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Linearly separable problems

Consider a classification problem with a binary
class variable Y with values 1 and −1.

Suppose the classes are linearly separable by an
hyperplane:

H(X ) = β0 + β1X1 + · · ·+ βnXn = 0.
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Example
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Separating the labels given a dataset
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Maximal margin classifier

In case there are many possible hyperplanes
that separate the data: take the hyperplane
with maximum margin.

Margin: the distance from the hyperplane to
the closest training point.



Example: hyperplane with maximal margin
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Support vectors and distance

For a hyperplane with maximal margin, the
support vectors are the points that are closest
to it.

For such a hyperplane, the distance between
the ith observation to the hyperplane is

yj(β0 + β1x1,j + · · ·+ βnxn,j)√
β2
1 + β2

2 + · · ·+ β2
n

.



Note:

If a problem is linearly separable, there is a
hyperplane such that

yj(β0 + β1x1,j + · · ·+ βnxn,j) > 0

for all observations.



Finding the hyperplane

Find β0, β1, . . . , βn that maximize M subject to:

n∑
i=1

β2
i = 1,

and

yj(β0 + β1x1,j + · · ·+ βnxn,j) ≥ M

for each j .



Equivalent problem

Find β0, β1, . . . , βn that minimize

n∑
i=1

β2
i ,

subject to

yj(β0 + β1x1,j + · · ·+ βnxn,j) ≥ 1

for each j .



Quadratic programming

These optimization problems can be solved
(relatively) quickly using quadratic
programming.

Optimum is guaranteed to be found.



Non-separable problem

In practice, problems are non-separable (and we
cannot hope to deal only with separable
problems).

If problem is non-separable, there is no solution
with M > 0.

Problem must be relaxed.
Consider a soft margin: let some observations
violate the margin.
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Soft margin
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The “soft” optimization problem

Find β0, β1, . . . , βn and ε1, . . . , εN that
maximize M subject to:

n∑
i=1

β2
i = 1,

and

yj(β0 + β1x1,j + · · ·+ βnxn,j) ≥ M(1− εj)

for each j , and

εj ≥ 0,
N∑
j=1

εj ≤ C .



A few points

The latter problem can be solved by quadratic
programming.
Important: only observations inside the margin
affect the hyperplane.

Only the boundary matters.
SVMs are closer to discriminative classifiers than
generative ones.

Hyperparameter C is usually set by
cross-validation.

If C is zero, no relaxation; the larger C , the more
training points can be “inside” the margin.



A few points

The latter problem can be solved by quadratic
programming.
Important: only observations inside the margin
affect the hyperplane.

Only the boundary matters.
SVMs are closer to discriminative classifiers than
generative ones.

Hyperparameter C is usually set by
cross-validation.

If C is zero, no relaxation; the larger C , the more
training points can be “inside” the margin.



Changing C
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Non-linear boundaries

One can capture non-linear boundaries by
enlarging the features, say with
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2
n ,

and perhaps other functions of features.

The structure of SVMs lets one do this
efficiently for very large enlarged spaces, using
kernels.
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The basic insight (first part)

It turns out that SVMs can be learned just by
handling inner products

x ′ · x ′′,

where x ′ and x ′′ are two observations (note:
a · b =

∑
j ajbj).



The basic insight (second part)

Suppose we have functions
φ(X ) = [φ1(X ), φ2(X ), . . . , φm(X )].

We would need

φ(x ′) · φ(x ′′),

for observations x ′ and x ′′.



The basic insight (third part)

We would need to compute φ(x ′) · φ(x ′′) for all
pairs of observations.

Instead, we can just select a function
K (X ′,X ′′) and use it whenever a product is
needed.

Such a function is called a kernel.
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Popular kernels

Polynomial: K (X ′,X ′′) = (1 + X ′ · X ′′)d .

Radial basis: K (X ′,X ′′) = exp(−γ||X ′ · X ′′||).

Neural: K (X ′,X ′′) = tanh(γ1(X ′ · X ′′) + γ2).



Example: Kernels
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A final note

Some of the figures in this presentation are taken
from An Introduction to Statistical Learning, with
applications in R (Springer, 2013) with permission
from the authors: G. James, D. Witten, T. Hastie
and R. Tibshirani.


