Likelihood of Achieving Air Quality Targets under Model Uncertainties

ANTARA DIGAR,*+1 DANIEL S. COHAN,† DENNIS D. COX,‡ BYEONG-UK KIM,§ AND JAMES W. BOYLAN§

Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States, Department of Statistics, Rice University, Houston, Texas 77005, United States, and Georgia Environmental Protection Division, Atlanta, Georgia 30334, United States

Received July 29, 2010. Revised manuscript received November 9, 2010. Accepted November 12, 2010.

Regulatory attainment demonstrations in the United States typically apply a bright-line test to predict whether a control strategy is sufficient to attain an air quality standard. Photochemical models are the best tools available to project future pollutant levels and are a critical part of regulatory attainment demonstrations. However, because photochemical models are uncertain and future meteorology is unknowable, future pollutant levels cannot be predicted perfectly and attainment cannot be guaranteed. This paper introduces a computationally efficient methodology for estimating the likelihood that an emission control strategy will achieve an air quality objective in light of uncertainties in photochemical model input parameters (e.g., uncertain emission and reaction rates, deposition velocities, and boundary conditions). The method incorporates Monte Carlo simulations of a reduced form model representing pollutant-precursor response under parametric uncertainty to probabilistically predict the improvement in air quality due to emission control. The method is applied to recent 8-h ozone attainment modeling for Atlanta, Georgia, to assess the likelihood that additional controls would achieve fixed (well-defined) or flexible (due to meteorological variability and uncertain emission trends) targets of air pollution reduction. The results show that in certain instances ranking of the predicted effectiveness of control strategies may differ between probabilistic and deterministic analyses.

Introduction

The United States Environmental Protection Agency (U.S. EPA) sets national ambient air quality standards (NAAQS) for ozone (O₃) and other criteria pollutants. States with ambient monitors violating those standards must develop State Implementation Plans (SIPs) for attaining the NAAQS by a future date. Recent proposed rules to tighten the NAAQS for O₃ and fine particulate matter (PM₂.₅) will likely prompt a wave of new SIP development (1, 2).

In order to demonstrate future attainment, states use photochemical models to simulate the response of ambient pollution to projected reductions at emission sources. The current framework for SIP attainment demonstrations applies a bright-line test to deterministically evaluate whether an emission control program is sufficient (3). In this process, photochemical models simulate pollutant concentrations under ‘controlled’ (future-year) and ‘base’ (base-year) emission rates, applying identical base-year meteorological episodes in each case. The ratio of future to base pollutant concentrations is termed the relative reduction factor (RRF). This process enables the use of model results in a relative rather than an absolute sense. The RRF is then multiplied by the measured base-year design value (DVB) for each monitor to estimate the future design value (DFV), which determines whether the monitor is projected to attain the NAAQS with the considered set of control measures (3). Although U.S. EPA also advocates consideration of other “weight of evidence” factors in close cases, the deterministic bright-line test forms the core of most SIP attainment demonstrations.

However, photochemical model results are known to be uncertain due to uncertain model formulation (structural uncertainty) and uncertain input parameters (parametric uncertainty) (4–6). Thus, RRFs computed by photochemical models will be uncertain (7). Moreover, future meteorology will differ from the past, and those changes will impact pollutant concentrations (8). Whether a given control strategy will be sufficient is thus a probabilistic rather than a deterministic question, but the current bright-line test fails to quantify the likelihood that attainment will actually be achieved. In fact, many regions have failed to attain NAAQS by the targeted year despite SIP modeling that predicted attainment (9).

Hogrefe and Rao (2001) suggested that probabilistic analyses should supplement the pass/fail test of current regulatory practice (10). However, most previous efforts to characterize the probabilistic response of air pollutants to emission controls have relied upon numerous Monte Carlo photochemical model simulations (11–13), which is impractical for extensive SIP modeling. New methods would be needed to enable states to objectively characterize the attainment likelihood of various potential control packages in a computationally efficient manner.

This manuscript introduces methods for estimating the likelihood that a given level of emission reductions will achieve a targeted improvement in air quality, in light of parametric uncertainties in the photochemical model. Two types of targeted pollutant reduction are considered: a fixed amount of air pollution reduction needed at a monitor and a flexible function acknowledging that unknown future meteorology and uncertain projections of emission trends generate uncertainty in how much additional improvement is needed. The new methods are applied to recent attainment modeling from the Atlanta, Georgia, 8-h O₃ SIP to assess the likelihood that additional emission controls would achieve targeted amounts of air quality improvement.

Methodology

Reduced Form Models. Recent work has shown that high-order sensitivity analysis of a photochemical model can be applied to construct reduced form models (RFMs) that represent how perturbations in multiple input parameters (e.g., emission rates, reaction rate constants, boundary conditions, and deposition velocities) influence the responsiveness of pollutant concentrations to precursor emissions (14, 15). These RFMs provide analytical representations for the amount of ambient pollutant reduction that would be achieved as a function of the fractional changes (εᵢ) in targeted
emission rates \(j = 1, 2, \ldots, J \) and the fractional perturbations \(\phi_k \) needed to adjust uncertain parameters \(k = 1, 2, \ldots, K \) to their ‘actual’ values. \(\) Digar and Cohan (2010) introduced methods for efficiently computing the impacts of emissions perturbations while input parameters are perturbed (14). The Continuum RFM considers adjustable fractional perturbations in emissions, while the Discrete RFM is applicable when the tonnage of emission perturbation is predetermined (e.g., a specific control technology at a point source).

For the Continuum RFM, the change in concentrations (\(\Delta C^* \)) resulting from fractional emission perturbation (\(\epsilon_j \)) while input parameters \(P_k \) are perturbed by fractions \(\phi_k \) is given by

\[
\Delta C^* = C_{\text{perturbed}} - C_{\text{base}} = -\left[\epsilon_j S_j^{(1)} + \frac{1}{2} \epsilon_j S_j^{(2)} + \epsilon_j \sum_k \phi_k S_{j,k}^{(2)} \right] \tag{1a}
\]

where \(C_{\text{perturbed}} \) denotes concentrations under the input perturbations, and \(C_{\text{base}} \) are the corresponding concentrations when emission rate \(E_j \) is perturbed by fraction \(\epsilon_j \), \(S_j^{(1)}(= \partial C_j/\partial \epsilon_j) \) and \(S_j^{(2)}(= \partial^2 C_j/\partial \epsilon_j^2) \) are the local first- and second-order sensitivity coefficients of ‘C’ to the targeted emission rate, and \(S_{j,k}^{(2)}(= \partial^2 C_j/\partial \epsilon_j \partial \phi_k) \) is the cross-sensitivity between parameter \(j \) and \(k \). These coefficients are computed using the high-order decoupled direct method (HDDM) (16, 17), except for \(S_j^{(2)} \) involving deposition velocities, which is computed by finite differencing of model runs. If the targeted emission rate \(E_j \) is also uncertain, then eq 1a can be rewritten as

\[
\Delta C^* = -\left[(1 + \phi_j)\epsilon_j S_j^{(1)} + \frac{1}{2} (1 + \phi_j)^2 \epsilon_j S_j^{(2)} + (1 + \phi_j)\epsilon_j \sum_k \phi_k S_{j,k}^{(2)} \right] \tag{1b}
\]

The \((1 + \phi_j) \) terms accounts for the influence of the uncertain emission inventory on the amount of tons controlled by fractional perturbation \(\epsilon_j \). For our analysis, \(\epsilon_j \) represents emission control (i.e., \(\epsilon_j < 0 \)), so \(C_{\text{perturbed}} \) is typically less than \(C_{\text{base}} \) and positive values of \(\Delta C^* \) indicate pollutant reduction. Extensive testing of eq 1 (a and b) showed that \(\Delta C^* \) is accurately predicted (normalized mean bias \(\approx 6\% \), normalized mean error \(\approx 10\% \)) even for 50% emission controls under 50% simultaneous perturbations in 3 parameters (14).

The Discrete RFM allows accurate (normalized mean bias \(\approx 3\% \) and error \(\approx 13\% \)) for 50% perturbations in 3 input parameters (14) and efficient estimation of concentration response under input uncertainty when the magnitude of the emission reduction is predetermined. It computes the error-adjusted concentration response \(\Delta C^* \) to an emission control by computing a function \(F_k \) which represents how concentration response to targeted emission change \(\epsilon_j E_j \) varies with change \(\phi_k \) in parameter \(k \) (14)

\[
F_k = \frac{\Delta C_{\text{perturbed}} - \Delta C_{\text{base}}}{\phi_k} \tag{2}
\]

where \(\Delta C_{\text{perturbed}}(= C_{\text{perturbed}} - C_{\text{base}}) \) and \(\Delta C_{\text{base}}(= C_{\text{base}} - C_{\text{base}}) \) represent concentration response under perturbed and base input conditions, respectively. Finite differencing of model runs with 10% input perturbations (\(\phi_k = 0.1 \)) was used to compute \(F_k \). \(\Delta C^* \) is then calculated by the following Discrete RFM

\[
\Delta C^* = \Delta C_{\text{base}} + \sum_k \phi_k F_k \tag{3}
\]

in which input perturbations can be set by Monte Carlo sampling of \(\phi_k \).

Probabilistic Framework and Reduction Targets. The Continuum (eq 1) and Discrete (eq 3) RFMs are analytical equations that can be evaluated readily for any perturbations \(\phi_k \) in uncertain parameters \(k \), in contrast to direct Monte Carlo simulation of a photochemical model (11–13). Here, we conduct Monte Carlo simulations of these RFMs, treating each input parameter as an independent log-normally distributed random variable with 10% uncertainty listed in Table 1 based on earlier studies (13, 14, 18–20). The basis for selecting the input parameters is explained later. One million Monte Carlo sampling of \(\phi_k \) are made to generate a probability distribution of the concentration reduction resulting from each targeted emission perturbation \(\epsilon_j \) (Figure 1).

Our goal is to estimate the probability that a control strategy would actually achieve an air quality target in light of parametric uncertainty in the photochemical model. In this study, two types of pollutant reduction targets are considered:

(A) A fixed reduction target (\(T_{\text{fixed}} \)) which assumes that the amount of additional pollutant reduction needed for achieving the air quality improvement target is perfectly known, and only the impact (\(\Delta C^* \)) of the control measures is uncertain due to input uncertainty. Thus, likelihood of attainment (\(L_{\text{fixed}} \)) is simply the probability that \(\Delta C^* \) is greater than or equal to \(T_{\text{fixed}} \), i.e.

\[
L_{\text{fixed}} = P(\Delta C^* \geq T_{\text{fixed}}) \tag{4}
\]

(B) A flexible reduction target (\(T_{\text{flexible}} \)) which recognizes that the needed amount of ambient pollutant reduction (\(\Delta C^* \)) cannot be predicted perfectly because factors such as future weather and emission trends are unpredictable. In this case, likelihood of attainment (\(L_{\text{flexible}} \)) is assumed to be a function that increases with the amount of pollutant reduction (\(\Delta C^* \)) that is achieved. Though various target functions could be posited, for analysis purposes we define a target function, \(T(\Delta C^*) \), based on a cumulative distribution (cdf) of a Gaussian function as follows

\[
T(\Delta C^*) = \int_{-\infty}^{+\infty} N(x)dx \tag{5}
\]

where \(N(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-(x-\mu)^2/2\sigma^2} \). The mean reduction target \(\mu \) (at which a strategy would have 50% likelihood to be sufficient) and standard deviation \(\pm \sigma \) can be assigned values depending on the case under consideration. In this study, an uncertainty of \(\pm 3 \) ppb (95% confidence interval) has been used, because current EPA methodology requires weight of evidence analysis if the deterministic attainment modeling results are within 3 ppb of the standard (3). Moreover, uncertainties in O3 DVFs have been estimated to be 3–5 ppb due to variation in emission inventories and photochemical models (21) and 2–4 ppb due to variability in meteorology and chemical mechanisms (7). The final likelihood of attainment (\(L_{\text{flexible}} \)) for given emission controls under parametric uncertainty with the flexible reduction target (Figure S-1) can then be calculated using the probability density as

\[
L_{\text{flexible}} = \int_{-\infty}^{+\mu} P(\Delta C^*)T(\Delta C^*)d\Delta C^* \tag{6}
\]

Application

Photochemical Modeling Episode. We demonstrate this method by applying it to reconsider attainment modeling from a recent 8-h O3 SIP for Atlanta, Georgia (22). Modeling is conducted for an 18-day summer episode (May 30 to June 16, 2002; first three days discarded for model initialization) for a southeastern U.S. modeling domain with 12 km grid resolution and 19 vertical layers of increasing thickness,
covering Alabama, Georgia, Mississippi, South Carolina, Tennessee, and parts of Kentucky, North Carolina, and Florida. The episode is a subset of the full ozone season simulated for the Georgia SIP. Otherwise, modeling methods mimicked those of the Georgia SIP, including use of the Community Multiscale Air Quality (CMAQ) Model v4.5 (23) with Carbon Bond 4 (CB-IV) mechanism (24) with aerosol and aqueous updates; input meteorological conditions of O3 predictions for the 2002 base case was thoroughly tested inventory) (VISTAS) year 2009 projections (projected from a 2002 base case). Accuracy of O3 predictions for the 2002 base case was thoroughly tested inventory) (VISTAS) year 2009 projections (projected from a 2002 base case). Accuracy of O3 predictions for the 2002 base case was thoroughly tested inventory) (VISTAS) year 2009 projections (projected from a 2002 base case). Accuracy of O3 predictions for the 2002 base case was thoroughly tested inventory) (VISTAS) year 2009 projections (projected from a 2002 base case).

Control Strategies. Ozone in Georgia is predominantly sensitive to NOX emissions because of the dense forest cover leading to high biogenic VOC emissions (29); our modeling showed O3 in the region to be at least an order of magnitude more sensitive to NOX than to VOCs, consistent with earlier studies (30). Hence, for the selection of control options, NOX emission reductions were emphasized. For simplicity, Georgia is divided into three broad regions (see Figure 2): Atlanta (the 20 county O3 nonattainment region), Macon (7 counties), and the Rest of GA (= Georgia – Atlanta – Macon).

Our analysis sought to identify scenarios of control measures that could be implemented at the state level within a SIP time frame. These scenarios were constructed by applying AirControlNET v.3.2 (31) to identify potential control options for the emission inventory. A limited list of control technologies and associated control efficiencies obtained from AirControlNET is furnished as Supporting Information (Table S-1). Additional potential measures were also incorporated as described in Table S-2.] The maximum percent emission reduction from applying all identified control options in each region is tabulated in Table 2.

Power plant emissions are excluded from the regional categories and considered separately. Specifically we consider five large coal-fired power plants, which are among the largest NOX point-sources near Atlanta and lacked selective catalytic reduction (SCR) control for NOX when the Georgia SIP was being developed. Potential emission reductions at the power plants were computed by applying control efficiencies from U.S. EPA Integrated Planning Model methodology (32) to the inventoried emission rates, accounting for pre-existing control technologies where applicable (Table 2). Note that power plant controls are based on fixed tonnage reductions, whereas regional emission controls are based on percentage reductions.

Parameters for Uncertainty Analysis. Table 1 shows the input parameters that were targeted for uncertainty analysis due to the following reasons. Uncertainties in domain-wide NOX and VOC emissions rates and in boundary conditions.

Table 1. Selection of Uncertain Input Parameters for Monte Carlo Analysis Based on the Impact Analysis by Digar and Cohan (2010) (14)

<table>
<thead>
<tr>
<th>parameter</th>
<th>uncertainty in parameter (1σ)</th>
<th>cross-sensitivity (ppb)</th>
<th>impact on O3 sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain-wide NOX</td>
<td>0.336</td>
<td>-32.92</td>
<td>-0.762</td>
</tr>
<tr>
<td>domain-wide biogenic VOC</td>
<td>0.405</td>
<td>17.58</td>
<td>+0.491</td>
</tr>
<tr>
<td>domain-wide anthropogenic VOC</td>
<td>0.336</td>
<td>4.70</td>
<td>+0.109</td>
</tr>
</tbody>
</table>

Notes

* All distributions are log-normal (13, 14, 18-20).
* Cross-sensitivity of O3 to Atlanta anthropogenic non-EGU NOX emissions and each uncertain parameter, evaluated at the grid-cell with maximum daily 8-h average O3 in a 3 x 3 array centered on the Confederate Avenue monitor, averaged over the episode.
* Impact factor: The fractional change in first-order sensitivity to ozone emissions, due to a 1σ change in an input parameter. Computed as Impact Factor = σSj,k(2)/Sj(1) where Sj(1) is the first-order sensitivity of O3 to Atlanta NOX and Sj,k(2) is the cross-sensitivity of Sj(1) with an uncertain parameter. Bolding indicates parameters selected for analysis in this study.

Figures

FIGURE 1. Probabilistic framework for characterizing ozone response to a control strategy under model parametric uncertainty.
of O₃ and total reactive nitrogen (NOₓ = NOₓ and its oxidation products) have been shown to substantially influence the sensitivities of O₃ to NOₓ emissions (4, 5, 11–13, 33). Past studies have also shown that reaction rates for NOₓ+OH (34–36) and the photolysis reactions (37, 38) and several other uncertain reactions (13, 18) can also significantly influence ozone sensitivity (Table 2). We also consider dry deposition velocities of all gaseous species jointly as an uncertain input parameter (39).

Our previous study evaluated the relative impacts of the 19 input parameters in Table 1 on estimates of O₃-precursor sensitivity in this region (14). For this study, we consider 10 of the 19 uncertain parameters marked in bold in Table 1, limiting the uncertain reaction rate constants to the four that most influenced O₃ sensitivity.

Results and Discussion

Based on the standard U.S. EPA attainment demonstration methodology (3), Georgia’s 2009 SIP modeling predicted that one monitor (Confederate Avenue, AIRS ID: 13-121-0055, for location see Figure 2) would exceed the 1997 8-h O₃ NAAQS of 84 ppb (Ref Table 6-1 on page 133 of ref 22). The SIP reports additional modeling and weight of evidence analyses to argue that attainment would actually be achieved. However, it can be computed that an additional 1.5 ppb reduction in modeled 2009 8-h O₃ would have been needed to reduce the relative reduction factor (RRF) in the Georgia SIP (Ref Table 6-1 on p 133 of ref 22) sufficiently to demonstrate NAAQS attainment using the standard methodology (Supporting Information). Hence for this study, we consider the hypothetical scenario that an additional 1.5 ppb of improvement is necessary at this monitor and explore various control scenarios available in Georgia for reaching that target.

Likelihood To Achieve a Fixed Target. We first assess the likelihood that each control scenario will achieve at least 1.5 ppb reduction in 8-h O₃ at the grid-cell corresponding to the Confederate Avenue monitor, averaged over the six days with O₃ in the base year 2002 exceeding 80 ppb (Table 3). The deterministic results are from the base model (φkins = 0), with the standard deviation of the daily O₃ reductions shown as an indicator of the variability in results due to day-to-day changes in emissions and meteorology. The probabilistic

<table>
<thead>
<tr>
<th>TABLE 2. Hypothetical NOₓ Emission Control Options in Georgia</th>
</tr>
</thead>
<tbody>
<tr>
<td>control scenario</td>
</tr>
<tr>
<td>Regional Sources</td>
</tr>
<tr>
<td>ATL(12) maximum</td>
</tr>
<tr>
<td>ATL(6) half of</td>
</tr>
<tr>
<td>MAC maximum</td>
</tr>
<tr>
<td>REST maximum</td>
</tr>
<tr>
<td>Point Sources (EGU)</td>
</tr>
<tr>
<td>EGU(M) convert Plant McDonough</td>
</tr>
<tr>
<td>EGU(S) add SCR at Plant Scherer</td>
</tr>
<tr>
<td>EGU(Y) add SCR at Plant Yates</td>
</tr>
<tr>
<td>EGU(H) add SCR to units 1–3 at</td>
</tr>
<tr>
<td>EGU(B) add SCR at Plant Branch</td>
</tr>
</tbody>
</table>

* The basis for emission control estimates is explained in Tables S-1 and S-2. ** tpd - tons per day. SCR - Selective Catalytic Reduction.
results reflect 1 million Monte Carlo samplings of the input \(\phi_1 \)'s for the RFMs. A Continuum RFM was constructed to predict the impact of each regional control strategy and a Discrete RFM for each power plant option, under parametric uncertainties in the 10 selected parameters from Table 1. Impacts of jointly controlling NOX from multiple regions or power plants were assumed to be additive. This is a conservative assumption that may slightly underpredict joint impacts, since controlling NOX in one place makes O3 more sensitive to NOX from elsewhere \((30) \). The error caused by this assumption is small for controls of these magnitudes \((14) \).

Table 3 presents deterministic and probabilistic estimates of the impacts of 14 hypothetical control strategies; Figure 3 shows how results vary as greater amounts of Atlanta emission reductions are applied. We focus on the extent to which the probabilistic methods influence the rankings of strategy impacts, to explore the importance of these methods to control strategy prioritization. The control options that achieve the 1.5 ppb O3 reduction target under deterministic modeling (underlined) exhibit a range of likelihood for achieving this target when parametric uncertainties are considered (Table 3). The deterministic rankings of control strategy impact, indicated by the listing order in Table 3 and the ranking-scale in Figure 3(a), are largely preserved in the probabilistic modeling but with notable differences. Maximal Atlanta-only controls (C7) yield more O3 reduction than SCRs at three distant power plants (C5) in the deterministic modeling \((2.3 \text{ ppb} vs 1.7 \text{ ppb}) \) but a smaller likelihood of achieving the fixed target \((\text{L}_{\text{fixed}} = 71.7\% \text{ vs } 79.9\%) \). Meanwhile, strategies C1 (Atlanta-only partial control) and C2 (two power plants) are reversed in the deterministic and probabilistic rankings, and strategy C8 (four power plants) fares very differently between the rankings.

These ranking reversals occur in part because the parametric uncertainty analysis methods applied here show regional NOX controls to have more uncertain O3 impact than power plant-only controls (as indicated by the 90% confidence intervals for O3 reduction in Table 3) for three reasons. First, the tonnage reduced is assumed to be perfectly certain for the power plants (whose baseline emissions are well-established by continuous emission monitors \((40) \) but to vary with uncertainty in domain-wide NOX for the regional controls, which are set on a percentage basis. Second, power plant controls have a consistently positive impact on O3 reduction at a faraway monitor because aged, diluted NOX plumes produce O3 under a wide range of input parameter conditions. By contrast, local emissions can have a titrating or inhibiting effect on urban O3 under certain input perturbations, especially if domain-wide NOX emissions are much larger than originally modeled \((\text{Figure S-1})\). Finally, the likelihood calculations considered uncertainty in model parameters but not in meteorology and used results averaged over all high O3 days of the episode. Distant power plant plumes have greater day-to-day variability in impacts \((\text{indicated by standard deviation in column 4 of Table 3})\) than regional sources because fluctuating wind fields determine whether the plume reach the monitor. For example, the C5 strategy controlling three distant power plants exhibits more than twice the day-to-day variability of C7, which controls only local Atlanta emissions. Longer episodes with classification and regression tree analysis \((41) \) could be used to ensure that a representative range of high O3 meteorological conditions have been modeled.

Likelihood to Achieve Flexible Target. The impacts of the control packages are reassessed for a flexible air pollutant reduction target, corresponding to eq 6 and Figure S-1, to reflect the fact that meteorological variability and other factors may make the needed amount of improvement uncertain. The results in Table 3 and Figure 3 show that when the reduction target is not accurately known, the chances of attainment are less responsive to the amount of emission control. For example, strengthening Atlanta NOX controls from 6% to 12% \((\text{strategies C1 and C7})\) increases the \(L_{\text{fixed}} \) by 52 percentage points but increases \(L_{\text{flexible}} \) by only 25 percentage points \((\text{Table 3})\). Similar trends can be seen in the flatter lines of Figure 3c than Figure 3b. This occurs because a flexible reduction target blurs the distinction between strategies that achieve just more or just less than 1.5 ppb of reduction. However, the results approach the fixed target results as the \(\sigma \) used to define \(L_{\text{flexible}} \) is narrowed \((\text{Table S-3})\).

The likelihood rankings remain largely consistent under the flexible and fixed reduction targets but with some exceptions \((\text{Table 3 and Figure 3})\). For example, strategy C8 \((\text{four power plant controls})\) ranks second under the fixed reduction target but only sixth under the flexible reduction target. The relatively narrow uncertainty of power plant control impacts, modeled to occur for reasons explained...
above, is more helpful in achieving a fixed than a flexible reduction target, provided that the mean impact is above 1.5 ppb.

Relevance of Results. The approaches introduced here enable probabilistic prediction of the likelihood that a control package will be sufficient to achieve a fixed or flexible air quality improvement target in the presence of parametric uncertainties in the photochemical model. Both targets may usefully inform environmental decision-making, depending on how the policy issue is framed. The fixed target is apt if the needed amount of additional ozone reduction is clearly defined; for example, if regulatory approval of an attainment plan depends on demonstrating an additional increment of ozone abatement. A flexible target, meanwhile, is more attuned to predicting the likelihood of future attainment at monitors, which increases with the amount of control but is also influenced by external factors such as meteorological variation. Although the flexible target may obscure the distinctions between relative efficacies of control strategies, it avoids unrealistic expectations that a state’s control choices could be so determinative of future attainment at monitors.

Results from these approaches could be linked with control cost estimates to maximize the likelihood of attainment, subject to practical or budgetary constraints, or may supplement deterministic approaches to inform the prioritization of control strategies. Actual selection of control measures depends upon a whole host of practical, economic, and political considerations, but our approaches could usefully inform strategy selection. Probabilistic approaches may also be used as additional ‘weight of evidence’ analyses
in attainment demonstrations. However, probabilistic approaches are unlikely to supplant deterministic bright-line tests as the primary arbiter of attainment plan sufficiency because to do so would require subjective judgments about which model uncertainties to consider, the form of the target function, and what likelihood of attainment is sufficient.

Although only 8-h \(\text{O}_3 \) attainment was considered here, this method can also be applied for assessing control strategies for other pollutants. Application to particulate matter (PM) would need to account for differences in model performance among PM species and use an alternative method to compute sensitivity coefficients, since high-order DDM is currently unavailable for PM in CMAQ.

This analysis represents an important yet incomplete step toward comprehensive likelihood assessment because it considered uncertainties only in the photochemical model parameters and in the reduction target. The specific flexible target considered here is just one of many ways that such a target could be formulated. Structural uncertainties in the photochemical model, uncertainties in the meteorological inputs, and the representativeness of the meteorological episode were overlooked. Additional important uncertainties include control measure effectiveness (i.e., the percent or tons of emissions actually reduced by the abatement measures) and the accuracy of predicted baseline emission trends (e.g., due to economic and population growth, vehicle fleet turnover, etc.). Future work could incorporate these uncertainties into the likelihood assessments and explore alternate formulations of the target functions.

Acknowledgments

Although the research described in this article has been funded by U.S. EPA through Science to Achieve Results (STAR) grant #R833665 to D. Cohan, it has not been subjected to the Agency’s required peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred.

Supporting Information Available

Control measures and their efficiencies as obtained from AirControlNET (Table S-1), additional point-source and federal measures explored (Table S-2), variation of attainment likelihood of \(\text{O}_3 \) control strategies due to varying uncertainty in \(T_{\text{MAX}} \) plots illustrating the probability distribution of \(\text{O}_3 \) reduction along with the likelihood to achieve a flexible reduction target due to a representative control scenario, and response of \(\text{O}_3 \) reductions to uncertainty in domain-wide \(\text{NO}_x \). This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

3. USEPA. Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for Ozone, PM2.5, and Regional Haze; 2007.
22. Georgia Department of Natural Resources, E. P. D., Air Protection Branch Proposed Georgia’s State Implementation Plan for the Atlanta 8-h ozone nonattainment area; 2009.
26. Olerud, D.; Sims, A. MM5 2002 modeling in support of VISTAS (Visibility Improvement - State and Tribal Association); Swan-

VOL. 45, NO. 1, 2011 / ENVIRONMENTAL SCIENCE & TECHNOLOGY
Planning (ASIP) emissions and air quality modeling to support PM2.5 and 8-h ozone State Implementation Plans; 2008.

ES102581E