Support Vector Machines

Fabio G. Cozman - fgcozman@usp.br

November 20, 2018

Linearly separable problems

■ Consider a classification problem with a binary class variable Y with values 1 and -1 .

Linearly separable problems

■ Consider a classification problem with a binary class variable Y with values 1 and -1 .
■ Suppose the classes are linearly separable by an hyperplane:

$$
H(X)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}=0
$$

Example

Separating the labels given a dataset

Maximal margin classifier

■ In case there are many possible hyperplanes that separate the data: take the hyperplane with maximum margin.

■ Margin: the distance from the hyperplane to the closest training point.

Example: hyperplane with maximal margin

Support vectors and distance

- For a hyperplane with maximal margin, the support vectors are the points that are closest to it.

■ For such a hyperplane, the distance between the ith observation to the hyperplane is

$$
\frac{y_{j}\left(\beta_{0}+\beta_{1} x_{1, j}+\cdots+\beta_{n} x_{n, j}\right)}{\sqrt{\beta_{1}^{2}+\beta_{2}^{2}+\cdots+\beta_{n}^{2}}} .
$$

■ If a problem is linearly separable, there is a hyperplane such that

$$
y_{j}\left(\beta_{0}+\beta_{1} x_{1, j}+\cdots+\beta_{n} x_{n, j}\right)>0
$$

for all observations.

Finding the hyperplane

$■$ Find $\beta_{0}, \beta_{1}, \ldots, \beta_{n}$ that maximize M subject to:

$$
\sum_{i=1}^{n} p_{i}^{2}=1,
$$

and

$$
y_{j}\left(\beta_{0}+\beta_{1} x_{1, j}+\cdots+\beta_{n} x_{n, j}\right) \geq M
$$

for each j.

Equivalent problem

\square Find $\beta_{0}, \beta_{1}, \ldots, \beta_{n}$ that minimize

$$
\sum_{i=1}^{n} \beta_{i}^{2}
$$

subject to

$$
y_{j}\left(\beta_{0}+\beta_{1} x_{1, j}+\cdots+\beta_{n} x_{n, j}\right) \geq 1
$$

for each j.

Quadratic programming

■ These optimization problems can be solved (relatively) quickly using quadratic programming.
■ Optimum is guaranteed to be found.

Non-separable problem

- In practice, problems are non-separable (and we cannot hope to deal only with separable problems).
- If problem is non-separable, there is no solution with $M>0$.

Non-separable problem

■ In practice, problems are non-separable (and we cannot hope to deal only with separable problems).

- If problem is non-separable, there is no solution with $M>0$.
■ Problem must be relaxed.
- Consider a soft margin: let some observations violate the margin.

Soft margin

The "soft" optimization problem

■ Find $\beta_{0}, \beta_{1}, \ldots, \beta_{n}$ and $\epsilon_{1}, \ldots, \epsilon_{N}$ that maximize M subject to:

$$
\sum_{i=1}^{n} \beta_{i}^{2}=1,
$$

and

$$
y_{j}\left(\beta_{0}+\beta_{1} x_{1, j}+\cdots+\beta_{n} x_{n, j}\right) \geq M\left(1-\epsilon_{j}\right)
$$

for each j, and

$$
\epsilon_{j} \geq 0, \quad \sum_{j=1}^{N} \epsilon_{j} \leq C
$$

A few points

- The latter problem can be solved by quadratic programming.
■ Important: only observations inside the margin affect the hyperplane.
- Only the boundary matters.
- SVMs are closer to discriminative classifiers than generative ones.

A few points

■ The latter problem can be solved by quadratic programming.
■ Important: only observations inside the margin affect the hyperplane.

- Only the boundary matters.

■ SVMs are closer to discriminative classifiers than generative ones.
■ Hyperparameter C is usually set by cross-validation.

- If C is zero, no relaxation; the larger C, the more training points can be "inside" the margin.

Changing C

■ One can capture non-linear boundaries by enlarging the features, say with

$$
X_{1}, X_{1}^{2}, X_{2}, X_{2}^{2}, \ldots, X_{n}, X_{n}^{2}
$$

and perhaps other functions of features.

■ One can capture non-linear boundaries by enlarging the features, say with

$$
X_{1}, X_{1}^{2}, X_{2}, X_{2}^{2}, \ldots, X_{n}, X_{n}^{2}
$$

and perhaps other functions of features.

- The structure of SVMs lets one do this efficiently for very large enlarged spaces, using kernels.

The basic insight (first part)

■ It turns out that SVMs can be learned just by handling inner products

$$
x^{\prime} \cdot x^{\prime \prime}
$$

where x^{\prime} and $x^{\prime \prime}$ are two observations (note: $\left.a \cdot b=\sum_{j} a_{j} b_{j}\right)$.

The basic insight (second part)

■ Suppose we have functions
$\phi(X)=\left[\phi_{1}(X), \phi_{2}(X), \ldots, \phi_{m}(X)\right]$.

■ We would need

$$
\phi\left(x^{\prime}\right) \cdot \phi\left(x^{\prime \prime}\right),
$$

for observations x^{\prime} and $x^{\prime \prime}$.

The basic insight (third part)

■ We would need to compute $\phi\left(x^{\prime}\right) \cdot \phi\left(x^{\prime \prime}\right)$ for all pairs of observations.

The basic insight (third part)

■ We would need to compute $\phi\left(x^{\prime}\right) \cdot \phi\left(x^{\prime \prime}\right)$ for all pairs of observations.
■ Instead, we can just select a function $K\left(X^{\prime}, X^{\prime \prime}\right)$ and use it whenever a product is needed.
■ Such a function is called a kernel.

Popular kernels

■ Polynomial: $K\left(X^{\prime}, X^{\prime \prime}\right)=\left(1+X^{\prime} \cdot X^{\prime \prime}\right)^{d}$.
■ Radial basis: $K\left(X^{\prime}, X^{\prime \prime}\right)=\exp \left(-\gamma\left\|X^{\prime} \cdot X^{\prime \prime}\right\|\right)$.
$■$ Neural: $K\left(X^{\prime}, X^{\prime \prime}\right)=\tanh \left(\gamma_{1}\left(X^{\prime} \cdot X^{\prime \prime}\right)+\gamma_{2}\right)$.

Example: Kernels

Some of the figures in this presentation are taken from An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

