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a b s t r a c t

Ethanol production from sucrose from sugarcane allowed Brazil to become a world reference in the
production of biofuels. Presenting the 2013/2014 crop harvest of 653,519 thousand tons of sugarcane,
thus producing 37,713 thousand tons of sugar and 27,543 thousand m³ of ethanol and generating 91,493
thousand tons of bagasse. However, as referenced since 1970, Brazil could exploit sugarcane waste
surpluses in order to use bagasse and straw for ethanol production, but the data presented in the last
decade emphasized in a significant direction and on increasing the use of these wastes in the generation
of bioelectricity. Currently there are 486 sugar-energetic power plants with the productive capacity of
12.056 MW to the power network (autoconsumption of sugar-energetic power plants corresponds to
50% of the energy produced), representing 8.4% of the Brazilian energy matrix. Therefore, this review
reports that the offer of bagasse and straw for ethanol production in industrial scale will be insufficient,
thus, arising the need to find possible lignocellulosic materials with the potential to be used for ethanol
production, thus allowing the supplemental absence of straw and bagasse sugarcane that could be
available according to the locality, both in the rural area as well as in the urban area. Furthermore, the
review reports the application of sugarcane wastes in the production of bioethanol, the difficulties
encountered in the implementation of cellulosic ethanol power plants based only on the use of bagasse
and straw of sugarcane, the possibility to use alternatives of lignocellulosic materials with potential to be
applied in Brazil, besides the production of cellulosic ethanol, the production of co-products and by-
products using microdistillery, based on the biorefinery context in an efficient manner.

& 2015 Elsevier Ltd. All rights reserved.

Contents

1. Contemporary situation of Brazilian sugar-energetic power plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288
2. Microdistillery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289

2.1. Implantation of microdistillery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289
2.2. Implantation of microdistillery in the context of biorefinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290
2.3. Production of co-products and by-products of the productive process of cellulosic ethanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291
2.4. Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292

3. Sources of biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292
3.1. Terrestrial photosynthetic biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292
3.2. Coconut bagasse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293
3.3. Cactus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294
3.4. Halophyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294
3.5. Urban solid waste of plant origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294

4. Biotechnological advances strategic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295
4.1. Alcoholic fermentation of mixed sugars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295
4.2. Consolidated bioprocessing (CBP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/rser

Renewable and Sustainable Energy Reviews

http://dx.doi.org/10.1016/j.rser.2015.05.047
1364-0321/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ55 84 3215 3757/3759x229; fax: þ55 84 3215 3770.
E-mail address: gomacedo@eq.ufrn.br (G.R. de Macedo).

Renewable and Sustainable Energy Reviews 50 (2015) 1287–1303

www.sciencedirect.com/science/journal/13640321
www.elsevier.com/locate/rser
http://dx.doi.org/10.1016/j.rser.2015.05.047
http://dx.doi.org/10.1016/j.rser.2015.05.047
http://dx.doi.org/10.1016/j.rser.2015.05.047
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2015.05.047&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2015.05.047&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2015.05.047&domain=pdf
mailto:gomacedo@eq.ufrn.br
http://dx.doi.org/10.1016/j.rser.2015.05.047


4.3. Others advances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296
5. Disadvantages, difficulties, challenges and perspectives in the production of cellulosic ethanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297
6. Final considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299

1. Contemporary situation of Brazilian sugar-energetic power
plants

Brazilian sugar-energetic power plants focused only on the
production of ethanol and sugar, however, recently attention
turned back also to the production of bioelectricity, alcohol
chemistry and commercialization of carbon credits [1–4]. That
way, it made possible the increase in the offer of products
generated by sugar-energetic power plants [2,5]. Furthermore,
stands out the global production of cellulosic ethanol as an
alternative to ethanol produced based on food sources [5–10], as
evidenced by Sastri and Lee [10] (Fig. 1). In Brazil, the production
of cellulosic ethanol is being projected, at first, from waste
sugarcane [1,5,7,11–13], estimating that the first Brazilian power
plants of this type will be in operation in 2014 [14].

The harnessing of the Brazilian energetic potential referring to
the straw and bagasse of sugarcane in a short and medium term is
directed for electric power production [1,4,5,15–19], considered
economically viable in Brazil [1,20], that configures itself like a
potential competitor in the destination of straw and bagasse of
sugarcane for ethanol production, especially if adopted specific
policies such as the energy auctions related to bioelectricity
generation.

According to Dias et al. [5], Castro et al. [21] and Menon and
Rao [22] the cellulosic ethanol can be competed with the produc-
tion of bioelectricity, but initially it requires the use integral waste
of sugarcane, lower cost of enzymes involved in the process and
industrial scale production. However, despite expectations, great
uncertainty remains about the performance of cellulosic ethanol
production in industrial scale [22], like that the implantation of
the power plants in industrial scale is hampered by the absence of
public–private funding, derived from the world economic crisis
[23,24]. Therefore, this biotechnological route has yet to prove
soundness, efficiency and competitiveness.

In 2010, there existed 432 sugar-energetic power plants in
activity in the Brazil, whereas 129 were exporting energy to the
power network, adding up to 1002 MW [4,25]. In 2012, there were
348 sugar-energetic power plants exporting energy to the power
network [26] and currently there are 486 sugar-energetic power
plants with the productive capacity of 12,056 MW, representing
8.4% of the Brazilian energy matrix. Presenting the crop 2013/2014

harvest of 653,519 thousand tons of sugarcane, thus producing
37,713 thousand tons of sugar and 27,543 thousand m³ of ethanol
(being 12,223 m³ of anhydrous ethanol and 1532 thousand m³ of
hydrous ethanol). 91,493 thousand tons of bagasse was generated
[26]. In this trend, it has been verified the use of straw and bagasse
from sugarcane for the production of electricity [19]. According to
Sousa and Macedo [4] bioelectricity presents a potential to supply
about 20% of the Brazilian electricity demand by the end of this
decade. It is estimated that the production and distribution of
bioelectricity in the Brazilian electricity network, through 2021,
can be compared to three hydroelectric power plants of Belo
Monte, as shown in Fig. 2 [25].

In this context, the Brazilian production of ethanol from straw
and bagasse of sugarcane can also be penalized by the adaptive
structures of sugar-energetic power plants that use such wastes
for the production of electricity, because the Brazilian environ-
mental law places some restrictions on the installations of new
sugar-energetic power plants. For example, the State of Mato
Grosso do Sul limits the installation of a new sugar-energetic
power plant to a minimum radial distance of 25 km between the
power plants and limits at 20 km, the distance between the urban
area and the power plant. It means that in a few years it will be
occupy a majority of permissible areas for implantation of these
sugar-energetic power plants, and in the current situation it is
designed for the waste of sugarcane for the production of
electricity. This destination of waste from sugarcane for the
production of electricity in Brazil was also motivated by the delay
in implantation of the power plants producing ethanol from these
lignocellulosic materials, besides the increase in public–private
incentives for the production of bioelectricity [19], therefore
reducing the offer of waste of sugarcane for ethanol production.
All of these events were also favored by the appellants “energy
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blackouts” and by the low levels of hydrological reservoirs of the
Brazilian hydroelectric power plants.

According to Dias et al. [27] and Pellegrini and Junior Oliveira
[28] the sugar-energetic power plants need installation of low
pressure boilers and use the energy generated internally, or in
accordance with the market, putting investments in high pressure
boilers which allows export surplus energy to the efficient power
network. In this sense, in Brazil the power plants are gradually
replacing low pressure boilers for high pressure boilers and new
power plants already have high pressure boilers, focusing the
interest of these power plants in exporting the surplus energy
produced to the power network [3,19,28].

Bioelectricity linked to the production of ethanol and sugar has
exceptional conditions to represent strategic role in the expansion
of the national power system, as an important energy source to
supplement the offer of energy generated by the hydroelectricity,
besides providing low cost production, transmission and distribu-
tion (electric energy generated nearest the consumer centers),
environmental benefits (source of renewable energy and reducing
emissions of greenhouse gases) and socioeconomic benefits
(employment generation, guarantee of the supply of energy,
reductions in electricity transmission losses and decentralization
of electric energy offer). All these factors strengthen the competi-
tiveness of the national economy [4]; furthermore, bioelectricity
allows the generation of energy during the months with lower
pluviometrics levels [4,19], making possible the decrease in the
cost of production of sugar, ethanol and cellulosic ethanol, when
bioelectricity generation is present in the productive process
[28,29], providing fixed values and financial contracts exceeding
15 years [19]. Therefore this situation stimulates the choice of
public–private policies favorable to the generation of bioelectricity
as a possible energetic solution, to the energetic market in a
country in full socioeconomic expansion, with growing need for
electric power availability.

According to Dias et al. [5] the results obtained by simulation
demonstrated the possibility of improving the internal return rate
of conventional autonomous distilleries when using integrally
sugarcane and surplus of electric power passed along to the
network. The data obtained by Dias et al. [5] have evidenced the
best results in scenarios where electricity production is maximized
while, that for cellulosic ethanol, the best internal return rates
were obtained from the use of sugarcane and efficient enzymatic
hydrolysis integrally.

Yet, according to Dias et al. [30] the evaluative simulation of
some productive scenarios, considering different levels of integra-
tion between the power plants for ethanol production and
cellulosic ethanol as from the sugarcane shows significant differ-
ences (Table 1). Integrated production of ethanol and cellulosic
ethanol with the current technology of enzymatic hydrolysis
(scenario 2) possesses the largest investment between the scenar-
ios studied; it shows the internal return rate greater than just

autonomous power plant for cellulosic ethanol (scenario 5) and it
shows the highest production costs. Use of enzymatic hydrolysis
advanced technologies in the integrated process improves the
ethanol production (scenarios 3 and 4), but only takes place
together with the fermentation of pentoses (scenario 4), being
the return rate greater than the autonomous ethanol power plant
(scenario 1). Autonomous cellulosic ethanol power plant (scenario
5) has the lowest return rate, due to the large initial investment,
similar to the (1a) scenario, besides the low ethanol production. If
the solvent used in alkaline delignification is recovered, this
configuration provides the best environmental indicators [30].
All of the tested scenarios allow exportation of the energy surplus
in the form of bioelectricity to the electrical network.

These facts corroborate for shortage in the offer of straw and
bagasse of sugarcane as the main lignocellulosic materials for
ethanol production in Brazil. Considering this, the production of
Brazilian cellulosic ethanol shall be performed not only from the
use of straw and bagasse from sugarcane, but also from various
sources of lignocellulosic materials. In this case, it could be
produced not only by large-scale power plants, but also by power
plants of medium and small-scale, such as microdistilleries. In this
sense, this review evidences the difficulties encountered in Brazil
to produce ethanol from straw and bagasse from sugarcane in
industrial scale; it demonstrates some lignocellulosic materials
with high potential as a raw material for the production of
enzymes, cellulosic ethanol, co-products and by-products in the
context of the biorefinery.

2. Microdistillery

2.1. Implantation of microdistillery

Brazil is currently the largest exporter and second largest world
producer of ethanol [31], but it has an internal shortage of ethanol,
especially during off-season harvest of sugarcane, which provides
a decrease in the amount of ethanol present in gasoline and
increases the difficulty in acquiring hydrous ethanol, being that
these obstacles cause an increase in the value of ethanol. In a
country exporter of ethanol, these factors provide disrepute to the
market. That way, in order to avoid such facts, it emerges as an
alternative, the possibility of producing cellulosic ethanol in
microdistilleries, with the implementation this project in large
individual estates, agroindustrial cooperatives, urban and family
agriculture.

Ethanol production in microdistillery by means of simple
structure and economic accessibility, allows the daily production
up to 5000 l of ethanol, whereas the for the installation of these
microdistilleries it would not need great homogeneous area for its
operation, thus allowing its installation in different places and the
use of many raw materials, besides allowing the production in
places difficult to access, as well as the possibility of consumption
in situ [32–34]. These factors related to the size of the installation,
location of raw material, infrastructure for production and dis-
tribution of the product are interrelated and interdependent,
generating substantial impacts about the cost of cellulosic ethanol
production [29,34–38]. That way, installation in a site that mini-
mizes the transportation costs of raw materials and the product
represents an economy from 15%to 25% of the total production
cost of the cellulosic ethanol [37].

Ethanol production in microdistillery still allows a considerable
increase in the human development index, as from the improve-
ment in quality of life in rural areas [32]. With income generation
(discouraging rural exodus) and absence of social problems related
to large-scale production of ethanol [33], it also allows to increase
the amount of food produced through the use of the by-products

Table 1
Characteristics of the evaluated scenarios.
Source: [30].

Parameter Scenario

1 1a 2 3 4 5

Ethanol production X X X X X
Cellulosic ethanol production X X X X
Sell of surplus electricity X X X X X X
Sell of surplus bagasse X
Current technology for cellulosic ethanol X
2015 Technology for cellulosic ethanol X X X
Pentoses biodigestion X X
Pentoses fermentation X X
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of microdistillery [39], being an integrated system for food
production, energy and environmental services as a promising
alternative for rural properties, especially if the aim is related to
the energy and environmental performance, compared to the
large-scale production of ethanol [33]. This productive concept
becomes stronger, in addition to energetic questions, socioenvir-
onmental parameters [33] and the potentialities to neutralize the
generated carbon [40]. Thus allowing the production of various co-
products and by-products in the context of biorefinery in an
efficient manner [33], without necessarily competition with the
food production [41].

According to Pereira and Ortega [42] the ethanol production
carried out on a large-scale shows renewability of only 30%,
besides presenting worries about environmental impacts and high
consumption of natural resources. A study carried out by Cavalett
et al. [43], corroborates the results obtained by Pereira and Ortega
[42], which shows renewability of 64% in ethanol production in
microdistillery and makes it more sustainable than ethanol pro-
duction on a large-scale (renewability of 23%). According to Ortega
et al. [44] by using systemic analysis, it becomes possible to
analyze the disappearance of economy of scale, while the inte-
grated ecological agricultural system in microdistillery can display
optimum economic and environmental performance.

Apart from that, the processing may be advantageous in
microdistillery concerned to a large-scale production [22,34].
Ethanol production on a large-scale will reduce the arable land
for the cultivation of food [8,42,45], therefore resulting in neces-
sity of careful approach in the large-scale production [41].
Furthermore, the demand for use of lignocelluloses material for
bioenergy production may potentiate the pressure on productive
systems generating negative impacts on biodiversity [46,47], the
expansion of monocultures and chemical products applications
[47]. Besides biodiversity, the main negative impacts of biofuels
production on a large-scale are the threats to forests; it will
increase food prices and competition for the water resources [48].

Successful experiences in the production of ethanol in Brazilian
microdistillery as from the sucrose of sugarcane are presented by
Moreno and Ortiz [49], such as cooperatives agroindustrial COOP-
ERCANA, CRERAL and COOPERBIO. COOPERCANA produces about
2% of the fuel consumed in Rio Grande do Sul and about 2500 ha of
cultivation of sugarcane propagated in over 300 properties is
distributed in the municipalities of Porto Xavier, Roque Gonzales
and Lucena Porto, with production of 9 million liters of ethanol per
year [49]. COOPERBIO has a network of 64 municipalities in Rio
Grande do Sul and it has developed a program for the production
of food and biofuels based on agroecological principles, directed to
small family farmers, with daily production capacity of 600 l of
ethanol [50].

In comparative terms, in the Nordic countries that are in search
of meeting the demand for ethanol, they also bet on the regional
production of cellulosic ethanol in microdistillery [34]. For exam-
ple, biorefinery Borregaard (Sarpsborg, Norway) constitutes one of
the most advanced biorefineries in operation, with an experience
of over 40 years of operation currently produced as from ligno-
cellulosic material, such as: lignosulphonates, oxylignin sulpho-
nates, vanillin, cellobiose octaacetate, microfibrillar cellulose,
speciality cellulose, bioethanol and protein [51]. Kadam et al.
[52] reported a biorefinery with the capacity to convert corn
stover into ethanol, soluble cellulose and lignin for the production
of resin. The biorefinery based on sweet sorghum stem has
produced after 54 h, approximately 140 g/L of ethanol, with
ethanol yield of 0.49 g/g [53] and sweet sorghum bagasse pre-
treated with acetic acid was hydrolyzed about 85% of hemicellu-
lose and using as raw material (55 g/L of sugar) has produced
19.21 g/L of total solvent (9.34 g of butanol, 2.5 g of ethanol and
7.36 g of acetone) by Clostridium acetobutylicum and the residual

bagasse pretreated was extruded with poly (lactic acid) for the
production of bioplastics [53]. According to Mao et al. [54] and
Fornell et al. [55] there is technical viability and it is economic in
the production of ethanol from Kraft mill. This productive process
is also attractive for production in microdistillery [54].

Starting at public–private incentives it is possible to imagine
the implantation of thousands of microdistilleries in Brazilian
territory, thus providing an increase in the offer of energy, in
addition to the incorporation of social gains, environmental and
economic to the population. It is emphasized that, from the
development of this model, Brazil may contribute to the develop-
ment of other countries. As an example, African continent presents
characteristics similar to Brazil and bioenergy production may
permit an increase of food security (increase in food production),
investment in technology and infrastructure, recovery of agricul-
tural areas and human resources training [56], configuring itself a
region with high productive capacity still unexploited
energetically.

2.2. Implantation of microdistillery in the context of biorefinery

The possibility of implantation of thousands of microdistilleries
for the production of cellulosic ethanol based on the context the
biorefinery will provide a biotechnological gain to Brazil. Biore-
finery term was created in 1990 by NREL [57] and according to
NREL [58] the biorefinery is an industrial installation that inte-
grates conversion processes and equipment for the production of
fuels, power and other chemical products from biomass
[35,41,57,59–61].

Biorefinery consists of three main models: the biorefinery
based on lignocellulosic raw material (LCF), “whole-crop biorefin-
ery” and green biorefinery [62,63]. In accordance with Uihlein and
Schebek [63] the LCF biorefinery is considered the most promising.
Recently, it appeared that the biorefinery model based on photo-
synthetic aquatic biomass [64], beyond the biorefinery model is
associated with the urban solid waste of plant origin. Biorefineries
are classified into three phases, being the biorefinery of phase 1,
limited use of a raw material for production of one product.
Biorefinery of phase 2, it uses a raw material and converts it into
various products. Biorefinery of phase 3, the most advanced, which
aims at the use of various conversion processes in the production
of multiple products from various raw materials [65].

Biorefineries can perform interlinked activities that enable the
creation of industrial networks, which generally provide social
benefits, environmental and economic [41,66], by combining the
technologies needed for the processing of biological raw materials,
of the intermediate products and finals [62], carried out by
thermochemical processes, chemists, biochemicals, physicists or
a combination of these processes [41,65], thus forming an indus-
trial symbiosis [66].

Furthermore, biorefineries use resources in more sustainable
ways, without producing waste and other environmental pollu-
tants [60,67]. Being of great importance under the vision of a
sustainable economy based on biological resources [22,61,63], it
allows sustainable economic growth as from insurance resources
for industrial production [62–64]. According to Rødsrud et al. [51]
the biorefinery operation based on vegetable biomass consists of a
challenge, both of the processing viewpoint, and from the market.
Highlighting the fact that green industrialization cannot always be
clean and sustainable [41].

In this context, the biorefinery can improve their sustainability
through diversification of products from biomass. Being the
diversity of raw materials and processing technologies the pre-
cursors of various industrial combinations, in order to meet
different needs, geographic location, economies of scale and
national priorities [22,41,64]. Thus, a group of specific technologies
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shall be developed in order to convert each fraction more
efficiently and generating products of higher added value
[22,35,60]. Similarly, the production of multiple products in a
certain location, but at different time, may permit the continuous
operation of biorefinery [53].

2.3. Production of co-products and by-products of the productive
process of cellulosic ethanol

The prospects are optimists for the production of cellulosic
ethanol and its derivatives (co-products and by-products gener-
ated and used efficiently) in Europe [68], Malaysia [69], Korea [70],
China [71,72], India [73,74], Turkey [75], Canada [76], Ghana [77],
Serbia [78], Australia [79], Colombia [80] and Brazil [11].

Some lignocellulosic materials enable the extraction of protein
before the pretreatment stage; the protein can be used for protein
enrichment in food industry and formulation of nitrogen com-
pounds [81–83].

Based on cellulosic ethanol production, the degradation of
lignocellulosic materials promoted by the pretreatment and che-
mical hydrolysis or enzymatic may result in the release of mono-
meric sugars, furan derivatives, weak acids, phenolic compounds,
lignin and other [41,60,84–86], generating even, by-products
originating from industrial process such as carbon dioxide, vinasse
and vegetable biomass waste, by-products that enable the produc-
tion of synthesis gas or biogas, electricity and heat [41,84].

In the conventional power plants for ethanol production, the
residual lignin is considered as a low aggregate value and generally
burned to provide energy and heat [71]. However, on the concept of
biorefinery this lignin must be efficiently integrated into the produc-
tive process [87]. According Ghatak et al. [41] the use of lignin in the
non-energetic form can significantly improve the economic and
environmental sustainability of biorefineries. In this scenario, the
lignin can be converted to synthesis gas [71,88], or degraded into
smaller fractions for the production of polyurethane foam, phenolic
resins and epoxy, as sources of phenol and ethylene [89–92], adsor-
bents and carbon precursors [89,93], polymer formulations [94,95]
and raw material for numerous aromatic substances of low molecular
weight [89,96]. Besides the possibility of producing additive for the use
in renewable biofuels from the ozonolysis of lignin [97].

Degradations of cellulose and hemicellulose during the pretreat-
ment could generate compounds that may promote inhibition
effects during the stages of enzymatic hydrolysis and fermentation,
such as furan derivatives, hydroxymethylfurfural (HMF), product of
dehydration of hexoses and furfural, and product of dehydration of
pentose. Degradation of HMF releases the levulinic acid and formic
acid. Formic acid can also be released by the degradation of furfural.
Hydrolysis of acetyl groups linked to sugars generates acetic acid.
Phenolic compounds and aldehydes are formed from the degrada-
tion of lignin and carbohydrates. Acetic acid, formic acid and
levulinic acid are weak acids most common in the lignocellulosic
hydrolysates [85,86]. These compounds show the possibility of
harnessing, for example, furfural can be hydrolyzed into maleic
acid or resin form with addition of urea or phenol [98], HMF can be
cleaved in formic acid and levulinic acid, this later can be used as
raw material for production of polyesters [99], acetic acid can be
used as chemical reagent or in the form of vinegar, besides
providing a starting material for the synthesis of various polymers
such as vinyl acetate and acetic anhydride, which are traditionally
produced as from raw materials at petroleum base [100,101].

Production of ethanol from lignocellulosic materials increases the
supply of ethanol and enables the generation of many co-products,
such as ethanol vapor in hydrogen production to obtain fuel cells
[102,103], ethylene production, ethylene glycol, acetaldehyde, acetate,
ethyl acetate, glycols, acrylates, ethyl chloride, butane, propylene and
butadiene [99] and the production of ethane resulting from the

dehydration of ethanol, precursor of wide range of products such as
polyethylene, polypropylene and polyvinyl chloride (PVC). In Brazil,
the production of these co-products from ethanol is due the expand-
ing ethanol production in the country[104]. It can be cited, for
example, the use of ethanol in replacement of methanol during the
production of biodiesel [105], as well as conversion of ethanol into
ethylene for the production of bioplastics, scenarios that contribute to
the increasing demand for ethanol. It is emphasized that ethanol used
during the stage of transesterification of biodiesel can be obtained
from the lignocellulosic residues resulting from the oil extraction
during the biodiesel production and directed to the production of
cellulosic ethanol [106]; currently, 80% of the biodiesel produced in
Brazil uses soybeans as raw material [107]. According to Visser et al.
[106] the ethanol demand varies with the lignocellulosic material
used, in the case of cottonseed, 470% of ethanol used during the stage
of transesterification of biodiesel production can be supplied from the
production of ethanol from the waste of cottonseed.

The microbial biomass produced during alcoholic fermentation
can be used as a source of protein (single cell protein) and can be
incorporated into the feeding [108–110]. Microbial biomass still
contains nucleic acids, carbohydrates, compounds of the cell wall,
lipids, minerals and vitamins [109].

During the industrial process exists the generation of waste
liquids with high organic load and inorganic, for example, vinasse,
which has a high efficiency as a fertilizer. According to Silva et al.
[111], Bekatorou et al. [112] and Selim et al. [113] is also potentially
feasible the use of vinasse in the production of single cell protein
by Saccharomyces cerevisiae, providing a less toxic effluent [112].
Furthermore, many organic wastes can be used in the microbial
protein production, for example, the culture medium containing
papaya [114] and the culture medium containing soybean hull
[115], made it possible to increase the concentration of protein in
S. cerevisiae at 20% and 25%, respectively. That way, it strengthens
the idea to use several raw materials for the production of protein
(single cell protein) in microdistillery.

Fermentation stage produces a flow of high purity CO2 [116] and
stored CO2, derived from the fermentation it does not need the later
treatment [106]. The costs of installation, operation and mainte-
nance for the capture and storage of CO2 as from the fermentation
stage are generally low [106]. This CO2 generated during the
production of ethanol can be used in the production of microbial
biomass [71,117] and of synthesis gas, enabling the increase in offer,
together with the gasification of residual vegetable biomass of the
fermentation process, this latter is rich in CO and H2, which can be
used in the synthesis in any hydrocarbon [41].

This posterior capture and storage of carbon from the residual
vegetable biomass of the fermentative process enables real reduction
of the global concentration of CO2 in the atmosphere [116], combined
with the capture of carbon emissions from point sources, as one of
several necessary strategies for mitigating the greenhouse gases in the
atmosphere [118]. It has also become possible the use of non-gasified
CO2 generated in the fermentative process for the production of
microalgae, which helps in the cycling of CO2 and permits the use of
this biomass, mainly in the form of lipids for biodiesel production and
the use of residual microbial biomass in the production of cellulosic
ethanol, acetone and butanol [119].

In relation to the synthesis gas, its fermentation offers a path
for the sustainable synthesis of fuel and chemical products with
many advantages over the synthesis gas conversion by catalyst
generating, mainly, ethanol, hydrogen, acetic acid, butyric acid,
butanol, methane, single cell protein and biopolymer [67,120–
123]. Such fermentation of the synthesis gas presents a highly
biocatalytic conversion efficiency in various biochemical com-
pounds and biofuels [122,124]. For example, butanol is used as
raw material for the production of butyl acetate and butyl acrylate,
which can be used as fuel additives for improving the gasoline
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octane index [125]. According to Mohammadi et al. [122] and
Munasinghe and Khanal [67], several microorganisms are capable
of fermenting synthesis gas in biofuels, such as Rhodospirillum
rubrum, Rhodobacter sphaeroides, Methanobacterium thermoauto-
trophicum, Methanosarcina barkeri, Clostridium thermoaceticum,
Rhodopseudomonas gelatinosa, Bacillus simithii ERIH2, Rhodopseu-
domonas palustris P4 and Acetobacterium kivui. Experiments car-
ried out by Mohammadi et al. [126] aiming the production of
bioproducts starting from the synthesis gas, containing 55% of CO,
20% of H2, 10% of CO2 and 15% of Ar by Clostridium ljungdahlii in
continuous stirred bioreactor, at 37 1C and agitation of 500 rpm,
resulted in 2.34 g/L of dry weight, 96% conversion of CO, concen-
trations of 6.50 g/L of ethanol and 5.43 g/L of acetate.

Microbial modification, in order to use the greenhouse gases,
mainly CO2, as a substrate for biofuel production becomes reality
[127]. Li et al. [76] have modified Ralstonia eutropha for use of CO2 in
the production of isobutanol and 3-methyl-1-butanol, resulting in
140mg/L of the branched chain alcohols. Lu et al. [128] have modified
R. eutropha, resulting in 10 mg/L of isobutanol from fructose; the
experiment carried out with nitrogen limitation resulted in the
production of 170 mg/L of isobutanol. Residual vegetable biomass of
the productive process of cellulosic ethanol also makes possible the
production of biogas, produced by the digestion of this organic
material [129].

2.4. Enzymes

Steps during enzyme production as well as enzymatic hydro-
lysis need some attention when the production of cellulosic
ethanol in microdistillery is intended, because these steps may
make ethanol production unfeasible economically, in particular on
this scale. Therefore, there is an option of using commercial
enzymes or enzymes produced locally with regional substrate.
The possibility of local production (in situ) of the enzymes starting
from by-products and agroindustrial wastes becomes a promising
alternative [130], mainly for the production of enzymes in semi-
solid bioprocess (Table 2). Production of these enzymes from
agroindustrial and urban wastes provides sustainability and profit-
ability for the productive chain, in addition to reducing the carbon
emissions into the atmosphere and the possibility of using
lignocellulosic materials of low cost [130].

Production of enzyme in situ allows the use of crude enzymatic
extract, without the need to concentrate and purify it. For instance, the
production of β-glucosidase by Licthememia ramosa using wheat bran,
with production of 15 U/mL of β-glucosidase [140] and the possibility

of in situ production and application of non-concentrated form was
carried out by Gonçalves et al. [141], as from the synergistic mixture of
the hemicellulolytic and cellulolytic enzymes produced by Trichoderma
reesei and L. ramosa in the hydrolysis of mature coconut shell
pretreated with hydrogen peroxide and sodium hydroxide, resulted
in 82.3% conversion of reducing sugars and 83.9% of glucose, after 96 h
of hydrolysis.

According to Castro and Castro [130] Brazil is one the biggest
producers of biofuels of the world, having in the biodiversity and
environmental characteristics for possibility of making it a great
generator of biotechnological products, such as enzymes for
bioenergy industry. The results obtained by Castro and Castro
[130] indicate the possibility of the Brazilian production of con-
centrated enzymatic from agroindustrial wastes based on amy-
lases, cellulases, xylanases and lipases estimated at 3.1�107,
3.2�107, 3.1�108 e 2.9�109 t, respectively.

Besides the search for improving production stages to obtain
efficient enzymes and enzymatic hydrolysis, it also becomes important
to perform recovery of the enzymes after the fermentation process
[142]. Eckard et al. [143] carried out enzymatic recycling in simulta-
neous saccharification and fermentation (SSF) and separate hydrolysis
and fermentation (SHF) of corn stover evaluating the use of novel
enzyme stabilizers of casein, Tween 20 and polymeric micelles of
polyethylene glycol (PEG)-casein and PEG-Tween20. With the addition
of these compounds significant recoveries of enzymatic activity were
obtained. According to Rodrigues et al. [144] the recovery of cellulases
can be carried out by alkaline washing of the lignin and cellulose
residual. Using this simple alkaline washing the enzyme recovery,
showed more than 60% of enzymatic activity in synthetic substrate (4-
methylumbelliferyl-β-D-cellobioside), therefore, this technique consists
of a promising strategy for recycling enzymatic, that can allow a
simple implement on an industrial scale, in addition to being effective
and economical [144], providing a reduction in production costs of
cellulosic ethanol [145].

3. Sources of biomass

3.1. Terrestrial photosynthetic biomass

Terrestrial biomass production consists of approximately 100
billion tons of dry organic matter [64,146]. Part of this biomass is
used (1.25%) and the remainder is recycled by the biotic system.
Therefore, part of this biomass can be used as a raw material for
the production of many products [64].

Table 2
CMCase-producing, xylanase-producing and β-glucosidase-producing microorganism.

Enzymes Microorganisms Substrates Production U/mL Reference

CMCase Trichoderma harzianum Wheat bran 1.64 [131]
Chaetomium erraticum Wheat bran 0.04 [132]
Termitomyces clypeatus Mustard stalk and straw 2.95 [133]
Lysinibacillus sp. Wheat bran 0.43 [134]
Neosartorya spinosa Wheat bran 0.11 [134]

Xylanase Streptomyces flavogriseus Wheat bran 1.59 [135]
Streptomyces sp. C-248 Wheat bran 4.48 [135]
Thermoascus aurantiacus Corn bran 130 [136]
Streptomyces sp. C-254 Wheat bran 6.44 [135]
Aspergillus sydowii Wheat bran 1.10 [137]
Termitomyces clypeatus Mustard stalk and straw 14.12 [133]
Lysinibacillus sp. Wheat bran 5.40 [134]
Neosartoryas spinosa Wheat bran 2.10 [134]

β-glucosidase Chaetomium globosum Delignified palm fibers 9.80 [138]
Termitomyces clypeatus Mustard stalk and straw 2.30 [133]
Aspergillus niger Wheat bran 2.84 [74]
Trichoderma reesei Wheat bran 0.22 [74]
Thermoascus aurantiacus Wheat bran 7.0 [139]
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Biofuel production generally uses substrates derived from food
crops (e.g. corn in the United States), which have afforded polemic
between the destination of this vegetable biomass for food or
biofuel production [7,9,41,147–149]. Therefore, there is a great
research effort for obtaining sustainable sources of biomass for
biofuels production, mainly ethanol. Due to the risk of food
insecurity, this question should be carefully issued, for example,
the Chinese government has laws that discourage use of feed raw
material for ethanol production [72].

As an alternative to food sources arises the use of agroindustrial
and urban wastes [7,150–153] and plants cultivated in inhospitable
areas [154–157]. This scenario enables aggregate value to these
biomasses, allowing increased production of fuel without the need
for expansion in the use of agricultural lands, still providing subsidies
to meet the targets established in the diplomatic accords such as the
Montreal Protocol in 1987, Kyoto in 1997 and Copenhagen in 2009.

The advancement in the use of lignocellulosic materials
increases the concern to maintain the natural forests, mainly in
tropical countries [158]. Since the conservation of forests consists
in a precondition for the sustainable production of cellulosic
ethanol [158] Popp et al. [158] results obtained by simulation
indicate the need to increase the yield of energy crops and
conservation of forests. Therefore, the demand for cellulosic
bioenergy will put additional pressure about the agricultural
productive system and it will provide increase in the level of CO2

[158]. Everything reinforces the importance of the use of agroin-
dustrial and urban wastes, beyond the cultivated plants for the
production of ethanol and enzymes (Tables 2 and 3). The Brazilian
harvest in 2011, shown in Table 3, evidences the potential of
lignocellulosic material left on the field, based on methods to
calculate existing biomass [159]. Some of these lignocellulosic
materials exhibit little information in the literature, as for exam-
ple, the lignocellulosic materials discussed below.

3.2. Coconut bagasse

Coconut trees are ideal for cultivation in a humid tropical
climate, they thrive in poor soils, sandy and tolerate short period
exposure to saline water and are distributed in more than 200
countries [160]. According to FAO [160] the world production of
coconut in 2009 was about 55 million tons, with highlighted
production for the Philippines (36%), Indonesia (28%) and India
(20%). Brazil is the fourth largest world producer of coconut, with
production of about 3 million tons [161]. In South America, Brazil
is responsible for more than 80% of production, being the North-
east Region responsible for 82.28% of the total planted area and
69.25% of the total value of the coconut produced in 2009 [161].

The search for adequate food as an alternative to improve the
health generates numerous food products produced at coconut
base, such as coconut water fresh and powder, coconut milk,
grated coconut and coconut oil. Due to this advancement, the
productive coconut chain does not possess the correct destination
of their agroindustrial and urban wastes. In seaside towns, mainly
in areas with tourist vocation, green coconut shells account for up
to 80% of total volume of solid wastes collected on the waterfront
and due to its high concentration of lignin, hemicellulose and
cellulose have slow decomposition, being 85% of the weight of the
fruit made up of lignocellulosic material [12]. The discard of the
green coconut shells in garbage dumps, sanitary landfills, patios
processing industries and common areas of public use and result
in environmental pollution [162].

Bagasse from mature coconut when processed can result in a
long fiber, generally employed in the automotive industry [163],
but generates waste material. It is estimated that for every kilo-
gram of produced fiber there are generated about 2 kg of powder
and short fibers [164]. Composition of green coconut fiber has
lignin (43.14%), cellulose (45.93%) and ash (3.60%), diameter of
natural maximum of 495 mm and minimum of 69 mm [165]. Coco-
nut husk has lignin (29.79%), cellulose (39.31%), hemicellulose
(16.15%) extractives (2.48%) and ash (3.19%) [166].

Gonçalves et al. [167] reported that composition of the mature
coconut fibre has lignin (26.69%), cellulose (31.60%), hemicellulose
(26.31%), extractives (5.44%) and ash (3.31%). Green coconut shell has
lignin (26.88%), cellulose (32.88%), hemicellulose (26.50%), extractives
(3.27%) and ash (4.34%). Mature coconut shell has lignin (33.15%),
cellulose (30.47%) hemicellulose (25.42%), extractives (2.71%) and ash
(4.84%). Coconuts were pretreated by sequential alkaline hydrogen
peroxide–sodium hydroxide process, resulting in composition of
mature coconut fibre which contains lignin (8.92%), cellulose
(51.80%), hemicellulose (25.81%), extractable (0.05%) and ash
(2.98%). Green coconut shell has lignin (7.89%), cellulose (54.14%),
hemicellulose (28.36%), extractable (0.26%) and ash (1.07%). Mature
coconut shell has lignin (10.22%), cellulose (53.88%) hemicellulose
(23.02%), extractable (0.53%) and ash (3.80%) [167].

These results were further confirmed by the corresponding
glucose conversion yields in the enzymatic hydrolysis of 70.20%,
76.21% and 74.50% for green coconut shell, mature coconut fibre
and mature coconut shell, respectively. Subsequently, the compar-
ison between Simultaneous saccharification and fermentation
(SSF) and semi-simultaneous saccharification and fermentation
(SSSF) using S. cerevisiae, Pichia stipitis, Zymomonas mobilis and
pretreated mature coconut fibre was done, being shown that a
short presaccharification step at 50 1C for 8 h in the SSSF had a
positive effect on the overall ethanol yield, with an increase of
79.27–84.64% to 85.04–89.15% [167].

These lignocellulosic materials have conditions to be employed as a
substrate for the production of bioproducts, for example, ethanol.
Coconut husk pretreated with sodium hydroxide was used in the
process of simultaneous saccharification and fermentation by S.
cerevisiae, resulting in a yield of ethanol of 0.4 g/g [166].

Table 3
Brazilian harvest in 2011.
Source: [159,161].

Vegetable Production
(t)

Estimation of vegetable biomass left on the
field (t)a

Beans (grain) 3,550,107 1,171,535
Upland cotton
(seed)

5,059,618 1,669,674

Groundnut (in
shell)

275,460 90,902

Rice (paddy) 13,456,369 4,440,602
Oats (grain) 340,995 112,528
Potato 3,943,146 1,301,238
Onion 1,402,758 462,910
Corn (grain) 56,099,662 18,512,888
Soybeans (grain) 74,829,383 24,693,696
Sorghum (grain) 1,941,267 640,618
Wheat (grain) 5,646,166 1,863,235
Triticale (grain) 147,078 48,536
Garlic 8962 2957
Cactus 60,000
Sunflower
(grain)

78,690 25,968

Fruit Production
(t)

Estimate of bagasse (t)b

Coconut 1,899,355 949,678
Cashew nut 229,319 114,660
Cocoa 248,165 124,083

a 33% of vegetable.
b 50% of fruit.
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Some countries in Asia and Oceania utilize coconut oil as
biofuel in diesel engines [168,169], usually mixed with the
kerosene and diesel; however, to certain conditions it fully
replaces the diesel [168], it is used in the transport sector [168–
170] and electric power generation [168] as well as in the
transport sector, mainly in the Thailand and Philippines [169].
Some Pacific Island Country such as Fiji Islands, Kiribati, Marshall
Islands, Papua New Guinea, Samoa, Solomon Islands, Tuvalu and
Vanuatu also use coconut oil as an energetic strategy to decrease
fuel imports, besides taking advantage of the abundance of coco-
nut in the region [169]. This increase in the use of biofuels in
Pacific island countries also contributes to the reduction of green-
house gases, employment creation and strengthening of the
economy [170]. According to Tan et al. [171] the use of coconut
oil reduces the CO2 emissions from 80.8% to 109.3%, when
compared to the diesel. The production of coconut oil is carried
out on a small industrial scale situated in the rural properties
[168–170], therefore, the integration of the productive system of
coconut oil coupled to microdistillery for production of cellulosic
ethanol and it becomes a promising alternative.

3.3. Cactus

Cactus is a plant adequate for bioenergy production and is
commonly cultivated in arid environments [154]. These character-
istics allow its cultivation in areas with low rainfall levels, mainly
located on the African continent and countries such as Mexico,
Chile, Brazil, Australia, China, India and United States. That is, it can
be cultivated in inappropriate areas for cultivation of plants
intended for conventional foods [155]. In Brazil, production of
cactus was 60 thousand tons in 2009, concentrated in the North-
east Region and destined integrally for animal feed [161]. Gon-
çalves et al. [167] reported that cactus was pretreated by
sequential alkaline hydrogen peroxide–sodium hydroxide process,
with initial composition of cactus which has lignin (20.90%),
cellulose (38.33%) hemicellulose (22.19%), extractable (5.82%) and
ash (6.64%). Resulting in the composition of pretreated cactus was
lignin (9.45%), cellulose (54.91%) hemicellulose (17.65%), extracta-
ble (0.48%) and ash (8.77%). Resulted in the enzymatic hydrolysis
in 96 h was 68.44%.

A study of ethanol production using cactus was carried out by
Retamal et al. [172], in cladodes of cactus pretreated with

perchloric acid, fermented by S. cerevisiae and resulted in 9 L of
ethanol from 100 kg cladodes.

3.4. Halophyte

Halophyte consists of a category of native plants typical from
saline soils, capable of growing in environments with elevated
concentration of salt and irrigated with saline water or marine
water, without any serious negative effect on growth [156]. These
are commonly found in semi-deserts saline or alkaline, saline,
steppes and seacoasts [157]. This is considered one of the most
productive areas in terms of bioenergetic potential [157], besides
no use of the appropriate area for cultivation of biomass intended
for food [155]. The Brazil presents no reported use of halophytes in
bioprocesses, being an energetic alternative unexploited. However,
some countries already use it, as referenced below.

According to Abideen et al. [173] the species such as Halopyrum
mucronatum, Desmostachya bipinnata, Phragmites karka, Typha
domingensis and Panicum turgidum found in the coastal region of
Pakistan possess high potential as a source of biomass for ethanol
production. These perennial grasses are tolerant to salt, possess
high growth rates and present the composition between 26% and
37% of cellulose, between 24% and 38% of hemicellulose and less
than 10% of lignin (Table 4), in addition to extractives between
1.00% and 2.51%, crude protein between 3.20% and 8.27% and
crude fiber between 30.89% and 58.53% [173]. Therefore, the
cultivation of halophytes becomes an excellent alternative of
biomass that can compete favorably with other conventional
sources for biofuels production. Highlighting that they are not
inserted into the human food chain and have lower production
cost [173] with a yield of Tamarix sp. 17–20 t/hm2, Panicum sp. 9.4–
25 t/hm2 and Suaeda sp. 1.3–2.4 t/hm2. Considering that 43% of the
terrestrial climate are arid or semi-arid and 98% of the global
water offering is seawater [174], 800 million hectares are affected
by the water salinity [175] and of the 230 million hectares of
irrigated lands, 45 million have become saline [176]; the cultiva-
tion of halophyte can be an excellent alternative as a raw material
for the production of cellulosic ethanol.

Díaz et al. [177] carried out the cultivations of Salicornia
bigelovii, Atriplex lentiformis, Distichlis spicata, Spartina gracilis,
Allenrolfea occidentalis and Bassia hyssopifolia irrigated with saline
water drainage and these species were seen as a good alternative
of raw material for bioenergy production, in addition to cultures
with high potential for the use of water of saline drainage.

The global search in generating energetic source based on the
opportunity to offer a large amount of energy combined with
quality energetic becomes an obstacle in the contemporary
society. As an example, China has energetic bottleneck limiting
the socioenvironmental development. According to Xian-Zhao
et al. [157] it becomes impossible to extensively cultivate vegetable
biomass energetic in arable land in China, because this country
needs these lands to guarantee food safety of its citizens. There-
fore, the cultivation of halophytes in coastal saline land arises as an
important source of biomass to produce bioenergy [157].

3.5. Urban solid waste of plant origin

Management and the destination of inadequate urban solid
waste cause socioenvironmental impacts, such as soil degradation,
damage of water bodies and fountains, intensifying floods, besides
contributing to air pollution and the proliferation of vectors of
sanitary importance [178]. The adequate destination of urban solid
waste for the production of bioproducts minimizes such problems,
because according to Hussin et al. [153] the urban solid waste
contains significant amounts of sugars from plant origin. Utiliza-
tion of these wastes relieves sanitary landfills, but the increase in

Table 4
Composition of halophytic biomass.
Source: [173].

Aeluropus lagopoides 26.6 29.3 7.6
Aerva javanica 15.6 13.3 6.3
Arthrocnemum indicum 11.3 13.0 7.0
Calotropis procera 12.3 11.0 5.0
Cenchrus ciliaris 22.6 23.2 7.0
Chloris barbata 25.3 23.0 8.3
Desmostachya bipinnata 26.6 24.7 6.6
Dichanthium annulatum 19.0 24.3 7.0
Eleusine indica 22.0 29.6 7.0
Halopyrum mucronatum 37.0 28.6 5.0
Ipomea pescaprae 12.6 17.0 5.3
Lasiurus scindicus 24.6 29.6 6.0
Panicum turgidum 28.0 27.9 6.0
Paspalum paspaloides 20.3 32.0 2.3
Phragmites karka 26.0 29.0 10.3
Salsola imbricata 9.0 18.3 2.6
Salvadora persica 22.0 13.3 7.0
Sporobolus ioclados 15.3 30.6 2.0
Suaeda fruticosa 8.6 21.0 4.6
Suaeda monoica 10.6 11.3 2.3
Tamarix indica 12.2 24.6 3.3
Typha domingensis 26.3 38.6 4.6
Urochondra setulosa 25.3 25.0 6.3
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the generation of these urban municipal solid wastes is motivated
by the socioeconomic development of citizens, whose consump-
tion increases day after day. Therefore, it increases the offering of
substrate for the production of ethanol, mainly using urban solid
waste from plant origin [7,153].

Brazil generates 597 million tons per year of organic waste [12].
According to CETESB [179] it is estimated that in a city with a
population above 500 thousand inhabitants, an individual daily
production of solid waste consists of 0.7 kg, part of this amount
may be destined as a substrate for production of by-product.
Approximately 60% of urban wastes are formed by organic com-
pounds [180]. Annual pruning of trees arising from the mainte-
nance of the distribution networks of electrical energy carried out
in the municipalities generate huge amount of organic matter, also
being a sustainable alternative to its disposal as a substrate for
ethanol production. For example, in Singapore, this material is the
most common in municipal solid waste; in 2008 it was generated
over 229,300 t, which showed the following average composi-
tions: 34.5% of cellulose, 28.6% of hemicellulose and 36.0% of lignin
[181]. The harnessing system of urban solid waste plant origin in
Brazil is deficient, not taking an advantage of this potential
energetic, which commonly accumulates in sanitary landfills,
being one of the alternatives to its use in the production of
cellulosic ethanol.

Shi et al. [150] have analyzed 173 countries and concluded that
82.9 billion gallons of cellulosic ethanol can be produced from
waste papers, thus allowing the replacement of 5.36% global
consumption of gasoline and significant decrease of greenhouse
gases emissions. Champagne and Li [151] carried out enzymatic
hydrolysis in lignocellulosic materials contained in urban waste-
water, waste separated by primary residue decomposition and
anaerobically digested biosolids, which have undergone pretreat-
ment acid and alkaline. Best results were obtained from the
primary residues hydrolyzed at 40 1C and an enzymatic load of
800 U/g, for 24 h, with 54.2% of the material pretreated and
converted into reducing sugars [151]. These biosolids and waste
sludge contain large amounts of lignocellulosic materials, poly-
saccharides and proteins; the conversion of these residues into
aggregated value products can consist of an attractive alternative
[151].

Yang et al. [182] have estimated that the total weight (wet
basis) of urban and rural domestic waste in China are about 500
million tons each year. From the recycling of urban waste, 2.19
million tons of ethanol would be produced from toilet paper.

According Jensen et al. [152] the use of enzymes during
liquefaction of organic material of plant origin, contained in urban
solid waste showed significant results, thus allowing efficient
recovery of the sugars contained in these wastes. In Canada it
was estimated the possibility of production of 22.6 million tons of
sugar based on the amount produced from livestock manures,
municipal biosolids and sludge [183–185]. The use of urban solid
waste contributes to the mitigation of emissions of greenhouse
gases, recycling of nutrients, reduces the air potential contami-
nant, water and soil, broadens the diversity of source materials
emerging for industrial bioproducts and reduces the pressure on
non-renewable resources, such as petroleum [151].

According to Li et al. [76] 1 t urban solid waste has 45 kg of
metal, 65 kg of glass, 90 kg of plastic, 600 kg of lignocellulosic
materials and 200 kg of other elements. Lignocellulosic materials
have the following composition: 65% of cellulose and hemicellu-
lose, 10% of lignin and 20% of inorganic compounds. Enzymatic
hydrolysis of this material resulted in a conversion of 53% of
reducing sugars. These results indicate that 152 L of ethanol can be
obtained from 1 t of urban solid waste [76].

Schmitt et al. [186] have analyzed the production of ethanol
from three residues from lignocellulosic materials: urban solid

waste, paper waste and organic waste garden pretreated by dilute
sulfuric acid. The results obtained during the enzymatic hydrolysis
showed high yields of conversion in the three residues. Fermenta-
tions of hydrolysates were carried out by Rhodotorula mucilaginosa
and have resulted in elevated yields of ethanol, about 100% of
theoretical ethanol [186].

Kemppainen et al. [187] have used fiber and sludge waste
recovered from the paper productive process; these lignocellulosic
materials showed conversion of 75% of reducing sugar and
fermentative yield of 84%. In this scenario, 1 t of dry lignocellulosic
materials can produce 170 kg of ethanol, 310 kg of biogas, 360 kg
of residual sludge and 170 kg of CO2 [187].

4. Biotechnological advances strategic

4.1. Alcoholic fermentation of mixed sugars

Hydrolysates of terrestrial lignocellulosic materials can present
mixed sugars, for example: glucose, cellobiose, xylose, arabinose
and galactose. Therefore, the development of a microorganism
capable of fermenting simultaneously different sugars present in
these hydrolysates becomes a fundamental aspect in the implan-
tation of conversion process profitable for the production of
biofuels [190]. In this scenario, it gains importance for the use of
Synthetic Biology, Genetic, Metabolic and Evolutive Engineering
for the development of efficient and robust microorganisms to be
used in the process of simultaneous saccharification and fermen-
tation (SSF), semi-simultaneous saccharification and fermentation
(SSSF) and consolidated bioprocessing (CBP) [191–194]; prospec-
tion also consists of an alternative for these industrially viable
microorganisms [195,196]. Such microorganisms are expected to
increase the efficiency of fermentation of hydrolysates containing
hexoses and pentoses; it should be resistant to high concentra-
tions of sugars, the presence of inhibitory compounds generated
during the pretreatment and fermentation, as well as it must
tolerate the ethanol itself, besides to ferment the hydrolyzate
without purification and endure high concentration of solid [191].
Although numerous approaches to overcoming the glucose repres-
sion are mentioned in the literature, none of them allows efficient
co-fermentation of glucose and other sugars, with conversions
similar to fermentation of glucose [190].

Microbial fermentation of cellobiose and xylose will contribute
to the production of cellulosic ethanol commercially viable
[72,190], however, without microbial modification it becomes
difficult to obtain this ideal scenario. An exception consists of
the Flammulina velutipes, which has the capacity to convert
glucose, xylose and cellobiose into ethanol [197,198]. As reported
by Ha et al. [199] the S. cerevisiae may not use cellobiose directly,
but can be modified to ferment cellobiose through the simulta-
neous introduction of cellodextrin (CDT-1) transporter and intra-
cellular β-glucosidase gene (GH1-1) of Neurospora crassa. These
authors reported that modified strain of S. cerevisiae expresses a
putative transporter gene of hexose HXT2.4 of Scheffersomyces
stipitis. Other modifications were carried out in this recombinant
strain of S. cerevisiae and resulted in the mutant HXT2.4 (A291D),
which resulted in the consumption of 75 g/L of cellobiose and
production of 32 g/L of ethanol in 36 h, with a ethanol yield of
0.43 g/g [199]. Guo et al. [200] have modified S. cerevisiae with the
insertion of the gene BGL1 of Saccharomycopsis fibuligera, resulting
in consumption of 5.2 g/L of cellobiose and production of 2.3 g/L of
ethanol, in 48 h. Ethanol production by recombinant yeast
pYBGA1, cultivated in 100 g/L of cellobiose, in 96 h, resulted in a
conversion rate of 85% ethanol [201].
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4.2. Consolidated bioprocessing (CBP)

CBP consists of the simultaneous realization of three main
biological processes: enzymes production (cellulases and hemi-
cellulases), hydrolysis of cellulose and hemicellulose into mono-
meric sugars, fermentation of hexose and pentose [22,202,203].
Therefore, CBP has an important advantage in the industrial
process, with the elimination of isolated stage of enzyme produc-
tion [202–204]. In this scenario, engineering of cellular surface
plays a key role, where it is possible to hydrolyze the lignocellu-
losic materials, providing the production of several cellulolytic and
hemicellulolytic enzymes in the cellular surface microbial [204],
beyond the elimination of stage of purification and enzymatic
concentration [202,203]. Furthermore, the possibility to obtain
higher conversion rates provides a volume reduction in the
reactor, consequently, decreasing the capital investment [22].
Moreover, CBP consists of one of the principal routes to reduce
the cost and increase the efficiency of cellulosic ethanol produc-
tion, when compared with the other productive processes
[22,203–205].

However, one of the main bottlenecks of the CBP consists of the
difference in optimum temperature between enzymatic hydrolysis
and fermentation; in this case, the application of thermotolerant
strains in CBP will allow to win this bottleneck, making possible
the realization of enzymatic hydrolysis and fermentation at
elevated temperature [204]. Another bottleneck of CBP is related
to the use of pentose, mainly of xylose, by showing lower
conversion into ethanol and longer duration of fermentation
[206]; finding solutions to these questions it will lead to higher
profitability in the production of ethanol from lignocellulosic
materials [191,206].

There are two main avenues for the production of strains to
CBP. The category CBP I, aims to modify a microorganism producer
of cellulases and hemicellulases, making it also a producer of
ethanol, while the category CBP II, aims to modify a producer of
ethanol, making it also a producer of cellulases and hemicellulases
[22,205]. The researchers, in its majority, address the CBP category
II [204,207,208].

Fujita et al. [209] carried out the ethanol production from
cellulose pretreated with phosphoric acid, without the addition of
enzymes using recombinant strain S. cerevisiae expressing genes of
T. reesei (EGII e CBHII) and A. aculeatus BGL1 on the cell surface.
This strategy resulted in ethanol yield of 0.45 g/g. A diploid strain
of recombinant yeast for the production of cellulolytic enzymes
produced 7.5 g/L of ethanol from 100 g/L of rice straw hydrother-
mally pretreated, without addition of exogenous enzyme [210].
Wang et al. [211] carried out ethanol production by S. cerevisiae
recombinant for expression of β-glucosidase in corncob pre-
treated, resulting in 77.7% of theoretical ethanol, with ethanol
production of 33.1 g/L.

Some filamentous fungi produce a great repertoire of enzymes for
the degradation of lignocellulosic materials assimilating the sugars
present in lignocellulosic materials and converting them into ethanol,
that way, these filamentous fungus naturally possess all of the
metabolic pathways for conversion of lignocellulosic materials into
ethanol [205]. Concentration of ethanol produced by filamentous
fungus is surprisingly high for microorganisms traditionally considered
non-fermentative, however, are still low for industrial production
[212], formations show by-products and low rates of fermentation
[203]. The research using filamentous fungus has been stimulated by
attributes that make them attractive for industrial ethanol production
[212,213]. Limited capacity of yeast and bacteria in enzymes produc-
tion in quantity and quality to degrade lignocellulosic materials, can
make filamentous fungus a promising alternative as a candidate for
CBP [203], such as Monilia, Fusarium, Rhizopus, Paecilomyces, Aspergil-
lus, Mucor, Neocallimastix, Neurospora, Trametes and Trichoderma

[212,214–222], mainly the Aspergillus and Trichoderma, because they
are the filamentous fungi which are most studied and have their
enzymes commercially available, inclusive, the latter has its genome
sequenced.

Skory et al. [212] carried out the isolation of 19 strains of
Aspergillus and 10 strains of Rhizopus that showed the ability to
ferment sugars into ethanol (glucose, xylose, arabinose, cellulose,
oat-spelt xylan, corn fiber and corn germ pressing). Of these
microorganisms tested, three strains of Rhizopus have produced
more than 31 g/L ethanol under anaerobic stress, in 72 h of
cultivation [212]. Stevenson and Weimer [217] have cultivated
Trichoderma sp. in culture medium, the base of glucose and
resulted in 5.0 g/L of ethanol.

SSF using Fusarium oxysporum to convert cellulose resulted in
ethanol yield of 0.35 g/g [214]. According to Ruiz et al. [223] the F.
oxysporum possesses capacity to convert glucose and xylose into
ethanol, with an ethanol yield of 0.38 and 0.25 g/g, respectively. The
use of a mixture of glucose (50%) and xylose (50%) resulted in
sequential consumption of the two substrates with an ethanol yield
of 0.28 g/g. Furthermore, F. oxysporum has a capacity to produce
ethanol from lignocellulosic material. Maehara et al. [198] carried out
fermentation with Flammulina velutipes in the cellulose of sugarcane
bagasse, with an ethanol yield of 0.05 g/g (10% theoretical ethanol)
without addition of enzymes. However, when 9.0 mg/g of commercial
cellulase was added in the cultivation, an ethanol yield of 0.36 g/g
(69.6% theoretical ethanol) was obtained.

Genetic modification of the filamentous fungus becomes reality
and provides a better adequacy for CBP. As an example, modifica-
tion of the hexose transporter (Hxt) of F. oxysporum has allowed
high affinity of the glucose transport and an increasing of 33% in
the ethanol production [224].

4.3. Others advances

The possibility of performing the biological process with two or
more microorganisms provides higher harnessing of lignocellulo-
sic materials in bioproducts. As an example, the production of
hydrogen and ethanol by the mixed microflora where seeds
pretreated by heat, in a concentration of 80 g/L, at 50 1C and pH
6 can be considered, which resulted in the productivity and
hydrogen yield of 7.9 mmol H2/L/d and 0.40 mmol H2/g-COD,
respectively, productivity and ethanol yield of 0.22 g EtOH/L/d
and 3050 mg COD/L, respectively. Bioenergy yield was 41 J/g,
obtained from the 21% and 79% of hydrogen and ethanol, respec-
tively [191].

Use of metagenomics technology also arises as a powerful tool
for prospection for new enzymes and insertion of special char-
acteristics for the production of biofuels in industrial scale [45].

Another tendency consists of the genetic manipulation to
facilitate the degradation of lignocellulosic material. According to
Wang et al. [225] the reduction of the amount of lignin present in
the transgenic lineages is important in the use of this biomass in
the production of cellulosic ethanol. Reduction of lignin in 10% did
not alter the growth rate and biomass yield of transgenic of
Populus tomentosa. Results obtained by Wang et al. [211], indicate
that the lignin modification may facilitate the enzymatic hydro-
lysis stage. In this sense, there was renewed interest in the energy
cane as raw material for cellulosic ethanol production, being an
important alternative for production of biomass modified, which
instead accumulates high levels of total soluble sugars; energy
cane consists of a vegetable with high fiber content and elevated
biomass productivity, these desired characteristics are obtained by
genetic modification and retrocrossing [226].

The possibility of performing the fermentative process under
low temperature has been reported by Tsuji et al. [227] who
carried out the SSF with Mrakia blollopis in cultivation condition at
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10 1C. SSF converted paper filter (5% w/v), Japanese cedar and
eucalyptus (10% w/v) in 12.2 g/L, 12.5 g/L and 7.2 g/L of ethanol,
respectively. On the addition of 1% (v/v) of tween, 80 resulted in
higher ethanol concentration.

5. Disadvantages, difficulties, challenges and perspectives in
the production of cellulosic ethanol

The ethanol production from waste from sugarcane mitigates
the use of food sources [5–10], not causing an increase in food
prices, besides to providing increased availability of ethanol.
Furthermore, increase in the quality of life of Brazilian was
influenced by proportionate contributions by the sugar-energetic
power plants (since the implementation of the Proalcool Project in
1975), in this way, ethanol produced from residues of the sugar-
cane can provide the same way. The GranBio power plant installed
in São Miguel dos Campos, Alagoas (using bagasse and straw) and
Raizen in Piracicaba, São Paulo (using bagasse) shows optimistic
projections, evidencing economically viable production of cellulo-
sic ethanol [228]. Thus, GranBio projected the value of cellulosic
ethanol in 20%, less than the value of ethanol currently produced
in the sugar-energetic power plants and producing the world's
cleanest fuel at commercial scale [228–230]. The increase in the
availability of ethanol will be easily consumed by national and
international markets by contributing to sustainable development
and will strengthen this consumption from 2016 by the UN
Climate Change Conference (COP-16, Paris), that signals to miti-
gating emissions of greenhouse gases from the understanding
between the major world leaders, especially of the USA (Barack
Obama) and China (Xi Jinping) [231].

In this sense, the use of wastes from sugarcane for ethanol
production allows addition value to these biomasses, without the
need of expansion in the use of agricultural land for biomass
production, besides ethanol production also enables employment
generation, sugar-energetic power plants operate all months of the
year, energy self-sufficiency of the region, increasing vegetal
productivity using the treated vinasse [81,232], mitigating the
effects of fossil fuels on human health (reduction in the emission
of greenhouse gases and fine particles emitted in the air, reducing
the quantity of fertilizers and pesticides dumped into rivers and
lakes) [40,233]. Beyond the money with the sale of straw,
producers of sugarcane see other advantages to partially remove
the material, such as a reduction in the level of infestation by
insects and lower risk of fires in the area [228].

The Raizen had financial aid from the BNDES of US$ 85 million
and the Granbio had financial aid from the BNDES of US$ 150
million and the BNB financed machinery and equipment. In this
sense, the two sugar-energetic power plants of commercial scale
in Brazil had public–private financing and federal and state tax
incentives for their functioning [228,234,235].

The sugar-energetic power plants sector in Brazil had some
incentives, such as the Commerzbank, Inter-American Develop-
ment Bank and Banco Pine S.A. closed US$ 115 million syndicated
A/B loan to expand access to financing for environmentally
sustainable projects. According to the BNDES, the sugar-energetic
power plants had a demand of US$ 1.7 billion, being US$ 1 billion
have already been approved [234,235]. Credits of BNDES for the
renewal of sugarcane plantations in 2013/2014 were US$ 2 billion
[234,235]. Thus, BNDES released US$ 3 billion to the sugar and
ethanol sector in 2013. Between the lines of credit for working
capital and marketing, the National Program of Support to the
Middle Rural Producer (Pronamp) reached a total loan of US$
2.1 billion in 2013. The agribusiness portfolio of the Banco do Brasil
reached US$ 50 billion, being a Family Farming Program (Pronaf)
had a credit of US$ 10 billion in 2014 [236]. The Banco do Brasil

also has a significant participation in the Pronamp with US$
5 billion and the low carbon agriculture programwith US$ 1 billion
[228,234,235].

The available credit line for the implementation and adaptation
of microdistilleries in Brazil is the Pronaf (US$ 10 billion in 2014). A
great technological incentive conducted by the Brazilian Agricul-
tural Research Corporation (Embrapa) was of the microdistilleries
installations in the Piauí in 2014. Indicating the possibility of
future installations of microdistilleries for the production of
cellulosic ethanol [235].

However, not all sugar-energetic power plants have such
financing and public incentives. In addition to the sugar-
energetic power plants, also needs aid the entire production chain
of cellulosic ethanol. But, according to Peng [233] the absence of
financial aid is not exclusive to Brazil and mentions the example of
China, the Government policies have had a significant impact,
discouraging or encouraging development of bioenergy in the
country. Furthermore, there are still numerous difficulties for
implementations of microdistilleries, being necessary the support
of the government policy with financing lines (BNDES and Pro-
namp), incentives (minimum price guarantee of cellulosic ethanol,
increasing in the proportion of ethanol into gasoline, gasoline
price agreement next to the world price and use of ethanol 80%
(wt)) and tax exemptions (subsidies and commercialization
in situ) [228,234–236].

The first company to reach commercial scale production of
cellulosic ethanol was Beta Renewables in Crescentino (cost of €
150 million), Italy. Its patented Proesa process technology subjects
the biomass to high temperature and pressure, enabling the
necessary separation of the cellulose and hemicellulose from the
lignin, followed by subsequent enzymatic treatment releasing
simple sugars which are fermented by yeast into ethanol. The
lignin and biogas derived from the processes are recovered and
used as fuel in the boiler, generating heat and power. Using waste
from wheat and rice, besides Arundo donax (planted area:
150,000 m2 (37 acres))with biomass total used 200,000 t/year,
production of 50 million liters of ethanol/year, electricity produc-
tion of 13 MW and 100% of water recycling. The success of
Crescentino plant, which became operational in 2012 resulted in
the construction of several cellulosic plants. The plants that are
presently under construction include Alpha Project and CanEnergy
in the USA, Granbio in Brazil and more 3 in Italy (Sulcis, Termini
Imerese and Puglia), using energy grasses, wheat straw and corn
stover as feedstocks. In early 2014, the technology was also
licensed in China (Fuyang Bioproject) [228,230,234–237].

The GranBio started producing cellulosic ethanol at its Bioflex
1 unit in São Miguel dos Campos, Alagoas, Brazil, in 2014. The new
facility is the first commercial-scale cellulosic ethanol production
unit to be brought online in the Southern Hemisphere. Using Beta
Renewable's Proesa pretreatment technology, along with yeast
from DSM and enzymes from Novozymes will generate up to 21.66
million gal/y of bioethanol with a carbon intensity rating of 7.55 g/
megajoule of CO2. Construction of the project, which was com-
pleted in 20 months, was made possible by GranBio's US$ 190
million investment. GranBio, along with Carlos Lyra Group's Caete
unit, also invested US$ 75 million in developing a cogeneration
system adjacent to the plant to produce steam and electricity
[229]. BNDES approved US$ 150 million loan for the construction
of Bioflex 1 and BNB financed the machinery and equipment from
Biochemtex (subsidiary of Mossi and Ghisolfi), that enabled the
operation of Bioflex 1 [228].

The steps in the Bioflex 1 for obtaining sugars by Proesa
technology (licensed by Beta Renewables) are steam pretreatment
(licensed by Beta Renewables); enzymatic hydrolysis (licensed by
Novozymes); and fermentation using an engineered strain to
convert pentose and hexose sugars into ethanol (licensed by the
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DSM). The lignin removed by the process can be used for energy
generation (licensed by Carlos Lyra). The Bioflex 1 began operating
in September 2014 and up to mid-November 2014 had produced
more than 600,000 l of cellulosic ethanol from straw. With the
annual flow of harvest 2014/15 will reach a volume close to
350,000 t of biomass. The cellulosic ethanol GranBio (Bioflex 1)
will be competitive with ethanol in early 2015 and expectation of
GranBio is that in the coming months the cost of cellulosic ethanol
production it will be 20% lower than the ethanol [228]. Over the
next ten years, GranBio intend to install another ten sugar-
energetic power plants for the production of cellulosic ethanol in
the country, in partnership with sugar-energetic power plants
(which carry out planting sugarcane) to provide the straw and
bagasse. These sugar-energetic power plants will be invested
around US$ 2 billion. The second sugar-energetic power plant is
expected to go into operation as early as 2016. By 2020, the
GranBio expected produce 1 billion liters of cellulosic ethanol.

Besides the waste from sugarcane the GranBio will use energy
cane in 2015. This energy cane was developed by genetically
crossing commercial hybrids with ancestral types of sugarcane.
The result is a cane that is more robust, with higher fiber content
and productive potential (3 times more productive than the
sugarcane) [228].

The production of co-products and by-products from produc-
tive process of cellulosic ethanol are presented in Section 2.3. In
this context, there is a need for successful utilization of the co-
products and by-products; the GranBio uses the residual lignin of
the productive process for the generation of heat and bioelectri-
city, and the excess the energy is exported to the power grid. In
addition, the vinasse is subjected to the evaporation process and
used in the fertigation. Moreover, in August of 2013, GranBio

sealed a partnership with the multinational Rhodia to produce
chemicals from renewable sources. In Brazil, build the world's first
plant for bio n-butanol, a key chemical compound in producing
paints and solvents [228].

Another initiative in Brazil to produce cellulosic ethanol on a
commercial scale has been implemented by Raizen (São Paulo,
Brazil) integrated Costa Pinto sugar-energetic power plants. The
company will use Iogen Energy's technology (Ottawa, Canada),
which is similar to that of PROESA's. The main difference between
them is that the latter uses simultaneous saccharification and
fermentation, while Iogen's technology has separated saccharifica-
tion and fermentation. The plant is located in Piracicaba (São
Paulo) with investment of US$ 100 million (being US$ 85 million
financed by BNDES) and may produce up to 40 million liters of
cellulosic ethanol a year [238]. Raizen, which is the world's largest
sugar and ethanol producer, plans to build nine mills producing
cellulosic. Expectations consist of the production of the cellulosic
ethanol at the same cost of ethanol, in three years (US$ 0.4 l).
Raizen until the moment has made 200,000 l and are selling
cellulosic ethanol in Brazil [236]. According to Raizen, the market-
ing on a large scale in Brazil will open the door to the global
deployment of the technology [236].

The microdistillery is in a reduced technology projection and
simplified of a commercial large-scale aimed at the lower cost of
investment and operational facilities. Indicated to meet the ener-
getic needs of farms, cooperatives, urban and isolated commu-
nities. According to Ho et al. [239] the cellulosic ethanol
technologies are relatively mature, with a few commercial scale
units, around 100 plants at pilot and demonstration scale world-
wide. The microdistilleries established in Brazil produce only
ethanol and usually has the same productive configuration

Fig. 3. Flowcharts for cellulosic ethanol production. .
Source: [241]

Fig. 4. Flowcharts of ethanol production. (A) Ethanol production from sugarcane juice; (B) ethanol production from sugarcane wastes; (C) ethanol production from
sugarcane and/or sugarcane wastes. Source: Adapted from [240].
Note: 1 denotes possibility of producing cellulosic ethanol and ethanol in the same production system.
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(Fig. 4A). Thus, we have two ways of introducing the cellulosic
ethanol production in small-scale in Brazil. The first consists of
installing microdistilleries to produce only cellulosic ethanol with
integrated enzyme production (production concept of GranBio)
(Fig. 4B). The second consists of adapting the existing microdistil-
leries to produce ethanol and cellulosic ethanol (Fig. 4C) and
adding the integrated enzyme production and pretreatment step
(production concept of Raizen).

The small-scale process for converting wheat straw into etha-
nol was modeled by Lever [241] and evaluates the energy
performance to produce 8000 l of cellulosic ethanol in two batches
per week. The process shows six interconnected unit operations:
pretreatment (grinding), cellulase production (on-site production
of crude unprocessed liquid cellulase produced via solid-state
fermentation under conditions of 30 1C for 8–12 days), alcoholic
fermentation (simultaneous saccharification and fermentation
carried out at 37 1C for 60 h), anaerobic digestion of wastes,
distillation (produced ethanol at the azeotropic concentration of
96% (wt)) and cogeneration (power cogeneration) (Fig. 3). The
modeled process resulted in high-energy yield ratios, reductions
between 80% and90% of the energy required to produce and
transport the cellulase compared to commercial preparations,
and a net surplus of on-site heat and electricity. Thus, Lever
[241] demonstrates the productive viability of ethanol in small-
scale from wheat straw.

In this sense, the proximity of the composition of wheat straw is
cellulose (35.4%); hemicellulose (21.6%); lignin (22.6%); extractives
(1.2%) and ash (4.4%) [242]. With the bagasse from sugarcane: cellulose
(37.74%); hemicellulose (27.33%); lignin (20.57%); extractives (4.07%);
ash (6.53%) and protein (1.13%) [243]. Straw from sugarcane: cellulose
(33.77%); hemicellulose (27.38%); lignin (21.28%); extractives (7.02%);
ash (6.23%) and protein (3.72%) [243]. As reported earlier, the mature
coconut fibre has cellulose (31.60%), hemicellulose (26.31%), lignin
(26.69%), extractives (5.44%) and ash (3.31%) [167]. Green coconut shell
has cellulose (32.88%), hemicellulose (26.50%), lignin (26.88%), extrac-
tives (3.27%) and ash (4.34%) [167]. Mature coconut shell has cellulose
(30.47%) hemicellulose (25.42%), lignin (33.15%), extractives (2.71%)
and ash (4.84%) [167]. The proximity in the compositions of these
lignocellulosic materials allows to emphasize the ethanol production
feasibility in small-scale using these raw materials.

Furthermore, Macrelli et al. [244] reported that results simula-
tions of ethanol production from sugarcane bagasse and leaves in
Brazil are already competitive with ethanol production from starch
in Europe. Furthermore, cellulosic ethanol could be produced at a
lower cost if subsidies were conceived and reduced the cost of
enzymes.

The lignocellulosic materials mentioned above may present
some difficulties in the ethanol productive process, such as the
coconut has high rigidity and volume, hindering the reduction of
granulometry and storage; the cactus has high amounts of thorns
(ash) and high ;viscosity in the hydrolyzed the halophytic has a
high salt concentration present in the biomass. In addition, the
sugarcane plantation represents 1% of agricultural lands of Brazil
and strengthening of the sugar-energy sector can use larger
amount of land. In this sense, GranBio has as a possibility to plant
energy cane, and it can be planted in degraded pastureland and is
potentially enormous, because Brazil has 32 million hectares of
degraded pastureland that can be used for energy cane [228].
However, it can bring a socioenvironmental unbalance.

According to Gupta and Verma [245] and Lever [241] cellulosic
ethanol production has four obstacles, being the pretreatment,
enzymatic hydrolysis, fermentation and distillation for an efficient
technology. These difficulties are common to cellulosic ethanol
production in large-scale and small-scale (microdistillery). How-
ever, the production of cellulosic ethanol in small-scale is more
sensitive to market fluctuations [241].

Therefore, some difficulties encountered are: lack of labor-qualified
and high salary; added value to the co-products and by-products; low
capacity of yeast to live in a substrate with high alcohol concentration
and low thermoresistance; very high cost of enzymes production and
access to production technologies; different residual biomass will
enable different inhibitors and inhibitor concentrations in the produc-
tive process; the pretreatment in industrial scale (GranBio and Raizen)
steam explosion, but small-scale generates high cost for implementa-
tion and use of equipment; reduced availability of credit and financial
incentives; production of cellulosic ethanol process has long-term (5
days) in relation to the production of ethanol (8–12 h); lower
temperature in the distiller; efficient enzymatic hydrolysis and fer-
mentation under high solids loading; adequate use of pentose;
maintaining the sterility of the production process; avoiding regional
deforestation; implementation of minimum price of ethanol (cost of
the barrel of oil in December/2014 was US$ 55.91, discouraging the
production of cellulosic ethanol); operating all months of the year;
area to the stock of biomass and security to prevent fires; ANP certify
the microdistillery for the sale of ethanol to the consumer and release
the sale of ethanol 80% (wt); and avoiding freight payment of wastes
and cellulosic ethanol [228,232,239,241,245,246].

6. Final considerations

Brazil is currently the second largest world producer of ethanol,
however, when evaluating only the productive chain of cellulosic
ethanol, the Brazilian influence in the international market
becomes insignificant. The prospect of using straw and sugar cane
bagasse produced by the sugar-energetic power plants can be
frustrating, because most of these lignocellulosic materials are
destined for the production of electricity.

Therefore, there is a need for searching alternative and renew-
able sources for ethanol production, as the use of vegetables
grown in inhospitable places, agroindustrial and urban wastes.
Besides the possibility of producing cellulosic ethanol in large-
scale power plants, it highlights the opportunity of implantation of
power plants of medium and small size, especially microdistil-
leries, with a productive capacity of up to 5000 l of ethanol daily.

These microdistilleries would be distributed throughout the
national territory and would use various lignocellulosic materials
for the production of many products, co-products and by-pro-
ducts, operating based on the concept of the biorefinery. These
strategy leads to gain social, environmental and economic for the
population. Therefore, it is believed that Brazil shows significant
potential for the production of bioproducts, as biocatalysts and
biofuels from renewable materials.
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