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A B S T R A C T

The growing penetration of distributed energy generation (DEG) is causing major changes in the electricity
market. One key concern is that existing tariffs incentivize ‘free riding’ behavior by households, leading to a
cycle of rising electricity prices and DEG adoption, thereby eroding utility revenues and start a death spiral. We
developed an agent based model using data from two cities in the U.S. to explore this issue. Our model shows
worries about a utility ‘death spiral’ due to the adoption of rooftop solar, under current policies and prices in the
U.S., are unfounded. We found, consistently for a number of scenarios, that, while the residential segment is
impacted more heavily than the non-residential segment, the scale of PV penetration is minimal, in terms of
overall demand reduction and subsequent tariff increases. Also, the rate of adoption would probably be smooth
rather than sudden, giving the physical grid, the utility companies, and government policies enough time to
adapt. Although our results suggest that fears of a utility death spiral from solar systems are premature, reg-
ulators should still monitor revenue losses and the distribution of losses from all forms of DEG. The concerns
should lead to a more focus on tariff innovations.

1. Introduction

In this paper, we examine the extent to which solar photovoltaic
(PV) penetration can erode utility revenues and undercut the traditional
financial model of power companies, leading to a so-called ‘death spiral’
of the utility business. This question is important not only for the
companies and their stakeholders, but also for policymakers who expect
incumbent utilities to make significant investments to support the
transition to a decarbonized electricity sector.

Ever since its inception, the electricity sector has been made up of
large, central generating companies that operate very reliable equip-
ment and distribute power to customers. New distributed generation
technologies with low entry costs, however, have the potential to affect
the physical and financial structure of the industry. Rooftop solar PV is
one such small-scale technology that can be adopted by a large pro-
portion of a utility company’s customers.

The traditional pricing models permitted by U.S. regulators require
utilities to cover most of the fixed costs of their investments and

operations through charges based on the amount consumed, with a
small, fixed, monthly charge for recovering the fixed costs plus a
regulated profit. Consequently, any reduction in sales due to distributed
power could lead to companies charging their remaining customers
higher rates, which, in turn, could lead to more customers installing
solar – or economizing in some way, a factor that is beyond the scope of
our model. If this cycle of price increases and additional installations
happens at a high enough rate, utilities could enter into what has been
called a ‘death spiral.’ This loss of revenue and demand can have far
reaching impacts as utilities still need to build and maintain transmis-
sion and distribution capacity to provide reliability, reliability that
extends to homes with solar panels on the roof. Under existing pricing
policies, PV owners do not pay utilities for this service for that part of
their power demand that is met by PV.

Worries about a utility death spiral abound. The Economist argues that
the electricity industry in Europe faces an existential threat.1 The Edison
Electric Institute, a U.S. industry association, warns that the electric in-
dustry faces ‘disruptive challenges’ comparable to the effect of mobile
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phones on wire-based technologies.2 In Hawaii, the penetration of rooftop
solar PV is one of the highest in the world, with approximately 12% of all
households having solar panels [1]. This penetration has contributed sig-
nificantly to a 21% decline in residential electricity sales since 2007 (See
Appendix A of Supplementary material for more details). Over the past
decade German utilities have written off substantial assets in what looks
like a death spiral. An alternative view of the German situation [37],
however, is that the write-offs are due more to the actions of generators
than to the penetration of solar [38,39] (see Appendix B of Supplementary
material for a summary of the argument).

This prospect of a ‘death spiral,’ raises two important issues: what is
the scale of the effect resulting from the expansion of rooftop solar
installations and what is the rate at which the effect will occur? In this
paper, we investigate these two issues as well as the higher level issue,
important for policymaking, of the robustness of the findings.

In order to address these questions, we develop an agent based
model (ABM) in which building owners adopt rooftop PV panels de-
pending on the perceived payback period for their investments, given
rooftop PV costs and utility electricity prices. The perceived payback
period is influenced by a contagion effect that depends on the number
of panels installed in their geographical vicinity. This effect is applied
only to residential customers. The measure is a rough proxy for atti-
tudes toward either the early adoption of technology or environment,
which are determinants of technological dispersion [2,3]. Our agent
based model allows us to estimate not only the size of the effect, but
also the rate at which customer adoption affects the revenues of the
utilities. With sensitivity/post-solution analysis of the model we learn
much about its robustness, our third main issue. Finally, the agent
based model affords incorporation of imitation effects (influences from
neighbors) and, in the future, other customer behavior.

We assess two locations in the U.S., Cambridge, Massachusetts, and
Lancaster, California, under realistic market conditions. We track the
installed capacity, solar generation, net demand, and rate impacts over
a 20-year period and in 200 scenarios to reveal a range of potential
outcomes. We find that, under realistic assumptions regarding rooftop
PV adoption, the consequences for the electric transmission and dis-
tribution business are limited if the revenue from residential and non-
residential segments are combined. Moreover, we find that change is
smooth, rather than rapid, affording time for policy responses should
predictions of the model prove significantly mistaken.

The main body of this paper is organized as follows. In the next
section, we present some of the growing literature pertaining to the
effects of DEG and of the adoption of solar PV. In the following section,
we describe the important features of our two study cities, Cambridge,
Massachusetts, and Lancaster, California, as they relate to adoption of
rooftop PV. Section 4 provides an overview of our agent based model,
including a description of its overall motivation and its detailed me-
chanics. The Setups subsection discusses the default scenarios for
Cambridge and Lancaster, and describes their calibration to real data.

Section 5 presents the results of applying our model to two pricing
scenarios, with runs simulating 20 years of activity. We then present
our findings from an extensive and systematic robustness analysis of the
modeling assumptions, anchored in the default scenarios. A clear pic-
ture emerges from these findings, which we explain in the Discussion
section. The conclusion contains comments on the policy implications
of our findings, assesses limitations of this study and points toward
promising opportunities for future research.

2. Literature review

Much of the recent research on distributed PV market fits into three

interconnected areas. The first focuses on the patterns of distributed PV
adoption and potential market size. The second covers the implications
for utilities and their business models. The third seeks to quantify the
value of solar to the grid, in order to provide fair pricing mechanisms
and market designs. This paper falls within the first two areas and
touches on the value of solar in reducing net electricity demand.

A 2008 National Renewable Energy Laboratory (NREL) study un-
dertaken by Navigant Consulting modeled the market penetration of
rooftop PV in each of the 50 U.S. states, and in several scenarios [4].
The analysis first calculated the technical potential of rooftop PV by
inventorying the usable roof space in the U. S., including the effects of
shading, building orientation and roof structural soundness. A simple
payback period for rooftop PV investments was calculated, so as to
arrive at an economic potential. In the base case, the business as usual
scenario, a total of 1566 MW and 57 MW of rooftop PV was projected to
be installed in California and Massachusetts, respectively, by 2016.

A 2010 paper, also by NREL, used a similar approach to calculate
rooftop PV adoption and identify the factors that have the greatest
impact on PV penetration [5]. The analysis found that lower PV costs
had the largest impact on increasing PV adoption, followed by policy
options that improve the economics of PV, including net metering in-
centives and policies pricing carbon emissions of competing energy
sources.

Several factors restrict the viability of rooftop PV. A 2015 NREL
study identified the limiting factors for rooftop PV, as opposed to the
larger opportunities presented by community solar installations [6].
The analysis found 81% of residential buildings in the U.S. have enough
suitable space for a 1.5 KW PV installation. Assuming 63% of house-
holds consists of non-renters, the study estimates that 51% of house-
holds could install 1.5 KW PV systems.

Graziano and Gillingham [7] examined the spatial pattern of
rooftop PV adoption in Connecticut. They found that higher density
housing and a bigger share of renters decreases adoption. Interestingly,
their research also found a ‘neighbor effect’ from recent nearby adop-
tions that increased the number of installations within 0.5 miles in the
following year. They found this neighbor effect diminished over time
and space.

Rai and Robinson [8] developed and attempted to empirically va-
lidate a spatial agent based model of rooftop PV adoption that in-
corporates economic as well as behavioral factors. In another study,
Robinson and Rai [9] analyzed the adoption of residential photovoltaic
technologies in Austin, Texas using a geographical information system
integrated agent based model using data from 2004 to 2013. They
found that financial aspects had well predicted the rate and scale of PV
adoption, but the social interactions were critical to predict spatial and
demographic patterns. They argued these results could be useful to
design locationally target rebates and achieve cost effective results.

Utilities are facing the prospect of customers reducing their net
electricity purchases as they adopt rooftop PV. Cai et al. [10] simulated
the feedback of utility costs and lower sales in a California utility’s
territory to assess the implications of rooftop adoption. They found that
the ‘death spiral’ feedback reduces the time it takes for PV capacity to
reach 15% of peak demand only by a maximum of four months. By
implementing a fixed connection charge for rooftop PV, the utility
would delay the time needed for PV capacity to reach 15% of peak
demand by two years. Overall, the authors found utilities could lose a
significant portion of their high income customers, which increases
risks to the utility, since low income customers are more sensitive to
price increases. The logistic curve, which we use in the sequel, re-
presents a starting point for representing consumer behavior.

Darghouth et al. [11], however, claimed that there is an overlooked
feedback loop that can temper the death spiral argument: increased PV
deployment leads to a shift in the timing of peak prices that could re-
duce bill savings received under net metering in a time varying rates
context. They found that, for the US, the two feedback effects nearly
offset one another and therefore produced modest net effects, a result

2US Energy: Off the grid, Financial Times 13th January 2015, http://www.ft.com/cms/s/0/
b411852e-9b05-11e4-882d-00144feabdc0.html#axzz3uNxNbw72 (last Accessed 12 December
2015).
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similar to the results in the current study, but that magnitude and di-
rections vary by customer segment and by state. They concluded that
high PV adoption is highly sensitive to tariff structure. Moving towards
time-varying rates accelerates adoption in the near and medium term
but slows deployment in the longer term.

A rich literature on consumer attitudes towards adoption of new
energy technologies is developing. Stern [12] provides an overall fra-
mework for developing a deeper understanding of consumer behavior.
Kastnera and Stern [13] survey the literature on the consumer thinking
that underpins their decisions to invest in energy efficiency. Schelly [3]
interviews residents of Wisconsin to understand the motivations of
those who adopt renewables, finding that payback is important and
environmental concerns are not enough. Gromet et al. [14] find that
promoting the environment can have a negative impact on adopting
energy efficiency measures. Bollinger and Gillingham [15] estimate the
peer effects on purchases in neighborhoods. Andrews and Johnson [16]
examine the organizational culture dimensions that influence energy
use in corporations.

Ruester et al. [17] examine how the role of an operator of a dis-
tribution system will have to change to accommodate distributed gen-
eration. The European industry perspective can be seen in Hallberg
[18]. Kind [19] outlined in an industry white paper the financial risks
to utilities of customers adopting DEG, including solar PV.

3. Case study

Two cities illustrate the potential of solar and provide the case
studies for our analysis. Lancaster, California, has had significant PV
growth and is known as a solar hub. Located in the western Mojave
Desert, this city has some of the best solar resources in the world and, as
a result, is home to many utility-scale solar projects and rooftop in-
stallations. Local government strongly supports their development.
Lancaster requires all new residential developments to install an
average of between 0.5 kilowatts and 1.5 kW of solar capacity (max-
imum production, under ideal conditions) per home built, the first
municipality to institute such a requirement [20]. The mayor once said,
“We want to be the first city that produces more electricity from solar energy
than we consume on a daily basis” [21]. If this city of 160,000 people is
able to achieve that goal, it could damage the local sales and revenues
of Southern California Edison, the utility that serves Lancaster.

Lancaster is situated in a state with significant solar activity re-
sulting from a favorable investment environment, relatively high elec-
tricity prices and abundant sunshine in much of the state. With 4316
megawatts installed in 2014, California now has about 10,000 MW of
solar capacity [22]. About 330,000 customers participate in the state’s
solar net metering program and 42,000 MWh (megawatt hours) of solar
energy was sold back to the grid in 2014 [23]. This is a 142% increase
since 2011 (see Appendix A of Supplementary material for more de-
tails).

Because the average solar radiation in Massachusetts is not as strong
as in Lancaster due to its higher latitude and more frequent cloud cover,
solar panels produce less electricity than do similarly-sized systems in
Lancaster. This makes Cambridge, MA, a useful comparison with
Lancaster in terms of the potential for residential solar. Massachusetts
has made a strong push for solar power. The state has over 800 MW of
solar capacity [22] and aims to have 1600 MW installed by 2020 [24].
With favorable net metering provisions and retail electricity prices of
17 cents per kWh, which is slightly higher than California’s and 43%
higher than the national average [25,26] solar is a potentially cost-ef-
fective option for Massachusetts consumers despite a lower rate of in-
solation.

The city of Cambridge, MA, differs from Lancaster in several ways,
providing an opportunity to compare different regional conditions and
potential utility impacts. Moreover, Massachusetts has extensive, pub-
licly available data on rooftop capabilities for solar and a detailed solar
mapping tool of the city, developed at MIT and other places [27]. In

addition to different solar conditions, Cambridge has fewer people but
is more urban, having a population density 10 times higher than Lan-
caster. The urban composition, along with a 35% homeownership rate,
reduces the extent of PV adoption, because renters are unlikely to invest
in a long-term assets such as rooftop PV [6].

Demographic, housing, and solar resource characteristics and en-
ergy prices for Lancaster and Cambridge are summarized in Table 1.

For this table we sourced demographic, solar resource, and energy
price characteristics for Lancaster, CA, and Cambridge, MA. demo-
graphic and housing statistics from the U.S. Census, solar radiation from
NREL’s PVWatts Calculator [28] and retail utility prices from EIA [30].

4. Model

We developed an agent-based model (ABM)3 that simulates the
adoption of rooftop PV panels. Agent-based modeling is a suitable
methodology in the present instance for several reasons. It can aid in
understanding consumer energy choices as it can improve under-
standing of scientific and applied aspects of the demand side which in
turn could improve design better policies [31]. Also, ABMs are excellent
at capturing dynamic aspects of the system modeled. Further, they af-
ford representation of heterogeneous collections of agents. The model
we describe in the present work avails itself of all of these advantages.
In this model, the agents are building owners who decide each year
whether or not to install PV. The probability that a customer will or will
not adopt PV is a function of the perceived payback period and a lo-
gistic curve that reflects consumer choice behaviors [32,33]. The model
is implemented in Python with ArcGIS visualization and is a template
we designed to be modified as appropriate for other locations and data
sets beyond Cambridge and Lancaster. The model comes in two ver-
sions: one uses a dynamic price model and the other uses a static price
model. Here we consider the elements that are common to both ver-
sions. We discuss their differences when we present our results.

Key inputs to the model consist of the number of buildings, their
corresponding rooftop areas and their locations. The size of buildings is
used to determine both their electricity demand profiles and their
ability to install PV panels. Their locations are used to determine con-
tagion effects: residential agents with neighbors who already have PV
are more likely to adopt PV. PV adoption in the model is a function of
the economics of PV investments (we assume that PV systems as pur-
chased and owned by customers), plus a neighborhood effect that is
instrumented to be converted to PV cost reductions that lead to quicker
paybacks. We represent the strength of the neighborhood effect through
altering the shape of the logistic curve, which represents non-captured
values embedded in consumer choices – such as attitudes toward the
environment and the presence of early adopters – which are variables

Table 1
Demographic, solar resource and energy price characteristics.
Source: NREL [28], U.S. Census Bureau [29], EIA [26].

Category Lancaster, CA Cambridge, MA

Population, 2013 159,523 107,289
Housing Units, 2010 51,835 47,291
Homeownership rate, 2009–2013 60.1% 35.0%
Median household income, 2009–2013 $50,193 $72,529
Land area in square miles 94.28 6.39
People per square mile 1692 16,790
Average Annual Solar Radiation (kWh/m2/

day)
6.44 4.39

Average Retail Electricity Price from Utility
(cents/kWh)

14.8 16.99

3 The model including source code, detailed results, and supplementary materials are
available at https://github.com/KAPSARC/Utilities-of-the-Future/tree/master/2-Utility_
Death_Spiral.
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used in the literature to explain dispersion of new technologies as well
as the general responsiveness of consumers making economic or utility
enhancing decisions. It should be noted that the neighborhood effect is
applied only to residential customers. PV adoption for non-residential
customers is purely a function of the economics of PV investments.

The model treats each building as a single agent, with the logistic
curve providing the probability that the building owner chooses to add
solar, given electricity price, solar system cost, and neighborhood effect
(for residential agents). Thus, the model is a stochastic simulation with
specific real buildings randomly adding PV. The model increments time
in discrete, annual steps over the course of a 20-year period. We choose
this horizon because that is the conventional life span of a solar panel. A
consumer makes a choice of adding solar or not in each year. We as-
sume that once a building has installed rooftop PV it remains in place
for the duration of the simulation and that no new installation is pos-
sible (See Appendix C of Supplementary material for illustrative flow
charts).

4.1. Model mechanics

We use GIS data to calculate buildings’ rooftop areas. Based on this
value, we assign a probability distribution for each of the 19 types of
buildings reported by the U.S. Department of Energy [34,35] con-
sidered in the model. These buildings are as follows: residential (small
house, medium house, large house, midrise apartment), commercial
(restaurant, fast-food restaurant, small hotel. Large hotel, small office,
medium office, large office, stand-alone retail, strip-mall, supermarket,
warehouse), and others (hospitals, outpatient facility, primary school,
secondary school). Then we estimate candidate solar size from 13 dif-
ferent rooftop PV size for each building ranging from 2 kW to 12 kW for
residential buildings and 2 kW–500 kW for non-residential buildings
(See Appendix D of Supplementary material). Each building type has an
hourly electricity demand profile for a typical meteorological year,
which varies by city. Finally, the model permits us to constrain the
percentage of buildings eligible to install PV solar panels. This is done
through the model parameter L in expression (2). Feldman et al. [6],
conclude that only 51% of buildings in the U.S. could install solar pa-
nels. The analysis, carried out for the U.S. National Renewable Energy
Laboratory (NREL), noted that 81% of residential buildings in the U.S.
have enough suitable space for a 1.5 KW PV or higher installation and
that 61% of households are non-renters.

Adoption decisions proceed in two stages. First, buildings adopt PV
panels depending on the payback period for a PV investment. The
payback period incorporates both installation cost and an imputed
benefit from the neighborhood effect. We calculate the payback period
with the formula in (1) and we use a mirrored logistic function, similar
to the methodology in Paidipati et al. [4], to determine the probability
of solar adoption in a given year.

In (2) x is the payback period in years, L is the maximum probability
(1, or 100%) or market share for solar, k determines the steepness of the
curve and nne is the net neighborhood effect parameter. The reference
mirrored logistic function used in this analysis is shown in Fig. 1. In this
example, buildings would have an 18% probability of installing rooftop
PV if the payback period is five years.

=

=
−

Payback Period years x
PV installed cost nne

PV capacity factor retail electricity price

( )
*(1 )

8760hours* *
(1)

= ⎛
⎝

−
+

⎞
⎠−f x L

e
( ) * 1 1

1 *k x (2)

Note that even with a negative payback not all residences install
solar panels. This is because the payback calculation does not include
the time cost to the building owner; risk aversion to new, expensive
technology; and building owners with a short-term horizon.

Realistically, people take time to make important investment decisions.
We add to residential customers a contagion effect that depends on

the number of panels installed in their geographical vicinity. The more
installations nearby, the greater the likelihood that a homeowner in-
stalls panels. One explanation for this is that people’s perceptions of the
risks of solar and costs for gathering information are lower when they
can talk to neighbors who already have PV installed. This measure of
increased likelihood is a rough proxy for follower behavior during early
adoption. In contrast to Graziano and Gillingham [7], where ‘neighbor
effect’ is measured in units of PV panels adopted if a neighbor installs
solar, we instrument the neighborhood effect as the net neighborhood
effect (nne): the neighborhood effect (a model parameter) multiplied by
the percentage of neighbors having solar, where the set of neighbors
consists of the buildings within a radius of 90 ft. Later periods in the
simulations of payback time reflect lower values of PV costs for agents
with neighbors who have already installed solar panels.

The model simulates the effect on the utility as follows: First, we
assume the utility has an annual revenue requirement, F, for recovery of
fixed costs and allowed profits, denoted by F0. It should be noted that
the fixed cost assumption might not hold in the long term because of
possible future investments to upgrade the grid. However for simplicity
we assume a fixed cost throughout the 20-year-period. Then, we cal-
culate the annual revenue requirement from an initial demand and an
initial price of PrF0. We have estimated the value of PrF0, $0.08 per
kWh, from the electricity rates for the Cambridge/Boston area.4 A
sensitivity analysis around this value is briefly discussed in the Results
section.

The electricity price in any single year is F + V, where V is the
generation cost. Next, we assume that in year 0, at initialization,
F = F0 = total demand * $0.08 = total demand * PrF0. This constitutes
the revenue requirement in each year for the utility to avoid a death
spiral, i.e. for the utility to continue to be able to earn its permitted
return on investments. The retail price in a given year is PrFt + PrV,
with PrV set to be constant as PrV = initial price − PrF0. Solar additions
decrease the sales of electricity by the amount of solar generation in
each year. The model outputs include hourly electricity demand, the
number of rooftop PV installations, PV capacity, PV electricity gen-
eration and net electricity demand.

4.2. Setup

We input the retail electricity price ($/kWh). The reference price
applied to the residential customers while non-residential costumers
usually get lower price, assumed to be 9% lower. Another input is the

Fig. 1. Probability of installing rooftop PV.

4 Available at https://www.eversource.com/Content/docs/default-source/rates-
tariffs/190.pdf?sfvrsn=10.
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installed cost for rooftop PV ($/Watt peak). We assume that when the
system size gets bigger the cost per Watt peak gets lower. We have
included a cost discount rate proportional to the size of the system size.
That is, the cost is calculated following Eq. (3):

PV rooftop system cost = Reference cost ($/kWp) − System size (kWp)
(3)

For example, if a system reference cost is $3000/kWp, a small size
system (1 kWp) would cost (3000–1 = $2999/kWp). While a bigger
size of the same system (i.e., 500 kW) would cost (3000–500 = $2500/
kWp). Two other inputs are the PV capacity factor (percentage of ca-
pacity delivered during a year) and a neighborhood effect (a percent
discount of PV costs). Each PV option has an hourly electricity gen-
eration profile based on its characteristics and a typical meteorological
year in the analyzed location. The generation profiles come from the
NREL’s PVWatts Calculator [28] as applied to the 19 different types of
buildings represented in the model and matched to the buildings in
Cambridge and Lancaster.

To explore the patterns of rooftop PV installations and their im-
plications in Cambridge and Lancaster, we present a reference case and
range of scenarios. The reference scenarios represent the best available
data for the current conditions for rooftop PV and electricity in both
cities (Table 2).

For our reference scenario assumptions and calculated PV payback
periods for Lancaster, CA and Cambridge, MA, the assumptions for PV
installed costs were taken from Feldman et al. [36], capacity factors
were calculated with the PVWatts Calculator [28], and retail electricity
prices are from the U.S. Energy Information Administration [30]. The
figures for PV installed costs are used in the first year of our simula-
tions. After that the model imposes an annual PV system cost reduction,
we derived as an average of the figures reported by [36]. The annual
reduction is estimated at 5.9% in the first three years followed by
0.95% in the next ten years and 0.67% in the last seven years.

The annual probabilities for rooftop PV adoption in the reference
scenarios are 0.005 and 0.01 for Lancaster and Cambridge, respectively,
ignoring neighborhood effects. The logistic curve K-factor, at 0.3, was
subjectively assessed. We set the value of K as approximately a
threshold between very fast increases in adoption rates – at K and above
– and much slower increases. The effect is to bias the model slightly
towards faster adoption rates and thus towards overestimating the
difficulties for the utilities. We undertook extensive sensitivity analysis
on K, and the results are not sensitive to modest departures from
K = 0.3 (See Appendix E of Supplementary material for more details).
In addition, we set the value L to restrict maximum penetration to a
certain limit. The rationale behind that is not all buildings have the
ability to install solar systems on their roof due to many reasons such as
roofs not facing south, shaded roofs, roofs in poor conditions, and so on.
We have conducted a sensitivity analysis on three different values of L
(0.5, 0.75, 1) discussed in the Results section. We use L = 0.5 in the
reference scenario.

5. Results

We used a model with two versions: a dynamic version in which
prices change annually to reflect solar PV adoption and recovery of
fixed costs, and a static version in which prices remain constant but the
utility company sees reduced profits from the reduced revenues. The
static case is more of a theoretical exercise and might not exist in real
settings.

We discuss the dynamic price version first, in which the utility
maintains its total T & D revenue, and hence its allowed rate of return,
by raising its price, PrFt, to compensate for revenue loss from solar
generation. For simplicity, the utility considers two types of customer:
residential and non-residential. The utility should recover the decline in
electricity sales from each type by raising the prices on each type in-
dependently. Expressed more precisely, there are two components to
the electricity price charged by the utility: the T & D recovery price,
PrTf, initially set at $0.08/kWh in the model, and the generation
charge, PrV, for variable cost of generating power, paid to the presumed
deregulated suppliers. We assume that PrV for Cambridge is $0.09/kWh
and $0.07/kWh for Lancaster. Of course, when prosumers – consumers
who also produce energy – provide solar power, the conventional
power generators lose revenue and profits. However, in a deregulated
environment these can be neglected: we are only concerned with the
effects on the regulated utility company and whether it does or does not
face a death spiral.

In the dynamic model, we adjust PrFt (the T & D price) over time,
increasing it as solar reduces demand, and we leave PrV unaltered. (See
Fig. 2, for a flowchart of the dynamic price model.)

Specifically, let RRTD, the required revenue for T & D, be
$0.08*total demand (realized in period 0 and which we assume is
fixed) = PrF1*total demand. For Cambridge, RRTD equal to
$10,595,046 (for residential) plus $130,292,850 (for non-residential),
where PrFt is the transmission and distribution (T & D) recovery price,
$0.08 in the reference scenario (i.e., in year 0).

We then adjust PrFt for each sector dynamically in order to keep
RRTD constant. The approximation we use is this. At the end of year
t − 1 we determine the net demand as the total demand – the solar
supply, and we apply it as the demand for year t. So, PrF1 = RRTD/
(total demand − solar supply) = RRTD/(net demand year t).

The results of running the Cambridge and Lancaster reference sce-
narios for multiple runs each, using the dynamic price model, is shown
in Table F2 in Appendix F of Supplementary material. For Cambridge,
at the end of 20 years the total price has risen from $0.15/kWh to
$0.1637/kWh and from $0.135/kWh to $0.1512/kWh for residential
and non-residential customers respectively. For Lancaster, price has
increased from $0.15/kWh to $0.219/kWh and from $0.135/kWh to
$0.153/kWh for residential and non-residential customers respectively.
By that time solar supply (in kWh per year) is approximately 43.8

Table 2
Reference scenario assumptions and calculated PV payback periods.

Reference Scenario

Lancaster Cambridge

PV Installed Costs ($/kWp) (reference) $3000 $3000
PV Capacity Factor 18% 15%
Retail Electricity Price ($/KWh) $0.15 $0.15
Neighborhood effect 0.15 0.15
Logistic Curve L-factor 0.5 0.5
Logistic Curve K-factor 0.3 0.3
Rooftop PV Payback (years) 12.5 15
Probability of PV Adoption 1.0% 0.51%

Fig. 2. Flowchart for the dynamic price model.
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million in Cambridge and 323 million in Lancaster. Penetration levels –
the percentage of buildings with installed PV – are on average 33% in
Cambridge and 54% in Lancaster. Also, the speeds of adoption – the
percentage of new installations per year – are 1.65% and 2.7% in
Cambridge and Lancaster respectively (See Appendix F of
Supplementary material for more result details). Fig. 3 is a snapshot
from year 20 of a video showing how adoption unfolds in a single re-
presentative run over the 20-year period in Lancaster5 (See Appendix H
of Supplementary material for snapshots from years 0, 5, 10, and 15).

The reasons for the small price impact, despite the high penetration
rates, are that all of this capacity generates only when the sun is out and
the price increase affects just the T & D portion of a consumer’s bill.

Examining the results from the static version of the model yields
further insights. In this model the price for T & D, which includes rev-
enue for the regulated profits of the utility, remains constant
throughout the run. Because demand decreases with the adoption of
solar PV and the T &D price does not rise, the utility’s profits erode
because the revenue shortfalls are taken from profits, not from sched-
uled payments to retire the capital investment. It should be noted that
this part is more of a theoretical exercise to estimate the degree to
which these profits decline. The static version might not exist in the real
world. The version does, however, serve as a validation exercise for the
model. It also shows that without tariff adjustments rooftop solar PV
would indeed be materially detrimental to the utilities. Fig. 4 presents
the high-level flow of control for the static price model.

As in the dynamic case, we completed 50 runs (replications) of the
Cambridge and Lancaster reference scenarios. On average, solar PV
meets about 14.5% of total residential demand and 1.5% of total non-
residential demand in Cambridge after 20 years, while the figure is
46.5% and 3.7% for Lancaster. The numbers vary little among the 50
runs. The disparity in the numbers is credible, given that the capacity
factor for relatively sunny Lancaster is 20% higher than that for
Cambridge. This is echoed in the percentages of buildings with installed
PV, which are on average 33% and 54%, respectively, for Cambridge
and Lancaster (see Appendix F of Supplementary material for more
result details). Fig. 5 provides an explanation for these differences:
Lancaster has a much higher proportion of larger roofs.

To assess the cost to the utility (during year 20), we consider that
the utility should receive $0.08 per kWh of demand supplied for re-
covering its transmission and distribution (T & D) costs. The static price
model then enables us to calculate the loss of profits to the utility due to
solar PV adoption, with the assumption that the price for T & D remains
fixed.

Simply put, the Cambridge utility is granted annual T & D revenue of

$140,887,896 (=$0.08*total demand = $0.08*1.76E + 09). When
solar generation is present, the net demand seen by the utility, for
which T & D charges are assessed, is reduced by $0.08*solar supply (=
$0.08*47,381,232 kWh). This nets out to a loss of T & D revenue to the
utility of $3,790,498, which in turn represents a 27% profit reduction,
on the assumption that 10% of the T &D revenue is allocated as profits
to the utility. Similar calculations apply to the Lancaster data, yielding a
119% drop in profits.

Before we move to the main sensitivity analysis discussion of our
model, we first briefly discuss the robustness of our model with respect
to the value of PrF0, the unit price required to recover the utility’s fixed
costs. We have run sensitivity analyses for different PrF0 values (see
Figs. I5 and I6 in Appendix I of Supplementary material). We see that
the electricity price and the level of PV penetration gradually increase,
in a more or less linear fashion, when PrF0 varies from $0.04 to $014
per kWh.

We undertook extensive sensitivity/robustness analysis, related to
the reference scenarios. We varied initial electricity price between
$0.12 and $0.21 per kWh, solar installation cost between $1500 and
$3500 per kW, and neighborhood effect between 0.1 and 0.2 (Table 3).
This produced 250 scenarios (10 × 5× 5) in all, each for Cambridge
dynamic and Lancaster dynamic. The results are summarized in Figs. 6
and 7. We extend the sensitivity analysis by varying L-parameter from
0.5 to 1. We found that the L parameter is able to restrict the maximum
penetration to the level considered to be reasonable. (See Figs. I7 & I8 in
Appendix I of Supplementary material).

In Figs. 6 and 7—Sensitivity results for the dynamic model in the
residential segment of Cambridge and Lancaster respectively—the
neighborhood effect values vary between 0.1 and 0.2 (see Figs. I1 and
I2 in Appendix I of Supplementary material for the non-residential
segment). For both Cambridge and Lancaster, the results show that the
increase in the electricity price over 20 years mainly depends on the

Fig. 3. A snapshot of a representative run of the simulation (year 20).

Fig. 4. Flowchart for the static price model.

Fig. 5. Roof sizes in Cambridge and Lancaster.

5 The full video is available from https://github.com/KAPSARC/Utilities-of-the-
Future/tree/master/2-Utility_Death_Spiral.
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solar PV cost, and to a lesser extent on the starting electricity cost.
Varying the neighborhood effect does not have a significant impact. We
see that in our reference scenario, price increases by $0.02 per kWh
(Cambridge) and $0.09 per kWh (Lancaster) at the end of 20 years (for
the non-residential segment, we observe an increase of $0.001). In the
worst case modeled, we see a price increase slightly above $0.1 per
kWh (Cambridge) and $0.29 per kWh (Lancaster). In the non-re-
sidential segment (see Figs. I1 and I2) the price increases are $0.001
and $0.005 per kWh (Cambridge) and $0.001 and $0.006 per kWh
(Lancaster) – for the reference and worst case scenarios respectively.

The higher level finding is: (1) the overall behavior of the model is
coherent, (2) it is stable and (3) it indicates no sudden or threshold
changes that would ambush either a utility or policy makers, since in
fact price increases are smooth and slow. Of course, these findings are
valid only for the scenarios examined and the factors modeled. For

anyone wishing to look beyond these, our model is available for mod-
ification as a starting point for further analysis.6 In Lancaster, the price
increases are significantly higher than Cambridge because of the higher
capacity factor and the better economics in the residential segment, as
seen in Fig. 7.

The broad findings regarding stability, robustness, coherence and
smoothness remain valid. For Lancaster, the effect on profits for the
utility is large if we don’t increase prices. This is another insight from
our results: the effect is small for the consumers, but large for the uti-

lities, unless prices are raised accordingly. The price increases needed to
restore the profitability of the utility, however, are not a major burden
on consumers.

In the sensitivity runs for the static cases, the same patterns are
obtained. Moreover, we confirm that our conclusions are essentially
unchanged when we consider the extreme, hypothetical case of 100%
penetration and maximum solar PV capacity installed per rooftop. Our
results show that the proportions of average residential electricity de-
mand met by solar PV in the extreme case are 66.7% for Cambridge and
80.6% for Lancaster when we assume net metering. For non-residential
customers, the average electricity demand met by solar is 7.2% for
Cambridge and 8.1% for Lancaster, reflecting the fact that non-

Table 3
Parameters used to create a range of scenarios.

Electricity Prices
(cents/KWh)

12 13 14 15 16 17 18 19 20 21

PV Costs ($/kW) 1500 2000 2500 3000 3500 – – – – –
Neighborhood

Effect
0.1 0.12 0.15 0.18 0.2 – – – – –

L-parameter 0.5 0.75 1 – – – – – – –
PrF0 0.04 0.06 0.08 0.1 0.12 0.14

Fig. 6. Sensitivity results for Cambridge dynamic
model (residential).

Fig. 7. Sensitivity results for Lancaster dynamic
model (residential).

6 Model and data repository: https://github.com/KAPSARC/Utilities-of-the-Future/
tree/master/2-Utility_Death_Spiral.
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residential customers have limited roof size and much higher electricity
demand than residential customers. Nevertheless, the combined re-
sidential and non-residential demand met by solar only amounts to
11.9% for Cambridge and 26.9% for Lancaster (See Appendix G of
Supplementary material for more result details).

6. Discussion

The widely expressed worry about a utility death spiral sounds le-
gitimate. Yet with the aid of our models we find little actual cause for
concern. So what are these models reflecting that is absent in the an-
ecdotal worry about a runaway process?

There are several factors at work, represented in our models, which
prevent rooftop PV adoption from being a runaway process that can
overwhelm the utilities. The first is that the maximum amount of
rooftop PV is limited by the number of buildings and the rooftop areas
they support. These factors are present as real data in our models, data
derived from the actual buildings in Cambridge and Lancaster.

Second, our models recognize that PV adoption is not instantaneous.
Instead it ‘diffuses’ much as do new technologies, so as to slow down
adoption to a manageable pace. We quicken the pace by including a
neighborhood effect, but find that various levels of speeding up matter
very little to the results.

Third, it is entirely possible in principle that rooftop PV adoption
could be limited, due, say, to factors one and two, but it still could
overwhelm the utilities and their bases of business. Whether this will
actually occur depends upon how much solar power is generated,
compared to the overall demand. The extreme scenario we modeled
indicates however that this is unlikely to happen. While the risk of lost
revenues from the residential segment is high, this is mitigated by
higher non-residential demand that is still relying on grid supply.

Fourth, we restrict the simulation period to 20 years. Because each
year the model adds solar to a fraction of the remaining buildings that
have not already added solar, with an infinite horizon all building
owners would do so. This bias in the model would become important if
the period covered extended well beyond the 20-year time limit, but is
not significant with the short horizon used here. To the extent this bias
is present, we overestimate the financial impact of solar.

Given these considerations, it is clear that even with quite sub-
stantial rooftop solar PV penetration, in terms of the percentage of
buildings adopting rooftop PV, the total amount of power produced is
small. Specifically, it is 2.5% for Cambridge and 14.9% for Lancaster
compared with the total demand for electric power in our reference
case, which in both cases is below the threshold of 15% that observers
such as Cai et al. [10] worry about. Moreover, our finding on this is
quite robust. For example, the model sizes PV installations based on the
size of a building and its type, such as small house, office building, etc.
These sizes are standard, starting from 2 kW for a small house, and so
on. Thus, increasing the productivity of rooftop installations in any
realistic manner – e.g., by enlarging them, by employing more efficient
collectors – is unlikely to alter our general findings.

We should note that our model assumes full net metering and a flat
rate structure for the electricity consumed by residential and non-re-
sidential customers. Alternative rate structures, ranging from fixed
pricing (e.g. based on peak usage) to dynamic (time-of-use) pricing,
would result in larger or smaller effects on utility revenues.

DEG potentially damages the electric utility business fundamentally
in three ways. The first by loss of revenues for recovering fixed costs of
electricity transmission and distribution networks. This potential
threat, specific to distribution-only utilities that need to invest in and
maintain network infrastructure, is the focus of the present study. To
repeat, we found that the threat is minimal with regard to installation of
rooftop solar PV. Of course, other forms of DEG could well result in
significant damage in terms of lost revenues. For example, large scale
adoption of community wind and/or solar PV, covering hectares of
ground would be quite another matter.

The second potential source of damage to the utility business is loss
of revenues for recovering fixed costs of electricity generation. Our
study has eschewed this aspect of the problem because in a deregulated
environment, common to both Massachusetts and California, electricity
generation is undertaken by merchant providers and is not protected by
regulation guaranteeing a rate of return. The matter is different in the
case of regulated utilities, which have received approval for construc-
tion of generating plant and are entitled to a guaranteed rate of return.
In this case the generators have the same status as the transmission and
distribution networks and there is, at least potentially, a policy issue to
be addressed. That issue is beyond the scope of the present study.

Finally, the third potential source of damage to the utility business
is loss of profits from future regulated generation and/or transmission
and distribution facilities. DEG in general and solar PV in particular
may lead to reduced demand in the future for expansion of regulated
facilities, given the assumptions that the utilities abstain from investing
in solar PV themselves. In consequence, the facilities will not be built or
will be postponed, resulting in a loss of new business (and regulated
rates of return) to the utilities. Again, this is beyond the scope of the
present study, and we certainly agree that this is fertile ground for fu-
ture investigation. That said, we also note that the policy case for this
third threat is different from the first two, and must generally be seen as
much weaker, if not problematic.

7. Conclusion

Worries that a utility death spiral will result from increased adop-
tion of rooftop PV are overdone. Absent new information, the threat
appears to be minimal under a wide range of assumptions. The mod-
eling exercise reported in this paper has shown that the scale of rooftop
PV adoption is unlikely to threaten distribution utilities’ basic business
model. Also, the rate of rooftop PV adoption is likely to be smooth
rather than sudden, so there is no immediate need for pre-emptive
action. The modeling results are robust across a broad spectrum of
credible scenarios.

This is not, of course, to say that such worries should be entirely
abandoned. Continued monitoring, assisted by further model develop-
ment, is certainly in order, as is examination of the effects of factors not
modeled here, such as balancing costs –which are normally not charged
as part of the fixed cost recovery funds – and the disruptive effects of
new technologies.

Looking forward, at least two additional issues merit prompt at-
tention. The first concerns tariff innovations. Even if the death spiral
effect is not a genuine threat, the fact remains that the existing tariff
incentives act to encourage the sort of ‘free riding’ by rooftop PV
adopters that inspired the original worries. Because of efficiency and
equity considerations, the challenge of instituting appropriate tariffs
remains crucial, even if rooftop PV adoption does not by itself con-
stitute a call for urgent policy changes. Given the role of the grid as a
backup to shortfalls in solar, a simple policy correction could be to
charge homeowners the insurance value of having the grid to cover
shortfalls. The second issue relates to extending the agent based model
to include a more articulated, wider range of prosumer behaviors. This
might include such factors as entrepreneurial acquisition of much larger
PV capacity, perhaps using land instead of rooftops and demand re-
sponse regimes, coupled with mandatory participation in balancing by
DEG producers. These last two issues are complex, unresolved and vital
for the good operation of future distribution grids.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.erss.2017.06.041.
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