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Abstract. After stressing how well the purely macroscopic 1935 mass formula of von Weizsäcker
works, we discuss the general problem of deriving nuclear masses from basic nucleonic interactions.
We then describe the very recent Skyrme–Hartree–Fock–BCS mass formula of Goriely et al., the
first and only to be entirely microscopic. We conclude by stressing how much more work has to be
done before reliable extrapolations can be made from the mass data out to the highly neutron-rich
part of the nuclear chart where the r-process of nucleosynthesis takes place.
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1. Introduction

The interest of nuclear masses lies in the fact that the mass Mnuc(N,Z) of a nucleus
with N neutrons (n) and Z protons (p) is measurably different from the sum of the
masses of the free nucleons, whence a direct determination of the internal energy
Enuc (the negative of the binding energy) of the nucleus is possible,

Enuc = {
Mnuc(N,Z) − NMn − ZMp

}
c2. (1)

Attempts to develop formulas, or, more generally, algorithms, representing the
variation in Enuc from one nucleus to another go back to the 1935 ‘semi-empirical
mass formula’ of von Weizsäcker [1]. Being inspired by the liquid-drop model
(DM) of the nucleus, this is the macroscopic mass formula par excellence, but
we will see in Section 2 that it works remarkably well, accounting for all but
a small part of the variation in the binding energy. The 65 years of effort that
have already been devoted to accounting for the residual effects are characterized
primarily by attempts to establish a coexistence between the DM on the one hand
and microscopic effects such as shell-model (SM) and pairing corrections on the
other.

On the face of it the macroscopic and microscopic features are mutually exclu-
sive, and for many years the scene was dominated by the hybrid ‘macroscopic–
microscopic’ (macro–micro) approach (see [2] for a guide to the literature), which
simply decreed that the two aspects of nuclear structure must cohabit, with mi-
croscopic corrections grafted on to the DM. Like many arranged marriages, this
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worked very well, but there are serious ambiguities arising from the decision,
dictated by computational limitations, to ignore the common origin that the two
aspects must have in the basic nucleonic interactions.

Actually, the macro–micro approach is most easily understood in terms of the
purely microscopic approach of having both DM and SM features emerge on an
equal footing from the common starting point of nucleonic interactions, either
realistic or effective. We shall thus violate the historical order of development and
first outline, in Section 3, the latter approach; in the same section we also present
the only mass formula developed so far that can be said to be purely microscopic,
being based essentially on the Hartree–Fock (HF) method. Section 4 then describes
the older macro–micro approach, including variants in which the macroscopic part
is evaluated semi-classically rather than by the DM. Finally, in Section 5, we look
to the future, showing how much work remains to be done.

It is appropriate at this point to recall just why this sort of work continues to be
important. In the first place, measuring the masses of more and more nuclei further
and further away from the stability line with ever increasing precision is surely
one way of testing our theories of nuclear structure. But much of the interest in
constructing theoretically sound mass formulas that give precision fits to the mass
(and other) data lies in the possibility thereby offered of being able to make reliable
extrapolations away from the data out to the highly n-rich nuclei that play a crucial
role in the r-process of nucleosynthesis but which are so unstable that there is no
prospect of being able to measure them in the laboratory [3]. Mass formulas also
permit an even greater leap from the mass data: the extrapolation out to infinite
nuclear matter (INM), which also is of astrophysical interest.

2. The semi-empirical mass formula

We modify this slightly from the original form of [1], writing it as

Enuc

A
= avol + asfA

−1/3 + 3e2

5r0
Z2A−4/3 + (

asym + assA
−1/3

)
I 2, (2)

where A = N + Z. This is just the simplified form given in 1936 by Bethe and
Bacher [4], with the addition of the surface-symmetry term (ass) introduced in 1966
by Myers and Swiatecki [5]. The two leading terms correspond to the DM, which
was inspired in large part by the observation that the radius R of any nucleus
(N,Z) is given by R � r0A

1/3, where r0 is a constant. The roughly constant
density thereby implied is what one would expect in view of the finite range of
nuclear forces, along with their strong short-range repulsion, and is referred to as
the saturation property. With this picture of nuclei consisting simply of differently
sized pieces of nuclear matter we expect the energy per nucleon to be constant,
whence the term avol in Equation (2); the term in asf is then simply a correc-
tion for surface tension. However, the Coulomb force, being of infinite range, is
not saturated, and must be taken into account explicitly: this is the third term of
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Equation (2). One must also allow the specifically nuclear terms, both volume and
surface, to depend not only on the total number of nucleons but also on the n–p
composition. To a good approximation this dependence can be expected to be an
even function of I = (N − Z)/A, since Mn � Mp and nuclear forces are more or
less charge-symmetric.

In the limit A → ∞ the energy per nucleon becomes infinite and positive,
because of the Coulomb term, unless we are dealing with a pure neutron system,
I = 1. However, if we imagine the Coulomb force to be switched off we find
a finite energy per nucleon, avol + asymI

2. This corresponds to the equilibrium
energy of INM, which is, of course, a hypothetical medium, since the Coulomb
force cannot be switched off. However, a similar situation is realized in neutron
stars by the presence of electrons, which neutralize the small fraction of protons
present.

We have fitted the mass formula (2) to the 1995 compilation of Audi and Wap-
stra [6], finding avol = −15.65 MeV, asym = 27.72 MeV, asf = 17.63 MeV,
ass = −25.60 MeV, and r0 = 1.233 fm, with an rms error of 3.02 MeV, which
means that about 98% of the variation in the binding energy is being reproduced.
This is remarkable, given that nearly 2000 data points are being fitted by 5 para-
meters. Nevertheless, the graphs of the residual errors (Figures 1a,b) show clearly
the importance of the shell effects omitted in Equation (2); less apparent is the
neglected even-odd pairing effect. Figure 2 shows how closely the drip lines pre-
dicted by the completely microscopic mass formula HFBCS-1 (Section 3D) are
reproduced by the mass formula (2). In Figure 3 we see how well the limits of the
zones of instability with respect to β-delayed nucleon emission lying just inside
the drip lines are described by this same mass formula, while Figure 4 makes a
similar comparison for the region of α-instability.

As a final example of what the semi-empirical formula can do, let us generalize
it to include gravity. Since this has a non-saturating character formally identical to
that of the Coulomb force, though with opposite sign, Equation (2) becomes

Enuc

A
= avol + asfA

−1/3 + 3

5r0

{
e2

4
(1 − I )2 − GM2

}
A2/3

+ (
asym + assA

−1/3
)
I 2. (3)

For normal nuclei the gravitational correction will be utterly negligible, so let us
consider very large values of A, and limit ourselves to systems consisting only of
neutrons, I = 1, since otherwise the Coulomb repulsion would diverge. Using the
above values of the parameters, we find that such a system will become gravita-
tionally bound for A > 3.4 × 1056, i.e., for a mass in excess of 5.6 × 1029 kg,
which is within an order of magnitude of the mass of a typical neutron star. Since
furthermore the above value of r0 implies that the density of a nucleus is within an
order of magnitude that of a neutron star, we see that the semi-empirical formula
can actually encompass the picture of a neutron star as consisting of an enormous
gravitationally bound nucleus.
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(a)

(b)

Figure 1. (a): Errors in mass fit to semi-empirical mass formula of Equation (2), as function
of N . (b): Errors in mass fit to semi-empirical mass formula of Equation (2), as function of Z.

3. Microscopic approaches

3.1. REALISTIC NUCLEONIC INTERACTIONS AND THE NUCLEAR MANY-BODY

PROBLEM

The ideal mass formula would be one in which the binding energies of all nuclei
were derived from the basic nucleonic interactions. Work on these lines was initi-
ated in the fifties by Brueckner and co-workers, and since then a tremendous effort
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Figure 2. Drip lines according to semi-empirical mass formula of Equation (2) and mass
formula HFBCS-1.

Figure 3. Dots represent nuclei that are unstable with respect to β-delayed nucleon emission
according to mass formula HFBCS-1; solid lines represent inner limits of zones of such nuclei
as given by semi-empirical mass formula of Equation (2).

has been expended in pursuing different possible approaches. Two main types of
calculation can be discerned, as follows.

(a) Non-relativistic methods. These calculations assume that the nucleus is de-
scribed by a non-relativistic Schrödinger equation

H� = Enuc�, (4)
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Figure 4. Dots represent nuclei that are unstable with respect to α-emission according to
mass formula HFBCS-1; the solid line represents inner limit of zone of such nuclei as given
by semi-empirical mass formula of Equation (2).

where

H = − h̄2

2M

∑
i

∇2
i +

∑
i>j

Vij +
∑
i>j>k

Vijk. (5)

Here Vij and Vijk are potentials representing the two-nucleon (N–N) and three-
nucleon interactions, respectively, as determined by the scattering and bound-
state properties of such systems, and by meson-exchange theories. To calculate
the properties of complex nuclear systems in this non-relativistic framework
both variational methods and Brueckner–Bethe–Goldstone theory have been
used: guides to the literature can be found in [7] for the former, and [8, 9] for
the latter.

(b) Brueckner–Dirac methods. Here the nucleons are treated fully relativistically,
being represented by Dirac spinors. The degrees of freedom associated with
the exchange of the mesons responsible for the nucleonic interactions are taken
into account explicitly; moreover, the meson parameters are fitted to the N–N
scattering data and measured meson properties. When fully developed this
approach should be at least as reliable as the non-relativistic methods. (For
a review see [10].)

All of these different methods based on realistic nucleonic interactions are hor-
rendously complicated, and the only system for which quantitatively satisfactory
results have been obtained is the relatively simple case of INM. Even if this success
shows that these theories are fundamentally correct, the fact remains that the few
calculations that have been performed on finite nuclei give results whose accuracy
is inacceptably poor. Nevertheless, many-body theories based on realistic nucle-
onic forces will be able to serve as a qualitative guide in tying down some of the
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ambiguities in the more phenomenological approaches based on the shell model
that we describe below. In fact, already by 1958 many-body theory had reconciled
the validity of the shell model with the short-range character of nuclear forces [11],
thereby underpinning these more phenomenological approaches.

3.2. MEAN-FIELD MODELS WITH PHENOMENOLOGICAL INTERACTIONS

Since one cannot solve the exact nuclear Schrödinger equation (4), or its relativistic
counterpart, with the accuracy required for astrophysical purposes, the best that can
be done is to be guided by the success of the shell model, and assume, at least at the
outset, that all nucleons move in some single-particle (s.p.) field. We shall see how
this renders both the non-relativistic and relativistic forms of nuclear many-body
theory tractable. The appearance of SM features in such an approach is, of course,
ensured; we will see that DM features can emerge as well.

Non-relativistic Hartree–Fock method. This is a variational method, with a trial
wavefunction having the form of a Slater determinant � = det{φi(xi)}, this being
a properly antisymmetrized product of s.p. wavefunctions φi(xi). Since � cannot
be identical to the exact wave function � of Equation (4), whatever the choice
of φi(xi), it follows that the expectation value 〈�|H |�〉 can never give the exact
eigenenergy Enuc of Equation (4). We shall thus have to replace the exact Hamil-
tonian H by an effective Hamiltonian if the HF method is to give the exact energy
Enuc. We thus write in place of Equation (5)

H eff = − h̄2

2M

∑
i

∇2
i +

∑
i>j

veff
ij , (6)

in which veff
ij is some effective N–N potential that does not have to fit the N–N data.

One way in which this force could be determined, particularly appropriate to the
present context of nuclear masses, would be to optimize the fit of the expectation
values EHF = 〈�|H eff|�〉 to all the measured values of Enuc.

The method proceeds by minimizing EHF with respect to arbitrary variations in
the unknown s.p. functions φi(xi), which are then given as eigensolutions to a s.p.
Schrödinger equation(

− h̄2

2M
∇2 + U

)
φi = εiφi, (7)

where U is a s.p. field that in general is non-local and spin-dependent, but is
determined uniquely by the force. Once the φi(xi) are determined EHF can be
calculated.

Provided the effective force, unlike the Coulomb force, does not have an infinite
range, and has a short-range repulsion, INM will be saturated, i.e., have a finite den-
sity and energy per nucleon. Thus both DM and SM aspects emerge automatically
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and on an equal footing in this picture, so that a much more unified approach to
the mass formula is offered than is possible with the hybrid macro–micro methods
(Section 4).

A particularly suitable form of effective force is the Skyrme form [12]:

vij = t0(1 + x0Pσ )δ(rij ) + t1(1 + x1Pσ )
1

2h̄2

{
p2
ij δ(rij ) + h.c.

}
+ t2(1 + x2Pσ )

1

h̄2 pij .δ(rij )pij + 1

6
t3(1 + x3Pσ )ρ

γ δ(rij )

+ i

h̄2W0(σ i + σ j ).pij × δ(rij )pij . (8)

All terms here are formally of zero range, although the momentum dependence of
the t1 and t2 terms simulates a finite range.

With Skyrme forces the s.p. equation (7) takes the form{
−∇ · h̄2

2M∗
q (r)

∇ + Uq(r) + V coul
q (r) − iWq(r) · ∇ × σ

}
φi,q = εi,qφi,q , (9)

in which i labels all quantum numbers, and q denotes n or p. All the field terms
are now local, essentially because one can introduce a position-dependent effective
mass M∗

q . There are two such quantities, corresponding to the two types of charge,
which can be expressed at the INM equilibrium density in terms of an isoscalar
and an isovector effective mass, M∗

s and M∗
v , respectively; these are unique com-

binations of the Skyrme-force parameters. Expressions for all quantities appearing
in this equation, and for EHF, can be found in [13].

Most nuclear HF calculations that have been performed use Skyrme forces, al-
though the Gogny group uses forces that are explicitly finite-range [14]. While the
latter may be regarded as more realistic, the essential non-locality of the s.p. fields
complicates the calculations considerably. Until very recently no HF effective force
had been fitted to more than ten or so nuclei, all spherical, presumably because of
the computer-time limitations that arose in the past with deformed nuclei. However,
it is now possible to fit to the masses of all nuclei (Section 3.4).

Relativistic Hartree method. As in the Dirac–Brueckner method, nucleons are
represented by Dirac spinors, and the mesons mediating the nucleonic interactions
are taken into account explicitly. However, their sole effect is to generate a mean
field in which the nucleons move, and since no two-body forces appear explicitly
there are no exchange terms, so we are dealing with a Hartree, rather than a HF,
theory. Unlike the Dirac–Brueckner method, the meson parameters are determined
by fitting directly to finite-nucleus properties, rather than to N–N scattering. In
this sense the method, also known as the relativistic mean-field (RMF) method, is
comparable to the non-relativistic HF method. A further similarity lies in the fact
that here too INM will be saturated, so that again both DM and SM aspects emerge
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automatically with equal status. However, the RMF method has the important merit
of being Lorentz-invariant, a feature which allows the spontaneous appearance of a
spin-orbit term in the field. Thus in the event of a contradiction between this method
and the non-relativistic HF method, there would be good reasons for preferring the
former, despite the highly phenomenological character of both methods.

So far the basic meson-parameter set of this method has not been fitted to the
properties of more than ten nuclei. However, using a parameter set determined in
this way, the masses (and other properties) of over a thousand nuclei have been
calculated [15]. Unfortunately, the rms error of 2.6 MeV is unacceptable for as-
trophysical purposes; moreover, only even-even nuclei were calculated. But even
if this means that no RMF mass formula can be said to be available at the present
time, the tabulation [15] can still serve as a useful guide to the behaviour of the
spin-orbit field far from stability.

3.3. CORRELATIONS

Even when the Slater determinant � satisfies the HF equations (7), it can never be
identical to the exact nuclear wave function �. Thus we must expect nuclear prop-
erties to show features that cannot be accounted for within the HF framework; such
irreducible deviations from the mean-field picture are referred to as correlations.

Pairing correlations. These are the most conspicuous correlations in nuclear
ground states, involving the tendency of like nucleons in time-reversed s.p. states
to couple to zero total angular momentum. Their most obvious manifestation lies
in the characteristic even-odd effect in binding energies, but they also account for
the spherical shape of many open-shell nuclei: a nucleus with even one nucleon
outside doubly-closed shells is deformed in the pure HF picture.

The simplest way to introduce pairing correlations into the HF framework is as
follows. After each HF iteration, in the basis of s.p. states thereby generated, one
applies the BCS method (borrowed from the theory of superconductivity) to the
pairing interaction, which usually, but not invariably, is chosen to be distinct from
the HF effective interaction: see, for example, [16, Chapter 8] or [17, Chapter 6].
This procedure neglects the fact that the scattering of nucleon pairs between dif-
ferent s.p. states under the influence of the pairing interaction will actually modify
the s.p. states, a difficulty that becomes particularly serious close to the n-drip line,
where nucleon pairs will be scattered into the continuum. This problem is avoided
in the HF–Bogolyubov (HFB) method, which puts the pairing correlations into the
variational function, so that the s.p. and pairing aspects are treated simultaneously
and on the same footing (see [17, Chapter 7]).

Wigner correlations. Even when pairing correlations are correctly included, HF
and other mean-field calculations systematically underbind nuclei with N � Z by
about 2 MeV: see, for example, [18]. There seems to be a growing consensus that a
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T = 0 pairing between neutrons and protons is responsible (see [19] and references
quoted therein), but no systematic study has been made so far.

3.4. THE HFBCS-1 MASS FORMULA

Very recently [20] a complete mass table, labelled HFBCS-1, was constructed on
the basis of HF calculations with a Skyrme force of the form (8), with pairing
correlations taken into account in the BCS approach, using a δ-function pairing
force. A Wigner correction term of the form [5, 21] EW = VW exp(−λ|N −Z|/A)
was also included. With 16 parameters in all, a single constraint was applied before
fitting: the isoscalar and isovector effective masses were set equal, M∗

s = M∗
v (=

M∗), there being no evidence to the contrary. The remaining 15 degrees of freedom
were fitted (x1 and γ only roughly) to the mass data [6]. The rms error for the 1888
measured nuclei with Z,N � 8 is 0.738 MeV.

Performing a HF calculation on a nucleus automatically yields a unique value
for the charge radius, so that a comparison with the measured values provides an
independent test of the validity of the calculations. For the 143 nuclei listed in the
1994 data compilation [22] the rms error is only 0.019 fm. It should be stressed that
this good agreement has been achieved without any further parameter adjustment.

The Skyrme parameters of this force [20] imply an effective mass of M∗ =
1.05M, which is consistent with the observation that unless M∗/M � 1.0 the
s.p. level density in the vicinity of the Fermi surface will be wrong [23], whence
it would be impossible to fit the masses of open-shell nuclei, even if a fit to the
masses of doubly magic nuclei were possible. On the other hand, all realistic esti-
mates of M∗/M indicate a value of 0.7–0.8 (see [13, Section 1], where it will be
seen that these values hold for both M∗

s and M∗
v ): this is known as the ‘k-mass’

value. However, there is no contradiction between these two values of M∗/M,
since Bernard and Giai [24] have shown that one can obtain reasonable s.p. level
densities in finite nuclei with k-mass values of M∗/M, i.e., of 0.7–0.8, provided
one takes into account the coupling between s.p. excitation modes and surface-
vibration RPA modes. Since the good agreement with measured s.p. level densities
found in [23] was obtained without making these corrections it must be supposed
that the resulting error is being compensated by the higher value of M∗/M, i.e.,
M∗/M � 1.0, which may thus be regarded as a phenomenological value, known as
the ‘ω-mass’, that permits considerable success with straightforward HF, or other
mean-field calculations, without any of the complications of [24]. Skyrme forces
such as those of the Lyon group [25, 26] that are constrained to have a k-mass
value of M∗/M, i.e., 0.7–0.8, cannot serve as the basis of a mass formula (unless
one performed calculations of the Bernard–Giai type on all nuclei). This point is
well illustrated in [26, Figures 1–4]. (In the same way, the poor agreement with the
experimental masses of spherical open-shell nuclei given by the Gogny force, as
displayed in [14, Figure 9], is presumably the result of the effective mass associated
with the essentially non-local s.p. field being significantly smaller than unity.)
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4. Macroscopic–microscopic approaches

The way in which shell corrections are grafted on to the DM can be understood as
an approximation to the HF method. If ρ̃ is any smooth diagonal approximation to
the HF density matrix ρHF then an expansion of E[ρHF] in powers of δρ ≡ ρHF − ρ̃

leads to the Strutinsky theorem (see [17, p. 93]),

EHF ≡ E[ρHF] � E[ρ̃] +
∑
i

ε̃i − tr h̃ρ̃, (10)

where we have neglected pairing and terms O(δρ)2. Also h̃ ≡ h[ρ̃] is the smoothed
s.p. Hamiltonian approximating the exact s.p. Hamiltonian h[ρHF], and the ε̃i are
the corresponding eigenvalues, with the sum going over all occupied states: all the
shell-model fluctuations arise in this sum.

The choice of ρ̃ is arbitrary, and this approach originally took it to correspond
to the DM. As for the s.p. Hamiltonian h̃, this must have the same form as in
Equation (7), whence a choice must be made for the field U . There is no un-
ambiguous way of doing this for the DM choice of ρ̃, and in practice one has
been guided by considerations of plausibility and convenience. Once this choice
has been made the determination of the ε̃i is straightforward, and there remains
only the last term to calculate. Formally, this corresponds to a smoothed version
of the sum in the preceding term, tr h̃ρ̃ ≡ ∑̃

i ε̃i , and it is evaluated by the various
‘Strutinsky smoothing procedures’ that have been devised (see, for example, [16,
Section 12.4]). We have here a second source of uncertainty, especially for nuclei
close to the n-drip line [27].

As for pairing corrections, BCS calculations are straightforward in this ap-
proach, once the s.p. states have been calculated.

The most recent and elaborate mass formula of this type is the ‘finite-range
droplet model’ (FRDM) of [2]. Here the simple DM of Equation (2) is replaced
by the more sophisticated ‘droplet’ model, but otherwise the model conforms to
the above scheme. The data fit has an rms error of 0.689 MeV for the above set
of 1888 nuclei, which is somewhat better than for HFBCS-1. However, in addi-
tion to the usual uncertainty associated with Strutinsky smoothing, the inevitable
uncertainty associated with the choice of s.p. field is exacerbated by the fact that
the symmetry coefficient asym (J in their notation) corresponding to this field has
the value of 35 MeV, while this same coefficient takes the value of 32.73 MeV in
the macroscopic part. We do not know whether the quality of the fit would have
deteriorated if it had been reiterated until asym took the same values in both parts.
Moreover, it is difficult to assess the impact on the reliability of the extrapola-
tions.

The ETFSI Approximation. A much closer approximation to the HF method than
the above DM-based method is the so-called ETFSI method [18, 28–32]. It is based
entirely on a Skyrme force of the form (8), with the constraint of M∗ = M, and
the starting point is to calculate the energy of any given nucleus in the extended
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Thomas–Fermi (ETF) approximation. The resulting energy varies smoothly as a
function of N,Z and deformation, so that it constitutes a purely macroscopic term,
for which microscopic corrections still have to be added. However, there is a fun-
damental difference compared to the earlier macro–micro calculations: a unique
s.p. field U can now be generated simply by folding the same Skyrme force over
the nucleon distribution determined in the first part of the calculation. There is
thus a much closer unity between the two parts of the calculation than in earlier
macro-micro calculations, the same Skyrme force underlying both parts. Further-
more, in applying the Strutinsky theorem, all the ambiguities that we mentioned
in relation to smoothing vanish, since the last term of Equation (10) reduces to an
integral over quantities determined in the ETF calculation: this is the Strutinsky
integral (SI).

It turns out that in its latest form, ETFSI-2 [32], this method approximates HF
so well that the two methods give essentially equivalent results. The rms errors
of the respective data fits are virtually identical, and the fitted forces give very
similar extrapolations out to the drip lines (note, however, that the fitted forces are
not identical). Nevertheless, the ETFSI approximation is very much faster, being
feasible at a time when the HF method itself was not. As far as mass formulas are
concerned, the ETFSI approximation has now in a way been made redundant by
the HF calculations, but it is still extremely valuable for the far more complicated
calculations of fission barriers: ETFSI calculations of some 2000 barriers were
recently performed [33, 34].

The TF-FRDM approximation. A different semi-classical approximation, using a
force that is finite-range and both momentum- and density-dependent, gives an
rms error of 0.673 MeV for the above data set of 1888 nuclei [35], which is
better than either FRDM or HFBCS-1. However, besides the force there are two
other significant differences with respect to the ETFSI method. (a) The semi-
classical calculation is zeroth-order Thomas–Fermi, rather than fourth-order ex-
tended Thomas–Fermi, which means that the nuclear surface is not as well rep-
resented as in ETFSI. The effect of this on the quality of the fit to the data is
presumably taken up by the parameters, but the compensation will not hold in the
unknown regions far from stability to which one will want to extrapolate. (b) The
shell corrections are not calculated self-consistently, as in the HF method (and the
ETFSI approximation), but are taken directly from the FRDM calculation, along
with the pairing corrections and the deformations, making this much closer to the
DM-based macro–micro mass formulas. In principle, once the force parameters
had been fitted to the data, the shell corrections could have been recalculated,
exactly as with the ETFSI method, but it is not at all clear that the new ones would
have been similar to the original ones. Indeed, there is no a priori guarantee that
the value of M∗ corresponding to the rather novel form of force adopted in this
calculation will lie close to M, a necessary condition for a good fit to the masses
of open-shell nuclei in self-consistent calculations (see Section 3.4).
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5. Summary and outlook

We have presented here a new mass formula, HFBCS-1, the first that is fully mi-
croscopic. The fit to the data is not quite as good as with the two macro–micro
formulas in current usage, with an rms error of 0.738 MeV for 1888 masses, as op-
posed to 0.689 MeV in the case of the FRDM and 0.673 MeV with the TF-FRDM.
However, both of the latter two formulas are incomplete in that they contain serious
inconsistencies between the macroscopic and microscopic parts; these inconsisten-
cies could be removed in each case by performing more iterations, as described
above, but it is not clear that the high quality of the respective fits could survive
this operation.

Despite the rough similarity in the quality of the data fits of all three mass
formulas, striking differences emerge on extrapolating far from the data. These
are discussed in detail elsewhere in these proceedings [3], but two important fea-
tures must be mentioned here. (a) The shell gap at N = 184 on the n-rich side
of the stability line, i.e., for p-deficient nuclei, is stronger for HFBCS-1 than for
the FRDM (the TF-FRDM results are essentially identical to the FRDM results
in this respect). The isospin dependence of the spin-orbit field is crucial here, and
significantly the RMF calculations of [15] discriminate in favour of HFBCS-1 (see
Figure 5, and also [36, 37]). (b) Concerning INM, the symmetry coefficient asym is
markedly lower for HFBCS-1 than for FRDM or TF-FRDM: 28 MeV rather than
32–35 MeV. This is a much more difficult question to resolve, which is unfortunate,
since asym is a critical factor in determining the rate of neutrino cooling of neutron
stars.

Since one of the main sources of motivation for all this work is to use mass
formulas to extrapolate far from the data, the obvious question to ask is: which one

Figure 5. Shell gap at N = 184 as function of Z, defined in terms of 2n-separation energy
according to S2n(N = 186) − S2n(N = 184). Dots correspond to RMF calculations [15].
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of these mass formulas is to be believed? The ultimate mass formula, i.e., the one
that gets everything right, must be microscopic, but one cannot pretend that with
HFBCS-1 we have reached the end of history, as far as mass formulas go, with
nothing more to do than refit the parameters every time Audi and Wapstra crank
out another evaluation. On the contrary, I believe that the remaining uncertainties
in the extrapolations of HFBCS-1 out to the n-drip line are at least as great as the
differences between HFBCS-1 and the two modern macro–micro formulas. Here
are some of the outstanding theoretical problems that must be addressed before we
can really start to extrapolate out to the n-drip line with any confidence.

(1) Effective mass. Our data fits have confirmed the Bernard–Giai renormaliza-
tion of M∗ to take account of surface modes [24]. But their calculations were made
only in the region of the stability line, so it is really only the isoscalar component
M∗

s /M whose ω-mass value is well tied down to close to 1, and it is essential that
they be extended towards the n-drip line in order to determine the ω-mass value of
M∗

v /M. It should be stressed that there is no justification at the present time for our
assumption that M∗

s = M∗
v as far as ω-mass values are concerned; all that can be

said is that there are no data against it.
(2) Pairing. Firstly, if we are to have any confidence in the extrapolations out

to the n-drip line, it is essential that the HF-BCS method used here be replaced
by HFB. Calculations performed with the Skyrme force SkP [38, 39] on spherical
nuclei indicate that the effect of replacing HF-BCS by HFB will be to quench
shell effects at the n-drip line, but there have been no extensive HFB calculations
for arbitrary deformations. Actually, a somewhat improvised attempt to modify the
original ETFSI calculations [18] for Bogolyubov quenching has already been made
[40], but a complete HFB calculation would be preferable. However, the extent of
the quenching depends on the s.p. spectra, and thus on the value of M∗/M assumed
for highly n-rich nuclei, and it must be stressed that there is as yet no firm support
for the value of 1 taken for the force SkP. Thus before undertaking any extensive
HFB calculations it will be necessary to resolve the problem of M∗

v /M.
Beyond that, attention has to be paid to the choice of the pairing interaction,

noting that it does not have to be identical to the HF force. Should it be density-
dependent? Should it depend on the gradient of the density in order to confine it
to the surface? These are all open questions, and one welcomes the recent efforts
to relate the pairing force, hitherto treated on a purely phenomenological basis, to
more basic nuclear processes, as in [41–43].

Experiment. There will always be a need for more and more data further and
further from the stability line, not only to tie down the parameters of the various
theories, but also to weed out the weakest of them. Of particular importance here is
the need to shed light on the M∗

v /M problem, and to find firm evidence for the ex-
istence of shell quenching. In both these connections I would stress the importance
not only of mass data, but particularly of s.p. spectra. And again, while the n-rich
side of the stability line is the one of most direct interest for the r-process, data on
the p-rich side can be just as invaluable in tying down theories. Finally, to conclude
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on a completely different note, let me point out that it would be very useful indeed
if one could measure neutron-skin thicknesses, since these provide an independent
determination of the symmetry coefficient asym.
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