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• Absolute principal component score
model is used to analyze mobile moni-
toring data.

• Fleet-level, fuel-based emission factors
are estimated for NOX, CO, BC, and PN.

• Higher CO emissions for gasoline vehi-
cles than previous results are possibly
due to high emitters.

• High-emitters among heavy-duty diesel
trucks are 3–13 times dirtier than
normal.
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An important component of air quality engineering is quantifying in-use, fleet-average emission factors, and the
spatial patterns of vehicle emissions. We report here that an absolute principal component score (APCS) analysis
of on-road mobile measurements is a straightforward, efficient method for identifying the major contributors of
traffic-related pollutants, deriving fuel-based emission factors, and mapping spatial patterns. Specifically, we ap-
plied the APCSmodel to on-highwaymeasurements of nitrogen oxides (NOX), carbonmonoxide (CO), carbon di-
oxide (CO2), black carbon (BC), and particle number (PN) obtained fromamobile platformdeployed over a 5-day
sampling period in Chengdu, China. Data were collected for (1) heavy-duty diesel truck (HDDT) plumes (“chase
data”) and (2) the general on-road environment (“non-chase data”). The bootstrapped APCS model was used to
estimate area-wide, fuel-based average emission factors and their respective 95% confidence intervals. Two com-
ponents representing diesel trucks and gasoline vehicleswere extracted fromnon-chase data, accounting for 67%
of the variance of the on-highway concentrations. Two additional principal components extracted from HDDT
chase data, representing normal and high emission features, further separating the emissions characteristics of
HDDTs. The fleet-average emission factors for NOX, CO, BC, and PNwere 2.2, 50.3, 0.023 g/kg, and 0.32× 1015 par-
ticles/kg for gasoline-powered vehicles, respectively; 33, 3.7, 0.19 g/kg, and 3.3× 1015 particles/kg fuel for HDDTs'
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normal emission feature, respectively; and 105, 29, 2.5 g/kg fuel, and 16 × 1015 particles/kg fuel for HDDTs' high
emission feature, respectively. APCS results for chase data revealed the existence of high emitters among
Chengdu's HDDT fleet, with emission factors 3 to 13 times higher than the normal HDDT vehicles. Although
the high emitters are aminority of thefleet, they disproportionately contribute to the overall emissions; emission
control policies may wish to target such vehicles.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Air pollution is a leading risk factor for death and disease globally
(Cohen et al., 2017). On-road vehicle emissions are main contributors
to air pollutants such as fine particulate matter (PM2.5), carbon monox-
ide (CO), nitrogen oxide (NOX) and volatile organic compounds (VOCs),
posing severe health risks on people.

Emission factorsmay differ for gasoline- vs. diesel-powered vehicles.
For example, light-duty gasoline vehicles (LDGVs) are the largest an-
thropogenic source of CO in the US (Office of Air Quality Planning
Standards), but on-road diesel engines are estimated to be the single
largest anthropogenic source of nitrogen oxide (NOX) emissions and
an important on-road source of primary particulate matter emissions
in the US (Dallmann et al., 2012; Dallmann and Harley, 2010) and
large Chinese cities (Wu et al., 2017; Wu et al., 2012; xinhuanet, 2018;
Zhang et al., 2014). Also, spatiotemporal patterns of driving – and there-
fore of emissions – may differ by vehicle type in Chinese cities: light-
duty vehicles (LDVs) are more typically on arterials and local roads in
urban areas, during daytime; heavy-duty trucks (HDTs) more typically
operate at night on highways outside urban areas (Zhang et al., 2018).

Advancements in pollutant measurement instruments, such as finer
time-resolution and improved portability (Brantley et al., 2014), have
enabled mobile platforms that characterize vehicle emission patterns
and pollutant concentrations in traffic environments (Kozawa et al.,
2014; Larson et al., 2017; Park et al., 2016; Vogt et al., 2003; Wang
et al., 2009; Wang et al., 2011). Compared with in-situ monitoring of
tailpipe exhaust, mobile monitoring offers efficient, spatially-resolved
area-widemeasurements of pollution patterns. For example, themobile
platform employed here integrates devices for measurement of several
pollutants. Its mobility enables researchers to take measurements
representing a large number of individual vehicles (“fleet-average char-
acteristic”) during each drive, saving time and effort on data sampling.
Also, the mobile platform can be used to chase vehicles while driving
on roads, reflecting emission patterns in real world driving conditions.
The pollution monitoring applications of mobile platforms can be
largely categorized as either “vehicle-targeted” or “ambient-targeted”.
One vehicle-targeted application of a mobile platform is a “chase
study” for analyzing exhaust plumes from individual vehicles (Park
et al., 2016; Vogt et al., 2003;Wang et al., 2011).When themobile plat-
form is not being used for chase a vehicle, it can be used to resolve the
ambient pollutant concentrations at broad spatial coverage and charac-
terize their spatial variation.

Traditional vehicle emissionmeasurements generally test or analyze
pollutants separately to generate the emission factors for each, requir-
ing significant resources for data acquisition and analysis. For example,
many researchers have used chase studies to generate emission factors
for particular vehicle categories (Park et al., 2016; Vogt et al., 2003;
Wang et al., 2011). This experimental design requires accurate mea-
surements of pollutant concentrations from plumes and ambient air,
as well as separate analyses for various pollutants and vehicle types.
Several investigators have further examined multivariate correlations
between simultaneously measured pollutants using principal compo-
nent analysis (PCA) (Larson et al., 2017; Riley et al., 2014), an efficient
tool for identification of the major sources of pollutant emissions and
selection of statistically independent source tracers. The absolute princi-
pal component scores (APCS) model is traditionally applied to source
apportionment analyses for ambient air pollutants (Thurston and
Spengler, 1987) and has also been applied to mobile measurements of
traffic-related pollutants (Larson et al., 2017; Riley et al., 2014). One ad-
vantage of APCS is that species weights are based on their overall vari-
ance rather than their measurement uncertainty, potentially reducing
the influence of meteorologically driven day to day variation in the spe-
cies concentration in these on-road plumes (Larson et al., 2017). By
using the APCS model, the most significant contributors can be identi-
fied from the simultaneously measured pollutants data collected from
a mobile platform without complicated tests and analyses.

Using Chengdu as an example city, we explored estimating fleet-
wide fuel-based average vehicle emission factors by applying the APCS
receptor model to measurements obtained from a mobile platform.
Based on the application of the APCS method for analyzing “ambient-
targeted” data (Larson et al., 2017), we dispatched a mobile platform
to intendedly measure on-road plumes of HDDTs. A combination of
“chase data” for HDDT plumes and “non-chase data” for the generalized
traffic environment was expected to provide more emission character-
istics of HDDTs. A total of 121,990 s (~34 h) of 1-Hz data were recorded
and analyzed. Comparing with traditional laboratory-based measure-
ments, which require abundant tests and analyses, APCS analysis of
on-road mobile measurements is solely based on the observed concen-
trations without reliance on independent traffic information, greatly
improving the efficiency of vehicle emission identification andmonitor-
ing. Also, the visualization product, an APCS distribution map, can help
identify the emission patterns of various vehicle categories, identify
emission hotspots, estimate the contribution from high emitters, and
thus potentially provide support for the design and implementation of
policies for vehicle emission management.
2. Methods and data

2.1. Research domain and data sampling

We investigated highways in Chengdu, Sichuan, a city with 16 mil-
lion people and 4.9 million registered vehicles (second only to Beijing)
by 2018 (Chengdu Statistical Yearbook, 2018). A previous 2015 source
apportionment study (ChengduDaily, 2016) identified on-road vehicles
as one of the largest contributors to ambient PM2.5 concentrations in
Chengdu with a contribution of 27% among all the local sources.

Chengdu has six ring-roads forming concentric circles and con-
nected by radial arterials. Our study focused on the area within the
fourth ring-road (G4201), which is the main urban area of Chengdu.
The sampling route (Fig. 1A) covered all road types within the G4201.
The second and fourth ring-roads are major highways, with substantial
HDDT traffic; the radial arterials have comparatively greater LDGV
traffic.

We measured concentrations of five pollutants: NOX, CO, CO2, black
carbon (BC), and particle number (PN). Those pollutants were selected
based on (1) the important contribution of traffic sources to their emis-
sions and concentrations, and (2) the relative importance of these spe-
cies in distinguishing emissions from gasoline and diesel-powered
vehicles. Diesel trucks are important contributors to NOX, PN, and BC,
whereas CO emissions typically are greater for gasoline than for diesel
vehicles. CO2 is a measurement of fuel consumption. Pollutant concen-
trations were used to estimate average fuel-based emission factors by
source-related features in the study area.



Fig. 1. Research domain and sampling equipment. (A) Map of the main sampling routes. Freeways are shown in red, expressways in orange, and arterial roads in blue; (B) the mobile
platform used in this study.
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Monitors (Table 1) and a global positioning system (GPS) to record
speed and position were transported on a gasoline-powered Buick
GL8 (Fig. 1B). The resulting measurements were integrated into a data-
base at a frequency of 1 record per 10 s (1-Hz raw data). The informa-
tion recorded included test time, longitude, latitude and instantaneous
speed from the GPS, and 10-s averaged concentrations of NOX, BC, CO,
PN, and CO2 collected simultaneously from five different instruments.

Monitoring was conducted during January 12–18, 2018. Routes
(Fig. 1) were covered two to three times each. The platform sampled
at the speed of surrounding traffic, with a target speed of ~30 km/h for
busy expressways, ~70 km/h for highways. Approximately one-third
of the data were “chase data” (chasing HDDTs); the rest were non-
chase (i.e., not following a certain vehicle or vehicle-type). Driving
consisted of chasing (following) an on-road HDDT for ~2 min, followed
by non-chasing driving (i.e., sampling the ambient on-road air) while
seeking the next HDDT to chase. Chased HDDTs were selected based
on convenience: being nearby to the mobile platform. A total of 300
HDDTs were chased, with driving routes relatively uniformly distrib-
uted within the research domain.
2.2. Data processing and assumptions

We used three steps to reduce white noise and eliminate the influ-
ence of background concentrations in our data (Larson et al., 2017).
First,we smoothed the concentrations by taking amoving block average
of consecutive observations in a 70-s interval centered on each 10-s ob-
servation. Second, we estimated the background concentration (Bi,t, de-
scribed below) associated with each 10-s observation period and
Table 1
Mobile monitoring platform instruments.

Parameter Instrument

Black carbon (BC) AE33 880 nm channel
Particle number concentration (PN) CPC 3007

NOX CLD 66
CO Series 7100FM
CO2 LI-820
Position and real-time tracking Hemisphere GPS
subtracted this background value from the 70-s moving block average
concentration.

The smoothed, background-adjusted concentration (Ci;t
�) for the ith

species in period t is defined as

Ci;t
� ¼ Ci;t−Bi;t ð1Þ

where Ci, t is the 70-smoving average concentration between t-30s and t
+30s centered on the 10-s period t. Bi, t is a rollingminimumof Ci, t cen-
tered on the 10-s period t, defined as

Bi;t ¼ min Ci;t−τ ;…;Ci;tþτ
� �

; τ ¼ 300s ð2Þ

We chose 2τ=600s as a rollingminimumbecause themobilemon-
itoring platform travels approximately 4 km during this period, close to
the upper bound of the neighborhood monitoring scale (Larson et al.,
2017).

Third,we formed a set of adjusted concentrations (Ci, tadj) by removing
samples from the Ci;t

� dataset using the following criteria: 1) CCO2, t
∗ is

b5 ppm, the instrument precision limit; 2) value of concentration is
above the 95th daily percentile value for each pollutant. We numbered
the adjusted concentrations in chronological order to create the final
dataset Ci, kadj used for further calculation, where k = 1,……,N, where N
is the total number of the residual 10-s observations.

2.3. Absolute principal component score (APCS) model

Weuse the APCSmodel initially described by Thurston and Spengler
(1987) and subsequently applied by Larson et al. (2017) to examine the
Manufacturer Measurement range

Magee 0.01–100 μg/m3

TSI, Inc. 0.01–1 μm;
0–100,000 #/cm3

Eco Physics AG, Switzerland. 50–25,000 ppb
SIGNAL USA 0–1000 ppm
LI-COR, Inc. 0–20,000 ppm

Accuracy ±5 m
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multivariate correlations among the simultaneously measured pollut-
ants from mobile platform and to identify the most significant contrib-
utors of on-road emissions. APCS was applied to adjusted, rather than
to unadjusted, concentrations, to more equally weight each pollutant.
The standardization of adjusted concentrations for pollutant i is
shown in Eq. (3).

Zi;k ¼
Cadj
i;k −C

adj
i

σ i
i ¼ 1;…;m; k ¼ 1;…;Nð Þ ð3Þ

C
adj
i and σi are the mean and standard deviation of all records in the

final observation dataset for pollutant i. The number of concerned spe-
cies is m. We retain p (p ≤ m) principal components based on eigen-
values N0.9 and apply Varimax rotation to these components to
maximize differences between them. APCS for Varimax rotated compo-
nents are calculated from the scores, Sj, k, for the kth observation of the jth

component as follows:

ACPSj;k ¼ Sj;k− S0ð Þ j j ¼ 1;…; pð Þ ð4Þ

where Sj, k is the score derived from the Zi, k, and (S0)j is the predicted
value of the zero vector using the rotated PCA model. ‘Absolute’ is
achieved by subtracting the zero vector's score from the initial scores.
Then ACPSj, k are regressed against the Ci, k

adj.

Cadj
i;k ¼ b0ð Þi þ∑p

j¼1bi; j ACPSj;k
� �þ εi;k ð5Þ

The intercept in Eq. (5) is the contribution to the adjusted concentra-
tions from sources,which cannot be explained by principal components

derived fromPCA. The predicted concentration of pollutant i, Ŷ i, contrib-
uted by component j to the kth sample is then defined by Eq. (6).

Ŷ i ¼ bi; j ACPSj;k
� � ð6Þ

2.4. Fuel-based emission factors

Fuel-based average emission factors (EF) were computed as

EFi; j ¼
α Wcð Þ j

N

XN

k¼1

Ŷ i; j;k

Ŷco2

� �
j;k

þ Ŷco

� �
j;k

0
B@

1
CA ð7Þ

where EFi,j is the average fuel-based emission factor in grams (for PN:
number) of pollutant i per kilogram of fuel burned for component j, N
is the total number of samples, (Wc)j is the carbon weight fraction of
the fuel corresponding to the jth component and α is a unit conversion
factor (1 μg/m3 for CO, BC, and NOX and 1012 number/cm3 for PN). Be-
cause the concentration of BC is lower than CO2 and CO by 5 and 3 or-
ders of magnitudes, respectively (according to Table 2), BC is a
negligible species comparing with CO2 and CO to be considered in the
denominator of Eq. (7).

To estimate the uncertainties in EFs, a blocked bootstrapwas applied
to the abovemodel tominimize potential autocorrelations due to corre-
lated background values not accounted for in our APCS model. We
Table 2
Summary of trimmed, adjusted concentrations of non-chase and chase data.

Non-chase data Chase data

# of observations 4749 2290
PN median (mean) [#/cm3] 16,965 (22,442) 34,484 (44,398)
NOX median (mean) [ppbv] 118 (207) 451 (643)
BC median (mean) [ng/m3] 3342 (4028) 4645 (6520)
CO median (mean) [ppmv] 0.71 (0.88) 0.61 (0.87)
CO2 median (mean) [ppmv] 440 (508) 549 (721)
randomly sampled with replacement from non-overlapping blocks
with optimal univariate block sizes determined using the “b.star” func-
tion within the “np” package in R. The maximum of the set of five uni-
variate block sizes, corresponding to each of the five species, was
chosen for bootstrap sampling. The bootstrap routine was repeated
10,000 times; 95% confidence limitswere determined from the distribu-
tion of average EFs estimated from each of the 10,000 bootstrap
iterations.

3. Result and discussion

3.1. Varimax-rotated absolute principal components

An example of measurement data series for “chasing” and “non-
chasing” periods is shown in Fig. S1. Mean and median trimmed,
background-adjusted pollutant concentrations are summarized in
Table 2. Mean/median concentrations for PN, NOX, BC, and CO2 are
higher for chase than for non-chase data because the chase data
targeted HDDTs, while CO concentrations are comparable for two
datasets in terms of the mean values. Non-chase data represents the
ambient traffic environment, effected by gasoline- and diesel-powered
vehicle emissions, as well as background air.

For non-chase data, two principal components were extracted from
the PCA according to the criterion that the eigenvalues N0.9 (see
Table 3). The principal components are linear combinations of the pol-
lutants' concentrations. Higher loadings indicate the higher correlation
between them; the significance of the principal components is repre-
sented by the eigenvalues and the proportion variance, with a larger
value indicates that a component is making a larger contribution to
the observed concentration. CO2, as a measurement of fuel consump-
tion, mainly reflects total traffic volume. Therefore, we only evaluate
the correlation of the components with the other four pollutants. PN,
NOX and BC were heavily loaded on the first feature (the “PN-NOX-BC-
rich” feature); COwas themain species associated with the second fea-
ture (“CO-rich”). Because NOX, PN and BC tend to reflect diesel vehicles
and CO is a typical pollutant for gasoline vehicles, the first and second
features can be considered to represent diesel and gasoline-featured ve-
hicles, respectively. Combined, the two features account for 67% of the
variance of the non-chase data. Importantly, we did not manually select
a diesel and a gasoline component in the data, nor didwe predesign that
those two types would come from this analysis; instead, results for
those two vehicle types arise on their own from PCA of on-road
measurements.

Further separating the emission characteristics of HDDTs, two prin-
cipal components were extracted from the PCA for HDDT chase data
(loadings, eigenvalues and proportion variances in Table 4). Based on
the correlation between components and pollutants, the two compo-
nents were referred to as “NOX-rich” and “PN-BC-rich.” They represent
two different emission features of HDDTs and describe 65% of the over-
all variance of the chase data.

For the chase data for HDDTs, the best-fit line for scatterplots of con-
centration variances between adjacent observations versus CO2 (Fig. 2)
sheds light on the approximate emission factor for that component.
Specifically, the slope of the best-fit line (APCS N 2 for each feature)
Loadings, eigenvalues and proportion variances of twoprincipal components fromPCA for
the non-chase data.

Pollutants PN-NOX-BC-rich feature CO-rich feature

PN 0.829 0.031
NOX 0.834 0.008
BC 0.789 0.112
CO 0.020 0.849
CO2 0.244 0.750
Eigenvalues 2.18 1.19
Proportion variances 0.413 0.261



Table 4
Loadings, eigenvalues and proportion variances of two principal components for the chase
data for HDDT plumes.

Pollutants NOX-rich feature PN-BC-rich feature

PN 0.335 0.775
NOX 0.910 0.160
BC −0.116 0.877
CO 0.132 0.002
CO2 0.941 0.008
Eigenvalues 1.97 1.29
Proportion variances 0.371 0.280
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reflects typical fuel-based emission factor for that feature, as CO2 is a
measurement of fuel consumption. (The slope is only used as indicative
of the emission factor, not as a calculation of the emission factor.). The
fitted gradient for each pollutant in the PN-BC-rich feature is higher
than that of the NOX-rich feature, by 5, 13, 3, and 8 times for PN, BC,
NOX, and CO respectively. This result is consistent with the fact that av-
erage emission factors for the top 5% of high-emitting HDDTs can be
~7–18 times higher than the normal-emitting HDDTs for all pollutants
(Ban-Weiss et al., 2009; Park et al., 2011; Wang et al., 2011). Therefore,
the NOX-rich and PN-BC-rich features reflect normal and high emission
patterns for HDDTs, respectively.

The loadings indicate themagnitude or importance of the pollutants
for each component but not the absolute scale of their emission factors.
For example, the label “NOX-rich feature” refers to NOX being a strong
component of that feature; however, that does not necessarily mean
that the emission factor is higher for that feature (“NOX-rich”) than for
the other feature (“PN-BC-rich”). According to the results of the PCA,
the high emission feature for HDDTs is significantly correlatedwith con-
centrations of PN and BC, which is consistentwith the conclusion from a
previous chase study of heavy-duty trucks that found that the distribu-
tion of PN and BC emission are more skewed than NOX (Wang et al.,
Fig. 2. Scatterplots of the concentration variances between adjacent observations for each pollut
The data point for each observation is colored and sized based on APCS value.
2012). Due to lax inspection processes in many regions of China other
than a few cities (e.g., Beijing), some manufacturers have illegally
adopted cheaper mechanical pump engines in vehicles presumed to
comply with the China III or China IV standards, greatly increasing the
emission disparity between high and normal emitters for PM and BC
(Zheng et al., 2015). According to Wang et al. (2012), the top 10%
highest-emitting trucks are responsible for ~18% of NOX emissions and
43% - 64% of BC emissions in two Chinese cities. Similarly, our data indi-
cate that the gap in emission factors between high-emitters and
normal-emitters is greater for PN and BC than for NOX. For normal emit-
ters, the change in emissions between the China II and China IV stan-
dards was relatively large for diesel particulate matters (Wu et al.,
2012), but relatively minor for NOX (Wu et al., 2012). Even for selective
catalyst reduction (SCR)-equipped HDDTs, prior research in China (Wu
et al., 2012; Yang, 2018) indicates only modest improvements in NOX

emissions. Because HDDTs that can normally satisfy the modern emis-
sion standards have more significantly reduced their PN/BC emissions
than NOX, the PN-BC-rich feature is less prominent than the NOX-rich
feature.
3.2. Spatial distribution of typical emission features

Varimax-rotated APCS features (Figs. 3 and 4) exhibit different spa-
tial patterns. In non-chase data (Fig. 3), the CO-rich feature (likely
representing gasoline vehicles) is more significant on radial arterial
roads; the PN-NOX-BC-rich feature (likely representing diesel trucks)
is more significant on belt expressways, especially the Fourth Ring
Road. Those findings are consistent with typical patterns for gasoline
and diesel vehicles based on field observations. On the one hand, huge
commuting demand happens on radial arterial roads connecting CBD
and outer urban areas, causing busy activities for LDGVs (of which the
majority are gasoline vehicles). On the other hand, HDDTs are restricted
ant versus CO2, and the gradients fitted using pointswhose APCS exceed 2 for each feature.



Fig. 3. Spatial distribution of theVarimax-rotated features for non-chase data. (A) CO-rich feature; (B) PN-NOX-BC-rich feature. Color is proportional to relative significance of the feature at
that location.
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from entering the local roads in main urban areas, so the proportion of
diesel trucks on belt expressways is much higher than on arterial roads.

In the chase data for HDDT plumes (Fig. 4), the NOX-rich (normal-
emitting) feature is more prominent on the second-ring expressway,
while the PN-BC-rich (high-emitting) feature is more prominent on
the fourth-ring freeway. Those spatial distributions are consistent with
a policy enacted in 2018 that HDDTs not meeting China IV emission
standards cannot enter the area within the Third Ring Road. Implemen-
tation of more stringent emission standards for HDDTs is expected to
significantly reduce BC emissions.

3.3. Estimated fuel-based emission factors

Fuel-based emission factors calculated here, based on Varimax-
rotated APCS (Figs. 5 and 6; Tables S2 and S3) and employing Eq. 7
(above, Section 2.4), indicate emission factors that are consistent with
recent field studies and the COPERT model ((EEA), 2018). 95% confi-
dence limits are estimated from blocked bootstrap.

The fuel-based emission factors of the CO-rich feature for NOX, CO,
BC and PN are 2.2, 50.3, 0.023 g/kg, and 0.32 × 1015 particles/kg, respec-
tively, representing the fleet-average level of gasoline vehicles in
Chengdu. According to the GPS data ofmobilemonitoring platform dur-
ing non-chasing periods, the average speed is about 30 km/h, reflecting
Fig. 4. Spatial distribution of the Varimax-rotated features for HDD
the average speed of the fleet. So we consider the fuel-based emission
factors of the CO-rich feature obtained here is under an average speed
of 30 km/h. The average NOX emission factor of Chengdu's gasoline ve-
hicle fleet was comparable to the China 3 level estimated by the EMBEV
model (i.e., the archetype model for China's National Emission Inven-
tory Guidebook) (Wu et al., 2017), and was higher than the China 4
level from the EMBEV model and other measurement studies (Huang
et al., 2017; Huo et al., 2012; Yang, 2018). We also see that the fleet-
level NOX emissions for gasoline vehicles in Chengdu were comparable
to the average results derived for the vehicle fleet (a dominant mix by
gasoline vehicles) in the US, and were between the emission level of
Tier 1 and Tier 2 light-duty vehicles (May et al., 2014). For CO, our esti-
mation is moderately higher than the average level of China 3 standard
for LDGVs in Chinese studies, Tier 1 standard in the US, as well as the
fleet-average LDGV emission level in recent US studies (Dallmann
et al., 2013; Kozawa et al., 2014; Larson et al., 2017; Park et al., 2016).
In comparison with Europe, the emission factors for both NOX and CO
are higher than the Euro 3 standard in the COPERT model ((EEA),
2018) and the remote sensing results in London, UK (Carslaw et al.,
2011).

According to Chengdu's vehicle statistics in 2017, the most common
emission standard of the LDGV fleet is China 4 (53.3%), followed by
China 5 (28.1%) and China 3 (12.4%), and some remaining older vehicles
Ts' chase data. (A) NOX-rich feature; (B) PN-BC-rich feature.
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Fig. 5. NOX and CO emissions factors of gasoline vehicles predicted by this study, other studies in China and the US, and the COPERT model.
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below China 2 (6.2%). Thus, the emission level of Chengdu's LDGV fleet
is expected to be closed to the China 4 standard. In contrast, it is notable
that our estimation of CO emission is higher than the China 3 level re-
ported in other studies. According to Park et al. (2011), among all
LDGV pollutants, CO levels are most sensitive to high emitters that con-
tribute disproportionately to the overall fleet emissions, resulting in a
skewed emission distribution. The same study also concluded that if
the highest 5% of emitting LDGVs are removed from use, the average
emission factors for NOX would be reduced by 34%, whereas the CO
emission factor would be reduced by 50%. Therefore, the higher esti-
mated CO emission factor observed in this study may reflect (and,
may be especially sensitive to the number and characteristics of)
LDGV high emitters among Chengdu's fleet. High emitters can result
from malfunction, poor or incorrect maintenance, modification of the
vehicle, and/or removal of emission controls (Bishop et al., 2016), and
the malfunction of three-way catalyst (TWC) can be a significant
cause for high-mileage LDGVs (He et al., 2019).

Emission factors calculated here for diesel vehicles (Fig. 6) are as fol-
lows: for NOX, CO, BC and PN, respective emission factors were 33.3, 3.7,
0.19 g/kg fuel, and 3.3 × 1015 particles/kg fuel for normal emission con-
ditions, and 104.5, 28.7, 2.52 g/kg fuel, and 15.7 × 1015 particles/kg fuel
for high emission conditions. The average speed for chasing HDDTs in
this studywas about 55 km/h. For bothNOX and BC, the emission factors
of normal emission feature were comparable to emission levels
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between China III and China IV in EMBEV model (Wu et al., 2017) and
other Chinese studies by using portable emissionsmeasurement system
(PEMS) (Yang, 2018; Zheng et al., 2015), consistent with the fact that
most of Chengdu's HDDT fleet is compliant with China III and China IV
standards. The normal emission level for BC is comparable to an emis-
sion level between Euro III and Euro IV in the COPERT model ((EEA),
2018) and to the average emission level observed in recent US studies
(Bishop et al., 2015; Haugen and Bishop, 2018; Larson et al., 2017;
May et al., 2014; Preble et al., 2015), while the normal emission level
of NOX is higher than the Euro III standard in the COPERT model and
the results of US studies. Zhang et al. (2014) found no significant im-
provement in NOX emissions associatedwith updating of emission stan-
dards, even for China IV diesel vehicles equipped with SCR systems due
to the low-speed conditions. The poor performance of SCR systems has
been observed in many studies (He et al., 2017; Wu et al., 2012), which
has raised concern among policy-makers and researchers regarding the
value of SCR-equipped HDDTs in real-world applications.

The high-emission factors for NOX, CO, BC and PNwere 3 to 13 times
higher than the normal ones,which is consistentwith previous observa-
tions that the average emission factors for the top 5% of HDDT high
emitters can be 7 to 18 times higher than the normal-emitting HDDTs
for all pollutants (Ban-Weiss et al., 2009; Park et al., 2011). These high
emitters can have a great effect on the average emission level of the
fleet, accounting for 40% to 50% of the average emission factors of
HDDTs (Ban-Weiss et al., 2009; Park et al., 2011; Wang et al., 2012;
Wang et al., 2011). The average emission factors of HDDT fleets are ex-
pected to decrease sharply if the high emitters are removed. Thus a
small fraction of the most polluting vehicles will become critical for ve-
hicle emission control in the near future, and precise identification and
monitoring of high emitters will be essential.
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As a sensitivity analysis on the HDDT data, we repeated the PCA
analyses for chase data but with high-emitters removed. Specifically,
using a definition of high emitters from a related study (Ban-Weiss
et al., 2009), we removed the 230 observations with the highest 10%
APCS for high emission features. The NOX-rich and PN-BC-rich features,
and the resulting fuel-based emission factors that appear in the load-
ings, eigenvalues and proportion variances from this new, high-
emitter-removed dataset (Tables S4) are similar to the normal-
emission results from the main dataset. Correlations between the com-
ponents and pollutants were nearly unchanged after removing the 230
high-emitter observations. These results suggest that the normal emis-
sion factor reported here is relatively robust to the presence of high-
emitters in the dataset.

4. Conclusion

We used PCA to derive fuel-based emission factors for gasoline and
diesel vehicles from mobile monitoring data gathered in Chengdu,
China. Compared with recent studies conducted in China that used
other methods, our study highlights the existence of high emitters
among Chengdu's fleet. Of note, the high-emitting HDDTs have emis-
sion factors 3 to 13 times higher than normal emission factors. The pro-
portion of total emissions attributable to high emitters is expected to
rise over time as the overall fleet becomes cleaner with more stringent
regulations (Haugen and Bishop, 2018; Park et al., 2011); our work
demonstrates the utility of mobile monitoring to identify and monitor
these high emitters.

The application of APCS to data collected simultaneously onmultiple
pollutants using amobile platform can be an efficientmethod to identify
the major contributors of traffic-related pollutants and derive the fuel-
based emission factors for each source without complicated tests and
analyses. TheAPCS distributionmap can also help identify emission pat-
terns of different vehicle categories, identify emission hotspots, esti-
mate the contribution from high emitters, thus potentially provide
support for the design and implementation of policies for vehicle emis-
sion management.

Future research could (1) chase additional categories of vehicles, and
thereby estimate emissions for additional categories of vehicles, (2) re-
cord details about the vehicles being chased, to better understand pre-
dictors of emissions and potentially to identify characteristics of high-
emitters, and (3) record road conditions (e.g., traffic speed and volume,
traffic density, road grade, number of lanes, vehicle composition of the
surrounding fleet) while sampling, to potentially investigate how emis-
sions vary with the conditions at the time measurements are made.
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