ATIVIDADE PRATICA

MAP2112 - Introdução a Lógica de Programação e Modelagem Computacional
Prof. Dr. Luis Carlos de Castro Santos
10 semestre 2019

Os exercícios abaixo são selecionados de:
https://www.r-exercises.com/start-here-to-learn-r/
o site contém mais de 4000 exercícios e serve como mais um auxílio ao aprendizado. Alguns comandos podem não ter sido apresentados durante as aulas, aproveite a oportunidade para conhecê-los use o help do R Studio. O site também contém as respostas aos exercícios, mas procure não utilizá-las e tente encontrar a sua solução mesmo que por tentativa e erro. Lembre-se que pode haver mais de uma forma de se obter o mesmo resultado e todas são válidas.

Para cada questão proponha uma solução e execute o código em R para verificar sua a resposta.

Loops and Conditional Execution

Conditional Execution

Exercise 1

Create an R script that returns the absolute value of an integer vector x of length one.

Exercise 2

Create an R script that calculates the square root of a given integer vector x of length one, if the value contained in x is negative it should return NA.

Exercise 3

Create an R script that returns the maximum value out of the elements of a numeric vector x of length 2 .

Exercise 4

Create an R script that returns TRUE if the elements of a vector x, with length 3 , are strictly increasing.

Exercise 5

Create an R script that returns the max value of a vector x with length 3 . Don't use the aid of an auxiliary variable.

Exercise 6

Create an R script that returns the amount of values that are larger than the mean of a vector. You are allowed to use mean().

Exercise 7

Create an R script that, given a numeric vector x with length 3 , will print the elements by order from high to low.

If else sequences Exercises

Procure seção do help sobre o comando ifelse para entender seu funcionamento antes de realizar os exercícios dessa seção.

Exercise 1

What is the output of:
ifelse (sqrt (9) <2, sqrt (9), 0)

Exercise 2

What is the output of:
ifelse(sqrt(100)>9,sqrt(100),0)

Exercise 3

What is the output y of:
$\mathrm{x}=12$
if(is.numeric(x)) $y=x * 2$

Exercise 4

What is the output x, y of:
$\mathrm{z}=-1$
if $(z<0)\{x=a b s(z) ; y=z * 3\}$

Exercise 5

What is the output y of:
$\mathrm{z}=6$
if(z<0) $y=z * 3$ else $y=z * 5$

Exercise 6

What is the output z of:
$x=15$
$\mathrm{y}=3$
if(is.numeric(x))
if(is.numeric(y) \& y!=0)
$z=x / y$

Exercise 7

What is the output of:
x=letters[20]
if (is.numeric(x)) print('is numeric') else
if(is.character(x)) print('is character')

Exercise 8

What is the output of:
$\mathrm{x}=90$
ifelse ($x<100$, ifelse ($x / 2==$ trunc ($x / 2$) , $x / 2,0$), ifelse(x/100==trunc (x/100), x/100,-1))
$\mathrm{x}=120$
ifelse ($x<100$,ifelse ($x / 2==$ trunc $(x / 2), x / 2,0)$, ifelse(x/100==trunc (x/100),x/100,-1))

```
x=200
ifelse(x<100,ifelse(x/2==trunc(x/2),x/2,0),
ifelse(x/100==trunc(x/100),x/100,-1))
```


Exercise 9

What is the output n of:
z='i'
if (z \%in\% letters)
if (z=='a') n=1 else
if (z=='e') n=2 else
if (z=='i') n=3 else
if (z=='○') n=4 else n=5

Exercise 10

What is the output n of:
$z=$ 'u'
if (z \%in\% letters)

```
if (z=='a') n=1 else
if (z=='e') n=2 else
if (z=='i') n=3 else
if (z=='O') n=4 else n=5
```


Scripting Loops In R

Exercise 1

The repeat $\}$ loop processes a block of code until the condition specified by the break statement, (that is mandatory within the repeat $\}$ loop), is met.

The structure of a repeat\{\} loop is:
repeat \{
commands
if(condition) \{
break
\}
\}

For the first exercise, write a repeat $\}$ loop that prints all the even numbers from $2-10$, via incrementing the variable, "i <- 0".

Exercise 2

Using the following variables:
msg <- c("Hello")
i <- 1

Write a repeat $\}$ loop that breaks off the incrementation of, "i", after 5 loops, and prints "msg" at every increment.

Exercise 3

while() loop will repeat a group of commands until the condition ceases to apply. The structure of a while() loop is:
while(condition) \{
commands
\}

With, $\mathrm{i}<-1$, write a while() loop that prints the odd numbers from 1 through 7.

Exercise 4

Using the following variables:
msg <- c("Hello")
i <- 1

Write a while() loop that increments the variable, "i", 6 times, and prints "msg" at every iteration.

Exercise 5

The for() loop repeats commands until the specified length of the condition is met. The structure of a for() loop is:
for(condition) \{ commands \}

For example:
for(i in 1:4) \{
print("variable"[i])
\}
for(i in seq("variable")) \{
print(i)
\}
for(i in seq_along("variable")) \{
print("variable"[i])
\}
for(letter in "variable") \{
print(letter)
\}
For this exercise, write a for() loop that prints the first four numbers of this sequence: $x<-c(7,4,3,8,9,25)$

Exercise 6

For the next exercise, write a for() loop that prints all the letters in $y<-c(" q ", ~ " w ", ~ " e ", ~ " r ", ~ " z ", ~ " c ") . ~$

Exercise 7

The break statement is used within loops to exit from the loop. If the break statement is within a nested loop, the inner loop is exited, and the outer loop is resumed.

Using $\mathrm{i}<-1$, write a while() loop that prints the variable, " i ", (that is incremented from $1-5$), and uses break to exit the loop if " i " equals 3.

Exercise 8

Write a nested loop, where the outer for() loop increments "a" 3 times, and the inner for() loop increments "b" 3 times. The break statement exits the inner for() loop after 2 incrementations. The nested loop prints the values of variables, "a" and "b".

Exercise 9

The next statement is used within loops in order to skip the current evaluation, and instead proceed to the next evaluation.

Therefore, write a while() loop that prints the variable, " i ", that is incremented from $2-5$, and uses the next statement, to skip the printing of the number 3.

Exercise 10

Finally, write a for() loop that uses next to print all values except " 3 " in the following variable: i <- 1:5

Loops in R

Exercise 1

Write a for loop that iterates over the numbers 1 to 7 and prints the cube of each number using print().

Exercise 2

Write a for loop that iterates over the column names of the inbuilt iris dataset and print each together with the number of characters in the column name in parenthesis. Example output: Sepal.Length (12). Use the following functions print(), paste0() and nchar().

Exercise 3

Write a while loop that prints out standard random normal numbers (use rnorm()) but stops (breaks) if you get a number bigger than 1 .

Exercise 4

Using next adapt the loop from last exercise so that doesn't print negative numbers.

Exercise 5

Using a for loop simulate the flip a coin twenty times, keeping track of the individual outcomes ($1=$ heads, 0 $=$ tails) in a vector that you preallocate.

Exercise 6

Use a nested for loop (a for loop inside a for loop) that produces the following matrix, preallocate the matrix with NA values.

0	1	2	3	4
1	0	1	2	3
2	1	0	1	2
3	2	1	0	1
4	3	2	1	0

Exercise 7

Use a while loop to investigate the number of terms required before the product
$1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots$
reaches above 10 million.

Exercise 8

Use a while loop to simulate one stock price path starting at 100 and random normally distributed percentage jumps with mean 0 and standard deviation of 0.01 each period. How long does it take to reach above 150 or below 50?

Exercise 9

Implement a simple version of Guess the number game using a while loop. The user should guess a number between 1 and 10, you can use scan() to get user input. The loop should break if the user guesses 5 .

Exercise 10

Implement a multiplication game. A while loop that gives the user two random numbers from 2 to 12 and asks the user to multiply them. Only exit the loop after five correct answers. Try using as.integer(readline()) instead of scan() this time.

FUNCTIONS

Functions Exercises 1

Exercise 1

Create a function that will return the sum of 2 integers.

Exercise 2

Create a function what will return TRUE if a given integer is inside a vector.

Exercise 3

Create a function that given a data frame will print by screen the name of the column and the class of data it contains (e.g. Variable1 is Numeric).

Exercise 4

Create the function unique, which given a vector will return a new vector with the elements of the first vector with duplicated elements removed.

Exercise 5

Create a function that given a vector and an integer will return how many times the integer appears inside the vector.

Exercise 6

Create a function that given a vector will print by screen the mean and the standard deviation, it will optionally also print the median.

Exercise 7

Create a function that given an integer will calculate how many divisors it has (other than 1 and itself). Make the divisors appear by screen.

Exercise 8

Create a function that given a data frame, and a number or character will return the data frame with the character or number changed to NA.

Functions Exercises 2

Exercise 1

Create a function that given a data frame and a vector, will add a the vector (if the vector length match with the rows number of the data frame) as a new variable to the data frame.

Exercise 2

Consider a data frame df:

Id=c(1:10)

Age $=c(14,12,15,10,23,21,41,56,78,12)$
Sex=c('F','M','M','F','M','F','M','M','F','M')

Code=letters[1:10]
df=data.frame(Id,Age,Sex,Code)

Create a function that, given a data frame and two indexes, exchanges two values of the Code variable with each other.

For example, if the index is 1 and 3 , you assign:
df[1,'Code']=df[3,'Code']
df[3,'Code']=df[1,'Code']

Exercise 3

Consider two variables x, y and a data frame $d f$:
x, y integer
$A=c(1: 10)$
$B=\operatorname{seq}(100,10,-10)$
$H=\operatorname{seq}(-200,-50$, along. with=B)
$d f=d a t a . f r a m e(A, B, H)$
Create a function that given a data frame df calculate a new variable 'SUM_x_y'(If $x=2$ and $y=3$, then the new variable will be 'SUM_2_3',
if $x=4$ and $y=10$, then the new variable will be 'SUM_4_10'),such that for each row ' i ' is equal to:
$\operatorname{sum}\left(x^{*} d f[1: i, 1]\right)+\operatorname{sum}\left(y^{*} d f[1: i, 2]\right)$

Exercise 4

Create a function that given a numeric vector, sort this in ascending order and duplicate it by two.

Exercise 5

Create a function that given a vector alpha numeric, keep only the numbers and apply the function created on exercise 4.

For example, if the input is a vector $w=" a "$ " v " "7" "4" "q" , the function will return w=8 14.

Exercise 6

Create a function that given a string

ST='NAME: Maria /COUNTRY:uruguay /EMAIL: mariaUY@gmail.com'
return a matrix
[,1] [,2]
[1,] "NAME" " Maria "
[2,] "COUNTRY" "uruguay "
[3,] "EMAIL" " mariaUY@gmail.com"

Exercise 7

Consider a vector:

ST=c('NAME:Maria /COUNTRY:uruguay /EMAIL:mariaUY@gmail.com','NAME:Paul/COUNTRY:UK /EMAIL:PaulUK@gmail.com',
'NAME:Jhon /COUNTRY:USA /EMAIL:JhonUSA@gmail.com','NAME:Carlos /COUNTRY:Spain /EMAIL:CarlosSP@gmail.com')

Create a function that given a vector string ST return a matrix:
$[, 1][, 2][, 3][, 4][, 5]$
[1,] "NAME" "Maria " "Paul" "Jhon " "Carlos "
[2,] "COUNTRY" "uruguay " "UK " "USA " "Spain "
[3,] "EMAIL" "mariaUY@gmail.com" "PaulUK@gmail.com" "JhonUSA@gmail.com" "CarlosSP@gmail.com"

Exercise 8

Create a function that given a numeric vector X returns the digits 0 to 9 that are not in X. If $X=0248$ the function return 135679

Exercise 9

Create a function that given two strings (one word each), check if one is an anagram of another.

Exercise 10

Create a function that given one word, return the position of word's letters on letters vector.

For example, if the word is 'abc', the function will return 123.

