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A B S T R A C T

Climate change and land-use change are the most powerful drivers for the invasion of alien species. To un-
derstand the integrated effects of these two drivers on pest invasion risk in the future, this study assessed how
they impact the invasion risk of Thrips palmi Karny, which is the most serious invasive species in the Korean
peninsula. The potential distribution of T. palmi was projected with a MaxEnt model for current and future
climate change scenarios (RCP 4.5 and 8.5) based on occurrence records. The potential distribution extends to
the north over time, except the eastern high mountainous area, for both RCPs in 2075. The MaxEnt outputs were
filtered with agricultural area using data from three land-use change scenarios derived from the Shared Socio-
economic Pathways (SSPs), because T. palmi populations can only be sustained in agricultural areas. The po-
tential risk of T. palmi, based on the potential distribution probability in the future agricultural area, increased
over time under all RCPs-SSPs combinations. The total area of T. palmi occurrence increased under RCPs-SSP1
and -SSP2 but decreased under RCPs-SSP3, due to agricultural areas being converted to urban areas. In con-
clusion, based on future climate change scenarios, T. palmi could be distributed throughout the Korean peninsula
in the future. The invasion risk in agricultural areas will increase substantially; thus, intensive control measures
for T. palmi are required in the future. Our research suggests that using both climate change and land-use change
in pest risk mapping study can provide informative data for management strategy.

Introduction

Invasive species are a well-recognized component of global en-
vironmental change (Hellmann et al., 2008; Bellard et al., 2013), and
may be favored by climate change. Especially, many invasive insect
species are pests for various fields and may be parasites or vectors of
diseases; however, their economic, social, and environmental impacts
are less known, compared to the impacts of introduced plant species.
Yet, it is clear that the ecological changes caused by invasive insects
influence resources and the functioning of ecosystems in regions where
they are introduced, resulting in economic losses (Cook et al., 2007).

Because invasive insect species are able to sustain their populations
over generations in introduced areas, they have the potential to disperse
over the new territory (Andersen et al., 2004). Therefore, preemptive
identification of accessible and suitable areas is required to establish
management strategies to identify and mitigate future invasion risks. To
prevent and manage future invasion risks in agricultural systems, spatio-

temporal distribution assessments of invasive insect pests in introduced
environments must be performed. Various pest risk mapping techniques
have been developed to identify and geographically visualize areas at
risk of invasion (Venette et al., 2010; Jiménez-Valverde et al., 2011).
Species distribution models (SDMs), also known as ecological niche
models, are often used to estimate the potential invasion risk of invasive
species under climate change (Venette et al., 2010; Jiménez-Valverde
et al., 2011). Maximum entropy (MaxEnt) is one of the most popular
correlative niche modeling method that has been widely used to predict
potential distribution (Elith et al., 2011). The MaxEnt model uses a
machine learning algorithm, and only requires species' presence only
occurrence data and environmental variables to predict the geographic
distribution of the target species. The MaxEnt model is superior to other
algorithms in various comparative studies that showed greater statistical
performance (Elith et al., 2006). Also, the MaxEnt model can successively
predict distributions of target species from small numbers of occurrence
records (Pearson et al., 2007).
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Climate, especially temperature, has a strong and direct influence
on insect development, reproduction, and survival (Bale et al., 2002).
Climate change is expected to mediate the range expansion/contraction
of insects, affect phenology, and alter the rates of growth and devel-
opment. Therefore, to assess the future invasion risk of insect pests,
climate change scenarios are considered as one of the most important
future scenarios in risk mapping studies (Jeschke and Strayer, 2008).
Representative Concentration Pathways (RCPs) are the latest emission
scenarios that simulate four pathways developed for climate change
modeling experiments (Van Vuuren et al., 2011). However, distribu-
tions also depend on factors other than climate, such as land-cover and
land-use, as colonization performance and dispersal success vary with
the landscape structures (With, 2002; Stanton et al., 2012). Even if the
climatic conditions for a certain space are suitable, the invasion risk
might not be valid when non-climatic environmental factors do not
meet their requirements. Land-use change is the most representative
dynamic and non-climatic environmental variable, and should be in-
cluded to improve SDM performance (Pearson et al., 2004). Land-use
change is typically used to assess the future anthropogenic impact on
natural ecosystems or natural resources (Reidsma et al., 2006). From
both logical and technical perspectives, modeling future invasion risk
without considering land-use change could result in faulty predictions.

Applying land-use change to pest risk maps has the advantage of
including human activity, which alters landscape structure and land-use
simultaneously (Ficetola et al., 2010). Moreover, land-use change and
variability are also critical drivers of climate change (Kalnay and Cai,
2003). The Shared Socioeconomic Pathways (SSPs) are socioeconomic
pathways that are described with two different axes, i.e., the mitigation
and adaptation challenge of climate change (O'Neill et al., 2014). Thus,
land-use change scenarios derived from SSPs could be implemented in
insect pest risk maps, because agricultural pests mainly sustain their
populations in the agricultural areas, and disperse to agricultural areas
for future establishment.

To demonstrate the combined effect of climate change and land-use
change on future invasion risk of invasive insect pest species, Thrips
palmi Karny was selected as the target insect species in this study. This
species is a polyphagous pest, that has devastating effects on
Cucurbitaceae and Solanaceae crop species by causing both direct da-
mage (to foliage) and indirect damage (by transmitting plant virus
pathogens) (Jones, 2005). T. palmi originates from Sumatra and Java in
Indonesia, but its geographical range has expanded to Southeast Asia,
East Asia, Australia, North America, South America, and West Africa
(Palmer, 1992; CABI/EPPO, 1998; Cannon et al., 2007; CABI, 2016).
This species is considered to be the most destructive invasive species,
after its first observation in the 1970s in Japan (NIES, 2017). In Korea,
T. palmi was first reported in 1993 on Jeju Island, located at the
southernmost of the Korean peninsula (Ahn et al., 1994). The current
distribution of this species on the mainland is limited to the southern
coastal area (Hong et al., 1998). Park et al. (2014) simulated the po-
tential distribution of T. palmi in Korea using the CLIMEX system under
an RCP 8.5 climate change scenario and reported that the marginal
future geographic range of this species will continue to expand north-
ward and will be distributed throughout the Korean peninsula in 2100.
The CLIMEX system is based on mechanistic niche modeling approach
to estimate the ecoclimatic suitability and biophysical limitations of
target species using various life history parameters (Sutherst et al.,
2007). Because inherent differences in each modeling algorithms result
in different projections, there are many case studies of the CLIMEX and
the MaxEnt models used together to predict the potential distribution of
insect pest species (Kumar et al., 2015; Wu et al., 2018).

This study aimed to: 1) model the potential distribution of T. palmi
in the Korean peninsula using MaxEnt under two climate change sce-
narios (RCP 4.5 and RCP 8.5), 2) project the distribution of this species
in the agricultural area under three future land-use change scenarios
(SSP1, SSP2, and SSP3), and 3) calculate and compare the potential
invasion risks of this species for all combinations of the RCPs-SSPs

scenarios. Our results are expected to demonstrate the importance of
considering both climate change and land-use change when predicting
future invasion risks of insect pests.

Materials and methods

Climatic and geographical conditions of the Korean peninsula

This study covers the southern part of the Korean peninsula, which
is currently experiencing abrupt changes to climate conditions, with
particularly unbalanced patterns of dry and wet seasons. Annual mean
temperature and precipitation from 1981 to 2010 was 6.6–16.6 °C and
825.6–2007.3mm, respectively (KMA, 2012). When comparing climate
data from the last 30 years before 2000 (from 1970 to 2000) with the
10 years after 2000 (from 2001 to 2010), the annual mean, maximum,
and minimum temperatures have increased by at least 0.5 °C (Lee et al.,
2011). The annual precipitation from 1906 to 2002 also increased by
259mm (Chung et al., 2004).

The land surface characteristics of the Korean peninsula are very
distinctive, with mountainous areas covering about 70% of the total
area, with heterogeneous vegetation components (Baik and Choi,
2015). The major land-use/land-cover classes are mixed forest and
cropland area. The western and southern regions have relatively flat
terrain and are mainly agricultural areas, mosaics of rice paddy and
vegetable field. The eastern region is formed of mountainous terrain,
with steep slopes and mixed forest cover, thus agricultural activities in
this region are very limited.

T. palmi occurrence data in Korea

The occurrence data of T. palmi in Korea were collected from na-
tional scale monitoring reports conducted in 1995 and 1996 (Hong
et al., 1998). Unpublished observations conducted in 1997 were also
included in this study (Fig. 1A). After collecting all occurrence records,
repeated records were rarefied into 5 km distances to reduce spatial
autocorrelation, and a total of 53 occurrence records were included in
the MaxEnt model.

Climate data

To model and predict correlative SDMs, the same list of environ-
mental variables is needed in each target year. Current climate condi-
tions (1950–2000) were represented by 19 bioclimatic variables ac-
quired from the WORLDCLIM database v1.4 (Hijmans et al., 2005;
www.worldclim.org). These data are available in ≈1 km2 resolution.
The WORLDCLIM dataset uses altitude, temperature, and precipitation
to derive monthly, quarterly, and annual climate indices to represent
trends (e.g., mean diurnal temperature range), seasonalities (e.g., tem-
perature seasonality), and extremes (e.g., maximum temperature of the
warmest month) that are biologically relevant. For future climate data,
two different RCP climate change scenarios, HadGEM3 RCP 4.5 and
RCP 8.5, were obtained from the Korea Metrological Administration
(KMA) website (www.kma.go.kr). RCP 4.5 is a moderate climate
change scenario that radiative forcing increase to 4.5W/m2 by 2100.
RCP 8.5 assumes the most dramatic increase in carbon dioxide emission
that radiative forcing increase to 8.5W/m2 by 2100. All annual climate
datasets in RCP 4.5 and 8.5 were transformed to 19 bioclimatic vari-
ables using ‘biovars’ function in R ‘dismo’ package (Hijmans et al.,
2017).

Although the 19 bioclimatic variables have diverse and distinctive
characteristics, many variables could be highly correlated because they
are derived from just three meteorological elements, i.e., precipitation,
maximum temperature, and minimum temperature (Table 1S). To
avoid multicollinearity in the model, variables that were highly corre-
lated with each other (i.e., showed more than |0.8| Pearson's correlation
coefficient) were removed using the ‘Remove Highly Correlated
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Variables’ tool in SDM Toolbox v1.1c (Brown, 2014). Seven bioclimatic
variables were selected from the WORLDCLIM database and were used
in the model system (Table 1). Each selected bioclimatic variable was
averaged over 10 years for each target year for the Korean peninsula;
namely, 2030 (2026–2035) and 2075 (2071–2080).

MaxEnt analysis

The MaxEnt model was used to analyze and predict the geographic
distribution of T. palmi (3.3.3 k stand-alone version software; Phillips
et al., 2006) for current and future climates. The MaxEnt is the most
appropriate tool for our analysis because it requires presence-only oc-
currence data. This model is also the most capable modeling method in
producing useful results with a small sample size (Pearson et al., 2007).

Seven bioclimatic variables selected in this study (Table 1) were
incorporated into the MaxEnt model, along with the T. palmi occurrence
data, as projection layers for the current climate, 2030, and 2075.
MaxEnt requires the user to specify a background for the study area
from which the algorithm will select random points that are assumed as
‘pseudo-absences’. Because T. palmi was intensively observed over the
whole nation, we set MaxEnt to select 10,000 random background
points from the entire Korean peninsula. The model classifies areas that
have conditions most similar to the current known occurrences of the
target species and ranks them from 0 (unsuitable or most dissimilar) to
1 (most suitable or most similar).

MaxEnt generates a set of feature classes using environmental
variables. In this study, the auto feature function and logistic output
options were set as defaults. The model uses a regularization multiplier

Fig. 1. Occurrence data of Thrips palmi in the Korean peninsula using MaxEnt modeling (A), the predicted potential distribution under current climate conditions (B),
and Jackknife test results of the environmental variables used in this study (C). The bars with deep blue, teal, and red color represent the relative information of each
variable when the model was created using each variable in isolation, the remaining variables with an exclusion, and all variables, respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Climate variables and their relative contribution in the MaxEnt model.

Code Bioclimatic variable Contribution (%)

BIO2 Mean Diurnal Range (Mean of monthly (Tmax-Tmin)) 0.1
BIO3 Isothermality (Mean Diurnal Range/Temperature Annual Range) 9.3
BIO5 Maximum Temperature of Warmest Month 32.3
BIO6 Minimum Temperature of Coldest Month 50.2
BIO12 Annual Precipitation 4.5
BIO13 Precipitation of Wettest Month 0.4
BIO14 Precipitation of Driest Month 3.1
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(RM) to reduce the number of parameters and, thus, automatically
controls model complexity (Phillips and Dudík, 2008; Elith et al.,
2011). The default RM value is 1; a smaller value of RM (≤1) may
potentially overfit the model and produce a more restricted distribu-
tion, whereas a higher value (> 1) would result in simpler models with
less discriminating power and broader species potential distribution
(Phillips et al., 2006).

To evaluate the final MaxEnt model with seven variables compared
to random expectations, the AUC (Area Under receiver operating
characteristic Curve) was calculated. AUC values vary from 0 to 1; 0.5
shows model performance not better than random, values< 0.5 worse
than random; 0.5–0.7 indicate poor performance; 0.7–0.9 indicate

reasonable or moderate performance; and 0.9 indicates high perfor-
mance (Swets, 1988). The 10-fold cross-validation (n=53) in MaxEnt
with 5000 iterations was used, along with the averaged test AUC values
across the 10 replicated being reported for each target year. The pre-
sence was classified using the 10th percentile training presence logistic
threshold (= 0.21) produced by the MaxEnt model (Table 2S).

The final MaxEnt model was also validated using independent da-
tasets observed in Japan (Fig. 2). Occurrence records of T. palmi in
Japan during 1978–1994 were obtained from the published literature
and web data (Kawai, 2001; Murai, 2002; NIES, 2017). Because no
exact sampling locations were available for these monitoring data, oc-
currences were summarized to the prefecture levels (n=41). The

Fig. 2. Predicted potential distribution of Thrips palmi at the prefecture level in Japan using the MaxEnt model. The hatched area denotes the prefectures where T.
palmi was observed during 1978–1994 (A). The mean values for the probability of distribution of T. palmi in the agricultural areas of each prefecture using the final
MaxEnt model (B). The prefectures where T. palmi occurrence was reported (according to Kawai, 2001; Murai, 2002; NIES, 2017) are plotted with red bars. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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weather data observed at each meteorological station for 17 years were
obtained from the Japan Meteorological Agency (JMA) and were in-
terpolated using the inverse distance weighting method (IDW) to
transform point-based observation data to 1 km2 scale ASCII format
raster data with ArcGIS v10 software (ESRI, 2011). Using the rasterized
climate data, bioclimatic variables were also produced using the same
methodology to produce bioclimatic variables in Korea. Each biocli-
matic variable was averaged over 17 years (1978–1994). After the
predicting the distributions of T. palmi in Japan, agricultural areas
where this species was expected to be distributed were extracted with
The Global Land Cover for the Year 2000 (Bartholomé and Belward,
2005) dataset, and the mean presence threshold of T. palmi was cal-
culated.

Land-use change with the Shared Socio-economic Pathways (SSPs) scenario

Three SSPs for the Korean peninsula have been developed for future
socioeconomic developments, as they might unfold in the absence of
explicit additional policies and measures to limit climate forcing or to
enhance adaptive capacities (Kim, 2016). These SSPs represent low
(SSP1), medium (SSP2), and high (SSP3) adaptation and mitigation
challenges. The four projected components in the scenarios are: 1)

demographic projection and preference for urban areas, 2) economic
growth, 3) land-use change, and 4) energy consumption. Under SSP1,
sustainable development successfully progresses. Population decline
eases, urbanization is suppressed, successful climate change adaptation
derives economic growth, and energy is consumed efficiently. In con-
trast, dramatically decreased and old future population, poor economic
growth, indiscreet urbanization, and inefficient energy consumption are
predicted under SSP3. SSP2 is a moderate scenario of SSP1 and SSP3.

Changes in land-use were implemented through cellular automata
modeling based on SSP scenarios (Kim, 2016). Future land-use change
maps for each SSP were resampled to the 1 km2 scale to match the
spatial extent and resolution of the climate data. There were four
classes of land-use in the SSPs: 1) urban, 2) agriculture, 3) forest, and 4)
other.

Integrating the MaxEnt outputs to land-use change

The agricultural area for each land-use change from the three sce-
narios (SSP1, SSP2, and SSP3) was overlaid on each predicted dis-
tribution map of T. palmi under two climate change scenarios (RCP 4.5
and 8.5) in 2030 and 2075. Although T. palmi has a wide host range, the
known host plants are mainly agricultural crops. Therefore, it was

Fig. 3. The predicted potential distribution of Thrips palmi in Korea in 2030 and 2075 under RCP 4.5 and RCP 8.5 scenarios.
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assumed that T. palmi is only present in the agricultural area (CABI,
2016). Using these overlaid datasets, two indices were calculated: total
risk of occurrence (TRO) and risk intensity of occurrence (RIO). The
TRO was defined as the projected agricultural area with a 10th per-
centile training presence logistic threshold value> 0.21 (see Table 2S).
The RIO was the mean value of the potential distribution probability in
the projected agricultural area.

Results

Climate variable correlation and final MaxEnt model

Out of 19 bioclimatic variables, seven were not correlated
(|r| < 0.80) (Table 1) and were used in the final MaxEnt model. The
average AUC value in the training was 0.93, indicating the MaxEnt
algorithm performed well at describing the occurrence of T. palmi in the
Korean peninsula (Fig. 1B, and Table 2S). The average test AUC value
was also high (0.92), but it was slightly smaller than the training AUC.

The simulation showed that the minimum temperature of the
coldest month (BIO6) contributed the most to the model (50.2%), fol-
lowed by the maximum temperatures of the warmest month (BIO5)
(32.3%) (Table 1). Isothermality (BIO3), annual precipitation (BIO12),
and precipitation of the driest month (BIO14) contributed 9.3%, 4.5%,
and 3.1% to the model, respectively (Table 1). Model response to the
top predictor variable (i.e., BIO6) indicated that the probability of T.
palmi presence in a given cell was> 50% when winter temperature is
suitable for overwintering at a given area. Jackknife output confirmed
the importance of BIO6 to the final model (i.e., higher training gain and
test AUC value; Table 2S). BIO5 was the most unique variable to explain
the distribution of T. palmi because ‘the regularized training gain’ which
is the quantity of information, dropped the most without it (Fig. 1C).

The final MaxEnt model was also validated with independent oc-
currence data collected in Japan, indicating that the final MaxEnt ex-
plained the current occurrence records very well in Japan (Fig. 2A). T.
palmi occurred in 41 out of 47 prefectures during 1978–1994. Of the
prefectures in which T. palmi was observed, Fukushima Prefecture had
the lowest model prediction value of 0.25 (Fig. 2B). This value was
comparable with the value (0.21) observed in the final MaxEnt model
estimated using the 10% training presence logistic threshold, which is
one of the commonly used methods in MaxEnt studies to produce
presence/absence data from logistic outputs. When the training
threshold was applied to the records in Japan, the final MaxEnt model
prediction was valid in all prefectures where T. palmi was observed,
except for Yamagata Prefecture where the predicted potential dis-
tribution was 0.24. These results demonstrate that the final MaxEnt
model performed well, and correctly predicted most currently known
occurrences of T. palmi in both in the Korean peninsula and Japan.

Current and future distribution of T. palmi under RCP climate change
scenarios

The projected potential distribution conformed well to the current
known distribution of T. palmi in the Korean peninsula (Fig. 1B). No
significant commission errors (false presence) in the current prediction
were observed. The main potential distribution was observed in the
southern area, and the northernmost distribution was approximately at
36oN. Given that T. palmi is not distributed in the western coastal plains
area, physical barriers, such as mountains, are not the greatest limita-
tion of the range limit. The highest predicted distribution probability
occurred in the lowlands of Jeju Island (0.92).

In the future prediction, the potential distribution extended to the
north over time, with T. palmi being distributed throughout the Korean
peninsula, except the eastern high mountainous area, for both RCP 4.5
and RCP 8.5 scenarios (Fig. 3). The average probability of distribution
value under the current climate was 0.10, but this value increased to

0.84 for RCP 4.5 and 0.95 for RCP 8.5 in 2075.

Generating the risk map by integrating MaxEnt and land-use change models

After overlaying land-use changes with the predicted potential dis-
tribution of T. palmi, total risk of occurrence (TRO) and risk intensity of
occurrence (RIO) were calculated for each combination of RCP-SSP
scenario sets (Table 2). The agricultural area in both SSP1 and SSP2 did
not change from 2030 to 2075, but the area in the SSP1 was slightly
larger than that in SSP2 (18.18% and 17.8%, respectively). However, in
SSP3, the total agricultural area in the Korean peninsula decreased
gradually from 14.35% in 2030 to 13.45% in 2075 (Table 2; Figs. 1S
and 2S). This decline was attributed to the large agricultural area lo-
cated in the southwestern part being transformed into an urban area in
SSP3 (Fig. 4).

The TRO gradually increased over time in SSP1 and SSP2 for the
two climate scenarios (Table 2). When accounting for the fact that the
agricultural area does not change in all combinations, the invasion risk
of T. palmi constantly increased. The transformed TRO value to per-
centile scale (TRO%=agricultural area of T. palmi occupied/total
agricultural area x 100) clearly showed this trend. For all SSP and RCP
combinations, the TRO% in 2030 was at least 94%, with the value in-
creasing to> 99% in 2075 (Table 2). RIO also changed in a similar way
to that observed for TRO, from>0.79 in 2035 to> 0.98 in 2075
(Table 2). These results indicate that nearly the entire agricultural area
will become more favorable for invasion by T. palmi and that the in-
tensity of occurrence will increase as climate change progresses.

Table 2
Changes in agricultural areas under two climate change scenarios (RCP4.5 and
8.5) and three socioeconomic scenarios (SSP1, SSP2, and SSP3). Total area of
occurrence (TRO) and risk intensity of occurrence (RIO) of Thrips palmi were
calculated based on the agricultural area.

SSP RCP Year Agricultural area (km2) TRO (km2) RIO

SSP1 RCP 4.5 2020 16,960 (18.18%)a 15,605 (92.01%)b 0.72
2030 16,960 (18.18%) 16,205 (95.55%) 0.81
2040 16,960 (18.18%) 16,579 (97.75%) 0.93
2050 16,960 (18.18%) 16,565 (97.67%) 0.93
2075 16,960 (18.18%) 16,647 (98.15%) 0.93

RCP 8.5 2020 16,960 (18.18%) 15,893 (93.71%) 0.75
2030 16,960 (18.18%) 16,186 (95.44%) 0.83
2040 16,960 (18.18%) 16,595 (97.85%) 0.92
2050 16,960 (18.18%) 16,656 (98.21%) 0.93
2075 16,960 (18.18%) 16,927 (99.81%) 0.98

SSP2 RCP 4.5 2020 16,611 (17.80%) 15,265 (91.90%) 0.72
2030 16,611 (17.80%) 15,862 (95.49%) 0.81
2040 16,611 (17.80%) 16,232 (97.72%) 0.93
2050 16,611 (17.80%) 16,219 (97.64%) 0.93
2075 16,611 (17.80%) 16,299 (98.12%) 0.93

RCP 8.5 2020 16,611 (17.80%) 15,554 (93.64%) 0.75
2030 16,611 (17.80%) 15,843 (95.38%) 0.83
2040 16,611 (17.80%) 16,248 (97.81%) 0.92
2050 16,611 (17.80%) 16,309 (98.18%) 0.93
2075 16,611 (17.80%) 16,578 (99.80%) 0.98

SSP3 RCP 4.5 2020 13,993 (15.00%) 12,679 (90.61%) 0.69
2030 13,387 (14.35%) 12,637 (94.40%) 0.79
2040 13,036 (13.97%) 12,655 (97.08%) 0.92
2050 12,840 (13.76%) 12,444 (96.92%) 0.91
2075 12,551 (13.45%) 12,238 (97.51%) 0.92

RCP 8.5 2020 13,993 (15.00%) 12,965 (92.65%) 0.73
2030 13,387 (14.35%) 12,623 (94.29%) 0.81
2040 13,036 (13.97%) 12,670 (97.19%) 0.91
2050 12,840 (13.76%) 12,536 (97.63%) 0.92
2075 12,551 (13.45%) 12,518 (99.74%) 0.98

TRO is the projected agricultural area with the threshold value> 0.21, and RIO
is the mean value of the distribution probability in the projected agricultural
area.

a Agricultural area/total land area x 100.
b TRO/total agricultural area x 100.
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Discussion

Ongoing changes to the climate in the Korean peninsula might fa-
cilitate the chance for the introduction, establishment, and geo-
graphical expansion of exotic insect pests, especially those from tropical
regions (Hellmann et al., 2008). Together with the changing climate,
changes to future agricultural areas could have a major impact on the
success of invasive insect species. This study clearly demonstrated that
climate change and land-use change should be considered simulta-
neously when mapping pest risk. While the MaxEnt model showed all
potential geographical distributions of T. palmi as climate change pro-
gressed, land-use change indicated the realistic areas where T. palmi
could establish and develop populations.

The final MaxEnt model developed in this study describes well the

current and future range expansion of T. palmi under climate change in
Korea. Validation using independent data observed from Japan con-
firmed the suitability of the MaxEnt model at explaining changes to the
distribution of T. palmi. Moreover, our results supported a previous
study performed with a mechanistic niche model (CLIMEX model) (Park
et al., 2014). To improve our understanding of the risk of tropic insect
pests, like T. palmi, invading temperate regions, overwintering ability
might be the most critical factor to determine whether species survive
and establish in introduced areas. The high contribution (50.2%) of the
BIO6 variable, which is highly related to overwintering, to the final
model demonstrates the importance of winter temperatures for the fu-
ture geographical distributions of T. palmi in Korea. As the winter
temperature increases due to climate change, the opportunity for
overwintering increases, increasing population size during the crop

Fig. 4. Land-use predictions in 2030 and 2075 under three SSP scenarios (SSP1, SSP2, and SSP3) in the Korean peninsula. Each scenario represents low, medium, and
high socioeconomic challenges with respect to the mitigation and adaptation of climate change. Data were obtained from Kim (2016), and the resolution of data was
modified to the 1km2 scale.
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growing seasons. Laboratory experiments have demonstrated that no
stage of T. palmi grows below 10.1 °C, with relatively greater mortality
occurring under chronic cold conditions than Frankliniella occidentalis
Pergande (McDonald et al., 1999, 2000). A field survey in Korea
showed that low numbers of T. palmi can survive in the lowlands of Jeju
Island (Lee et al., 2001). Considering the geographic and meteor-
ological features of the survey area (such as low elevation and high
winter temperature), the area where T. palmi can overwinter on the
mainland of the Korean peninsula will rapidly extend northwards be-
cause most agricultural lands are located at low elevations.

The summer temperature could be another meteorological feature
to consider. T. palmi has a short lifecycle that net reproductive rate
reached a maximum at 25 °C and the generation time is< 25 days
(Murai, 2002). That is, at a suitable condition, there is a potential that
T. palmi can reproduce another generation only in a month. The results
in this study showed that summer temperature is also important to
understand the potential distribution of T. palmi. The BIO5 ranked the
second greatest contribution rate (32.3%) and the most unique variable
also. Therefore, summer temperature will be an important factor in
predicting the distribution of T. palmi along with the overwintering
potential.

Many studies have assessed the impact of land-use changes on
biodiversity and invasive species (Charles and Dukes, 2008; Dukes
et al., 2009), but very few studies have considered climate change and
land-use change in parallel. This study is the first to show how the
distribution and risk of introduced insect pests vary with climate
change and land-use changes. Even if climate change drives the ex-
pansion of an invasive species, the magnitude of invasion risk could be
limited by land-use change. TRO in 2075 declined by 399 km2 and
105 km2 under RCP4.5-SSP3 and RCP8.5-SSP3, respectively (Table 2);
thus, land-use change has a greater impact on change to invasion under
RCPs-SSP3. The land-use change scenario in SSP3 predicted that over
800 km2 of agricultural areas in the southwestern region will be con-
verted to urban areas from 2030 to 2075 (Fig. 4). Kim (2016) explained
that this conversion is the result of ‘low level urban planning’. However,
compared with a global case study, the trend of changes in agricultural
land areas under SSP3 in Korea seems to be a unique and rare case.
From the global perspective, SSP3 assumed high population demands
and high food production, resulting in increasing agricultural area
(Popp et al., 2017). Thus, region-specific land-use change might de-
termine the overall invasion risk of a given area. Although the potential
distribution area of T. palmi is expanding rapidly based on future cli-
mate change scenarios, the actual distribution should be limited to the
existing agricultural area (Fig. 3, and Figs. 1S and 2S). The risk intensity
in the agricultural areas increased greatly (Table 2), indicating that
agricultural areas in Korea will shift to a climate zone where T. palmi
can establish. Intensive management and proper monitoring strategies
of current agricultural lands are needed in the future.

Although the integration of climate change and land-use change
generated meaningful outcomes in this study, further studies are
needed to produce more meaningful results. There is a limited con-
sideration of invasion risks of T. palmi depending on the type of agri-
cultural land. Agricultural lands consist of paddy fields, vegetable
fields, and orchards in Korea; however, the agricultural area used in the
current SSP scenarios did not reflect these subclasses of land. The host
range of T. palmi is very broad, but the main hosts are vegetables and
ornamental crops (Hong et al., 1998; CABI, 2016). Excluding paddy
fields and orchards could improve predictions of the invasion risk of T.
palmi; thus, subclasses of agricultural land should be considered in fu-
ture studies.

Our results suggest that, if land-use change is not taken into con-
sideration in pest risk mapping study, the risk is exaggerated, providing
insufficient information to develop pest management strategies for the
future. The pest risk mapping process in the current study provides the
potential future range of a pest species that needs managing, along with
the magnitude of invasion risk at the national level. Risk maps were

generated by integrating future climate change and land-use change,
confirming that the intensive management of current agricultural lands
will be needed in the future. Climate change will increase the ability of
T. palmi to survive during winter in Korea; however, there will be no
noticeable new croplands, as the coverage of agricultural lands will not
significantly change under SSP1 and SSP2, and will even reduce under
SSP3 in Korea. In conclusion, both future range shifts of invasive species
and changes to agricultural land coverage must be considered when
planning pest management strategies.
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