 1 respectively. Then the parametric stability condition of 
the crack extension dl/dp > 0 takes the form (due to equation (5.5». 

(6.1) 
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If a brittle crack is growing stably, the crack velocity [at the point 0 must evidently be 
determined by the rate of the load increase p 

ON/ON I = -Pap at· 

For the case of an unstable crack the following condition is satisfied 

ON / ON 0 
ap 01 > 

so that after attaining a limiting state the crack goes over to the dynamic regime. 

7. AN IDEAL ELASTIC-PLASTIC BODY. THE GRIFFITH PROBLEM 

(6.2) 

(6.3) 

Consider a plate of an elastic-plastic material subjected to the Tresca-St. Venant yield 
criterion; the plate has a straight through crack of length 2/, which is located in the homo
genous field of a monotonously increasing tensile stress uy = p normal to the crack line. 
The edges of the crack are assumed to be load-free (Fig. 5). It was shown in paper [19] that 

y 

05 

o 05 10 15 

FIG. 5 

for the values p, not too close to the tension yield-point US' an exact solution of this problem 
satisfies the Dugdale's hypothesis [27], so that the plastic domains near crack-tips repre
sent segments of length d along the crack-line extension 

d 1Cp 
- = sec--l. 
1 2us 

(7.1) 

It was found in the same work by virtue ofthe energy conservation law, that the crack 
length is related to the load by the following first-order differential equation 

dP 1 - 2A-(ln cos p + p tg P) 
dA- = A-2(P sec2 p - tg p) 

(7.2) 

(p = 1CP , 
2us 
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Figure 5 illustrates the field of the integral curves of the equation (7.2) in the interval 
o < A < 00,0 < fJ < n12. Continuous and dashed thin lines stand for stable and unstable 
parts of the curves respectively. The curve determined by the equation 

2A(ln cos fJ + fJ tg fJ) = 1 (7.3) 

divides the whole domain of the variable variation into two parts: (1) a region where the 
crack is growing stably from the initial state and (2) an unstable region where dfJldA < O. 
At the beginning the crack extends thus monotonously with the load increase, then it 
attains a maximum load at the point of the intersection with the curve equation (7.3), and 
after that it goes over into the instability region. One sees readily that in the latter all the 
integral curves tend asymptotically to the Griffith-Irwin-Orowan curve as A --+ 00 

lfJ2 = 1 j(2EY*) 1\ or p = ---;[ . (7.4) 

The curves equations (7.3-7.4) are plotted with thick lines in Fig. 5. 
The mentioned peculiarities of the development of the Griffith crack in elastic-plastic 

materials are borne out well by the experiments [2, 10]. 
The current state of the subject under consideration is presented in the paper [28J by 

McClintock and Irwin. 

8. AN IDEAL ELASTIC-PLASTIC BODY. 
THE QUASI-BRITTLE FRACTURE CONCEPT 

(i) In the work [19J it was also shown that the fracture process in plastic materials is 
controlled by the true surface energy y; a dimension of the plastic zone near the crack-tip 
and the value of the fracture energy y* are fully determined by y. Based upon the exact 
solution of the elastic-plastic problem for a plate with a semi-infinite crack, and upon the 
general approach to the crack propagation (see 1), the following relation was obtained 

(8.1) 

Here the body is assumed to satisfy the Tresca criterion up to fracture. Thereby, in the 
energy conservation equation small magnitudes of the first order were taken into account. 

Being well confirmed by the experiments [29, 5J, the relation equation (8.1) allows us to 
treat the quasi-brittle fracture concept and the ad sorbo us Rehbinder's effect [30J from a 
single viewpoint. Equation (8.1) confirms the principal meaning of the true surface energy 
in the strength problem and this fact is in essence a return to the original idea by Griffith. 
It should be noted that an idea ofa relation between y* and y appears to be expressed first 
by Gilman [31J; but because of a too rough calculation, his relationship does not agree 
with experiments. 

(ii) The Dugdale's hypothesis is valid [19J also for a crack in a plate of any shape and 
under any boundary conditions, if a plate material follows Tresca's criterion and the 
dimension of the plastic region is small as compared with a characteristic linear dimension 
of the body (e.g., with a crack length) (Fig. 6). The plastic domain represents thereby a 
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1·0 ------------------- IIIIJ d • 
o x 

* z L : 6<1":H-Lo) 
* .".2 K~ 

o 

segment of the length d along the crack-line prolongation 

n2N 2 

d=-42 ' 
Us 
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(8.2) 

Here the stress intensity factor N is found from a solution of the purely elastic problem as 
a whole; it determines the stress and strain distribution at a distance, which is large as 
compared to d and is small as compared to the characteristic linear dimension of the body 
(e.g., the curvature radius ofthe crack line at the point 0). The displacement v of the oppo
site edges of the plastic line (y = 0, ° < x < d) equals to [19] 

_ 2Us [ .J d - .J[d - X]] 
v - ±nE 2.J[d(d-x)]+xlnJd+J[d_x] . (8.3) 

One can calculate the fracture energy for this most typical and general case in the 
following manner 

y* = lim {~s rd 

[v(x - As, N + AN)- v(x, N) dX} 
I\s-O ilSJo 

= U . 4usd +U dN rd 
~dx 

s nE s dl J 0 aN (8.4) 

nN 2 n3N 3 dN 
= E+ 3u;E dz' 

The first term in equation (8.4) equals the dissipation energy rate because of the crack 
extension; this corresponds to the Griffith-Irwin-Orowan concept. The second term 
equals the dissipation energy rate in the plastic region owing to the process of loading 
and it is not connected with the crack growth. The following equation 

Ey n2N 3 dN N 2 =_* ___ _ 
n 3u; dl 

(8.5) 

serves as a boundary condition at the crack contour for the case when the crack has a 
small but finite plastic head. Having determined the function N = N(P,1) from elastic 
stress analysis one can find by virtue of equation (8.5) a relation between the crack-length I 
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and load p parameters for any particular problem. Equation (8.5) can be written also in 
the form which resembles the formulation of the yielding law with strain-hardening of an 
elastic-plastic body 

n2N 3 dN 
dl = 3a;(K; _ N2)" (8.6) 

If Irwin's constant Kc is independent of the crack velocity, we find after integrating 
equation (8.6) 

_ _ _ n 2K;[N 2 -N5 (1-N 2/K;)] 
1 10 - 6a; K; +In(1_ N 5/K;) (N = No as 1 = 10). (8.7) 

The family of curves equation (8.7) can be obtained by displacing the curve of Fig. 6 
along the x-axis. 

In the case of plane strain similar relationship can be obtained. 
It is clear that in elastic-plastic bodies a crack is growing, even if the stress intensity 

factor is in the interval 0 < N < Kc ; the concept by Griffith-Irwin-Orowan is of asymptotic 
nature and holds, if the condition 6a; ~l ~ n 2 K; is satisfied (practically, if a; ~l :> 3K;, on 
the basis of Fig. 7). 

9. A RIGID-PLASTIC BODY 

Let a strip of an incompressible rigid-plastic material be stretched in y-direction with 
velocity v (Fig. 7). The strip is assumed to contain a crack, which is perpendicular to the 

p 

x 

p 

FIG. 7 

load-free boundary and is at the distance h from the latter. For the case of plane strain 
under consideration the rigid-plastic strip yields if the force P is: 

P = (2 + n)rsh. (9.1) 
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The stress and velocity fields in the plastic region (the singular solution) are given by [32, 33] 

n 
as 101 <-

4 

as in> 101 > ~ 
4 

as n> 101> in 

Txy = Ts cos 20 

ay = a+Ts sin 20 (9.2) 

a = (1 +~n- 20)Ts 

Vr = v sin 0 Vo = v(cos 0- J2) 

ax = 2Ts 

a y = Txy = 0 

Vy = 2v. 

Here Ts is a shear yield-point. The general condition equation (1.3) at the crack-tip for the 
solid model involved can be represented in the form [11] 

2RTs fir8cosOdO-R ar~+Tr8-o dO = y* J
37</4 J37</4 (OU ou ) 

7</4 7</4 vX OX 

Equation (9.2) leads to 

£rO = r~2f~ vdt Ur = sinO f~ vdt 

Uo = (cos 0-J2) f~ v dt (t is time) 

and the edge of the crack takes a "box-like" shape (Fig. 7). 

(9.3) 

(9.4) 

After substituting equation (9.4) into equation (9:3) the left-hand side of equation (9.3) 
vanishes. Therefore, there can be no crack propagation in a rigid-plastic body.t 

10. THE GROWTH OF CRACKS BY CYCLIC LOADS 

The growth of cracks under the application of cyclic loads whose values are much less 
than those of limiting ones is attributed to the qualitative peculiarities of the crack 
propagation in elastic-plastic materials resulting from the foregoing analysis. At present 
it is well established that the lifetime of materials is determined sometimes by the duration 
of the fatigue crack growth under the cyclic load [34,35]. The propagation of fatigue 
cracks in plates can be investigated within the framework ofthe suggested theory by means 
of the basic condition at the crack contour equation (8.5) or equation (8.6) which holds 

t As it will be shown below this result is valid also for purely viscous bodies. Thus, in the bodies which have 
no elastic properties a crack enlarges as a cavity. 
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for any loading conditions and for bodies of any configuration provided that the plastic 
region at the crack-tip is small compared to the crack length. For the case of Griffith 
cracks one can omit the last restriction if the equation (7.2) is used. 

Since we are not striving for generality and completeness, we shall consider now as 
an illustrative example the case of a Griffith crack exposed to the cyclic load p(t) (Fig. 8). 

p 

L 

FIG. 8 

·:bluL 
o 

For simplicity we shall confine ourselves to the case of the crack whose propagation 
occurs in the range of stability (P, A) which is not too close to the boundary layer near the 
curve equation (7.3), so that the curves P(A) are nearly parallel to Y-axis in this region, as 
evidenced by Fig. 5. 

Developing the right-hand side of the equation (7.2) in the neighborhood of the point 
P = 0, A = Al we shall find 

Hence the dimensionless length of the crack increases during one loading cycle by 

dA = ~P!Ai + O(P~) 

(10.1) 

(10.2) 

Here Pm is the maximum dimensionless tension load during one cycle (the residual stresses 
are neglected). Passing from the finite differences to differentials and denoting the number 
of cycles as n we get from this the rate of growth of the crack 

dl 1 n3p!li 
dn 48a;Ey* 

(10.3) 

When d ~ I it is reasonable to utilise the maximum stress intensity factor N m ; for the 
present case it is equal to 

Then equation (10.3) can be written as 

dl1 

dn 

Notice that it can be also derived immediately from equation (8.6). 

(10.4) 

(10.5) 
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The relationships equation (10.3) and equation (10.5) are in good agreement with 
experiments in the region not too close to the boundary layer [see Figs. 5 and 8, cf. e.g. data 
in (36--41)]. 

For lack of space we shall omit here such important issues, as the effects of boundaries, 
of the way of loading, of boundary layer phenomena, of residual stresses. 

Notice only that the suggested approach does not describe nonpropagating fatigue 
cracks and the existence of fatigue strength. These phenomena are evidently connected 
with the micro inhomogeneity and grain-structure of real materials omitted in the theory. 
To take into account these effects in the ffamework of our theory one must formulate the 
condition of the crack nonpropagation. The latter is easily obtained for the cracks which 
obey the condition d ~ l. Indeed, on the basis of general considerations of invariance (see 
introduction) the nonpropagation condition for these fatigue cracks is to be as follows 

(10.6) 

where Ky is a material constant (K y < KJ 
For the case of the Griffith problem the condition equation (10.6) by means of equation 

(10.4) is written as 

(10.7) 

For not too small values 11 the condition equation (10.7) agrees quite satisfactorily 
with the experimental data by Frost [42, 43] (he noted himself an empirical condition 
p!/ l < c; the discrepancy with equation (10.7) is accounted for the fact, that the inequality 
d ~ I did not hold so strictly). 

For the general case the rate of crack growth by any cyclic loads can be obtained in 
the following form 

(10.8) 

(j = 1 if N min > 0 and (j = 0 if N min < O. 

Here f3 is a material constant which is different in the cases of plane strain and plane stress, 
N max and N min are maximum and minimum values of N during a cycle, respectively. 

11. VISCOELASTIC BODIES 

Consider a linear viscoelastic body having quasistatic cracks and being in plane stress. 
The process is assumed to be isothermal. The stress and strain relationship can be repre
sented for this case in the most general form [44] 

E - l E-1 By = ay- vax 

Bz = - E- 1v(a x + ay). 
(11.1 ) 

Here E- 1 and v are linear commutative time-operators of the following form: 

vf = f~ vo(t-r)f(r) dr. (11.2) 
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The functions Eo(x) and vo(x) belong to the class of the generalized functions. It is con
venient for the practical purpose to use the Rabotnov's kernels [45]. A singular solution 
in the case under consideration coincides with an elastic one [11], but the stress intensity 
factor N must be treated as a function of time. 

Calculate the fracture energy by means of the general condition equation (1.5) and 
the singular solution 

J
+1t 

2y* = R -1t (3 cos 0- A*) dO 

(11.3) 

and 

2y* = 1t {NE- 1(1-V)N dt+~NE-l(3+v)N. (11.4) 

Here t is the time from the beginning of the loading to the initial moment of the crack 
growth. As the montonously growing cracks are considered here, t tends to zero. Then, 
passing to the limit for t --+ 0 in the formula (11.4) we obtain the following equation 

(11.5) 

This is the known Irwin's condition for the brittle cracks. 
Thus, a crack in a body will behave as a brittle one, if y * is a material constant and 

the body is linear viscoelastic up to the fracture. As it is readily seen from equation (11.1) 
and equation (11.2), the stress and strain distribution near the end of a monotonously 
growing crack in a viscoelastic body will be elastic. 

The equation (11.4) will be of independent interest ifthe dimension of the field of plastic 
(or high-elastic) deformations near the crack-tip is larger than that of the "elastic kernel", 
so that the linear dimension R of the "fine" structure of the crack-tip is large compared to 
the latter. 

12. FLUCTUATION CRACKS 

Consider briefly another possible mechanism of the crack-growth kinetics connected 
with the fracture of the plastic (or high-elastic) head at the crack-tip as a result of heat 
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fluctuations. For this case the corresponding condition at the crack-tip is easily derived 
from the linear postulate of irreversible thermodynamics which can be written here in 
the form equation (2.6). Indeed, substituting equation (2.6) into equation (1.3) and assuming 
the material to be a linearly elastic one, one finds 

f
+1t T 

R -1t (pUcosO-A*)dO=2y+;-1 (12.1) 

and 

2nN2 T 
--= 2y+-I. 

E IX 
(12.2) 

Hence, ignoring a reversible part of fracture energy, we come to the following formula 

dl -- = CN2 
dt 

Here a constant C depends only on temperature. 
For the case of the Griffith problem the formula equation (12.3) becomes 

dl _ lr 21 
- - 2'>P 
dt 

and for p = const. during the whole process we find 

1 = 10 exp(tCp2t). 

(12.3) 

(12.4) 

(12.5) 

The exponential expression equation (12.5) agrees well with the results of works [46-47], 
obtained with the help of other approaches. 

However, the following equation leads to better agreement with experimental data on 
long-time strength: 

dl _ >: b2N -b 3 
dt - U1 exp T (12.6) 

(bb b2 , b3 are material constants). It can be obtained from the fluctuation theory and the 
modified concept of Neuber. 

CONCLUSION 

On the basis of the exact mathematical approach, and the subsequent application of 
singular solutions, different possible mechanisms of the energy absorption at the crack-tip, 
due to the plastic (7H10) and viscous (12) dissipation in the plastic head and due to the 
dissipation in the bulk of the material (11), were considered in this paper. It appears that 
the combination of these particular mechanisms to a single one will make it possible to 
work out the most flexible and universal concept. 

The author gratefully acknowledges the permanent attention and support of this work 
to Prof. Y. N. Rabotnov and Prof. L. A. Galin. The many suggestions provided by Prof. 
V. V. Bolotin were very helpful in preparation of this paper. 
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AfiCTpaKT-Ope.ll.1laraeMali pa60Ta nOCBIIIlIeHa npHllOlKeHHIO OCHOBHblX HAeii H MeTOAOB MexaHHKH 

CnllOWHblX CpeA K npoueccaM paCnpOCTpaHeHHII TpeIllHH. Pa3BHTHe TpelllHHbl OnpeAelllleTCII AOnOllHHTe

llbHblM YCllOBHeM Bee KOHue. B CBII3H C JTHM CTaBHTCII 3aAa'la 0 "TOHKoii" CTpYKType KOHua TpeIllHHbl. 

McnOllb3YII JaKOH coxpaHeHHII JHeprHH H IPH3H'IecKoe npeACTaBllelfHe 06 JHeprHH pa3pyweHHlI. HaXOAHTCII 

061l1HK BHA AonOllHHTellbHoro YCllOBHII B npoH3BollbHOK cnllOWHOK cpeAe. KpaTKo paccMaTpHBalOTclI 

AHHaMH'IecKHe TpelllHHbI B ynpyroM Telle H CTaTH'IecKHe TpelllHHbl B .ynpyro-nllacTH'IecKoM H lKeCTKO

nJlaCTH'IeCKOM Tellax. BecbMa KpaTKO paCCMOTpeH Bonpoc 0 pa3BHTHH KBa3HCTaTH'IecKHX TpelllHH B 

AHCCHnHpYlOllIHX BII3Ko-ynpyrHx cpeAax. 061l1HK nOAXOA npHMeHlleTclI TaKlKe K YCTallOCTHblM H 1P1l1OK

TyaUHoHHblM TpeIllHHaM. 




