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Linearly separable problems

m Consider a classification problem with a binary
class variable Y with values 1 and —1.



Linearly separable problems

m Consider a classification problem with a binary
class variable Y with values 1 and —1.

m Suppose the classes are linearly separable by an
hyperplane:

H(X):BO+51X1++6an:0






Separating the labels given a dataset




Maximal margin classifier

m In case there are many possible hyperplanes
that separate the data: take the hyperplane
with maximum margin.

m Margin: the distance from the hyperplane to
the closest training point.



Example: hyperplane with maximal margin




Support vectors and distance

m For a hyperplane with maximal margin, the
support vectors are the points that are closest
to it.

m For such a hyperplane, the distance between
the ith observation to the hyperplane is

Yi(Bo + Bixij+ -+ + Bnxnj)
VBBt




m If a problem is linearly separable, there is a
hyperplane such that

Yi(Bo + Bixj + -+ Baxnj) > 0

for all observations.



Finding the hyperplane

m Find Bo, B1, ..., B, that maximize M subject to:

S g1,
i=1
and

Yi(Bo + Pixij+ -+ Baxnj) > M

for each J.



Equivalent problem

m Find 3y, 51, ..., 3, that minimize

n
2
Z ﬁi )
i=1
subject to

Yi(Bo + Bixij+ -+ Baxnj) > 1

for each J.



Quadratic programming

m These optimization problems can be solved
(relatively) quickly using quadratic
programming.

m Optimum is guaranteed to be found.



Non-separable problem

m In practice, problems are non-separable (and we
cannot hope to deal only with separable
problems).

m |f problem is non-separable, there is no solution
with M > 0.



Non-separable problem

m In practice, problems are non-separable (and we
cannot hope to deal only with separable
problems).

m |f problem is non-separable, there is no solution
with M > 0.
m Problem must be relaxed.

m Consider a soft margin: let some observations
violate the margin.



Soft margin
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The “soft” optimization problem

m Find BO;ﬁl; - ;Bn and €1,...,€EN that
maximize M subject to:

St
i=1
and

Yi(Bo + Bixij+ -+ + Baxnj) > M(1 —€))

for each j, and



m The latter problem can be solved by quadratic
programming.

m Important: only observations inside the margin
affect the hyperplane.

m Only the boundary matters.

m SVMs are closer to discriminative classifiers than
generative ones.



m The latter problem can be solved by quadratic
programming.

m Important: only observations inside the margin
affect the hyperplane.

m Only the boundary matters.
m SVMs are closer to discriminative classifiers than
generative ones.

m Hyperparameter C is usually set by
cross-validation.

m If C is zero, no relaxation; the larger C, the more
training points can be “inside” the margin.



Changing C




Non-linear boundaries

m One can capture non-linear boundaries by
enlarging the features, say with

X17X127X27X227 <. 7Xn7X37

and perhaps other functions of features.



Non-linear boundaries

m One can capture non-linear boundaries by
enlarging the features, say with

X17X127X27X227 s 7Xn7X37
and perhaps other functions of features.
m The structure of SVMs lets one do this

efficiently for very large enlarged spaces, using
kernels.



The basic insight (first part)

m It turns out that SVMs can be learned just by
handling inner products

/ i
x - X",

where x" and x” are two observations (note:

a-b= Zj ajbj).



The basic insight (second part)

m Suppose we have functions

P(X) = [91(X), 92(X), ..., dm(X)].

m We would need
o(x) - (x"),

for observations x’ and x”.



The basic insight (third part)

m We would need to compute ¢(x’) - ¢(x") for all
pairs of observations.



The basic insight (third part)

m We would need to compute ¢(x’) - ¢(x") for all
pairs of observations.

m Instead, we can just select a function
K(X', X") and use it whenever a product is
needed.

m Such a function is called a kernel.



Popular kernels

m Polynomial: K(X’, X") = (1 + X" - X")4.
m Radial basis: K(X’, X") = exp(—~||X" - X"||).
m Neural: K(X', X") = tanh(~1(X" - X") 4+ 72).



Example: Kernels

X




A final note

Some of the figures in this presentation are taken
from An Introduction to Statistical Learning, with
applications in R (Springer, 2013) with permission
from the authors: G. James, D. Witten, T. Hastie
and R. Tibshirani.



