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Abstract Food intake regulation is generally evaluated

by many aspects consisting of complex mechanisms,

including homeostatic regulatory mechanism, which is

based on negative feedback, and hedonic regulatory

mechanism, which is driven by a reward system. One

important aspect of food intake regulation is the peripheral

hormones that are secreted from the gastrointestinal tract.

These hormones are secreted from enteroendocrine cells as

feedback to nutrient and energy intake, and will commu-

nicate with the brain directly or via the vagus nerve.

Gastrointestinal hormones are very crucial in maintaining a

steady body weight, despite variations in nutrient intake

and energy expenditure. In this review, we provide an

overview of the regulation of feeding behavior by gut

hormones, and its role in obesity treatments.
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Introduction

Currently, obesity and its comorbidities have become a

critical problem throughout the world. Obesity is defined as

an abnormal and excessive fat accumulation caused by an

imbalance of energy intake and caloric expenditure that

may impair the health. Overweight is categorized by a

body mass index (BMI) over 25 kg/m2, and obese is cat-

egorized by a BMI exceeding 30 kg/m2 . However, in some

Asian countries, the risk of type 2 diabetes and cardio-

vascular disease is substantial at BMIs lower than the

existing World Health Organization (WHO) cutoff point

for overweight. Thus, in different Asian populations, the

cutoff point for observed risk varies from 22 to 25 kg/m2,

while for high risk, it varies from 26 to 31 kg/m2. WHO

has declared that obesity is one of the 10 at-risk conditions

around the world and one of the 5 at-risk conditions in

developing countries. In 2014, more than 1.9 billion adults

are overweight and 600 million are obese.

In general, both overweight and obesity are associated

with a high prevalence of comorbidities, including high

blood pressure, metabolic syndrome, type 2 diabetes mel-

litus (T2DM), cardiovascular disease, and many others. A

study suggested that a 1-kg weight gain increases the risk

of diabetes by 4.5–9 % and cardiovascular disease by

3.1 %. [1]. Relating to obesity, the gastrointestinal tract is

an important source of food intake. Gut hormones have a

major role in controlling and regulating food intake. With

the growing obesity crisis, gut hormones have become a

hot topic of research among the scientists. Therefore, we

are interested in the role of gut hormones in food intake

regulation and in the treatment of obesity.

Overview of neuroendocrine regulation in food
intake

The food that we eat is broken down into small parts,

which contains many nutrients. These nutrients may acti-

vate the G-protein–coupled receptors (GPCR) in the

luminal side of enteroendocrine cells [2]. The

& Akio Inui

inui@m.kufm.kagoshima-u.ac.jp

1 Department of Psychosomatic Internal Medicine, Kagoshima

University Graduate School of Medical and Dental Sciences,

8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan

2 Faculty of Medicine, Sam Ratulangi University, Manado,

Indonesia

123

J Gastroenterol (2016) 51:93–103

DOI 10.1007/s00535-015-1118-4



gastrointestinal tract contains many types of enteroen-

docrine cells. Combined together, it becomes the largest

endocrine organ in the body. When activated, it releases

several hormones that have an impact on many physio-

logical processes, including the food intake [3]. These

hormones, including gut hormones, will pass median

eminence and signal short-term nutrient availability to the

hypothalamic arcuate nucleus (ARC) [4, 5]. Other circu-

lating peptides, such as leptin released from the adipose

tissue as well as insulin, are responsible for signaling the

long-term energy stores and adiposity [6].

The ARC in the hypothalamus is known to regulate food

intake and energy expenditure [7, 8]. It contains two pop-

ulations of neurons that show an opposite effect to one

another. The medial parts act as an orexigenic neurons that

express neuropeptide Y (NPY) and agouti-related protein

(AgRP) [9–11]. In the lateral side of ARC contains

anorexigenic neurons that express alpha-melanocyte-stim-

ulating hormone (a-MSH) derived from pro-opiome-

lanocortin (POMC) and cocaine and amphetamine-

regulated transcript (CART) [12].

Moreover, other peripheral signals perform actions through

the afferent neuron and brainstem that will indirectly influence

the hypothalamus. The mechanoreceptors and/or chemore-

ceptors also contribute to control of the appetite. Both recep-

tors activate the vagal afferent, and the neural signals converge

in the nucleus of tractus solitarius (NTS) of the brainstem.

Then these signals are transmitted to hypothalamus [13].

Eventually, several gut hormones are also known to act via the

ascending vagal pathway and brainstem [14].

Therefore, the orexigenic and anorexigenic neurons in

the hypothalamus are regulated by many neural and hor-

monal signals (Fig. 1). These neurons will then project to

other neurons in the extra-hypothalamic and intra-hy-

pothalamic regions, such as the hypothalamic paraven-

tricular nucleus (PVN), and lateral hypothalamus (LH) and

perifornical area (PFA), where some of the important

efferent pathways regulating hunger, satiety, and energy

expenditure arise [15].

Gut hormones and food intake regulation

Ghrelin

Ghrelin, a peptide consisted 28 amino acids with n-oc-

tanoylated Ser3, was reported in 1999 as an endogenous

ligand for the ‘orphan’ growth hormone secretogogue

(GHS) [16, 17]. Ghrelin is predominantly found in the

stomach, and was the first hormone to be identified for

stimulating food intake [18]. It acts mainly as an orexi-

genic signal sending information about peripheral caloric

intake to the brain center for energy homeostasis.

Fig. 1 Neuroendocrine overview of food intake. Nutrients from food

digestion will activate G-protein–coupled receptors on the luminal

side of enteroendocrine cells. This leads to the release of gastroin-

testinal hormones, which will perform their action through three sites:

the hypothalamus, brainstem, and vagus nerve. These hormones will

signal short-term nutrient availability to the hypothalamic arcuate

nucleus (ARC). The ARC in the hypothalamus is known to regulate

food intake and energy expenditure. It contains two populations of

neurons that show an opposite effect to one another: the orexigenic

NPY/AgRP neurons and the anorexigenic POMC/CART neurons.

Both neurons will project to higher brain centers that control the

hedonic aspects of food ingestion. ARC arcuate nucleus; AgRP agouti

related peptide; CART cocaine and amphetamine-regulated transcript;

CCK (Cholecystokinin; GLP-1 glucagon like peptide-1; NPY neu-

ropeptide Y; OXM oxyntomodulin; POMC propiomelanocortin; PP

pancreatic peptide; PYY peptide YY
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Orexigenic NPY and AgRP-expressing neurons are

involved in this mechanism because they express the

ghrelin receptor [19, 20], which may respond to ghrelin

by increasing the firing rate. Intracerebroventricular (ICV)

administration of ghrelin increases body weight by

increasing the cumulative food intake and energy expen-

diture reduction [21–24]. Ghrelin secretion is mainly

regulated by feeding. In human studies, plasma ghrelin

levels increase during fasting, and surge nearly twofold

immediately preprandial, and drop within 1 h after food

intake [25]. Prandial changes in the plasma ghrelin levels

occur in association with the changes in hunger score,

even when external cues related to time of day have been

removed from environment [26]. These findings suggest

that plasma ghrelin plays a role in short-term energy

balance [27]. In addition to the regulation of appetite and

energy balance, ghrelin also contributes to long-term body

weight regulation. Ghrelin levels circulate in relation to

the energy stores and manifest the compensatory changes

in response to body weight alteration, increasing weight

loss and vice versa [28].

Besides its direct effect on the brain, ghrelin is also

suggested to act through the vagal neurons [29]. The

existence of ghrelin receptors on vagal afferent neurons in

the rat’s nodose ganglion indicates that ghrelin signals

from the stomach are transmitted to the hypothalamus

through vagal neurons [30]. In animal models, vagotomy

abolished the orexigenic effect of ghrelin [31]. The food

intake stimulatory effect of ghrelin also disappeared in

humans after vagotomy [32].

Cholecystokinin

Cholecystokinin (CCK) is a gut satiating peptide that is

produced by I cells in small intestine [33]. Basically, CCK

is released post-prandially in response to saturated fats,

long chain fatty acids, amino acids, and small peptides, and

is reduced gradually upon fasting [34–36]. Peripheral

administration of CCK before a meal may decrease the

meal size in a dose-dependent manner, both in experi-

mental animals [37, 38] and human subjects [39, 40]. CCK

acts as a short-acting satiation signal, but not for long-term

body weight regulation. It has a very short lifespan;

according to a previous report, the peptide was not

detectable when it was injected for more than 30 min

before the meal [41].

There are several forms of CCK, ranging from 8 to 83

chain amino acids. The major circulating forms are CCK-8,

CCK-22, CCK-33, and CCK-58, all having the same

attribute, a C-terminal heptapeptide amide sequence for

binding [42–44]. Although they have the same attribute,

not all forms of CCK show equal bioactivity; for example,

both CCK-8 and CCK-58 can reduce meal size after

administration, but only CCK-58 increases the intermeal

interval time, while CCK-8 reduces this interval, as shown

in previous studies [45, 46].

CCK performs its action through cholecystokinin-1

(CCK1) receptors and/or cholecystokinin-2 (CCK2)

receptors [47]. CCK1 receptors are responsible for medi-

ating the anorexigenic effect of CCK, mainly through vagal

afferent fibers [48, 49], and this receptor is also located in

brain [50, 51]. Subdiaphramatic vagotomy and selective

vagal deafferentation cause a decrease in the anorexigenic

effects of peripheral CCK [52–54]. Furthermore, CCK1

receptors are also located in the hindbrain and hypothala-

mus, and microinjection of CCK into the hypothalamic

nuclei may decrease food intake [55]. Additionally, lesions

in the hindbrain Area Postrema (AP) proved to weaken the

satiation effect of CCK [56]. These data indicate that to

perform its action, CCK might communicate indirectly

through the vagal nerve or directly to the brain.

Peptide Tyrosine Tyrosine

Peptide tyrosine tyrosine (PYY) is a 36-amino acid peptide

with tyrosine (Y) residues at the N and C terminals. It was

isolated from porcine intestine in 1980 [57], and shares

similiar structure with NPY and PP, consisting of an a-
helix and a polyproline helix connected by a b turn, and

together classified in the polypeptide-fold (PP-fold) family

[58].

PYY is released from L-cells in the distal ileum and is

increased along the intestine, reaching the highest levels in

the colon and rectum. It is secreted following a meal,

gradually rises, reaches the peak level within 1–2 h, and

will remain elevated for 6 h [59, 60]. Meal composition has

high influence on the release of PYY, with protein being

greater then lipids and carbohydrates [61]. There are two

main types of PYY, PYY1-36 and PYY3-36, PYY1-36 is

proteolyzed by dipeptidyl-peptidase 4 (DPP4) to produce

PYY3-36 as the bioactive form [62, 63]. PYY performs its

action through the Y receptor family (Y1, Y2, Y4, Y5, and

Y6), where PYY3-36 has a high affinity toward Y2 receptors

and low affinity to Y1 and Y5 receptors [64, 65].

Peripheral administration of PYY3-36 in rodents

decreased appetite and food intake [66–68], and also

reduced body weights in other experimental animals [69,

70]. In human, intravenous infusion of PYY3-36 also

showed the same results, indicating the role of PYY as an

anorexigenic peptide [71]. This anorectic effect is mainly

mediated through Y2 receptors in the hypothalamic ARC,

and will inhibit the NPY/AgRP neurons, which activates

the anorectic melanocortin-producing cells [66]. The

anorexigenic effect of PYY3-36 disappears in Y2 receptor-

deficient animals [66, 72, 73]. Surprisingly, direct

administration of PYY into the brain results in an increase
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of food intake. This result might be due to the differential

access to Y receptors, in which the orexigenic effect is

predicted come from the interaction between PYY with

Y1 and Y5 receptors in the brain [74, 75]. Furthermore,

the vagal-brainstem–mediated pathway may also be

involved in the action of circulating PYY3-36. Y2 receptors

are located in vagal-afferent terminals. Several studies

have confirmed that abdominal vagotomy or transection of

hindbrain-hypothalamic pathways in rodent abolishes the

anorectic effects and the ARC neuronal activation of PYY

[76, 77]. In summary, PYY acts as a satiety signal that

may reduce the food intake in rodents as well as in

humans, and performs its action directly through Y2

receptors in the hypothalamic ARC and/or through the

vagal afferent.

Glucagon-like peptide-1

Glucagon-like peptide-1 (GLP-1) is a gut peptide derived

from preproglucagon. It is produced in the body, mainly

the intestinal L-cells, in response of glucose ingestion [78].

A study showed that high protein food intake increases the

concentration of GLP-1 [79]. Cleavage of the pre-

proglucagon resulted into two main bioactive forms of

GLP-1, GLP-17-36 and the GLP-17-37 [80]. Both forms have

a short biological half-life, because both of them are

rapidly degraded during circulation by dipeptidil peptidase

4 (DPP4) [81].

Acute peripheral and central administration of GLP-1

reduced food intake in animals [82–84], and chronic

administration proved to reduce weight gain [85]. In human

subjects, intravenous injection of GLP-1 decreases the food

intake in a dose-dependent manner [86–89], and it also

activates the ileal break [90], a feedback in which ingested

food activates distal-intestinal signals to inhibit the proxi-

mal gastrointestinal motility and gastric emptying. Beside

of its anorexigenic property, GLP-1 also has an important

role in glucose homeostasis. It acts as an incretin to induce

glucose-dependent insulin release and enhance pancreas b
cell growth in addition to reduced secretion of glucagon

[91]. GLP-1 actions are mainly mediated through the GLP-

1 receptors (GLP1R), located in pancreas, brainstem,

hypothalamus, and vagal nerves. Peripheral injection of

GLP-1 has been shown to activate neurons in the brainstem

of rats [92]. The anorectic property of GLP-1 is diminished

in vagotomized rodents [76]. Furthermore, using magnetic

resonance imaging (MRI), scientists have confirmed that

peripheral administration of GLP-1 increased the signal

intensity in the brainstem’s AP, and it also altered signal

intensity in the hypothalamic PVN and ventromedial

nucleus (VMN) [93]. Therefore, GLP-1 achieves its action

both centrally through the hypothalamus and through the

vagal-brainstem signalling pathway.

Oxyntomodulin

Oxyntomodulin (OXM) is a gut peptide similar to GLP-1

and is derived from the same precursor, preproglucagon. It

is cosecreted with GLP-1 from enteroendocrine L-cells

postprandially in response to caloric intake [94]. OXM

administration in rodents has been shown to decrease food

intake and body weight [95, 96], and also to increase

energy expenditure [97]. In normal weight humans, intra-

venous administration of OXM has been shown to reduce

food intake [98], while in overweight and obese volunteers,

administration of OXM increases energy expenditure and

reduces energy intake [99, 100].

OXM has an affinity for both GLP-1 receptors and

glucagon receptors. However, it is believed that the

anorectic effect of OXM is mediated mainly through GLP-

1 receptors [101], although recent data indicate that glu-

cagon receptors are also involved in OXM action [102].

OXM has lower affinity to GLP-1 receptors than GLP-1,

but it still has similar potency to GLP-1 in reducing food

intake [95]. GLP-1 receptor knockout mice and adminis-

tration of the GLP-1 receptor antagonist exendin 9-39

abolished the anorectic effect of OXM [101]. However,

exendin 9-39 did not affect the anorectic effect of GLP-1

[96]. Similar to this, one study using manganese-enhanced

magnetic resonance imaging (MEMRI) showed that

intraperitoneally injected OXM reduces the neuronal

activity in the ARC, PVN, and supraoptic nucleus (SON)

[103]. Therefore, despite OXM and GLP-1 sharing simillar

attributes, these two hormones might act through different

hypothalamic pathways.

Pancreatic polypeptide and amylin

Pancreatic polypeptide (PP) is a 36-amino acid peptide that

belongs to the ‘‘PP-fold’’ family of peptides. It is released

from the pancreas postprandially in response to caloric

load, and is controlled mainly by vagal cholinergic mech-

anism [104]. Many studies have shown that PP decreases

food intake with a delay of gastric emptying after periph-

eral administration in humans and rodents [105–107]. PP

can interact with all subtypes of the Y receptor family,

while it has the highest affinity toward Y4 receptors, par-

ticularly in the VMN, PVN, AP, and ARC [107–109].

Amylin or islet amyloid polypeptide (IAPP) is a

37-residue peptide that is cosecreted with insulin from

pancreatic b cells in response to food intake [110]. Amylin

is known to slow down the gastric emptying and to inhibit

gastric and glucagon secretion [111]. Peripheral and central

administration of amylin decreased food intake [112, 113].

In humans, peripheral administration of amylin analogue

pramlintide enhanced satiety and reduced food intake,
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indicating the role of Amylin as an anorexigenic peptide

[114]. Studies have shown that brain AP is the primary

target of amylin for inducing the satiety action [115, 116].

Gut hormones and obesity treatment

Currently, three main steps are widely applied in obesity

treatment: lifestyle modification, pharmacotherapy, and

bariatric surgery [117]. Lifestyle modification focuses on

increasing physical activity while having a healthier diet

and lower calorie meals, and is usually used in obesity

intervention. If the lifestyle intervention has failed and the

patients meet the requirements for anti-obesity medication,

then the use of anti-obesity drugs should be considered.

The requirements to use pharmacotherapy in treating obe-

sity, according to the Food and Drug Administration

(FDA), are patients with a body mass index (BMI)

30–27 kg/m2 who have associated high-risk comorbid

conditions [118]. In clinics, the use of prescriptions for

anti-obesity is \3 %. Concerns regarding safety and

adverse effects of anti-obesity drugs are the main rea-

sonsfor this low prescription rate [119]. Several anti-obe-

sity drugs have been withdrawn from the market due to

adverse effects, such as: fenfluramin and dexfenfluramine

in 1997, sibutramine in 2010 by the US Food and Drug

Administration (FDA), and rimonabant in 2009 by the

European Medicines Agency (EMA) [120]. The third

option is bariatric surgery, usually targeted to severely

obese patients (BMI C40 or C35 kg/m2 with comorbidity).

Until now, bariatric surgery has mostly been applied in

obesity treatment that has shown long-term, sustained

weight loss and improving metabolic comorbidities [121].

Unfortunately, the expensive cost and the complications

make it impractical to treat the growing population of

obese worldwide [122].

Interestingly, some studies have shown that the clinical

benefits of bariatric surgery in achieving weight loss and

metabolic comorbidity improvement are related to alter-

ations in gut hormone production [123, 124]. Ghrelin level

after bariatric surgery showed mixed results. Several

studies showed a decrease in ghrelin level after sleeve

gastrectomy (SG) [125–127], and a decrease and/or no

change after the duodenojejunal bypass (DJB) and bil-

iopancreatic diversion (BPD) [125, 128], while others

reported an increase and/or no change after the adjustable

gastric band (AGB) [129–133]. These different results may

be due to the variability in the time at which blood sample

was taken, or by the variation in bariatric surgery. In 2006,

postprandial circulating levels of PYY and GLP-1 were

increased after the Roux-en-Y gastric bypass (RYGB) in

humans [134, 135]. Another study showed similar results in

34 patients after RYGB surgery, and the effect wasT
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sustained for 2 years [136]. CCK production has also been

altered after bariatric surgery; patients with jujenoileal

bypass showed an increase in CCK-containing cells [137]

and CCK levels [138, 139]. All together, this shows that

gut hormones have an important role in tackling the obesity

crisis.

Gut hormone-based therapy has an advantage in the

development of anti-obesity drugs. Endogenous gut hor-

mones physiologically regulate food intake; thus, hormone-

based therapy will have fewer side effects than chemical

drugs. Many studies have been done in the past to inves-

tigate the effect of gut hormone administration in obese

subjects (Table 1), and resulted in promising outcomes [39,

40, 86–90, 114]. Furthermore, an additive effect could be

achieved with a combined administration of gut hormones;

for example, a combination of PYY3-36 and GLP-1

administration showed an additive anorectic effect in both

mice and human [140]. This opens the possibility of a

combination therapy of gut hormones in treating obesity.

Gut hormone–based therapy might become useful in

treating obesity in the future, but it still has several draw-

backs. The first one is the short half-life of gut peptides.

Long-acting analogues of several gut hormones have been

developed to overcome this problem; the exenatide (ex-

endin-4), for example, is a GLP-1 receptor agonist that is

resistant toward DPP4, resulting in longer action in vivo

than GLP-1 [141–143]. Some are still at the clinical trial

phase, such as Y242 (a PYY analogue) [ClinicalTrial.gov

Identifier: NCT01515319], PP1420 (a PP analogue) [Clin-

icalTrial.gov Identifier: NCT02221765], or the Pfizer’s

OAP-189 (an OXM analogue) [ClinicalTrial.gov Identifier:

NCT00970593], and we are awaiting trial results for all.

The other drawback is the rapid degradation of gut

peptides in the upper digestive system, resulting in limited

bioactivity through oral administration of gut hormones.

Recently, orally administration of gut hormones has been

achieved using the sodium N-[8-(2-hydroxybenzoyl)

amino] caprylate (SNAC) delivery technique, such as

orally administered GLP-1 and PYY3-36 in human using

the SNAC delivery technique to result in an additive

anorectic effect [144]. This initial result suggests that oral

administration of gut hormones could be applied in the near

future. A new field in anti-obesity research is the study of

nutrient sensing receptors. Studies have shown that tar-

geting nutrient sensing receptors, such as the sweet taste

receptor on the primary enteroendocrine L-cell cultures,

causes the release of gut hormones [145, 146]. Oral

administration of nutrient sensing agonists would be an

effective way to treat obese patients. However, due to a

lack of in vivo data, the physiological relevance of this

application is still unclear and further research is required.

In summary, gastrointestinal hormones play an impor-

tant role in energy homeostasis and food intake by

affecting the brain areas that are associated with the reg-

ulation of eating behavior and appetite; acting either

directly from the blood stream or via the vagus nerve.

Modifying and commandeering gut hormones and/or their

signaling pathways provides a promising target for anti-

obesity treatment in the future.

Compliance with ethical standards

Conflict of interest Akio Inui received a research grant from Vana

H. The other authors have no conflict of interest to declare.

References

1. Mokdad AH, Ford ES, Bowman BA, et al. Diabetes trends in the

US: 1990–1998. Diabetes Care. 2000;23:1278–83.

2. Sam AH, Troke RC, Tan TM, Bewick GA. The role of the gut/

brain axis in modulating food intake. Neuropharmacology.

2012;63:46–56.

3. Ahlman H, Nilsson O. The gut as the largest endocrine organ in

the body. Ann Oncol. 2001;12(Suppl 2):S63–8.

4. Peruzzo B, Pastor FE, Blázquez JL, et al. A second look at the

barriers of the medial basal hypothalamus. Exp Brain Res.

2000;132:10–26.

5. Schaeffer M, Hodson DJ, Mollard P. The blood-brain barrier as a

regulator of the gut-brain axis. Front Horm Res. 2014;42:29–49.

6. Porte D, Baskin DG, Schwartz MW. Leptin and insulin action in

the central nervous system. Nutr Rev. 2002;60:S20–9.

7. Simpson KA, Martin NM, Bloom SR. Hypothalamic regulation

of food intake and clinical therapeutic applications. Arq Bras

Endocrinol Metabol. 2009;53:120–8.

8. Sainsbury A, Zhang L. Role of the arcuate nucleus of the

hypothalamus in regulation of body weight during energy defi-

cit. Mol Cell Endocrinol. 2010;316:109–19.

9. Bewick GA, Dhillo WS, Darch SJ, et al. Hypothalamic cocaine-

and amphetamine-regulated transcript (CART) and agouti-re-

lated protein (AgRP) neurons coexpress the NOP1 receptor and

nociceptin alters CART and AgRP release. Endocrinology.

2005;146:3526–34.

10. Broberger C, Johansen J, Johansson C, et al. The neuropeptide

Y/agouti gene-related protein (AGRP) brain circuitry in normal,

anorectic, and monosodium glutamate-treated mice. Proc Natl

Acad Sci USA. 1998;95:15043–8.

11. Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coex-

pression of Agrp and NPY in fasting-activated hypothalamic

neurons. Nat Neurosci. 1998;1:271–2.

12. Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic

CART neurons projecting to the spinal cord. Neuron.

1998;21:1375–85.

13. Schwartz MW, Woods SC, Jr DP, et al. Central nervous system

control of food intake. Nature 2000;404SChwa:661–671.

14. Jobst EE, Enriori PJ, Cowley MA. The electrophysiology of

feeding circuits. Trends Endocrinol Metab. 2004;15:488–99.

15. Valassi E, Scacchi M, Cavagnini F. Neuroendocrine control of

food intake. Nutr Metab Cardiovasc Dis. 2008;18:158–68.

16. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hor-

mone-releasing acylated peptide from stomach. Nature.

1999;402:656–60.

17. Hosoda H, Kojima M, Mizushima T, et al. Structural divergence

of human ghrelin: identification of multiple ghrelin-derived

molecules produced by post-translational processing. J Biol

Chem. 2003;278:64–70.

J Gastroenterol (2016) 51:93–103 99

123



18. Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth

hormone-releasing acylated peptide, is synthesized in a distinct

endocrine cell type in the gastrointestinal tracts of rats and

humans. Endocrinology. 2000;141:4255–61.

19. Guan X, Yu H, Palyha O, et al. Distribution of mRNA encoding

the growth hormone secretagogue receptor in brain and

peripheral tissues. Mol Brain Res. 1997;48:23–9.

20. Willesen MG, Kristensen P, Rømer J. Co-localization of growth

hormone secretagogue receptor and NPY mRNA in the arcuate

nucleus of the rat. Neuroendocrinology. 1999;70:306–16.

21. Kamegai J, Tamura H, Shimizu T, et al. Chronic central infusion

of ghrelin increases hypothalamic neuropeptide Y and agouti-

related protein mRNA Levels and body weight in rats. Diabetes.

2001;50:2438–43.

22. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in

the central regulation of feeding. Nature. 2001;409:194–8.
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86. Näslund E, Barkeling B, King N, et al. Energy intake and

appetite are suppressed by glucagon-like peptide-1 (GLP-1) in

obese men. Int J Obes Relat Metab Disord. 1999;23:304–11.
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