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ABSTRACT
PTH and Vitamin D are two major regulators of mineral metabolism. They play critical roles in
the maintenance of calcium and phosphate homeostasis as well as the development and mainte-
nance of bone health. PTH and Vitamin D form a tightly controlled feedback cycle, PTH being a
major stimulator of vitamin D synthesis in the kidney while vitamin D exerts negative feedback on
PTH secretion. The major function of PTH and major physiologic regulator is circulating ionized
calcium. The effects of PTH on gut, kidney, and bone serve to maintain serum calcium within a
tight range. PTH has a reciprocal effect on phosphate metabolism. In contrast, vitamin D has a
stimulatory effect on both calcium and phosphate homeostasis, playing a key role in providing
adequate mineral for normal bone formation. Both hormones act in concert with the more recently
discovered FGF23 and klotho, hormones involved predominantly in phosphate metabolism, which
also participate in this closely knit feedback circuit. Of great interest are recent studies demon-
strating effects of both PTH and vitamin D on the cardiovascular system. Hyperparathyroidism
and vitamin D deficiency have been implicated in a variety of cardiovascular disorders including
hypertension, atherosclerosis, vascular calcification, and kidney failure. Both hormones have di-
rect effects on the endothelium, heart, and other vascular structures. How these effects of PTH and
vitamin D interface with the regulation of bone formation are the subject of intense investigation.
Published 2016. Compr Physiol 6:561-601, 2016.

Parathyroid Hormone
Introduction
Parathyroid hormone (PTH), a product of the parathyroid
glands, embedded in the thyroid (in rodents) or located behind
the thyroid (in humans), is a key regulator of calcium and
phosphorus homeostasis through its effects on bone, kidney
and intestine, and by regulating 1α, 25-dihydroxyvitamin D
(372). The serum concentration of PTH is derived both from
the release of PTH stored in secretory granules and from
de novo synthesis of PTH in response to alterations in the
serum levels of calcium, phosphorus, and vitamin D (277).
Acute regulation of PTH is accomplished by the release of
stored PTH in response to ambient calcium level through the
calcium sensing receptor expressed on the chief cells of the
parathyroid glands while long-term synthesis and release is
dependent upon de novo synthesis through transcription and
translation of mRNA encoding pre-pro-PTH (520,521). PTH
restores serum calcium by three different mechanisms: (i)
release of calcium and phosphorus from the bones through
stimulation of osteoclastic activity; (ii) decrease in calcium
excretion and a concomitant decrease in phosphate reabsorp-
tion in the kidney; and (iii) increase dietary absorption of
calcium and phosphorus in the gut (271) (Fig. 1).

Substantial advances made in the late 1970s and early
1980s to understand the biochemical and cellular regulation
of PTH metabolism and mechanisms of action (278-282) led
to the development of assays for the detection of PTH in the
blood of humans and animals. These efforts uncovered the
presence of multiple forms of immunoreactive PTH molecules

in circulation adding a previously unappreciated complexity
to PTH metabolism. Evidence suggests that the hormone is
subjected to proteolysis both in the parathyroid gland and in
end organs including liver and kidney. This review will focus
on the structure, synthesis, secretion, and functions of the hor-
mone and consider the pathophysiological, pharmacological,
and treatment of abnormalities of biosynthesis and secretion
of PTH.

History
Although evidence of pathologies now associated with the
parathyroid glands can be documented as far back as ancient
Egypt (164,332), the existence of the parathyroid glands was
not discovered until the second half of the nineteenth century,
and their function not definitively explored until well into
the twentieth century. The parathyroid glands went through
numerous cycles of naming and discovery, and took several
decades to gain traction in the scientific field. It was during

*Correspondence to le.lederer@louisville.edu
1Department of Medicine, University of Louisville, Louisville, Kentucky,
USA
2Department of Physiology and Biophysics, University of Louisville,
Louisville, Kentucky, USA
3Robley Rex VA Medical Center, University of Louisville, Louisville,
Kentucky, USA
Published online, April 2016 (comprehensivephysiology.com)
DOI: 10.1002/cphy.c140071
This article is a U.S. Government work and is in the public domain in
the U.S.A.

Volume 6, April 2016 561



Regulation and Actions of PTH and Vitamin D Comprehensive Physiology

Ca2+

 ↑ Bone resorption

Released into bloodstream

 ↑ Calcium reabsorption

↑ 1,25-Dihydroxy vitamin D formation

↓ Phosphate reabsorption

Excreted by kidneys ↑ Calcium absorption

HPO4
2–PTH

Low-serum Ca2+

High-serum Ca2+

Ca2+
Ca2+

Ca2+

Ca2+

Ca2+

HPO4
2–

Figure 1 Regulation of serum Ca2+ by PTH. Low serum Ca2+ stimulates the release of PTH from the parathyroid
gland. PTH acts on the bone to increase bone resorption, releasing Ca2+ and HPO4

2− into the bloodstream.
At the kidney, PTH increases Ca2+ reabsorption and decreases HPO4

2− reabsorption, maintaining the elevated
serum Ca2+ from the resorption of bone. Vitamin D becomes activated in the kidney by 1α-hydroxylase, leading
to increased Ca2+ absorption from the gut. The restored serum Ca2+ provides a negative feedback signal to the
parathyroid glands, discontinuing the release of PTH.

the necropsy of a Great Indian Rhinoceros in 1852 that
Sir Richard Owen of the Royal College of Surgeons first
described the parathyroid glands (219, 497). Remak (544)
and Wirchow (690) found the parathyroid glands in humans.
Although it had been well established by the beginning of the
twentieth century that removal of the glands from humans and
animals caused death from tetany, intense debate still existed
as to the function of the glands. It was even suggested that the
parathyroid glands serve a detoxification purpose, much akin
to the liver (409-411). At the turn of the twentieth century, the
German pathologist Erdheim determined that patients under-
going thyroid surgery who developed tetany had undergone
simultaneous accidental removal of the parathyroid glands
(201, 655). In 1915, Schlagenhaufer, a Viennese physician,
was the first to draw the conclusion that the osteitis fibrosa
cystica observed in his patient was in fact due to an enlarged
parathyroid, and not the other way around (332). While pre-
vious researchers had implicated a role of the parathyroid
in calcium homeostasis, injection of parathyroid extract into
animals with tetany failed to relieve the symptoms; thus, the
precise relationship between parathyroid glands and calcium
homeostasis remained unclear. It was not until Collip devel-
oped a method for extracting biologically active parathyroid

hormone that the role of the parathyroid glands in calcium
homeostasis began to emerge. Collip used a hot acid extrac-
tion method to purify potent parathyroid extracts that when
injected back into parathyroidectomized animals restored
muscle excitability to normal levels (160-162, 522, 524).
Although effective, the hot acid extraction was also harsh, and
yielded fragmented portions of parathyroid hormone, which
frustrated efforts to sequence the polypeptide in the 1950s. In
1954, Handler et al. (284) summarized the frustrations of sev-
eral scientists in a report by stating that “(i) the active material
in the gland may be large protein which in the course of isola-
tion is degraded into fractions of varying size, each of which
still has activity; (ii) the active molecule may not be a large
molecule at all, but instead a small molecule which adheres to
each one of these fractions.” In 1959, Aurbach (35) and Ras-
mussen and Craig (534) independently isolated the polypep-
tide and individual fragments without degradation using
organic solvent extraction methods. Using standard protein
sequencing techniques, they were able to determine the struc-
ture of bovine and human PTH. In the 1970s with the devel-
opment of molecular techniques, it became possible to deter-
mine the mechanisms for hormone synthesis, processing, and
metabolism.
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PTH gene regulation
Several proteins play a critical role in parathyroid gland devel-
opment. These include glial cells missing (GCM), eyes absent
(Eya1), and Hoxa3/Pax1 compound genes. However, there
is very limited information available identifying activating
and repressing factors that control the transcription of the
PTH gene. Early studies suggested that extracellular calcium
inhibited PTH gene transcription through a conserved neg-
ative calcium-response element (371, 487-489). More recent
studies have elucidated an additional role for calcium in regu-
lation of PTH through posttranscriptional repression. Rats that
were fed low calcium diets were found to have increased lev-
els of PTH mRNA, whereas rats that were fed low phosphate
diets had decreased PTH mRNA expression (457). Low serum
calcium and high serum phosphorus are signals that both
increase PTH secretion by increasing PTH gene expression
posttranscriptionally (60, 61). Additionally, 1,25-dihydroxy-
vitamin D decreases PTH expression by decreasing PTH
mRNA (471, 472). Vitamin D deficiency increases the PTH
mRNA expression through two processes, (i) impaired cal-
cium absorption leading to decreased extracellular calcium
and (ii) removal of a known repressor of PTH gene tran-
scription (369). Initial experiments determined that specific
sequences in the 3′ UTR of PTH mRNA determine its rate
of degradation (646). Calcium and phosphate were identified
as regulating PTH posttranscriptionally, through alteration
in the interaction of RNA binding protein with the 3′-UTR
of the PTH transcript. Two of these proteins are AU-rich

element binding factor 1 (AUF1) and KSRP (372). AUF1,
an RNA-binding protein, enhances the PTH transcript stabil-
ity by binding to the 3′UTR region in response to phosphate
and calcium concentrations in the serum (61). KSRP desta-
bilizes the PTH transcript through KSRP’s interactions with
the 3’-UTR of PTH mRNA (239). Other proteins involved
in PTH gene expression include hepatocyte nuclear factor
1β (HNF1β), which binds to the PTH promoter and acts as
a translational repressor, as patients with a mutated HNF1β
display hyperparathyroidism (223).

Several consensus sequences have been identified in PTH
promoter region that regulate its gene expression. A cyclic
AMP response element was identified at the transcription
start site of the human, bovine, and murine PTH genes. A
unique DNA repressor element that binds to the vitamin D
receptor has also been identified in the human PTH gene
promoter. Alimov et al. (19,20) identified a highly conserved
Sp1 element and a Sp3 element in the human and bovine
PTH promoter. Sp1 strongly stimulates the transcription of
wild-type bovine and human PTH promoters. The role of Sp3
promoter is not known.

Structure and biochemical properties of PTH
The biosynthetic pathways involved in the synthesis, cellu-
lar transport, and metabolism of PTH has been extensively
studied. These studies demonstrated that the mRNA encod-
ing the PTH is translated as a 115 amino acid pre-pro-PTH
on the rough endoplasmic reticulum (277, 343-346) (Fig. 2).
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Figure 2 Primary sequence of human parathyroid hormone (sequence from Ensembl.org). The
pre- and prosequences are cleaved prior to secretion into the bloodstream. Residues 1 and 2
(diagonally striped) are required for PTH receptor activation. Residues 28-34 (checkered pattern)
interact with the extracellular amino domain of the PTH receptor. The C-fragment may be cleaved
either prior to or after release from the parathyroid gland.
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The first two methionines are cleaved during translation by a
methionyl amino peptidase releasing the signal peptide such
that the protein is directed to a membrane vesicle. During
the transit to the Golgi, the N-terminal signal sequence of 23
amino acids is cleaved at the glycyl-lysyl bond to form an
intermediate protein of 90 amino acids called the pro-PTH,
which is an inactive precursor. The N-terminal six amino acids
of the pro-PTH are proteolytically cleaved in the Golgi yield-
ing the mature 84 amino acid PTH which is stored in granules
to be released into the circulation by exocytosis after appropri-
ate stimulus (282, 371, 598). Analysis of the region-specific
radioimmunoassays demonstrated that pro-PTH constitutes
only 7% of the total PTH in normal parathyroid glands and
the rest is mostly mature PTH (283). The protein is further
cleaved into smaller fragments by cathepsin-B in the parathy-
roid glands (227, 412, 413). The hormone and its fragments
are removed from circulation by receptors predominantly in
kidney but also in the bone (282).

The naturally occurring PTH 1-37 and 1-34 fragments of
PTH maintain full activity of the intact PTH 1-84. Osteoporo-
sis patients treated with PTH1-34 have increased bone density
suggesting that this fragment of PTH has all the anabolic activ-
ities of the intact 1-84 PTH. Mutation analyses of the PTH
molecule have identified amino acids critical for receptor sig-
naling. Truncation of the first two amino acids (PTH 3-34)
results in a partially active PTH while removal of the first six
amino acids (PTH 7-34) results in a low-affinity antagonist.
Further studies have demonstrated that the 17 to 34 amino acid
residues are critical for high affinity receptor binding (468).

The structure of PTH has been partially defined through
X-ray crystallography and NMR spectroscopy techniques
(323). The secondary structure of PTH 1-34 differs depending
upon whether it is in aqueous solutions, lipid solutions, or in
the presence of secondary structure-inducing solvents such as
trifluorethanol (47, 91, 357, 478, 505, 614). X-ray crystallog-
raphy studies have identified critical amino acids associated
with specific structural qualities of PTH. PTH 1-34 has a mul-
tihelical structure with a bend between amino acid residues 12
and 21 (323). Mutation analysis demonstrated that the helical
structure around Gly12 is important for biological activity and
binding of the peptide to its receptor (149, 150). NMR stud-
ies have shown three helices between Ser3-Asn10, Ser17 to
Lys27, and Asp30 to Leu37 in the N-terminal. An additional
poorly defined helix between Asn57 and Ser62 was observed
in the C-terminal with evidence of interaction between helix 1
and helix 2. The NMR studies also demonstrated a “U” or “V”
shaped tertiary structure formed by the interaction between
the N- and C-terminal helices which form a hydrophobic core
(47, 141, 270, 699).

Regulation of PTH synthesis, secretion, and
metabolism
Mature PTH is stored in granules close to the plasma
membrane. Electron microscopy of the parathyroid gland
demonstrated that the granules containing mature PTH are

limited while there are abundant immature vesicles present
near the Golgi. These vesicles are transported to the cell sur-
face without incorporation into mature granules. Extracellular
ionized calcium concentration is the major physiologic reg-
ulator of the synthesis and secretion of PTH (Fig. 3A and
B). Decreasing ionized calcium concentration by infusion
of the calcium chelator, EGTA, in cows increases the syn-
thesis and secretion of PTH within 20 s of infusion. The
initial response to a 0.1 mg/dL decrease in calcium concen-
tration is to release the preformed vesicles from the parathy-
roid gland (100). Chronic decreases in serum calcium will
increase the rate of synthesis and release of PTH (101). Apart
from serum calcium, epinephrine, calcitonin, vitamin D, mag-
nesium, and phosphate regulate the synthesis and release of
PTH in humans (105,226). (Fig. 3C) An extracellular calcium
receptor (CaSR) acting as a sensor for ionized calcium levels
provides the critical link between circulating ionized calcium
concentration and PTH secretion, maintaining calcium within
a narrow range. High extracellular calcium levels sensed by
the CaSR results in decreased PTH secretion and increased
Ca++ excretion by the kidney (148, 474). Conversely, lower
levels of plasma calcium stimulate PTH secretion and Ca++

reabsorption by the kidney (474-477, 671).
Plasma PTH levels exhibit significant fluctuations during

the course of the day and about 20% to 30% of its secretion is
pulsatile (565). The circadian rhythm of PTH reaches a max-
imum at late morning, followed by two prominent peaks one
in the afternoon and another in early morning (569). How-
ever, the maximum PTH secretion occurs at nighttime when
the bone resorption activity is highest (202). Both nocturnal
increases in PTH secretion and bone resorption can be pre-
vented by administration of calcium in the evening (426). PTH
concentration time profiles have revealed a rhythm of secre-
tion consisting of seven secretory pulses per hour, account-
ing for approximately 30% of spontaneous PTH secretion
and regulated by extracellular calcium (572). The mecha-
nisms for the pulsatile secretion of PTH are not very well
understood, nor are the functional consequences. It is pro-
posed that the dense autonomic innervation of the parathy-
roid gland acts as neuronal pacemaker for PTH secretion
(123, 208, 613). Acute disruption of sympathetic input by β-
adrenergic receptor blockers increases the PTH pulse two fold
and increases plasma PTH levels but does not eliminate the
pulsatile oscillations (570,571). It has been suggested that this
cyclic release of PTH may be critical for the anabolic effects
of bone mass by activating the cyclic AMP pathway while
chronically elevated levels of PTH lead to bone destruction
through PKC and RGS2-dependent pathways (312,342). This
is based, at least in part, on the observation that daily recom-
binant PTH injections, which results in exaggerated peaks
of serum PTH levels, are an effective treatment for osteo-
porosis and bone repair, stimulating new bone production in
postmenopausal women (75,209). In contrast, sustained high
levels of PTH seen in primary and secondary hyperparathy-
roidism tend to result in bone destruction. PTH secretion also
is dependent upon seasonal fluctuations. It decreases by about
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Figure 3 (A) Effect of serum [Ca2+] on PTH synthesis and secretion. Ca2+ binds to the CaSR and activates Gq and Gi. Gq
activation leads to increased [Ca2+]i via PLC signaling and IP3 formation. Increased [Ca2+]i inhibits exocytosis of PTH secretory
vesicles. Gi activation inhibits adenylyl cyclase, leading to less cAMP, and therefore less transcription of the PTH gene as well as
decreased stimulus for secretory vesicle exocytosis. (B) Effect of low serum [Ca2+] on PTH synthesis and secretion. In the absence
of serum Ca2+, CaSR signaling terminates, allowing [cAMP]i to increase, which drives transcription of PTH and secretory vesicle
exocytosis, leading to increased serum PTH levels. (C) Effect of Vitamin D on PTH secretion. Vitamin D enters the cell through
diffusion across the plasma membrane. Once inside, Vitamin D is bound by the vitamin D receptor (VDR). In the nucleus, the Vit D-
VDR complex binds to RXR and the vitamin D response element (VDRE) within the PTH promoter. This promoter complex inhibits
transcription of the PTH gene, leading to less preproPTH production. The Vit D-VDR complex also binds to the VDRE within the
promoter of p21, activating the transcription of the p21 gene. Increased p21 expression inhibits parathyroid cell proliferation.

20% in summer and increases by about 20% in winter season
(693).

Berson and Yalow demonstrated immunochemical hetero-
geneity of plasma PTH for the first time and suggested that
this may be due to postsecretory modifications of the hormone
(70-72). Later studies confirmed the observations of Berson
and Yalow and by using RIA demonstrated that the majority
of fractions are C-terminal fragments of the hormone (468).
Habener et al. demonstrated that direct intravenous injection
of intact bovine PTH into calves led to the accumulation of
C-terminal fragments generated by peripheral metabolism of
the administered hormone (278). In 1973 Canterbury et al.
identified N-terminal fragments of PTH that were biologically
active (117). This observation was later confirmed by several
studies. The N-terminal fragments were found to be more
short-lived than the C-terminal fragments. The discovery of
biologically active N-terminal fragments led to the hypothe-
sis that peripheral metabolism of secreted PTH is required for

biological activity (503). However, this was disproved by the
observations of Glotzman et al. who demonstrated that intact
PTH could activate adenylate cyclase (260, 507). Fang and
Tashjian (215) were the first to demonstrate the contribution
of liver in clearance of intact PTH from circulation. This was
later confirmed by several studies [reviewed in (468)]. Recent
studies demonstrated that the Kupffer cells take up intact PTH,
a process that is dependent on amino acids 28-48, and gener-
ate C-terminal fragments by proteolysis of the intact hormone
(173, 174). Daugaard et al. (183, 184) demonstrated that only
C-terminal biologically inactive fragments were generated
during liver perfusion. Bringhurst et al. (110-112) demon-
strated that the N-terminal fragments are degraded in the
Kupffer cells. The demonstration that both intact and frag-
mented circulating forms of PTH are increased in patients
with renal disease (71,179,443) and nephrectomized animals
(118,313,431,432) suggests that kidneys play a major role in
PTH clearance. A portion of PTH is cleared independent of
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glomerular filtration, through peritubular uptake by binding
to PTH1R and involve receptor-mediated endocytosis at the
basolateral membrane of the tubule cells (185, 432). Recent
studies suggest that megalin/cubulin-dependent endocytosis
plays an important role in PTH clearance from urine indepen-
dent of PTH1R (273, 298).

PTH receptors
Three distinct receptors for PTH viz., PTH1R, PTH2R, and
PTH3R have been described in literature. The most common
and the classical receptor, the PTH1R, a type II G-protein cou-
pled receptor, is expressed widely, both in the classic PTH tar-
get tissues, bone and kidney, as well as many others. PTH1R
is activated by both PTH and the PTH-related peptide, a pro-
tein that shares the name with PTH but is not derived from
the same gene. PTH2R is expressed in very low levels in most
tissues, except for the limbic system and the hypothalamus

(148). PTH2R is activated by PTH and an unrelated protein,
the tuberoinfundibular peptide of 39 amino acids (TIP39).
The PTH3R was cloned from zebrafish and is activated 20
times more potently by PTHrP than PTH. The mammalian
homologues of PTH3R have not yet been discovered.

The PTH1R is the best studied PTH receptor. Jüppner
et al. in 1991 identified a 585 amino acids protein from COS7
and opossum kidney (OK) cells using 125I-[Tyr36]hPTHrP
(1-35)NH2 binding (329). This protein was characterized as
type II G-protein-coupled receptor, characterized by the pres-
ence of an ∼150 amino acid N-terminal extracellular domain
with four N-glycosylation sites, eight conserved extracellu-
lar cysteine residues forming four disulfide bridges, seven
transmembrane regions, and a large (150-190 amino acid)
intracellular C-terminal tail (148, 362, 578) (Fig. 4A). The
PTH1R gene resides on the short (p) arm of chromosome 3
between positions 22 and 21.1 (3p22-p21.1). The PTH1R is
encoded by a rather large 22 kb gene that contains 15 exons
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Figure 4 (A) PTH receptor topology and ligand binding. (A)The PTH1R consists of an extracellular amino terminus, a J domain
consisting of transmembrane domains as well as intra- and extracellular loops, and an intracellular carboxy terminus. The extracellular
amino terminus is 150 residues long, with 4 N-glycosylation sites and 4 disulfide bridges. Less is known regarding PTH2R topology as
compared to PTH1R topology. Importantly, residue variations in two of the extracellular loops (highlighted in red) decrease the affinity
of the receptor for PTHrP while maintaining specificity for PTH. (B) PTH receptor topology and ligand binding. (B) PTH(1-34) (rainbow
structure) interacts with both the extracellular amino terminus of the PTH1R as well as the J domain. Docking of PTH to the PTH1R is
thought to occur through initial binding of the C-terminus of PTH (residues 15-34) to the N-terminus (blue regions) of the PTH1R. This
interaction is closely followed by the binding of the N-terminus of PTH (residues 1-14) to the J domain (red regions) of the PTH1R,
initiating G protein recruitment and intracellular signaling cascade activation. (C) PTH-receptor binding and intracellular signaling. (1)
Two-site model of PTH-receptor docking. (2) The N-domain of the PTH receptor (PTHR1) binds the C-domain of PTH. (3) The J-domain
binds the amino-terminal region of PTH. (4) Binding of the ligand to the receptor increases the association with the J-domain, while
also increasing the affinity of the intracellular beta-gamma binding region of the C-terminal region of the PTH receptor for G proteins,
resulting in their subsequent activation and initiation of downstream signaling cascades. Gαs activates adenylate cyclase (AC), which
increases intracellular [cAMP], resulting in activation of Epac and PKA. Gq activates phospholipase C (PLC), forming diacylglycerol
(DAG) and inositol triphosphate (IP3). DAG directly activates PKC, whereas IP3 indirectly activates PKC by releasing Ca2+ from the ER.
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and 14 introns. The mature transcripts exhibit an extensive
poly A tail at the 3′ end (366). Examination of the genomic
map of the PTH1R gene has led to the identification of poten-
tial splice donor and acceptor sequences (148, 327, 366), and
multiple promoters in the 5′ regulatory regions of the mouse,

rat, human, and porcine PTH1R resulting in the production
of multiple transcripts which show regulation at the develop-
mental and tissue level (327, 441, 442, 595). The mouse, rat,
and porcine transcripts have two promoter regions (P1 and P2)
while the human transcript has three promoter regions (P1, P2,
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and P3) (75,148,327,442,604). They all lack the conventional
TATA box homology. However, they contain the GC rich
Sp1 motifs and are regulated by ubiquitously expressed tran-
scription factors Sp1, myc-associated zinc-finger protein, and
embryonic TEA domain-containing factor (34,442,450). The
P1 and P3 promoter regions are methylated in a tissue specific
manner and the differential methylation patterns are impor-
tant during development (74). Transcription of the PTH1R
is regulated by vitamin D, retinoic acid, and glucocorticoids
(23, 335, 643, 701). Vitamin D downregulates the transcrip-
tion of PTH1R in osteoblasts by inhibiting the activity of P2
promoter while retinoic acid and dexamethasone increases
the transcription in mouse embryonal carcinoma P19 cells
and ROS 17/2.8 cells respectively but not in OK cells. Gly-
cosylation is an important posttranslational modification of
GPCR that regulates the intracellular folding, stabilization,
intracellular trafficking, and function (23,335,643,644,701).
The four N-glycosylation sites (N-151, 160, 165, and 175)
are located in the putative ligand-binding extracellular amino
terminal domain of the PTH1R. Initial studies using inhibi-
tion of glycosylation by tunicamycin or by treatment with
endoglycosidase F in OK and HEK 293 cells suggested that
glycosylation is not required for proper folding, expression,
and ligand binding (91, 93, 382, 722). However, more recent
data using site-directed mutagenesis of the Asn to Gln showed
decreased membrane expression and ligand binding in tran-
siently transfected COS-7 cells suggesting that glycosylation
plays an important role in intracellular trafficking, membrane
expression, and function of PTH1R (721). Mutations in the
six extracellular amino terminal cysteine residues also showed
decreased membrane expression and ligand binding of the
PTH1R. Two amino acid residues, R233 in the second and
Q451 in the seventh transmembrane domain, are highly con-
served in type II GPCR, and critical for effective PTH interac-
tion and signaling as mutations in these two sites reduce ligand
binding and transmembrane signaling by PTH1R (148, 381)
(Fig. 4B).

The PTH2R was identified by homology screening based
on conserved sequences from calcitonin, secretin, and PTH1R
from a cerebral cortex cDNA library. The gene for PTH2R, an
88kb gene with 13 exons and several large introns, has been
located on chromosome 2q33. Like the PTH1R, the PTH2R
is a class II GPCR and 51% identical to PTH1R. Similar
to PTH1R, PTH2R has a large hydrophilic amino-terminal
domain containing 120 amino acid residues containing four
glycosylation sites and six extracellular cysteine residues,
seven transmembrane domains, and a large intracellular
C-terminal domain. The PTH2R is highly expressed in brain
particularly in the limbic system and parts of hypothalamus.
Peripherally, the PTH2R is also expressed in pancreatic islet
D cells, parafollicular C cells of the thyroid, cells that pro-
duce gastrointestinal peptide, cartilage, and heart muscle cells
(148). In contrast to the PTH1R, PTH2R selectively binds
to PTH but not to PTHrP. The natural ligand of PTH2R in
the CNS is the 39 amino acid tubero-infundibular peptide
(TIP-39) in the bovine hypothalamus, described for human,

rat, and zebrafish PTH2R. PTH also activates human PTH2R
but not the rat and zebrafish PTH2R. TIP-39 and PTH do
not share sequence homology. Only five residues of bovine
PTH and TIP-39 are similar and align with each other. How-
ever, NMR studies have demonstrated that the two peptides
are structurally very similar with regard to the orientation of
polar and nonpolar amino acid residues in the amino-terminal
region (57, 245, 300, 645).

The third and the most recently identified PTH receptor,
the PTH3R was cloned using genomic PCR from zebrafish
DNA. PTH3R is 69% similar and 61% identical to the PTH1R
and shares only 48% similarity with PTH2R. PTH3R is almost
exclusively activated by PTHrP and is the least studied of the
three PTH receptors. The mammalian ortholog of PTH3R
has not yet been identified. Similar to PTH1R and PTH2R,
PTH3R has been classified as a class II GPCR but little else
about its structure-function relationships is known (557, 702,
703).

Recent evidence suggests the presence of PTH receptors
specific for the C-terminal of PTH which may play a role in
gluconeogenesis, leukocyte migration, and pancreatic secre-
tions [reviewed in (468)].

PTH-PTH1R interactions

Photo-affinity cross-linking studies of the interactions
between a modified PTH 1-34 and its cognate receptor
(PTH1R) suggest that the position 13 of the PTH (1-34)
docks at the positions 169-198 in the N-terminal region of the
PTH1R (3,91,722) and position 27 of PTH1-34 docks at posi-
tion 241-285 of the receptor (267, 512). The 1, 3, 23, and 27
positions of the PTH interact with the receptor residues M425,
R186, T33/Q87, and L261 (91, 148). Molecular modeling
demonstrated that the N-terminal region of hPTH1-34 binds
to an invagination of the PTH receptor formed between TM3,
TM4, and TM6. (Fig. 4B) Mutation analysis revealed that the
residues Trp23, Leu24, and Leu28 of PTH1-34 interact with
Phe173 and Leu174 of the PTH receptor through hydropho-
bic interactions. Hydrophilic interactions are formed between
Arg20 of PTH1-34 and residues Glu177, Glu180 of the recep-
tor, and between Lys27 of PTH1-34 and Glu169 of the recep-
tor (250). Mutation of Leu24 and Leu28 results in 4000-
and 1600-fold decrease in binding affinity, respectively, while
mutation of Asp30 to Lys has no effect on receptor bind-
ing (246). The hydrophilic interactions are less important for
binding as compared to hydrophobic interactions (246). The
human PTH1-37 and 1-34 fragments retain full activity of the
intact PTH1-84 and activate both adenylyl cyclase and phos-
pholipase C activity. However, PTH1-31 is nearly equipotent
but predominantly stimulates adenylyl cyclase activity, while
removal of 2 N-terminal amino acids (PTH3-34) results in loss
of adenylyl cyclase activity but activation of phospholipase C
activity is retained (45, 46, 231, 685).

Based on molecular modeling, Hoare et al. (299)
described a “two-site” dynamic model of interaction between
PTH and PTH1R. According to their model, the extracellular
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N-terminal domain of PTH1R is the docking site for the
C-terminal portion of PTH 1-34. The N-terminal of PTH 1-34
interacts with the J domain of the PTH1R which includes extra
and intracellular loops and the transmembrane domains. The
PTH1R N-domain provides the binding interactions between
PTH and PTH1R while the J domain provides a stabiliza-
tion function involved in receptor activation, G-protein cou-
pling, and signal transduction (65, 330). Residues 15-34 of
PTH function primarily as the binding domain (131) while
residues 1-14 domain are responsible for the initiation of
intracellular signaling through adenylate cyclase and PKC
(65, 242, 246, 521). The binding of the N- and C-termini of
PTH to the N- and J-domains of the receptor leads to increased
affinity of the ligand-receptor complex, G protein complex
formation, and activation of the downstream signaling path-
ways (65, 243, 244, 330). The current data suggest that the
PTH receptor and PTH complex is present in an intermediate
preactive R0 confirmation where G proteins are not coupled
to the receptor ligand complex. The PTH-PTHR1 interac-
tion stimulates the binding of heteromeric G proteins and the
complex switches to an active confirmation (RG). Competi-
tion binding assays suggest that PTH1-34 binds with greater
affinity to the R0 state than the RG state (299).

Signaling mechanisms of PTH1R

When PTH binds to the PTHR, the PTHR undergoes confor-
mational change that promotes binding of G proteins (Gαβγ)
to the receptor, followed by exchange of GDP for GTP on
the α-subunit, and dissociation of the Gα from Gβγ subunits.
(Fig. 4C) Gαs activates adenylyl cyclases to synthesize cyclic-
AMP resulting in activation of protein kinase A (PKA). Gαq
activates phospholipase C (PLC) which converts PIP2 to dia-
cyl glycerol (DAG) and inositol (1,4,5)-triphosphate (IP3).
IP3 stimulates calcium release from the endoplasmic retic-
ulum to the cytosol. Increased Ca++ allows translocation of
protein kinase C to the plasma membrane where it is activated
by DAG (658,660). Identification of signal selective peptides
has led to better understanding of the PTH-PTHR interactions
and downstream signaling mechanisms. For example, PTH1-
28 is a cAMP-selective agonist that stimulates PKA activation
but does not activate PLC-dependent and -independent PKC
activation. This agonist also does not cause receptor internal-
ization or recruitment of β-arrestin. Removal of the first two
amino acids of PTH results in loss of cAMP signaling (92).
Mutation analysis has demonstrated that the conserved valine
at position 2 is critical for signaling through both arms (589).
PTH 7-34 acts as a weak antagonist of PTHR, does not stim-
ulate either Gs or Gq-mediated signaling pathways but does
cause receptor internalization. The N-terminal truncated PTH
fragments like PTH7-34 and PTH39-84 may have inhibitory
effects (479). The C-terminal fragments of PTH blunt bone
resorption and vitamin-D dependent osteoclastogenesis (196).
These actions of PTH are thought to be independent of PTHR
but are dependent upon yet an elusive carboxy-terminal PTH
fragment receptor and stimulate alkaline phosphatase activity

and induce expression of mRNA for both alkaline phosphatase
and osteocalcin (195,617). It is important to note that the abil-
ity of PTH to activate cAMP and/or PLC/PKC pathways is
cell specific. For example, PTH stimulates cAMP-PKA path-
way but not the PLC/PKC pathway in vascular smooth muscle
cells (415) while in keratinocytes (495,684), cardiac myocytes
(531, 568), and lymphocytes (359), PTH activates PLC/PKC
pathway but not the cAMP/PKA pathway. The development
of FRET based assays allowed kinetic studies of binding of
PTH to its receptor and signaling in live cells. These studies
demonstrated that binding of PTH to its receptor involves two
steps. The first step, rapid binding of PTH to the N-terminus
of the receptor, requires 150 ms at saturating concentrations
of PTH. The second step where the C-terminal of PTH binds
to the J-domain of the receptor is considerably slower, requir-
ing about 1 s. The subsequent interaction between PTHR and
Gs depends upon the expression levels of Gs and can be com-
pleted in about 0.96 s. In about 10 s following receptor cou-
pling with Gs, cAMP production is initiated (130, 222, 656).

The actions of PTH on bone are very well documented
and have been the subject of recent excellent reviews (62,135,
165, 209, 459, 528, 543, 591, 691, 719). PTH interacts directly
with osteoblasts and osteocytes through PTH1R to stimu-
late a number of different pathways including cAMP/PKA,
PLC/PKC, β arrestin translocation, and ERK1/2. In bone, the
downstream signaling from these pathways is heavily regu-
lated by RGS2 (regulator of G protein signaling 2), one of
a family of proteins that modulates G protein activity stimu-
lated by G protein-coupled receptors. Depending on whether
the hormone presence is continuous or pulsatile, the overall
effect of PTH signaling on bone metabolism will be catabolic
or anabolic, respectively. Key to determining which effect
predominates is the differential control of the osteoprotegerin-
receptor activator of NFκB ligand-receptor activator of NFκB
(OPG-RANKL-RANK) pathway. OPG, which is a bone-
derived cytokine, and RANK, which is a receptor located
on the preosteoclast, compete for binding with RANKL,
another bone derived cytokine. Interaction between RANK
and RANKL stimulates osteoclastogenesis while OPG pre-
vents that interaction by binding itself to RANKL. It is this
pathway that controls the PTH-stimulated interaction with the
osteoclast precursor cell, which can mature into a functional
osteoclast and mediate bone resorption. Continuous presence
of PTH leads to an increase in the mRNA for RANKL and a
decrease in the mRNA for OPG through PKA dependent path-
ways, the result of which is enhanced binding of RANKL
to RANK and enhanced osteoclast maturation. PTH stimu-
lates osteoblast differentiation, decreases osteoblast apopto-
sis, and activates lining cells. The effects of PTH to stimu-
late osteoblastogenesis can be seen in bone progenitor cells,
mediated through changes in the transcriptional program that
result in the expression of characteristic bone proteins such
as alkaline phosphatase, type I collagen, RUNX2, and others.
Recently, several downstream mediators of PTH action on
bone have been identified including monocyte chemoattrac-
tant protein-1, sclerostin, dickkopf1, and EphrinB2/EphB4
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(591) Investigation into the mechanisms of PTH regulation
of bone is a dynamic area of inquiry as witnessed by the
recent explosion of findings highlighting the intricacies of the
process.

The other major target for PTH is the kidney. In human
kidneys, the PTH receptors are expressed in proximal tubules,
cortical ascending limbs of the Loop of Henle, and distal
tubules. The receptors are expressed on both the apical and
basolateral membranes of proximal tubules (291, 340, 353,
546,633). Activation of the receptors on the basolateral mem-
branes activates the PLC/PKC pathway while activation of
the receptors on the apical membranes activates cAMP-PKA
pathway (546, 633). Both pathways contribute to endocyto-
sis of the type IIa sodium-phosphate cotransporter, leading to
inhibition of phosphate reabsorption (350,351,380,467). The
differences in the activation of PLC/PKC pathway or cAMP-
PKA pathway has been attributed to the binding of PTHR to
sodium-hydrogen exchanger regulatory factor-1 (NHERF1),
a scaffolding protein that exhibits two internal PDZ domains
and an ezrin binding domain at the C terminal (677). Mahon
and Segre recognized that the intracellular C-terminal domain
of PTHR expresses a PDZ recognition motif D/E-S/T-X-ϕ
that preferentially binds to PDZ1 domain of NHERF1 and
PDZ2 domain of NHERF2 (418), and confirmed that PTHR
binds to both proteins, NHERF1 and NHERF2. NHERF1 and
NHERF2, through binding with ezrin, link membrane pro-
teins with the actin cytoskeleton and recruit several proteins
including receptors, ion transporters, and signaling proteins to
the plasma membrane (97,167,676,677). Using heterologous
expression of NHERF2 and PTHR in PS120 fibroblast cells,
Mahon and Segre identified that PTH activates PLC/PKC
pathway. In the absence of NHERF2, PTH activated cAMP-
PKA without affecting PLC/PKC pathway (418, 419). These
studies suggest that NHERF provides signaling switch that
could explain cell specific functions of PTHR independent
of PTHR expression levels and expression of splice vari-
ants of PTHR (237). The expression patterns of NHERF1
and PTHR have important physiological consequences for
renal phosphate and calcium handling. NHERF1 null mice
exhibit phosphaturia and hypophosphatemia in part due to
decreased apical membrane expression of type IIa sodium
phosphate cotransporter without any changes in serum cal-
cium (121, 167-170, 583, 584, 663, 675, 678-681). Phosphate
wasting without changes in serum calcium has also been seen
in patients who express NHERF1 polymorphisms or muta-
tions (64,166,334,545). The absence of NHERF1 expression
in distal nephrons may explain the differences in the renal
regulation of phosphate and calcium by PTH (237).

PTH1R trafficking and desensitization

Following binding and activation, the PTHR undergoes
internalization and desensitization similar to most GPCRs
(251, 252, 386). PTHR is phosphorylated in the C-terminus
by G-protein-coupled receptor kinases (GRKs), resulting
in increased association with β-arrestin and internalization

through clathrin-coated pit dependent pathways (129, 606,
618, 624, 625, 659). Some of the receptors undergo rapid
recycling while the rest are degraded in the lysosomes. The
PTHR desensitization is more complex due to its associations
with cytoplasmic adapter proteins NHERF1, NHERF2, and
disheveled (Dvl2) (552, 607). Binding of these adapter pro-
teins to the C-terminal domain of PTHR alters the selectivity
and specificity of PTHR signaling through cell and ligand-
dependent effects (273,416,417,420). The laboratory of Peter
Friedman extensively studied the internalization of PTHR in
kidney cells. Using EGFP tagged PTH1R they demonstrated
that GRK2-dependent phosphorylation of PTH1R is required
for endocytosis in mouse proximal and distal tubule cells
(92, 657). Their studies revealed that the PTH fragments that
do not activate the receptor like PTH7-34 cause endocyto-
sis in distal convoluted tubules but not in proximal tubules
(237, 660). When they stimulated NHERF1- transfected dis-
tal tubule cells with PTH 7-34, they demonstrated blunting of
internalization of PTH1R. Similarly, proximal tubule cells
expressing dominant negative NHERF1 showed increased
internalization of the PTHR in response to PTH7-34. These
data suggest that interaction of PTHR with NHERF1 plays
an important role in receptor internalization (237,660). Muta-
tions in the PDZ binding motif of PTHR prevented binding of
NHERF1 to the PTHR but did not interfere with signaling or
internalization of the receptor. These results suggest that the
intact PDZ motif is required for association with NHERF1,
but additional studies will be needed to define the nature
of association and the impact on receptor internalization.
Mutations in the NHERF1 ezrin binding domain prevented
NHERF1-PTHR-actin interaction but failed to prevent inter-
nalization in response to PTH7-34. Similar results were shown
in the presence of actin destabilizing agent, cytochalasin-
D. Together these studies suggest that degradation of any
component of the interaction between NHERF1-PTHR-actin
cytoskeleton allows internalization of the PTHR in response
to PTH7-34 (237).

Recent studies from Friedman laboratory suggest that
PTHR also associates with the PDZ adaptor protein
disheveled 2 (Dvl2). Unlike, the interaction with NHERF1,
association with Dvl2 occurs between residues 470 and 480
of the PTHR. Using immunoprecipitation, they demonstrated
that PTH1-34 increases interaction between PTHR and Dvl2
transiently. Binding of PTHR with Dvl2 increases its associ-
ation with AP2 and β-arrestins resulting in internalization of
the receptor (140, 552, 710).

Recent studies suggest that internalization of the PTHR
in response to PTH1-34 does not completely blunt cAMP-
PKA pathway. These observations led to the hypothesis that
persistent calcemic responses in animals, prolonged increases
in serum 1,25-dihydroxyvitamin D, bone resorption and pro-
longed cAMP-PKA activation results from signaling through
intracellular PTH bound to PTHR in the early endocytic
compartment. These provocative studies suggest that GPCR
stimulated signaling is not confined to the plasma membrane
(116,192,222,360). Further studies are required to determine
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the physiological consequences of intracellular signaling
through endocytosed GPCRs.

Functions of PTH
Several very careful cellular, molecular, and in vivo stud-
ies helped to understand the physiological roles of PTH.
PTH plays diverse roles in the body from maintaining whole
body calcium homeostasis to maintaining bone density. In
the kidney, PTH regulates phosphate homeostasis by decreas-
ing expression of sodium-phosphate cotransporters NpT2a
(38, 39, 96, 121, 188, 203, 294, 348, 350, 351, 467) and NpT2c
(109, 274, 377, 379, 454, 455, 576, 577), thus inhibiting reab-
sorption of filtered phosphate by the proximal tubules. PTH
may also decrease phosphate absorption in the intestine by
decreasing membrane expression of NpT2b (115, 255, 562).
These two actions that tend to decrease total body phosphate
content contrast with the pro-absorptive effects of PTH on
calcium and ensure that maintenance of adequate calcium
stores is not accompanied by accumulation of excessive phos-
phate. PTH increases ammoniagenesis (146) and gluconeo-
genesis (347, 573, 664) in the kidney. In the proximal tubules
PTH induces inhibition of bicarbonate partly through inhi-
bition of Na+/H+ exchanger activity (235). The actions of
PTH on Na+/H+ exchanger are complex and different from
the actions of Na-Pi cotransporters. PTH inhibits the activ-
ity of Na+/H+ exchanger but does not decrease the number
of transporters whereas it causes endocytosis and degrada-
tion of Na-Pi cotransporters (390, 707, 720). The activity of
Na+/H+ exchanger returns quickly to normal levels once PTH
is removed unlike the activity of Na-Pi cotransporters which
requires de novo synthesis (292, 462). PTH activates 25 vita-
min D 1α-hydroxylase, thus stimulating conversion of 25-
hydroxy vitamin D to its active form, 1, 25-dihydroxy vita-
min D (373, 586). The active vitamin D increases calcium
reabsorption in the intestine. In the thick ascending limb
of the Loop of Henle PTH increases transepithelial trans-
port of sodium, calcium, and magnesium. PTH stimulates
distal renal tubular calcium reabsorption by regulating the
expression of proteins involved in calcium reabsorption, viz;
sodium calcium exchanger, Ca-ATPase, calbindin, TRPV5,
and TRPV6 (187, 235, 321, 651). PTH promotes apical cal-
cium entry through dihydropyridine-sensitive calcium chan-
nels. Apical calcium entry in this segment of the nephron
is favored due to basolateral increase in chloride conduc-
tance resulting in increased chloride efflux and fall of intra-
cellular chloride concentrations. Calbindin also plays a cru-
cial role in calcium homeostasis by binding to reabsorbed
calcium inside the cells and therefore prevents increases in
free intracellular calcium. Expression of calbindin is reg-
ulated by PTH-dependent calcitriol synthesis (321). How-
ever, the most important function of PTH is to regulate bone
mineralization. PTH affects all bone cells; stimulation of
osteoblasts enhances bone formation while stimulation of
osteoclast maturation increases bone resorption. The stimula-
tory effects of PTH on bone turnover have been successfully

and effectively used pharmacologically to treat osteoporosis
(520).

Interaction of PTH with other hormones
The most well studied interaction of PTH with other hor-
mones is the interaction with fibroblast growth factor 23
(FGF23)/klotho complex (328). FGF23 is produced by osteo-
cytes and osteoblasts (68, 429, 525, 527, 588, 597, 704). Both
PTH and FGF23 are phosphaturic hormones and regulate
phosphate homeostasis by inhibiting phosphate absorption in
the intestines and reabsorption in the kidneys through decreas-
ing membrane expression of sodium-phosphate cotrans-
porters NpT2a (26, 247, 248) and NpT2c (66, 247, 248). PTH
increases 1α-hydroxylase activity, active vitamin D, and cal-
cium absorption in the intestines and reabsorption in the kid-
neys whereas FGF23 decreases 1α hydroxylase activity, active
vitamin D thereby decreasing the absorption of calcium (289).
PTH and FGF23 regulate the synthesis of each other. Higher
serum phosphate increases the synthesis of FGF23 and lowers
serum calcium, which will trigger synthesis of PTH. While
PTH increases calcium reabsorption and indirectly increases
FGF23 synthesis. Both of these mechanisms will eventually
result in bone disease (328).

In recent years, an association between PTH and aldos-
terone has been described. New data demonstrate the expres-
sion of PTH in the aldosterone secreting zona glomerulosa
cells of the adrenal glands and the expression of the mineralo-
corticoid receptor in parathyroid cells (632). Studies suggest
that PTH directly regulate the secretion of aldosterone from
the zona glomerulosa cells of adrenal glands and aldosterone
in turn regulates PTH secretion from the parathyroid cells
(631, 632). Isales et al. (316) and Olgaard et al (490) demon-
strated that PTH stimulated aldosterone secretion in a dose
dependent manner and potentiated angiotensin 2 stimulated
aldosterone secretion. Rosenberg et al confirmed that adrenal
glands are a novel target of PTH (554, 555). The effects of
PTH on aldosterone secretion were mediated through PTH1R
activation of cAMP/PKA and PLC/PKC pathways (213,214).
In patients with primary hyperparathyroidism (pHPT), ele-
vated levels of aldosterone have been demonstrated (249),
and parathyroidectomy has resulted in decreased aldosterone
levels, decreased blood pressure, decreased risk of metabolic
syndrome, and improvement in several parameters of vas-
cular function (21, 216, 217, 407, 496). A prospective study
in 226 patients with essential hypertension demonstrated
a positive correlation between aldosterone and PTH levels
(631, 632). Primary aldosteronism (PA) has been associated
with higher PTH and lower calcium. Treatment with spirono-
lactone decreased PTH levels in PA patients (556). Taken
together these data suggest aldosterone and PTH coopera-
tively would cause vascular damage to multiple organs and
support the hypothesis that regulation of PTH and aldosterone
are associated, though whether these are linked or separate
pathways remains unclear. These primarily epidemiologic and
associative studies require more investigation to confirm a true

572 Volume 6, April 2016



Comprehensive Physiology Regulation and Actions of PTH and Vitamin D

cause and effect relationship and to identify the prevalence of
these combined disorders.

Pathophysiology
Once it was recognized that parathyroid glands secrete a hor-
mone, PTH, in response to changes in ionized calcium levels,
studies were conducted to understand the consequences of
hyper- or hyposecretion of PTH. Even in the absence of reli-
able imaging techniques or assays for the measurement of
mineral ions in the early twentieth century, pioneering work
of several investigators identified clinical sequelae of exces-
sive (hyperparathyroidism) or insufficient (hypoparathy-
roidism) PTH.

Hyperparathyroidism

The insights gained from pathological and mechanism-
based studies identified and defined the clinical features of
hyperparathyroidism (16, 17). Hyperparathyroidism may be
primary or secondary (448). pHPT can result from an ade-
noma, multigland hyperplasia, or carcinoma. In most (about
90%) adults a single adenoma causes pHPT while others
(about 5%) may have double or multiple adenomas of the
parathyroid glands. About 5% of patients present with glan-
dular hyperplasia and 1% with carcinoma (558). Mechanisms
for the development and growth of parathyroid adenomas in
the setting of primary and secondary hyperparathyroidism
have been investigated extensively. The size of the adenomas
is inversely proportional to the nutritional status of vitamin D
(532), suggesting a role for vitamin D in regulating the
growth of these adenomas, presumably through the VDR.
On the other hand, studies of the expression of vitamin D
receptor in the adenomas have not demonstrated a consistent
pattern (368, 616, 654). Similarly, expression of the CaSR
in adenomas has been described as increased, decreased, or
unchanged; however, recently Koh and colleagues identified
RGS5 as highly expressed in parathyroid adenomas and have
suggested that the increased expression of this protein could
alter CaSR signaling to decrease its effect on PTH secretion
(361). Proteomic analysis comparing normal and adeno-
matous tissue suggests that proteins involved in apoptosis
are decreased in parathyroid adenomas compared to normal
parathyroid glands (653). The genetic basis for the devel-
opment of sporadic hyperparathyroidism has not been fully
established. In some circumstances, mutations in the MEN1
gene, the RET gene, or the CaSR gene which are associated
with familial forms of hyperparathyroidism have been iden-
tified, but not universally (630). Clearly, multiple different
mechanisms appear to result in the clinical syndrome of hyper-
parathyroidism, suggesting that identification of these mech-
anisms in the individual patient could lead to more directed
and effective therapy, perhaps even nonsurgical therapy
(585).

Clinically, most patients present with asymptomatic
hypercalcemia on routine lab work and a high circulating PTH

level. Older literature classically refers to the manifestations
of hyperparathyroidism as “stones, bones, abdominal groans,
and moans” (58). Stones are due to nephrocalcinosis, hyper-
calcuria, and renal tubular reabsorption disturbances. Bone
pain can be experienced due to fractures resulting from
enhanced bone resorption leading to osteoporosis and osteitis
fibrosa cystica. Abdominal groans are due to nausea, consti-
pation, anorexia, and pain. Moans refer to both neuromus-
cular and neuropsychiatric symptoms including depression,
anxiety, cognitive dysfunction, and fatigue. Other symptoms
include headache, emesis, polydipsia, diarrhea, and joint pains
(58). Symptoms are frequently more severe in children than
in adults but this may be due in part to delay in diagnosis as
serum calcium is not monitored regularly in children (364).
Recent data suggest that cyclin D1 mutations also cause pHPT
(32, 33, 422, 423).

pHPT can be normocalcemic, asymptomatic, or hereditary
(533). Normocalcemic hyperparathyroidism is a fairly newly
recognized condition wherein patients present with normal
calcium (including ionized calcium) levels and high serum
PTH levels with no secondary causes like renal disease, med-
ications, gastrointestinal illness, idiopathic hypercalciuria, or
vitamin D deficiency (592). A percentage of these individ-
uals later develop hypercalcemia. It is often diagnosed in
patients found to have low bone mass or nephrolithiasis. This
two-phase process for the development of full-blown hyper-
parathyroidism is incompletely understood. One theory holds
that initial target organ resistance to the actions of PTH, as
would be seen perhaps in premenopausal women with higher
circulating estrogen levels, mask the hypercalcemic response
to PTH, which then becomes apparent after menopause when
estrogen levels decline precipitously. However, most patients
with normocalcemic hyperparathyroidism actually are post-
menopausal, somewhat negating this theory (18). The epi-
demiology and natural history of this disorder are not well
understood as yet [reviewed in (172)].

Asymptomatic hyperparathyroidism is characterized by
mild hypercalcemia, low to deficient vitamin D, and normal
serum phosphate levels. It is more prevalent in women than in
men and manifests within the first decade after menopause. In
asymptomatic patients, densitometric and histomorphometric
analyses demonstrate reduced bone mineral density in the
distal one-third radius while lumbar region is often preserved
and the hip region is intermediate between distal and lumbar
regions. PTH levels are high with low 25-hydroxyvitamin D
levels [reviewed in (593)].

Familial hyperparathyroidism is a group of inherited auto-
somal dominant parathyroid disorders (256). These include
multiple endocrine neoplasia (MEN) type I MEN1, type 2
MEN2a, type 4 MEN4, familial hypocalciuric hypercalcemia
(FHH), neonatal severe hyperparathyroidism (NSHPT), auto-
somal dominant moderate hyperparathyroidism (ADMH),
hyperparathyroidism-jaw tumor syndrome (HPT-JT), and
familial isolated hyperparathyroidism (FIHPT). MEN1 is
caused by mutations in the MEN1 gene on chromosome
11q13 (388,389). Patients develop parathyroid adenomas but
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carcinomas are rare. Patients show multiglandular parathyroid
disease with asynchronously and asymmetrically enlarged
parathyroid glands (211, 212, 236, 424). MEN2a syndrome is
an autosomal dominant condition with high risk of develop-
ing medullary thyroid carcinoma. The average onset of PHPT
is 38 years of age (256). MEN2 is caused by mutations in
RET gene localized to chromosome 10 that encodes a tyro-
sine kinase (286, 458, 463-465). MEN2 is characterized by
parathyroid adenoma or hyperplasia (256). MEN4 is a rare
disorder, the result of mutations in CDKN1B gene leading
to dysfunctional cell cycle inhibitor p27 (383, 384, 425, 504).
Little is known about this illness.

FHH and NSHPT are associated with inactivating muta-
tions in CaSR gene. FHH patients express a mutation in
one allele and have hypercalcemia, mild hypermagnesemia,
and hypophosphatemia. Generally, these individuals are com-
pletely asymptomatic; however, parathyroid glands may be
moderately enlarged. This condition is differentiated from
the usual sporadic pHPT by very low urine calcium, generally
less than 100 mg/day, and requires no treatment. NSHPT is a
homozygous form of FHH, resulting in the very rapid devel-
opment of PHPT at birth or shortly thereafter. Patients have
severe hypercalcemia, bone demineralization, and neurode-
velopmental disorders. In this disorder, parathyroid glands
should be surgically removed within first few days of life to
prevent fatal outcome (434-437).

ADMH is caused by mutations in cytoplasmic C-terminal
tail of CaSR and is characterized by parathyroid hyperplasia
or adenoma. The treatment of choice is surgical removal of
the parathyroid gland (126, 127).

HPT-JT is an autosomal dominant disorder caused by
mutations in the HRPT2 gene encoding parafibromin, a criti-
cal protein for cell growth (128). HPT-JT is associated with a
variety of manifestations including fibrous-osseous tumors of
the jaw, Wilm’s tumor, papillary renal carcinoma, polycystic
kidney disease, renal cysts, and pHPT (132, 133, 136, 582).
Sporadic parathyroid carcinomas are very common in the
HPT-JT patients (256).

FIHPT is another rare autosomal dominant disorder asso-
ciated with mutations in CaSR, MEN1, and HRPT2 genes.
The disease is characterized by uni- or multiglandular lesions
of parathyroid glands, treated by simple surgical removal of
adenomas (285, 449, 626, 672).

Secondary hyperparathyroidism is quite common and is
caused by decreased levels of vitamin D, hypocalcemia, or
in chronic renal disease (233). Patients may present with low
bone density, osteoporosis, or fragility fractures. Hypocal-
cemia of any cause can result in increased PTH secretion.
Common clinical situations include intestinal malabsorption
or poor diet, which limit calcium intake; pancreatitis or rhab-
domyolysis, which sequester calcium; or vitamin D defi-
ciency due to poor diet, lack of sun exposure, nephrotic
syndrome, or liver failure. In contrast to pHPT, correction
of the underlying disorder will normalize PTH levels. Indi-
viduals with secondary hyperparathyroidism more commonly
have diffusely hyperplastic glands than those with sporadic

pHPT, who more likely will have an adenoma. Secondary
hyperparathyroidism complicates the clinical course of nearly
all patients with chronic kidney disease, although it is gen-
erally not manifest until late in the course. The etiology
of secondary hyperparathyroidism associated with chronic
kidney disease is complex (210, 275). Early in the devel-
opment of chronic kidney disease, levels of FGF23 begin
to rise, a phenomenon attributed at least in part to the loss
of renal expression of klotho and to a diminished ability of
the kidney to excrete phosphorus. The rise in FGF23 is mir-
rored by a decrease in 1,25-dihydroxyvitamin D, resulting
in decreased intestinal calcium absorption and hypocalcemia.
Clinically, this hypocalcemia may be subtle, asymptomatic,
and not recognized. As kidney failure progresses, frank hyper-
phosphatemia becomes more prominent. The combination
of hypocalcemia, decreased active vitamin D, and hyper-
phosphatemia results in progressive secondary hyperparathy-
roidism, which is not easily reversible. These individuals may
exhibit parathyroid gland hyperplasia or multiple adenomas
composed of monoclonal or polyclonal clusters of parathyroid
cells. The secondary hyperparathyroidism of chronic kidney
disease is implicated in a variety of complications of kid-
ney disease including accelerated vascular disease, vascular
calcification, and fractures.

Hypoparathyroidism

Patients with hypoparathyroidism present with severe
hypocalcemia, hyperphosphatemia, tetany, hypomagnesemia,
and lower levels of vitamin D. Basal ganglia calcifications
are another very common feature of this syndrome. The most
common cause of hypoparathyroidism is damage or removal
of parathyroid glands during neck surgery, especially com-
plicated thyroid surgery. However, hypoparathyroidism may
occur as a congenital disorder or as an autoimmune con-
dition, in isolation or in conjunction with other organ fail-
ure. The reader is referred to several recent excellent clin-
ical reviews of this rare condition (73, 89, 590). A number
of parathyroid-specific autoantibodies have been identified
and implicated in the development of hypoparathyroidism
in the autoimmune polyendocrinopathy syndrome type I,
including antibodies directed against the calcium sensing
receptor, tryptophan hydroxylase, interferon omega, and the
NACHT leucine rich repeat protein 5 (NALP5) to name a few.
However, the autoantibodies responsible for isolated autoim-
mune hypoparathyroidism and for other forms of autoimmune
polyendocrinopathy syndromes are still in question. Standard
treatment for symptomatic patients has been high-dose active
vitamin D and calcium, but recently, clinical trials of recombi-
nant parathyroid hormone have been initiated (171). Another
rare syndrome is pseudohypoparathyroidism where there is
resistance to PTH hormone action, either globally or con-
fined to the proximal tubule of the kidney. This condition is
caused by mutations in the gene for the Gsα subunit, resulting
in abnormal Gsα function or in abnormal Gsα transcription
(448, 629).
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Human chondrodysplasias

Two devastating forms of chondrodysplasia, Blomstrand’s
lethal chondrodysplasia (BLC) and Jansen’s metaphyseal
chondrodysplasia (JMC), resulting from mutations in PTH1R
gene have been described (567).

BLC was first described by Blomstrand et al in 1985 (99)
and is prenatally lethal due to premature bone mineralization,
ossification, shortened limbs, and abnormal tooth and mam-
mary gland development (567, 700). Three different inacti-
vating PTH1R mutations have been identified in patients with
BLC, which result in failure of PTH to bind to the receptor,
diminished PTH1R expression, or impaired signal transduc-
tion [reviewed in (567)].

JMC is a rare autosomal dominant disorder associated
with severe abnormalities of the growth plate. Clinically,
the patients have short stature, disproportionate limbs, and
micrognathia. Patients have severe asymptomatic hypercal-
cemia, hypophosphatemia, increased phosphate and cAMP
excretion in urine, and elevated levels of vitamin D with
normal or undetectable PTH. JMC is caused by gain of
activity single point mutations in PTH1R including H223R,
T410P, and I458R that result in PTH-independent activation
of cAMP/PKA pathway [reviewed in (567)].

Enchondromatosis is caused due to common solitary or
multiple benign tumors of bone. Recently, missense muta-
tion (R150C) in PTH1R has been identified in two patients
with enchondromatosis. The mutation results in a constitu-
tively active receptor leading to increased cAMP levels. This
mutation is less severe than the mutations observed in JMC
[reviewed in (567)].

Conclusions
PTH is a hormone critical for many cell processes, primar-
ily focused on mineral metabolism. This tightly regulated
hormone is critical for regulation of calcium and phosphate
homeostasis as well as bone metabolism. Dysfunction in the
regulation results in dramatic clinical pictures characterized
by poor bone mineralization and increased soft tissue miner-
alization. These abnormalities in turn lead to cardiovascular
disease and kidney failure. Key gaps in our understanding of
PTH include the role of intracellular signaling, the interaction
of PTH with other hormones involved in mineral metabolism,
and the mechanisms by which PTH can influence cardiovas-
cular health.

Vitamin D
Introduction
Vitamin D is a steroid hormone, synthesized through conver-
sion of metabolites supplied by skin or intestinal absorption
and involved in multiple critical processes for living organ-
isms (Fig. 5). Functioning as a circulating hormone produced
by the kidney, active vitamin D’s most prominent role is as a
critical regulator of bone mineralization. Vitamin D deficiency

results in severe metabolic bone disease both in children and
adults. Osteomalacia, a defect in bone mineralization detected
by bone biopsy, occurs in both children and adults whereas
rickets occurs only in children. Increasingly, vitamin D is
recognized as a mediator of multiple other processes in the
body including immune function, the renin-angiotensin axis,
insulin metabolism, and cell proliferation, to name a few.

History of discovery
Vitamin D was discovered early in the twentieth century but
the fact that there was an active substance in milk apart from
the carbohydrate, fat, and protein content that was critical for
life was reported first in 1880 by N. Lunin, a Russian scientist
who noted that newborn mice fed a diet composed of casein,
carbohydrate, fat, and salts died while those fed milk lived
(440). In 1922, McCollum reported that cod liver oil, which
had been used for a century to treat rickets, contained a fat
soluble substance that prevented rickets in rats and named it
vitamin D (440). Ensuing work by a number of investigators
established the existence of a compound similar but not iden-
tical to cholesterol which could be activated by irradiation of
skin, liver, and multiple food substances which similarly had
antirachitic properties. The compound in food was identified
as ergosterol by Windaus and Hess in 1931 and the com-
pound in animal tissue was identified as 7-dehydrocholesterol
by Windaus and Bocke in 1937 (697). The full biosynthetic
pathway was finally delineated by Holick et al. (189, 309)
in 1980.

Structure: Biochemical properties
The vitamin D family compounds are secosteroids, exhibiting
a tetracyclic structure with a cleaved ring (153,307,309,311).
They differ from conventional steroids in that the B ring is
open, lacking a sixth carbon atom. Vitamin D2 or ergocal-
ciferol is synthesized from ergosterol (311, 325), a naturally
occurring substance in yeast and plants while vitamin D3
or cholecalciferol is synthesized from 7-dehydrocholesterol,
a cholesterol precursor (153, 232, 258, 309). Throughout the
metabolic pathway of vitamin D, multiple compounds can be
generated, most of which are thought to be inert or which
have not been studied (102,153,232,265,307,308,310,311).
Ergocalciferol, cholecalciferol, 25-, and 1,25 vitamin D
are fat soluble. The terminal step in vitamin D degrada-
tion is calcitroic acid (1α-hydroxy-23-carboxy-24,25,26,27-
tetranorvitamin D), which is water soluble and excreted pri-
marily in the urine (537).

Vitamin D synthesis, metabolism, and regulation
Vitamin D metabolism

Vitamin D is a family of steroids originating from ultra-
violet light conversion of precursor compounds in the skin
(5,309) or through ingestion of precursor substances in food.
In skin, ultraviolet light effects a conformational change in
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Figure 5 (A) Metabolic pathway of vitamin D. (A) The production of 1,25-dihydroxyvitamin D begins in the skin with the precursor 7-
dehydrocholesterol. UVB light catalyzes the conversion of 7-DHC to pre-Vitamin D (structural changes denoted in red), which is further
converted to Vitamin D by heat through the process of thermal isomerization. Vitamin D enters the bloodstream, and in the liver undergoes
hydroxylation by either CYP27A1 or CYP2R1 to form 25-hydroxyvitamin D. Depending on serum Ca2+ levels and hormones present, in the
kidney, 25-hydroxyvitamin D will either be converted to its active form, 1,25-dihydroxyvitamin D, by the enzyme CYP27B1, or be converted
to its inactive form, 24,25-dihydroxyvitamin D, by the enzyme CYP24A1. FGF23 upregulates CYP24A1 expression and downregulates
CYP27B1. PTH stimulates CYP27B1 expression, and depending on the circumstances, either downregulates CYP24A1 or slightly upregulates
its expression. 1,25-dihydroxyvitamin D3 is degraded first by hydroxylation at the 24th position to form 1,24,25-trihydroxyvitamin D, then
through a series of steps form the end product calcitroic acid, which is water-soluble and is excreted in the urine. (continued)
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Figure 5 (Continued) (B) 1,25-Dihydroxyvitamin D3 promotes both classic effects on mineral metabolism as well as nonclassic effects on immune
function, cardiovascular protection, and others as listed. (B) Metabolic pathway of vitamin D. (A) The production of 1,25-dihydroxyvitamin D
begins in the skin with the precursor 7-dehydrocholesterol. UVB light catalyzes the conversion of 7-DHC to previtamin D, which is further converted
to vitamin D by heat. Vitamin D enters the bloodstream, and in the liver undergoes hydroxylation by either CYP27A1 or CYP2R1 to form 25-
hydroxyvitamin D. Depending on serum Ca2+ levels and hormones present, in the kidney, 25-hydroxyvitamin D will either be converted to its
active form, 1,25-dihydroxyvitamin D, by the enzyme CYP27B1, or be converted to its inactive form, 24,25-dihydroxyvitamin D, by the enzyme
CYP24A1. 1,25-dihydroxy-D3 is degraded through a series of steps to the water-soluble product calcitroic acid, which is excreted in the urine. (B)
1,25-Dihydroxy-D3 promotes both classic effects on mineral metabolism as well as nonclassic effects on immune function, cardiovascular protection,
and others.

the steroid 7-dehydrocholesterol to produce previtamin D
which then is converted to cholecalciferol (vitamin D), a
process that requires up to three days (309). The origin
of 7-dehydrocholesterol in the skin has been debated, with
some arguing for an intestine derived origin; however, more
recent studies suggest that 7-dehydrocholesterol is formed
de novo by numerous skin cell types (258, 599). Factors
regulating this initial step include age, skin pigmentation,
degree and duration of skin exposure, and intensity of sun-
rays (104,158,306,309). Aging and darker skin pigment will
limit this process as does, predictably, lesser surface area of
skin exposure, lesser time of skin exposure, higher latitude,
and the angle of the sun during winter season. A recent study
suggested, however, that the degree of conversion correlated
more with baseline 25-hydroxy vitamin D25-hydroxy vita-
min D levels and total cholesterol levels than with degree
of pigmentation (104, 266). The production of cholecalcif-
erol by sun exposure is self-limited as excessive sun results in
degradation of previtamin D and vitamin D (574). In addition,
sunlight also converts 7 dehydrocholesterol to some inactive
metabolites such as tachysterol and lumisterol (190,266,306).
Cholecalciferol diffuses into the skin capillaries, and circu-
lates as either the free compound or bound to vitamin D
binding protein (DBP) (153, 156, 190, 311, 314). Cholecal-
ciferol has no documented direct activity and a relatively
short half-life (12-24 h). The free compound enters cells
relatively easily and the degree of binding to DBP largely
determines the rate of uptake by adipose tissue, muscle, or
liver. Cholecalciferol can also be obtained through ingestion
of foods containing naturally occurring vitamin D such as
egg yolks, fatty fish, and liver, or through foods fortified with
vitamin D such as milk, breads, infant formula, and orange
juice (95,686). Absorption of cholecalciferol is dependent on
bile acid-mediated formation of micelles. While some of the
absorbed vitamin D is transported through the portal system

to the liver, the majority of absorbed vitamin D is taken up
through chylomicrons into the lymphatics (686). A significant
amount of the absorbed vitamin D is taken up into fat tissue
and muscle (314). How or whether vitamin D sequestered
into these tissues is regulated is unknown. The propensity for
adipose tissue absorption of vitamin D may explain the higher
vitamin D requirement and/or the lower circulating vitamin D
levels in obese individuals. Of note, high bolus ingestions
of vitamin D are rapidly cleared by fat and muscle and not
released subsequently into the circulation (311). Thus smaller
daily doses of cholecalciferol (1000-2000 IU) are preferred to
infrequent large doses for maintenance of stable daily serum
concentrations of cholecalciferol (306, 311).

Cholecalciferol undergoes 25-hydroxylation to form 25-
hydroxyvitamin D, a metabolite that also is considered inac-
tive (27, 293, 724). Several tissues express 25-hydroxylase
activity including kidney, intestine, and liver, but the majority
of cholecalciferol hydroxylation appears to occur in the liver
(77-81,326,491,513). Many 25-hydroxylases capable of per-
forming this function have been identified but most interest
has focused on the mitochondrial enzyme CYP27A1 and the
microsomal enzyme CYP2R1 (326). Liver exhibits a high
expression of the mRNA for 25-hydroxylase, CYP27A1, but,
interestingly, mutations in the gene encoding CYP27A1 do not
result in significant abnormalities in vitamin D metabolism
(315,398). In contrast, mutations in cytochrome p450 2R1 or
vitamin D 25-hydroxylase (CYP2R1) have been reported in
individuals with very low vitamin D levels, suggesting that
this enzyme is essential for 25-hydroxylation (142). More-
over, CYP2R1 but not CYP27A1 25-hydroxylates both vita-
min D2 and vitamin D, while CYP27A1 hydroxylates only
D (325, 326). CYP2R1 has a high affinity for vitamin D
and is quite specific for the 25 position on vitamin D but
not other steroid compounds (615). Thus, CYP2R1 is cur-
rently the leading contender for the physiologically relevant
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CYP governing this aspect of vitamin D metabolism. A very
recent study demonstrated that neither Cyp27a1 nor Cyp2r1 is
essential for 25-hydroxylation as mice lacking both enzymes,
showed only a 50% reduction in 25-hydroxy-vitamin D and
exhibited normal 1,25 vitamin D levels (724), suggesting con-
siderable redundancy in this metabolic step. CYP27A1 is reg-
ulated by multiple hormones, particularly insulin, glucocor-
ticoids, sex hormones and by 1,25 dihydroxyvitamin D itself
(27). Hormonal regulation of CYP2R1 has not been stud-
ied. The activity of the 25-hydroxylase enzymes is largely
driven by substrate availability; thus this step in vitamin D
metabolism is not considered a site of significant regulation.
Despite the fact that 25-hydroxy vitamin D25-hydroxy vita-
min D is not the active form of vitamin D, it is preferen-
tially measured in clinical medicine to establish vitamin D
status because of its long half-life of about 2 to 3 weeks
(156, 159, 311). However, concerns about the reproducibil-
ity and reliability of the assays raise questions about using
25-hydroxy vitamin D25-hydroxy vitamin D measurement to
define vitamin D deficiency (207). 25-Hydroxyvitamin D cir-
culates in three forms: 85% with DBP, 15% albumin-bound,
and 0.03% free. The current assays measure total, not free
25-hydroxy vitamin D25-hydroxy vitamin D, and vitamin D-
binding protein levels can vary considerably on an individ-
ual basis. Nonetheless, at this time, the standard of care is
to measure 25-hydroxy vitamin D25-hydroxy vitamin D to
evaluate vitamin D status. The presence of 25-hydroxylases
capable of cholecalciferol hydroxylation in other tissues has
only recently been recognized and potential roles for chole-
calciferol in these tissues are currently under investigation
(24, 87, 98, 102, 103, 326).

The 25-hydroxy vitamin D25-hydroxy vitamin D-
vitamin D-binding protein complex binds to the megalin
receptor complex of proximal renal tubule cells and
undergoes endocytosis. Once internalized, 25-hydroxy
vitamin D25-hydroxy vitamin D is metabolized through
one of two pathways: 1α hydroxylation by CYP27B1 to
form the active metabolite 1,25-dihydroxyvitamin D or 24-
hydroxylation by CYP24A1 to form an inactive metabolite
24,25-dihydroxyvitamin D (6, 11, 29, 98, 153, 337, 367, 492).
The balance of the activities of these two enzymes is what
determines the ultimate level of active vitamin D. Much
of the regulation of these two enzymes is accomplished
at the gene level. PTH, a major stimulator of active vita-
min D production, increases the level of CYP27B1 activity
(12,29,42,228,241). The effect on the level of CYP24A1 has
been variably reported as slightly increased, insufficient to
blunt the effect on Cyp27b1, or as decreased with the result
being an increase in 1,25 vitamin D synthesis (725, 726).
1,25-dihydroxyvitamin D itself activates CYP24A1, limiting
active vitamin D formation. FGF23, a major inhibitor of
vitamin D formation, increases CYP24A1 activity, shunting
25-hydroxy vitamin D25-hydroxy vitamin D into the
inactive metabolite pathway (290, 293, 427, 523, 526). In
addition, FGF23 inhibits CYP27B1. Other factors influencing
vitamin D conversion include aging, metabolic acidosis,

chronic kidney disease, and a variety of other hormones
(28, 30, 31, 153, 275, 385, 514-519, 635-637). Because of its
short half-life of hours, 1,25 dihydroxyvitamin D is not con-
sidered a useful indicator of vitamin D status (88, 153, 718).

Inactivation of active vitamin D begins with 24-
hydroxylation of 1,25 dihydroxyvitamin D, followed by
oxidation at carbon 24 and sequential modification of the
steroid culminating in the production of calcitroic acid
(153,326,537). A carbon 23 oxidation pathway has also been
described but its significance is unclear. Urinary excretion of
the water-soluble calcitroic acid is the major mechanism for
vitamin D disposal though a small amount is excreted through
the gastrointestinal tract.

The other major source of vitamin D is the plant sterol,
ergocalciferol or vitamin D2, which is present in the diet.
Intestinal absorption and disposition are very similar to what
is seen with vitamin D, although as discussed below, its inter-
action with DBP is weaker, a property that some investigators
believe plays a significant role in their differential clinical
efficacies (257).

Vitamin D-binding protein

DBP is central to the metabolism of vitamin D. Originally
identified as a member of the albumin family and named
GC globulin (group-specific component of serum) in 1959,
this abundant serum protein was relabeled DBP after the
discovery of this specific property in 1976 by Daiger and
colleagues (154, 156, 178, 311, 461). Over 100 isoforms of
the protein have been isolated by immunoelectrophoresis,
divided into three major isoforms—GC1F, GC1S, and GC2,
classified by amino acids at positions 416 and 420—and mul-
tiple minor isoforms, grouped around the major isoforms
(9, 69, 154, 156, 575). These changes in amino acid sequence
result in measurable differences in the glycosylation patterns,
especially between the GC1 and GC2 isoforms. Genetic anal-
ysis has uncovered an even greater degree of variability with
over 1000 variants identified in both major and minor iso-
forms. Specific patterns of isoform expression are associated
with specific ethnicities, allowing the study of population
migrations and genetics (69, 134, 175, 176, 575). Many of the
genetic variations translate into differences in DBP binding to
both 25 and 1,25 vitamin D. Interestingly, GC2 isoforms are
very uncommon in the equatorial African populations, while
GC1F is the most common. GC1S is seen most frequently
in individuals of European ancestry while Asians exhibit
both GC1S and GC1F. Binding efficiencies to vitamin D are
GC1F>GC1S>GC2, correlating with skin pigmentation and
leading to the hypothesis that the different isoforms arose in
concert with changes in skin color to facilitate sun-stimulated
vitamin D formation and metabolism (461, 470).

DBP is composed of three domains, one which expresses
10 α-helices forming a vitamin D binding cleft, a second
which expresses nine α helices and one coil, while the third
expresses four α helices (154, 156, 262). Circulating DBP
vastly exceeds its vitamin D binding capacity and the protein
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also binds free actin, which limits actin polymerization and
endothelial damage. DBP can also be modified to form
DBP-MAF, macrophage-activating factor, which stimulates
macrophage and osteoclast activation, thus serving roles
in immune function and bone metabolism independent of
vitamin D.

The major site of DBP production is the liver, lesser pro-
duction measured in kidney, testis, and adipose tissue. The
human gene exhibits 13 exons and 12 introns and its pro-
moter expresses three binding sites for hepatocyte nuclear
factor.

As indicated previously, DBP binds both 25 and 1,25 vita-
min D as well as the parent compound, cholecalciferol, in the
circulation, transporting the substrates to their intended tar-
gets. However, whether DBP is required for vitamin D activ-
ity remains an unanswered question. The mouse lacking DBP
does not exhibit any discernible defects in bone and mineral
metabolism; however, on a vitamin D deficient diet develops
metabolic bone defects at an earlier time point than the normal
controls (63,563,718). DBP appears to play a role in limiting
active vitamin D formation, as injection of radiolabeled chole-
calciferol into the DBP null mice resulted in a more rapid and
enhanced liver uptake. Also, the addition of DBP to cell cul-
tures of monocytes or culture of monocytes in serum derived
from DBP-replete mice (when compared to monocytes cul-
tured in serum derived from DBP-deficient mice) inhibited
vitamin D-stimulated cathelicidin induction, the high affinity
isoforms showing a greater effect than the lower affinity iso-
forms. These findings suggested that DBP was blunting the
uptake of vitamin D into those cells, resulting in diminished
responses (155). DBP may also serve as a storage mecha-
nism for vitamin D. Vitamin D bound to DBP is endocytosed
into renal proximal tubule cells through a megalin-cubulin-
dependent process, allowing the body to recapture filtered 25-
hydroxy vitamin D (336, 403, 473, 564). Interestingly, how-
ever, DBP null mice exhibit a less extreme phenotype than
lrp2 (megalin)-deficient animals (336,387,403,473,484,564),
suggesting that vitamin D can gain entry into these cells
through megalin-independent mechanisms. Likewise, DBP
can enter cells that do not express megalin, highlighting the
possibility of alternative mechanisms for vitamin D entry into
cells.

Gene and its regulation
The gene encoding 25-hydroxy vitamin D 1α hydroxylase
(CYP27B1) in humans is located on chromosome 12, 12q14.1,
flanked by the genes for METTL21B, methyltransferase 21b;
METTL1 methyltransferase like 1; MARCH9, a member of the
E3 ubiquitin ligase family; CKD4, cyclin D kinase isoform
4; and mir6759, a microRNA. The gene contains nine exons,
including a very large exon 9. The promoter region expresses
sequences consistent with three cAMP response elements but
no sequence corresponding to a vitamin D response element
(108). Consistent with this structure, PTH and direct acti-
vators of cAMP such as forskolin increase transcription of

the gene but vitamin D has no effect. These findings suggest
that PTH stimulates vitamin D production through increased
transcription of the CYP27B1 but the well described self-
inhibition by 1,25 vitamin D is not mediated through an effect
on gene transcription. In contrast, Murayama and colleagues
(466) were able to identify a sequence that could serve as a
negative regulatory site for 1,25 vitamin D. A recent study
found that 1,25 vitamin D could bind to VDR in the proximal
tubule brush border and translocate to the nucleus, accom-
panied by a decrease in CYP27B1 activity and an increase
in CYP24A1 activity and suggesting that VDR functions as a
sensor for active vitamin D status. Using transfected promoter
constructs, Armbrecht et al. (29) reproduced the stimulatory
effect of PTH and forskolin on CYP27B1 promoter activity,
concluding that these effects were sufficient to explain the
stimulation of 25-hydroxy vitamin D25-hydroxy vitamin D
activation by PTH. They also showed that PTH and 1,25
vitamin D had a stimulatory effect on CYP24 (25-hydroxy
vitamin D 24 hydroxylase) but had an interactive effect. The
magnitude of the increase in CYP24 activity was not felt
to be sufficient to explain the effect of these hormones on
CYP24 mRNA levels. Although several cell types are capa-
ble of converting 25-hydroxy to 1,25-dihydroxyvitamin D,
only kidney produces sufficient quantity to contribute to cir-
culating levels under typical physiologic conditions. Yoshida
et al. (708) have identified an enhancer in the promoter region
of the gene specific to proximal tubule which may explain this
observation.

Several other factors have been identified that regulate
cyp24 and cyp27b1 expression. In mice, absence of the
Npt2a (Slc34a1) results in increased cyp27b1 mRNA expres-
sion and decreased cyp24 mRNA expression, predictably
leading to marked increases in active circulating 1,25 vita-
min D (56). These animals have hypercalcemia, hypercal-
ciuria, and nephrocalcinosis as well as hypophosphatemia.
Whether this is a direct effect, a result of suppression of
FGF23 by hypophosphatemia, or both, is not known. Absence
of the other major type II sodium phosphate cotransport
Npt2c (Slc34a3) has minimal effect on the mRNA expres-
sion of cyp27b1 but does result in significant suppression of
cyp24 mRNA (331,352,577); thus, 1,25 vitamin D levels are
increased as well. However, these animals present a phenotype
that differs little from wild-type mice. Interestingly, kidney-
specific inducible Npt2c deletion has no effect on phosphate,
calcium, or vitamin D homeostasis, suggesting that the pheno-
type seen in the whole organism constitutive deletion model
results from nonrenal phosphate transport mechanisms (469).
The differential effects of the sodium phosphate cotrans-
porters on vitamin D metabolism in humans have not been
investigated at a molecular level. Unlike mice, humans lack-
ing functional Npt2c exhibit a dramatic clinical phenotype
characterized by rickets, hypophosphatemia, hypercalcemia,
hypercalciuria, and high vitamin D levels while mutations in
Npt2a present a rather mild phenotype of a tendency toward
osteopenia and kidney stones (67, 166, 181, 317, 324, 379,
402, 530, 650, 713). The basis for these differences and their
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implications for regulation of vitamin D metabolism have
not been determined. Dietary phosphate deficiency stimulates
renal cyp27b1 activity through a growth hormone-dependent
mechanism; the sensor for this response remains unknown but
may be one of the proximal tubular phosphate transporters
(708).

Multiple environmental factors determine the level of vita-
min D, including season of the year, vitamin D intake, adipos-
ity, and hormonal status, especially for women (159,306,399,
444, 559, 673, 688). Stimulation of renal cyp27B1 by estro-
gens (433, 510, 511, 536, 621) and the increase in circulating
1,25 vitamin D in pregnancy (536) were demonstrated over
30 years ago. Subsequent studies suggest that the increase in
circulating vitamin D levels during pregnancy are of maternal
kidney origin as an anephric pregnant woman failed to show
the predicted increase (640). However, as this report predated
the discovery of FGF23 which is capable of inhibiting extra-
renal as well as renal conversion of 25 to 1,25 vitamin D,
an exclusive role of the kidney in providing the increase in
vitamin D during pregnancy cannot be claimed (37). Exoge-
nous estrogens increase both 25 and 24,25 vitamin D in post-
menopausal women, associated with an increase in serum
calcium and a decrease in serum phosphorus (44). Cyp27b1
activity is increased by estrogens in extra-renal tissues as well
including vascular smooth muscle cells (608); however, it is
unlikely that the amount of 1,25 vitamin D produced would
alter serum levels.

The level of vitamin D is also subject to significant
genetic regulation (51, 482). Twin studies suggest a 43%
to 70% heritability for 25-hydroxy vitamin D and a 65%
heritability for the active vitamin D (205, 206, 692, 709).
These studies have been supported by family studies as well.
The few studies of African Americans and Hispanics suggest
that heritability may also be influenced by ethnicity, as the
estimates of heritability for both forms of vitamin D in these
populations are significantly lower. These investigations,
however, involve at most approximately 1000 individuals and
frequently have been derived from studies of human illnesses
such as asthma or multiple sclerosis. Thus, the applicability
to the general population could be questioned. Linkage
analysis, genome wide association studies, and candidate
gene approaches to identify genes important in determining
vitamin D levels have uncovered a number of potential
candidates including CYP27B1; CYP2R1; CYP24A1; VDR;
and DHCR7, the gene encoding the reductase that catalyzes
the 7-dehydrocholesterol to cholesterol reaction in the skin;
and GC, the gene encoding the DBP (9,69,114,182,665,692).
CYP27B1 is a member of the cytochrome P450 family most
strongly associated with vitamin D levels, but multiple
studies support potential contributions from each of the
other candidate genes. The reasons for the discrepancies
are not known but likely result from differences in study
population, small sample sizes, and differences in analytic
methods. The reader is referred to a recent review of this
topic by Dastani et al. for a more in depth discussion
(182).

Receptors
The vitamin D receptor, a member of the steroid hormone
receptor superfamily, is expressed in a broad variety of tissues
and exhibits significant fluidity in expression dependent on
age, underlying pathophysiologic conditions, and even vita-
min D status (83,84,98,106,151,191). One interesting aspect
of VDR is the radical change in expression pattern during
development (259,670). In the mature animal, the receptor is
most abundant in the small and large intestine, distal tubule
of the kidney nephron, and the parathyroid gland. Other tis-
sues with significant expression include the pancreas, renal
proximal tubule, bronchial cells, osteoblasts, thymus, pitu-
itary gland, prostate, and mammary gland. Specifically, the
receptor is minimal or not identified in liver, muscle, thyroid,
adrenal gland, or nervous tissue, including the central nervous
system. It is notable that tissue expression of 1αhydroxylase
and the vitamin D receptor show significant overlap, setting
the stage for autocrine function and feedback.

Upon interaction with 1,25 vitamin D, the VDR het-
erodimerizes with the retinoid X receptor (RXR), the com-
plex migrating to the nucleus where it interacts with the
nuclear chromatin through VDRE, vitamin D response ele-
ments (83, 331) (Figs. 3C and 6). This step also involves two
additional layers of regulation (4, 83). First, the transfer of
the vitamin D complex to the nucleus is performed by pro-
teins of the Hsc70 chaperone family. Second, the VDRE may
be occupied by RNA-binding proteins that compete with the
vitamin D complex for occupancy (428). Investigation into
the regulation of these two steps is in its infancy. Interac-
tion of the vitamin D receptor complex with the VDRE in
some tissues requires the presence of the Williams Syndrome
Transcription Factor (WTSF) (49, 238), functioning as one
of the subunits of the ATP-dependent chromatin remodeling
complex known as WINAC, the WTSF including nucleosome
assembly complex. The essential requirement for this inter-
action has been demonstrated in vitro in knockdown experi-
ments as well as in the skin fibroblasts of Williams Syndrome
patients (49, 177, 338, 339, 354, 355). WINAC downregulates
VDR-stimulated activation of 1αhydroxylase and activates
24-hydroxylase, thus serving to limit active vitamin D forma-
tion (49, 338, 339).

Classically, the VDR-RXR complex has been thought to
interact with DNA at specific motifs designated VDRE (vita-
min D response elements), thus influencing transcription of its
target genes (163, 414, 486, 498). The classic motif is a triple
repeat of the PuGG/TTCA sequence separated by three base
pairs. In fact, however, the number of gene sites occupied
by VDR-RXR has been estimated to be between 2000 and
8000, and many of these genes do not express classic VDRE
(124, 125, 561, 581, 639, 641, 667, 687). VDR-RXR bound to
active 1,25 vitamin D binds DNA sites that differ from the
unbound VDR. Furthermore, the VDR is capable of interact-
ing with other transcription factors to influence their effects.
Thus, failure to identify a VDRE motif in the gene of a protein
of interest does not exclude the possibility that the gene may
be regulated by vitamin D.
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There is also evidence that vitamin D may have signaling
mechanisms that are nongenomic, specifically activation of
protein kinase C and MAP kinases. These pathways have not
been studied as intensively as the classic pathway described
earlier, but likely contribute substantively to vitamin D actions
[reviewed in (456)].

Functions
Classical actions: Mineral metabolism intestine

The major recognized functions of vitamin D revolve around
the regulation of mineral metabolism (Fig. 5). The most
straightforward and accepted effect of vitamin D is enhanced
intestinal absorption of both calcium and phosphate through
the stimulation of increased expression of the transporters
TRPV6 and Npt2b, respectively (43, 48, 107, 138, 139). Acti-
vated vitamin D increases the expression of the calcium
channel, TRPV6, in the apical membrane of small intestine,
enhancing intestinal cell calcium entry. Predictably, VDREs

have been identified on the promoter region for the gene for
TRPV6 that play a role in vitamin D stimulation of TRPV6
expression (43, 331, 446, 447). Vitamin D is also important
for calbindin D expression but whether this occurs through a
classic VDRE has not been established. Vitamin D regulation
of the plasma membrane calcium ATPase, the pump respon-
sible for the egress of calcium from the intestinal cell into
the blood compartment, has been demonstrated in rats. Lack
of significant homology in the VDREs of different species
has cast doubt on the applicability of findings in animal mod-
els to humans. A recent study using culture explants from
endoscopic samples of human duodenum confirmed enhanced
expression of TRPV6 mRNA after 6h treatment with either
25 or 1,25 vitamin D (43). Interestingly, treatment with 25-
hydroxyvitamin D resulted in increased protein expression of
CYP27B1, identified predominantly in the crypt cells, and
the increase in TRPV6 correlated strongly with the increase
in CYP27B1 expression. These remarkable findings suggest
that vitamin D regulation of intestinal calcium absorption
may be a function of both autocrine and endocrine actions
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of vitamin D. How the two systems interact and why and/or
when one system or the other will predominate are impor-
tant questions to be addressed. 1,25-Dihydroxycholecalciferol
also significantly increased the mRNA expression of PMCA1
and CYP24 but not calbindin-D9k.

Vitamin D also enhances intestinal phosphate absorption,
though the mechanisms and proteins involved are unknown.
Studies have shown that 1,25-dihydroxycholecalciferol does
not increase the expression of Npt2b, the type IIb sodium
dependent phosphate cotransporter, and that the increase in
phosphate absorption is sodium-independent (352). A recent
study did identify an active vitamin D analog, ED-71, that
strongly increased Npt2b expression at the mRNA and protein
level through a VDR-dependent mechanism, but had no effect
on either Pit-1 or Pit-2, two other sodium-dependent phos-
phate transporters identified in intestinal epithelium (113).
Interestingly, ED-71 also exhibited a profound stimulatory
effect on CYP24, increasing levels ten thousand fold over
active vitamin D. The authors also noted that serum concen-
trations of ED-71 level remained constant over greater than
24 h, whereas serum concentrations of active vitamin D lev-
els promptly decreased to baseline within 6 h and suggested
that the dramatic differences in pharmacokinetics accounted
for the differences in phosphate stimulating potency. This
study underscores the role of the rapid counterregulatory
processes stimulated by active vitamin D in limiting its
actions.

Kidney

1,25-Dihydroxyvitamin D enhances renal calcium reabsorp-
tion through stimulation of the expression of virtually all
of the proteins involved in calcium transport in the dis-
tal nephron (42, 98). Mice lacking expression of CYP27B1
show decreased renal epithelial mRNA and protein expres-
sion of TRPV5, calbindin-D28k, calbindin-D9k, and NCX1,
the basolateral Na-Ca exchanger responsible for transfer
of reabsorbed calcium from the cell to the blood space
(194, 301-305, 481). Treatment with calcitriol corrects all of
these deficiencies while a high dietary calcium corrects all
except for calbindin-D9k. Interestingly, while PTH has a sim-
ilar effect on the same proteins, it may not be through a vita-
min D-dependent mechanism. The coordinated increase in the
expression of the calcium transport proteins is dependent on
the increase in TRPV5 expression, TRPV5 deficient animals
fail to respond to vitamin D with an increase in the addi-
tional calcium transport proteins. TRPV5 deficiency results in
hypercalciuria, hypocalcemia, and compensatory elevations
in 1,25 vitamin D. Thus, stimulation of TRPV5 expression is
the key effect of vitamin D on renal calcium absorption (698).

The effect of vitamin D on renal phosphate transport
remains very poorly understood (352). Mice-deficient in the
VDR fail to express Npt2a and Npt2c but expression can be
stimulated by feeding a high calcium diet suggesting that the
expression of these two transporters is not dependent on vita-
min D (333). The genes for both Npt2a and Npt2c exhibit

potential VDRE but an effect of vitamin D on expression of
the two proteins has not been specifically demonstrated.

Bone

The effect of vitamin D on bone has been extensively studied
but remains somewhat enigmatic. Mice lacking VDR develop
rickets; however, a diet providing high calcium and phosphate
can rescue the bone phenotype, suggesting that the major con-
tribution of vitamin D to bone health is provision of adequate
mineral through stimulation of intestinal absorption (563).
However, vitamin D clearly has direct effects on bone cells.
Osteoblasts express VDR, which upon stimulation by vita-
min D leads to the production of receptor activator of NFκB
ligand (RANKL) which interacts with RANK on osteoclast
precursors, resulting in osteoclast maturation (52, 612, 652).
Vitamin D also inhibits the expression of the competing
decoy receptor for RANKL, osteoprotegerin, contributing to
osteoclast maturation. Another Vitamin D-responsive gene
in osteoblasts is LRP5, the Wnt coreceptor that stimulates
bone cell proliferation (52, 234, 331, 509). Vitamin D stimu-
lation of osteoblasts and osteoblast precursors enhances the
expression of osteoblast specific transcription factors such as
RUNX2 and subsequently proteins such as osteocalcin, osteo-
pontin, and alkaline phosphatase. The simultaneous activation
of both osteoblasts and osteoclasts would result in an increase
in bone turnover but whether the result is predominantly bone
formation, bone resorption, or a neutral effect is somewhat
unclear. The anti-rachitic effect, although thought to be pri-
marily mediated by the effect of vitamin D on mineral home-
ostasis, may also result from direct effects on bone. Transgenic
mice overexpressing VDR in osteoblasts show an increase in
bone formation (376,452). CYP27B1/VDR double knockout
mice fed a rescue diet exhibit fewer osteoblasts, a lower min-
eralization rate, and decreased bone volume, when compared
to control animals (500, 501). These studies are consistent
with the hypothesis that the major effect of vitamin D on
bone is formative and are consistent with much older stud-
ies showing that neither vitamin D deficiency nor vitamin D
excess altered bone resorption rate as determined by increases
in inner marrow diameter in growing chicks prelabeled with
injections of radiolabeled calcium, tetracycline, and proline
(358). In this study, chicks given excess vitamin D showed a
decrease in bone radiolabeled calcium while the vitamin D-
deficient animals showed no change in bone label. Under both
conditions, bone mass decreased. The decrease in the bone
mineral mass seen in vitamin D deficiency was attributed to
lack of intestinal absorption of mineral whereas the decrease
seen in vitamin D excess was attributed to failure of calcium
reutilization. While these observations suggest a role for vita-
min D on the formative arm of bone metabolism, the fact that
vitamin D stimulates RANKL, leading to activation of osteo-
clasts would argue for a physiologic role in bone resorption
as well. However, a recent study suggests vitamin D defi-
ciency causes PTH elevation, which leads to cortical thinning
and in some cases cause marrow fibrosis (13). An important
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unanswered question regarding vitamin D effect on bone is
whether its effects change with organism age. In human stud-
ies, vitamin D administration prevents rickets in children and
treats osteomalacia in adults (269, 306); however, the effect
of vitamin D in the treatment of osteoporosis—whether vita-
min D can prevent or reverse the bone loss associated with
aging—remains a controversial topic (36, 542, 560).

Nonclassical actions

Kidney A variety of other effects of vitamin D on kid-
ney function apart from regulation of mineral metabolism has
been described. VDR polymorphisms have been associated
with differences in proximal tubule citrate handling, specif-
ically, the presence of the bb genotype of BsmI and the TT
genotype of TaqI are associated with hypocitraturia in stone
formers when compared to nonstone formers or normocitra-
turic stone formers(460,642,723). Great interest has emerged
from studies showing that vitamin D can have an antipro-
teinuric effect (186, 404, 609, 706), even in patients already
on inhibitors of the renin angiotensin aldosterone system.
Glomerular epithelial cells, podocytes, expresses VDR and
activation of VDR increases podocyte synthesis and expres-
sion of nephrin, a key slit-membrane protein important for the
integrity of the glomerular filtration apparatus (396,609,668).
In diabetic animals or in podocytes exposed to high glucose,
stimulation or overexpression of the VDR blocked podocyte
apoptosis through inhibition of ERK1/2 and caspase 3 acti-
vation and blocked activation of the renin angiotensin axis
(669).

Vasculature Several studies support a role for activated
vitamin D in maintenance of vascular health (14, 25, 253).
VDR deficient mice fed a rescue diet to maintain mineral
homeostasis show increased pulse pressure, stiffness of their
blood vessels, and a higher heart weight/body weight ratio.
Interestingly, blood pressure was not affected. The investiga-
tors demonstrated deficient nitric oxide synthesis in endothe-
lial cells (480). Vitamin D blocks vascular plaque formation
by inhibiting the ability of macrophages to take up choles-
terol (204, 682). Interestingly, both vitamin D deficiency and
excess reportedly accelerate atherosclerotic plaque formation
(727). VDR deficiency enhances macrophage production of
renin and angiotensin, important mediators of atherosclero-
sis (25, 144, 221, 263, 395, 594). Vitamin D deficiency has
also been implicated in the development of preeclampsia
(401, 408, 547).

Skin In addition to being a major contributor to circulating
vitamin D, the skin is another site of significant autocrine
vitamin D production, active 1,25 vitamin D and a vari-
ety of unique vitamin D metabolites, some of which have
demonstrable activities (599-602,638). Epidermal CYP27B1
is required during differentiation of keratinocytes and is asso-
ciated with the expression of important differentiation mark-
ers such as involucrin (84-86). However, the expression of

CYP27B1, the VDR, and other components of vitamin D
metabolism decrease as differentiation is completed. Interest-
ingly, a variety of skin cancers show increased expression of
the vitamin D metabolic pathway and in vitro studies sug-
gest that active vitamin D may be a useful adjunctive ther-
apy by virtue of its prodifferentiation, antiproliferative effects
(320, 391-393, 453, 538-541, 600, 622). Vitamin D signaling
may also play a role in the development and maintenance of
the barrier function of the epithelium, through maintenance of
the production of lamellar bodies and antimicrobial peptides
(15, 502, 550, 566).

VDR null mice and humans with VDR mutations suffer
from alopecia (191, 218, 421). The mechanism is thought to
be the loss of dermal stem cells responsible for hair follicle
recycling. However, vitamin D deficiency is not accompa-
nied by alopecia. This apparent contradiction suggests alter-
native roles for the VDR and in fact the mechanism for this
phenomenon appears to be a vitamin D independent inter-
action of VDR with the cWnt and hedgehog target genes
(157, 400, 405, 406, 627).

Pancreas Vitamin D has multiple effects on the pancre-
atic beta cells that express VDR including protection against
cytokine damage (254, 276, 548, 694-696), suppression of
the islet renin-angiotensin system (143), and regulation of
genes encoding proteins that regulate including neuropep-
tide production, membrane trafficking, tight junction forma-
tion, and ion channels (147, 695). Vitamin D increases beta
cell insulin production (717). Vitamin D may also indirectly
protect islet cell function through provision of adequate cal-
cium, as calcium deficiency has been demonstrated in some
animal models to accelerate the development of diabetes
(197, 529, 535, 610).

Immune system Vitamin D has well-established
immunomodulatory capabilities (40, 119, 120, 287, 296, 297).
Macrophages are capable of producing significant quantities
of active vitamin D from 25-hydroxy vitamin D, described by
Adams et al in 1983 in studies utilizing alveolar macrophages
from patients with sarcoidosis (7, 8). This phenomenon
explains the occurrence of hypercalcemia in patients with
sarcoidosis; however, the more physiologically relevant
consequence of vitamin D production by macrophages is the
significant contribution to the antibacterial activity against
certain organisms as first reported by Rook in 1986 (553).
Vitamin D enhances the production of cathelicidin, which
in turn is responsible for the elaboration of antimicrobial
peptides (261, 502, 566, 666, 674). VDR is present on
activated but not quiescent lymphocytes and vitamin D
exerts an antiproliferative effect on these cells. In addition,
vitamin D blunts immunoglobulin and cytokine production
by T cells. It is these immunomodulatory properties of
vitamin D that have been invoked to explain the effects
of vitamin D and/or vitamin D status on autoimmune
disorders (2, 120, 224, 225, 397, 493, 494, 551, 605, 619, 705),
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progression of renal disease (263, 404), response to infec-
tions (268, 349, 711), obesity (661), and some cancers
(55, 84, 240, 634).

Interaction with other hormones
Effect on other hormones involved in mineral
metabolism

Parathyroid gland cells express VDR (52,151,180,318). Stim-
ulation of VDR in this tissue decreases PTH synthesis and
secretion, inhibits PTH cell proliferation, and an increases
the expression of the calcium sensing receptor. These diverse
functions all contribute to a decrease in circulating PTH, thus
preventing overcorrection of low calcium levels, the major
stimulus to PTH secretion. The PTH gene expresses a VDRE
which, when occupied by the VDR-RXR complex, exerts
an inhibitory effect on PTH gene transcription, at least in
part by displacing another regulatory factor, nuclear factor-Y.
Notably, parathyroid gland cells express CYP27B1, thus are
capable of generating active vitamin D from circulating vita-
min D (82, 151, 241). How circulating and locally produced
vitamin D interact to regulate PTH synthesis is not entirely
clear; however, the secondary hyperparathyroidism seen with
mild vitamin D deficiency may be explained by a deficiency
in the autocrine production of active vitamin D (341). PTH,
on the other hand, leads to enhanced renal production of
1,25 vitamin D through increasing Cyp27B1 expression and
decreasing Cyp24 expression.

Vitamin D stimulates production of FGF23 from bone
(52, 331, 363), while it represses the production of PHEX
(phosphate-regulating endopeptidase homology, X-linked),
an enzyme linked to the degradation and inactivation of
FGF23. As would be predicted from both of these actions,
treatment with 1,25 vitamin D increases serum FGF23,
leading to phosphaturia. Bone cells themselves express
CYP27B1; thus, vitamin D regulation of FGF23 production
likely results from both circulating and autocrine vita-
min D(622, 623). Animals lacking expression of the VDR
have suppressed FGF23 levels, even when serum phosphate
is corrected by diet, suggesting that vitamin D-stimulated
FGF23 is, in fact, mediated through VDR (712). Interestingly,
chondrocyte expression of VDR appears to play a key role
as chondrocyte-specific VDR deletion results in reduced
osteoblast FGF23 expression and enhanced renal 1,25 vita-
min D production (438). FGF23 decreases 1,25 vitamin D
expression through increasing the renal expression of cyp24,
leading to enhanced vitamin D inactivation, and decreased
renal expression of cyp27b1, leading to decreased vitamin D
production (41). Animals lacking expression of FGF23
have remarkably elevated vitamin D levels associated with
elevated cyp27b1 activity (295,587,596,714). FGF23 inhibits
vitamin D activation in nonrenal tissues including parathy-
roid gland (37, 153, 297, 370, 485, 536, 612), monocytes, and
placenta.

Effect on hormones not specifically involved in
regulation of mineral metabolism

Vitamin D interacts with the renin-angiotensin-aldosterone
system at many levels (10, 76, 122, 144). Animals lacking
expression of VDR or CYP27B1 show increased renin activ-
ity associated with the development of cardiac hypertrophy
and hypertension, which can be ameliorated by administra-
tion of angiotensin converting enzyme inhibitors. Some, but
not all, human studies have demonstrated an inverse relation-
ship between vitamin D levels and renin levels, suggesting a
role for vitamin D deficiency in the development of at least
some forms of hypertension through activation of the renin
angiotensin system (229,230,647). 1,25 Vitamin D suppresses
ren-1c gene transcription in in vitro studies through interaction
at a cAMP response element in the promoter region (365,715).

Pathophysiology
Vitamin D deficiency

Vitamin D deficiency’s major clinical feature is the result
of abnormal mineralization of osteoid in bone. In children,
vitamin D deficiency presents as the clinical syndrome of
rickets, characterized by decreased bone mineralization and
faulty bone development as manifested by significant skeletal
deformities including bowing of the legs, knock-knee defor-
mity, flaring of the ends of the ribs (rachitic rosary), pigeon
chest malformation, bossing of the skull, and kyphoscoliosis.
Adults who develop vitamin D deficiency present a less dra-
matic clinical picture characterized predominantly by bone
pain, low bone mineral density, and fractures. Frank hypocal-
cemia is infrequently seen, as these individuals will develop
secondary hyperparathyroidism in response to the decrease
in intestinal calcium absorption; however, hypophosphatemia
due to the hyperparathyroidism can be seen. Lesser degrees of
vitamin D deficiency, also sometimes termed vitamin D insuf-
ficiency, may be associated with no symptoms whatsoever,
though decreased bone mass and secondary hyperparathy-
roidism of a mild degree are often seen.

Vitamin D deficiency has been implicated in a host of
disorders including autoimmune diseases such as asthma and
multiple sclerosis; cancers such as breast, colon, skin, and
prostate cancer; hypertension; diabetes mellitus; and infec-
tions such as tuberculosis (see aforementioned Immune system
section). These associations have been demonstrated through
epidemiologic studies and have been supported experimen-
tally to some extent. For example, breast and colon cancer
cells in some individuals and in some experimental condi-
tions express high levels of VDR (55,157,193,240,375,392,
506,580). Treatment with vitamin D suppresses proliferation.
The mechanisms for suppression of proliferation that have
been described are variable and may be tissue specific. Ker-
atinocytes derived from animals lacking VDR show a higher
expression of several oncogenes and a lower expression of
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several tumor suppressor genes. Jiang and Bikle (322) have
shown parallel changes in the expression of long noncoding
RNAs for these genes, suggesting that vitamin D may play a
critical role in regulating tumor formation through this novel
genetic mechanism. Other studies have demonstrated inter-
action of vitamin D signaling pathways with the Wnt signal-
ing pathway, MAPKinase signaling pathways, and hedgehog
signaling (199,200,234,264,451,483,492,506,509,627,628,
634). Vitamin D deficiency has been associated with the devel-
opment of hypertension (272, 374, 378). Vitamin D-deficient
animals show higher circulating angiotensin II levels and
hypertension (394, 648). Vitamin D deficiency has also been
associated with endothelial dysfunction, progression of kid-
ney disease, and hyperparathyroidism, all of which may con-
tribute toward the development of hypertension and cardiovas-
cular disease (25,76,137,263,620). Despite a wealth of studies
using either calcitriol or other vitamin D analogs, consistent
definitive studies demonstrating that vitamin D therapy can
either prevent or treat any of these chronic diseases are lack-
ing (54, 94, 95, 152, 186, 198, 288, 356, 549, 579). The role of
vitamin D in extra-skeletal chronic disease pathogenesis is an
area of intense interest and research.

Vitamin D deficiency may occur due to poor dietary vita-
min D intake, malabsorption syndromes, or suboptimal skin
conversion due to lack of sun exposure. Specific ethnic groups
exhibit lower vitamin D levels, particularly those of African
origin (499,508,575,611). Patients with nephrotic syndrome
may become vitamin D deficient due to renal wasting of
DBP (50). Certain medications such as antiepileptics cause
enhanced vitamin D degradation, and therefore may result in
clinical vitamin D deficiency (445, 689). Relative vitamin D
deficiency can be seen in syndromes of elevated FGF23 such
as X-linked or autosomal dominant hypophosphatemic rick-
ets (220, 683). Vitamin D insufficiency can be seen in up
to 70% of certain populations of individuals, such as the
elderly, in particular those residing in nursing home facili-
ties (518,603,636). True vitamin D deficiency occurs far less
frequently.

Vitamin D excess

Excessive vitamin D levels and activity are manifested
predominantly as hypercalcemia and hypercalciuria, with
symptoms referable to these complications such as altered
mental status, polyuria due to nephrogenic diabetes insipidus,
nausea and constipation, kidney stones, and kidney failure
(145, 662).

Vitamin D intoxication can occur with excessive inges-
tion of vitamin D supplements, uncommonly with over the
counter cholecalciferol but relatively commonly with pre-
scription active vitamin D supplements such as calcitriol.
Granulomatous disorders may also be accompanied by high
vitamin D levels, which will present as hypercalcemia. The
most common is sarcoidosis, a poorly understood autoim-
mune disorder with a myriad of clinical manifestations

including lymphadenopathy, pulmonary nodules and fibro-
sis, skin lesions, arthritis, neuropathy, and interstitial kidney
disease (649). The characteristic lesion of the disease is non-
caseating granulomas. The source of the high vitamin D levels
is the epithelioid cells of macrophage origin lining the gran-
ulomas. Treatment with glucocorticosteroids is highly effec-
tive in suppressing the vitamin D production and ameliorating
the hypercalcemia. High vitamin D levels are seen consider-
ably less frequently in other granulomatous diseases such as
tuberculosis (6, 59, 297, 649, 716). Primary phosphate wast-
ing syndromes such as hereditary hypophosphatemic rick-
ets with hypercalciuria, caused by mutations in one of the
sodium phosphate cotransporters responsible for renal phos-
phate reabsorption, is associated with high vitamin D levels
likely due to suppressed FGF23 levels (1, 56, 67, 181, 324).
Mutations in Cyp24 have also been identified in individuals
with hypercalcemia and high 1,25 vitamin D (319).

Pharmacology
Vitamin D adequacy is assessed by the measurement of serum
25-hydroxyvitamin D. The optimal level remains a source
of controversy. Recent Institute of Medicine recommenda-
tions, based on an extensive review of multiple studies, sug-
gest that 20 ng/mL is adequate for healthy adults and would
not constitute an indication for supplement (22). Ingestion of
600 IU/day of cholecalciferol has been suggested as the min-
imum daily dietary requirement for maintenance of adequate
vitamin D stores for those aged 71 or less, and 800 IU for those
above 71 years of age. The upper limit of ingestion is 4000 IU
daily. The major sources of dietary vitamin D, either fish oils
such as cod liver oil, sardines or vitamin D fortified foods gen-
erally are not predictable sources of the daily requirements, as
they are not eaten by many people. Twenty minutes of sunlight
exposure three times per week has also been shown to result
in production of adequate vitamin D in Caucasians. However,
darker skinned peoples, older individuals, and those living
at high latitudes may not be able to achieve adequate conver-
sion through sunlight exposure. To ensure adequate vitamin D
homeostasis, the more recent recommendations for adults sug-
gest 1000 to 2000 IU/day of cholecalciferol (90). Alternative
regimens using high dose intermittent therapy are also com-
monly used, for example, ergocalciferol 50,000 IU weekly
or monthly. While some investigators feel that both forms of
vitamin D, cholecalciferol or ergocalciferol, are equally effi-
cacious, others suggest that cholecalciferol may be superior
(257). Additionally, as indicated previously, there is evidence
that high dose, bolus therapy may be less effective due to
rapid tissue uptake and sequestration. Taken as prescribed,
these compounds rarely produce hypercalcemia.

For individuals with kidney failure who are unable to acti-
vate 25-hydroxy vitamin D, an active form of vitamin D can
be prescribed. Calcitriol, paracalcitol, and doxercalciferol are
the three currently available formulations. Calcitriol is identi-
cal to native 1,25 vitamin D. Paracalcitol and doxercalciferol
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are modified analogs of ergocalciferol(430). Calcitriol and
paracalcitol are themselves active compounds while doxer-
calciferol requires 25-hydroxylation in the liver to become
activated (53,439). The risk of hypercalcemia is much higher
with the use of any of these compounds; therefore, patients
on these medications should be monitored closely.

Conclusions
Vitamin D, while referred to in the singular, is in
fact a family of secosteroid compounds. While 1,25-
dihydroxycholecalciferol is recognized as the active circu-
lating and autocrine form of the hormone, it is likely that
at least some of the other metabolites may exert unrecog-
nized effects. Vitamin D has widespread effects in a variety
of organ systems where for the most part the VDR coexists
with the cell machinery to manufacture and metabolize active
vitamin D from inactive precursors. These intrinsic mecha-
nisms are carefully regulated such that vitamin D itself, vita-
min D precursors, and other hormones may activate synthesis
of vitamin D, but simultaneously, mechanisms for limiting
active hormone production are activated. In addition to its
well-known function as a regulator of mineral metabolism,
vitamin D also plays a critical role in skin function, immune
regulation, and vascular health. Thus, abnormalities in vita-
min D metabolism have been implicated in most if not all
chronic disorders including diabetes, hypertension, cancer,
and chronic kidney disease as well as a multitude of autoim-
mune disorders such as multiple sclerosis. Major gaps in our
understanding of vitamin D metabolism and effects include
the interacting and/or exclusive roles of circulating versus
autocrine vitamin D, determinants of circulating levels of
vitamin D precursors and metabolites, the genomic versus the
nongenomic actions of vitamin D, the roles of the multiple
vitamin D metabolites, and, of course, the role of vitamin D
dysregulation in the genesis and maintenance of the wide
variety of pathologies where it has been implicated.
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