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parameter. This can be done ifM(j!) is a rational function of! since
the operation of taking the determinant of(I �M�) will preserve
this property. This removes the frequency scanning of the test at the
price that the order of the system that must be analyzed is increased
by one real perturbation.

APPENDIX: SOME DEFINITIONS

Sylverster’s Resultant matrixS is the (m + n) � (m + n)

matrix associated with the two polynomialsA(x) = n

i=0
aix

i and
B(x) =

m

i=0
bix

i

S =

a0 a1 � � � an 0 � � � 0

0 a0 a1 � � � an 0 � � � 0
...
0 � � � 0 a0 a1 � � � an

b0 b1 � � � bm 0 � � � 0

0 b0 b1 � � � bm 0 � � � 0
...
0 � � � 0 b0 b1 � � � bm

m rows

n rows

:

The resultant of two polynomials is defined as the determinant of the
Sylvester’s Resultant matrix associated with these polynomials. The
resultant depends only on polynomials’ coefficients and can be used
to test if polynomials have a common factor without determining
their roots explicitly. If at least one of the leading coefficients of two
polynomials is nonzero, the resultant of these polynomials is zero if
and only if they have a common factor.

A number of real roots of a real polynomial on a given interval can
be found by Sturm’s theorem. The Sturm sequence for polynomials
f(x) and f 0(x) begins with these two polynomials, and each new
term is the remainder of a division of the two previous terms (Euclid’s
algorithm), but with the signs of the remainders reversed

f0(x) = f(x); f1(x) = f
0

0(x)

fi(x) = fi�1(x)gi�1(x)� fi�2(x) for i = 2; � � � ; k

where gi�1(x) is the quotient obtained by dividingfi�2(x) by
fi�1(x) and �fi(x) is the remainder, withfk(x) being the last
nonzero remainder in the sequence (the greatest common divisor of
f(x) and f 0(x)).

Sturm’s theorem states thatN , the number of distinct real roots of
f(x) between� and� can be computed as

N = V (�)� V (�)

whereV (�) denotes the number of variations in sign in the Sturm
sequence for a fixed valuex = �. Instead of a computation of
remainders by polynomial division, the standard Routh algorithm to
polynomialsf(x) andf 0(x) can be applied (proofs and details appear
in standard texts, e.g., Barnett [2, Ch. 3]).
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Chattering Avoidance by Second-Order
Sliding Mode Control

G. Bartolini, A. Ferrara, and E. Usai

Abstract—Relying on the possibility of generating a second-order
sliding motion by using, as control, the first derivative of the control
signal instead of the actual control, a new solution to the problem of
chattering elimination in variable structure control (VSC) is presented.
Such a solution, inspired by the classical bang–bang optimal control
strategy, is first depicted and expressed in terms of a control algorithm
by introducing a suitable auxiliary problem involving a second-order
uncertain system with unavailable velocity. Then, the applicability of the
algorithm is extended, via suitable modifications, to the case of nonlinear
systems with uncertainties of more general types. The proposed algorithm
does not require the use of observers and differential inequalities and can
be applied in practice by exploiting such commercial components as peak
detectors or other approximated methods to evaluate the change of the
sign of the derivative of the quantity accounting for the distance to the
sliding manifold.

I. INTRODUCTION

When considering the chattering phenomenon, that is, the high-
frequency finite amplitude control signal generated by the sliding
mode method, some authors (see, for instance, [1] and [2]) appear
to relate this behavior to the discontinuity of the sign function on
the sliding manifold. In other terms, they simply propose to replace
this function with a smooth approximation in order to counteract the
chattering effect at the price of a small deterioration in performances.
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Their assumption is motivated by the fact that some important
systems, like complex mechanical systems with backlash in the gear
boxes, do not tolerate an abrupt commutation in the applied forces
and torques.

Nevertheless, the use of smoothing devices, which are character-
ized by a high gain to have a small approximation error, does not
guarantee that oscillations will disappear. Indeed, the approximate
sliding motion so originated is guaranteed to lay in a small vicinity
of the sliding manifold, but nothing can be told about the behavior
inside this vicinity. The variable which accounts for the distance from
the sliding manifold can oscillate at an unpredictable frequency, and
this fact, through the high gain of the approximate switching devices,
reflects on the control signal which could be characterized by a finite
amplitude and an unpredictable frequency behavior. Since the above-
mentioned mechanical systems do not tolerate changes in the sign
of the control law at any frequency higher than some critical value,
the promised counteraction of the chattering phenomenon could not
be ensured. Further, it must be taken into account that often the
rigid body assumption, which makes one neglect the presence of
distributed or concentrated elasticity, is not motivated if the control
input frequencies belong to a range such that neglected resonant
modes could be excited. Indeed, this assumption turns out to be
motivated only for frequencies sufficiently far from such a range,
both lower and greater than the extreme critical frequencies, and it is
not guaranteed that the approximated sliding motion resulting from
the use of smoothing devices presents this feature.

Another approach, which is effective in the presence of unmodeled
dynamics, is based on the introduction of observers for the modeled
part of the system with a sliding manifold defined in terms of the
observer states [5]. The almost ideal high-frequency observer control
signal is filtered by the high-gain fast dynamical part of the system
so that a smooth control is actually applied.

Recently, this problem has been addressed within a general frame-
work with reference to known nonlinear systems [10]. A procedure
inspired by this approach, but effective also for uncertain systems
is that described in [8] and [9]. This procedure solves the following
problem. Given the system

_xi(t) = xi+1(t)

_xn(t) = f [x(t)] + g[x(t)]u(t)

i = 1; � � � ; n� 1
(1)

with x(t) = [x1; x2; � � � ; xn]
T representing the completely available

state andf [x(t)] and g[x(t)] uncertain smooth functions satisfying
the classical condition for the existence and uniqueness of the solution
as well as the following inequalities:

0 < G1 � g[x(t)] � G2 (2)

jf [x(t)]j �Pf +Qfkx(t)k (3)

@f [x(t)]

@x
�Pdf +Qdfkx(t)k (4)

@g[x(t)]

@x
�Pdg +Qdgkx(t)k (5)

with G1, G2, Pf , Qf , Pdf , Qdf , Pdg, and Qdg real positive
known constants, find a continuous controlu(t) such that in spite
of the uncertainties (2)–(5) the states of (1) are steered to zero
exponentially. Note that conditions (4) and (5) mean that, in each time
instant,k@f [x(t)]=@xk andk@g[x(t)]=@xk are bounded by known
(measurable) quantities.

To determine the desired continuous control, the following steps
need to be taken [9].

1) Differentiate the second equation of (1) and set

xn+1(t) = f [x(t)] + g[x(t)]u(t)

and consider the system

_xi(t) =xi+1(t)

_xn(t) =xn+1(t)

_xn+1 =
d

dt
f [x(t)] +

d

dt
g[x(t)]u(t)

+ g[x(t)]
d

dt
u(t):

(i = 1; 2; � � � ; n� 1):

(6)

2) Choose a sliding manifold in the augmented state space, i.e.,

s[x(t)] = xn+1(t) +

n

i=1

cixi(t) = 0: (7)

On this manifold, (6) behaves like a linear autonomous system
with eigenvalues coinciding with the roots ofP (z) = zn +

cnz
n�1

+ � � � + c1.
3) Since xn+1 is not measurable, standard variable structure

control (VSC) cannot be applied. Then, as suggested in [9],
introduce an observer of such a quantity, i.e.,

_z(t) = �p(t)ŝ(t)�

n

i=1

cixi(t) + w(t) (8)

where

ŝ(t) = z(t) +

n

i=1

cixi(t)

s(t) =xn+1(t) +

n

i=1

cixi(t)

E(t) = s(t)� ŝ(t) (9)

and p(t), the parameter of the observer, is any piecewise
continuous function and constitutes a design degree of freedom.
The signalw(t) is chosen in such a way that the dynamics of
the whole system is characterized by the following second-
order equation:

_̂s(t) = �p(t)ŝ(t) + cnE(t)
_E(t) = �p(t)ŝ(t) + cnE(t) + �(x; u)

(10)

where�(t) is a nonlinear signal depending on the uncertain
dynamics and affinely on the derivative of the control signal
u(t).

In [8] it has been proved that if the derivative of the control signal
u(t) is chosen so that�(t) is discontinuous on̂s(t) = 0 and, at
the same time, inside the region of continuity of�(t) the following
differential inequality holds_�(t) < [p(t) + cn]�(t), then, the states
ŝ(t) and E(t) tend simultaneously (asymptotically) to zero; as a
consequence,x(t) tends to zero asymptotically with a controlu(t),
which turns out to be a continuous function, being the integral of a
bounded signal.

The purpose of this paper is to provide a solution to the problem of
steering to zero the states of (1) by forcing them to lie on a suitable
sliding manifold in the original (nonaugmented) state space by using
a continuous control (thereby, avoiding the chattering effect as in [8],
[9]) but also presenting the following advantages over the previous
proposals.

1) It does not require the introduction of any observer.
2) The differential inequalities are replaced by algebraic inequal-

ities.
3) The convergence to the sliding manifold of the state trajectories

takes place in a finite time.
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The proposed methodology relies on the possibility of generating
a second-order sliding motion. The latter naturally arises when the
control v(t) = _u(t) is used instead of the actual controlu(t).
Indeed, if we chooses[x(t)] = 0, x(t) 2 IRn as sliding manifold,
it turns out thatv(t) affects�s[x(t)] but not _s[x(t)], and the problem
becomes that of steerings[x(t)] to zero by acting on its second
derivative. The proposed solution procedure is outlined in this paper
first dealing with a simple case, namely a second-order system with
inaccessible states, to motivate and clarify the basic control algorithm,
then highlighting the modifications to make to the basic algorithm
extend its applicability to the actual case in question.

The paper is organized as follows. In Section II the control
problem is formulated. An auxiliary problem is stated and solved
in Section III. Finally, in Section IV it is shown how the original
chattering elimination problem can be solved by analogy to the
solution procedure envisaged, in the previous section, with reference
to the auxiliary problem.

II. PROBLEM FORMULATION

Consider (1) with uncertainties (2)–(5). Choose annth-order slid-
ing manifold

s[x(t)] = xn(t) +

n�1

i=1

cixi(t) = 0 (11)

with ci, i = 1; � � � ; n � 1, real positive constants such that the
characteristic equationzn�1 + n�1

i=1
ciz

i�1 = 0 has all roots with
negative real parts. Consider the first and second time derivatives of
s[x(t)], namely

_s[x(t)] = f [x(t)] + g[x(t)]u(t) +

n�1

i=1

cixi+1(t) (12)

�s[x(t)] =
d

dt
f [x(t)] +

d

dt
g[x(t)]u(t) + cn�1[f [x(t)]

+ g[x(t)]u(t)] +

n�2

i=1

cixi+2(t) + g[x(t)] _u(t): (13)

If it is possible to steers[x(t)] to zero in a finite time by using a
discontinuous control signal_u(t), then the correspondingu(t) is con-
tinuous, thereby eliminating the undesired high-frequency oscillations
of u(t) typical of the standard VSC design. Once ons[x(t)] = 0,
the system performs like a reduced-order linear system with a stable
transfer function. Assumey1(t) = s[x(t)] andy2(t) = _s[x(t)], then,
relying on (11), the system dynamics (1) and the relevant uncertain
dynamics (12), (13) can be rewritten as

_̂
x(t) = Ax̂(t) +By1(t)
xn(t) = �Cx̂+ y1(t)
_y1(t) = y2(t)
_y2(t) = F [x(t); u(t)] + g[x(t)]v(t)

(14)

where x̂ = [x1; x2; � � � ; xn�1]
T , C = [c1; c2; � � � ; cn�1], A is a

(n�1)�(n�1)-matrix in companion form whose last row coincides
with vector�C, B = [0; � � � ; 0; 1]T 2 IRn�1, v(t) = _u(t) and
F [�; �] collects all the uncertainties not involvingv(t). The first two
lines of (14) correspond to a linear system controlled byy1(t), and
this system is stable by assumption. The second two equations of
(14) correspond to a nonlinear uncertain second-order system (y2(t)
is not available for measurement) with controlv(t). If the controlv(t)
steers to zero bothy1(t) andy2(t), then the linear system becomes an
autonomous system evolving on the manifold defined by (11). Note
that the last two equations of (14) are coupled with the previous ones
through the uncertaintiesF [x(t); u(t)], g[x(t)].

III. T HE AUXILIARY PROBLEM

As a preliminary step of our treatment, we assume that instead of
bounds (2)–(5), the following particular bounds:

0 < G1 � g[x(t)] � G2 (15)

jF [x(t); u(t)]j < F (16)

are considered. This assumption will be dispensed with in the next
section. On this basis, one can deal with the last two equations of
(14) as if they were independent of the others. That is, the following
auxiliary problem can be faced.

Auxiliary Problem: Given a second-order system

_z1(t) = z2(t)
_z2(t) = H[z1(t); z2(t)] + d[z1(t); z2(t)]w(t)

(17)

with z2(t) unmeasurable and bounds

jH[z1(t); z2(t)]j < H (18)

0 < D1 � d[z1(t); z2(t)] � D2 (19)

find a control laww(t) such thatz1(t), z2(t) are steered to zero in
a finite time in spite of the uncertainties.

By analogy to the well-known solution to the time optimal control
problem, the controlw(t) can be chosen as a bang–bang control
switching between two extreme values�UMax, +UMax. The classical
switching logic for a double integrator (H[z1(t); z2(t)] = 0, D1 =
D2 = 1) is

w(t) =

�UMax if z1(t) > �
1

2

z2(t)jz2(t)j

UMax

z1(t) = �
1

2

z2(t)jz2(t)j

UMax
z1(t) < 0

+UMax if z1(t) < �
1

2

z2(t)jz2(t)j

UMax

z1(t) = �
1

2

z2(t)jz2(t)j

UMax
z1(t) > 0 :

(20)

Such a switching logic, instead of being based on the sign of
z1(t) + (z2(t)jz2(t)j)=(2UMax) andz1(t), and therefore depending
on bothz1(t) and z2(t), could be expressed only in terms ofz1(t)
which, by assumption, is available for measurement. Indeed, it is
easy to verify the following.

The optimal trajectory is a sequence of two parabolic arcs. The
second arc of the trajectory lies on the switching linez1(t) +
(z2(t)jz2(t)j)=(2UMax) = 0. The modulus of thez1(t) component of
the initial point of this second arc is equal to one-half of the maximum
modulus of thez1(t) component of the points of the previous part
of the trajectory.

Assume that the extremal value ofz1(t) along each parabolic arc
of the trajectory can be evaluated, and denote it byzMax. Then,
the foregoing considerations can be summarized by the following
algorithm, which is equivalent to the optimal one in the caseH[�; �] =
0, D1 = D2 = 1, z1(0)z2(0)> 0, �� = 1, where�� is a parameter
appearing in the algorithm.

Algorithm 1:

1) Set�� 2 (0; 1] \ (0; 3D1=D2).
2) Set zMax = z1(0).

Repeat, for anyt > 0, the following steps.
3) If [z1(t)� 1

2
zMax][zMax � z1(t)] > 0, then set� = ��, else

set � = 1.
4) If z1(t) is extremal, then setzMax = z1(t).
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5) Apply the control law

w(t) = ��UMax signfz1(t)� 1

2
zMaxg (21)

until the end of the control time interval.

The aim of this section is to prove that this algorithm is valid also
with H[�; �] 6= 0, D1 6= D2 6= 1, z1(0)z2(0) not necessarily positive,
in the sense that it allows the origin of thez1(t), z2(t) state space
to be reached in a finite time. To this end, the following result can
be proved.

Theorem 1: Given the state equation (17) with bounds as in (18)
and (19) andz2(t) not available for measurement, then if the extremal
value ofz1(t) is evaluated with ideal precision, for anyz1(0), z2(0),
the suboptimal control strategy defined by Algorithm 1 with the
additional constraint

UMax > max
H

��D1

;
4H

3D1 � ��D2

(22)

causes the generation of a sequence of states with coordinates
(zMax ; 0) featuring the following contraction property:

jzMax j < jzMax j; i = 1; 2; � � � : (23)

Moreover, the convergence of the system trajectory to the origin of
the state plane takes place in a finite time.

Proof—Part 1 (Proof of the Contraction Property):Consider the
state equation (17) withjw(t)j � UMax and bounds (18) and (19).
Moreover

UMax >
H

��D1

(24)

and�� as in 1) of Algorithm 1, since, by assumption, (22) is satisfied.
Depending on the initial conditionsz1(0), z2(0), one can distinguish
among the following cases.

Case 1: (z1(0) = zMax > 0, z2(0) = 0, i.e., the initial point lies
on the right side of the abscissa axis.) In this case,w(t) = ���UMax,
and by integration of (17) it is trivial to show that when the
commutation occurs at time instanttc such thatz1(tc) =

1

2
zMax,

according to Algorithm 1, the corresponding value ofz2(tc) belongs
to the interval

� zMax(��D2UMax +H); � zMax(��D1UMax �H) :

Starting from any point in this interval, fort > tc, integrating system
(17) with w(t) = UMax (� = 1), one can easily show that the state
trajectory crosses the abscissa axis within the interval

�
1

2

(��D2 �D1)UMax + 2H

D1UMax �H
zMax;

1

2

(D2 � ��D1)UMax + 2H

D2UMax +H
zMax :

The right extreme of this interval is nearer to the origin than
the considered starting point. Then, to assess the contraction it is
sufficient that the modulus of the left bound of the previous interval
is less thanzMax. This sufficient condition, considering also (24)
and 1) of Algorithm 1, can be expressed by the following system
of inequalities:

�� � 1

��D1UMax > H

(��D2 �D1)UMax + 2H

D1UMax �H
< 2:

(25)

By means of simple computations, one can find the interval solutions
of (25) with respect to�� andUMax, that is

UMax >

H

��D1

; if �� 2 0;
3D1

4D1 +D2

4H

3D1 � ��D2

; if �� 2
3D1

4D1 +D2

; 1

\
3D1

4D1 +D2

;
3D1

D2

:

(26)

It is also easy to verify that if�� > 3D1=(4D1 + D2), then
H=��D1 < 4H=(3D1 � ��D2), if �� < 3D1=(4D1 + D2),
then H=��D1 > 4H=(3D1 � ��D2), and that the intersection
between the two pieces of the limiting curve forUMax occurs at
�� = 3D1=(4D1+D2). According to (22) that is true by assumption.

Case 2: (z1(0) = zMax < 0, z2(0) = 0, i.e., the initial point lies
on the left side of the abscissa axis.) The proof is the same as in
Case 1 but with reversed extremes of the relevant intervals.

Case 3: (z1(0)z2(0) > 0, z1(0)z2(0) < 0, z1(0) = 0; z2(0) 6=
0, i.e., all the other possible initial conditions.) It is trivial to see that
after at most a finite-time interval, the system trajectory reaches a
point of the types considered in Cases 1 and 2.

Part 2: Proof of the fact that the convergence to the origin takes
place in a finite time.

Algorithm 1 defines a sequenceftMax g of the time instants when
an extremal value ofz1(t) occurs. It can be proved that each term
of this sequence is upperbounded by the corresponding term of the
sequence

t̂Max = t̂Max +
(D1 + ��D2)UMax

(D1UMax �H)
p
��D2UMax +H

� jzMax j: (27)

From (27), recursively

t̂Max =
(D1 + ��D2)UMax

(D1UMax �H)
p
��D2UMax +H

�
k

j=1

jzMax j+ tMax

=�

k

j=1

jzMax j+ tMax (28)

with tMax being the time interval fromt = 0 to the time instant
when the first extremal value occurs. From previous relationships

jzMax j <
1

2

(��D2 �D1)UMax + 2H

D1UMax �H

j�1

jzMax j (29)

so that, in compact form, with implicit definition of the symbols

tMax <�

k

j=1



j�1 jzMax j+ tMax

=�
0

k

j=1



j�1

+ tMax : (30)

By assumption (22) is true and, obviously,
 < 1. Therefore, from
(29)

lim
k!1

zMax = 0 (31)

and from (30)

lim
k!1

tMax <
�0

1� 

+ tMax (32)

which concludes the proof.
The convergence of the sequencefzMax g in a finite time implies

the convergence to zero of the phase trajectories, since in any time
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interval [tMax ; tMax ] the maximum value ofjz2(t)j is bounded
by a function of jzMax j, and this becomes zero in a finite time.

IV. THE SOLUTION TO THE CHATTERING ELIMINATION PROBLEM

In this section, it will be proved that it is possible to solve the
chattering elimination problem by relying on the results obtained
with reference to the auxiliary problem in the previous section.
To this end, consider (14), which can be viewed as the connection
of two systems coupled through the signaly1(t) and the nonlinear
term F [x(t); u(t)] + g[x(t)]v(t). Now, we simply assume that
(15) holds, which is reasonable in many practical situations, while
F [x(t); u(t)], though bounded in any bounded domain, cannot
be assumeda priori to be bounded since proving the boundedness
of its arguments is an objective of this treatment. Thus, the aim of
the following analysis is to prove that after an initialization phase,
the state trajectories reach regions of the state space including the
origin. Once such regions are reached, the application of Algorithm
1, with minor modifications, leads to a contractive process steering
y1(t), y2(t) to zero in a finite time. After that time, the further
evolution of the system states is that of an autonomous linear
exponentially stable system. In order to formally describe this
procedure, the following theorem needs to be proved.

Theorem 2: Given (14), the norm of the state vectorx(t), in any
finite interval, can be upperbounded by a function of the norm of the
initial valuex(ti) and of the maximum value assumed byy1(t).

Proof: Consider (14). One has

x̂(t) = expfA(t� ti)gx̂(ti) +
t

t

expfA(t� �)gBy1(t)d�:

:(33)

Thus,kx̂(t)k can be bounded from above as

kx̂(t)k �kx̂(ti)k+ max
t ���t

jy1(� )j
1

t

� k expfA(t� �)gBkd�: (34)

Note that the integral can be evaluated since the first two equations
of (14) describe a perfectly known stable system. Then

jxn(t)j � cMax kx̂(ti)k+ max
t ���t

jy1(� )j
1

t

�k exp fA(t� �)gBkd� + max
t ���t

jy1(� )j (35)

where

cMax = max
i=1; ���; n�1

ci

with ci being the component of vectorC. As a result

kx(t)k � Pxkx(ti)k+QxY1(ti; t) (36)

with

Y1(ti; t) = max
t ���t

jy1(� )j:

Now, one has to exploit the known bounds relevant to the uncertain
dynamics to obtain an expression of the boundF in terms ofy1(t)
and Y1. From (12)–(14) one has

y2(t) = f [x(t)] + g[x(t)]u(t) +

n�1

i=1

cixi+1(t) (37)

F [x(t); u(t)] =
d

dt
f [x(t)] +

d

dt
g[x(t)]u(t) + cn�1[f [x(t)]

+g[x(t)]u(t)] +

n�2

i=1

cixi+2(t) : (38)

On the basis of the previous relationshipF [x(t); u(t)] can be written
as

F [x(t); u(t)] = �1[x(t)] + �2[x(t)]u(t) + �3[x(t)]u
2
(t): (39)

Using (2)–(5) and (36), it is possible to express the upperbounds of
j�i[�]j, i = 1; 2; 3, in any finite interval(ti; tf), as

j�i[x(t)]j < Fi[Y1 ]; i = 1; � � � ; 3 (40)

with Fi[�] being an increasing positive function of its argument, i.e.,
of the maximum value ofy1(t) in the interval(ti; tf). Hence, in any
finite interval one can define an upperbound ofjF [x(t); u(t)]j as

F
�
[Y1 ] =F1[Y1 ] + F2[Y1 ]ju(t)j

+ F3[Y1 ]u
2
(t): (41)

Note that the term depending onu2(t) would not appear in case
g[x(t)] should not be dependent onxn(t).

The foregoing considerations will be used in the following way.
First, it will be proved that it is possible to reach the axisy2(t) = 0

in a finite time, starting from any initial condition. Then, it will be
clarified how from the time instanttMax when the axisy2(t) = 0

is crossed, the control algorithm will forcey1(t) either to reach
directly a new extremal value with the same sign ofy1(tMax ), but
contracted in modulus, or a value equal toy1(tMax )=2, for which a
commutation of the control signal will occur. As a consequence, the
control algorithm will cause the reaching of a new extremal value
of y1(t) at the time instanttMax . Finally, it will be observed that
jy1(tMax )j < jy1(tMax )j, that is, a contraction occurs and repeats
itself during the subsequent time intervals[tMax ; tMax ], until the
convergence of bothy1(t) and y2(t) to zero takes place. Thus, the
following theorem can be proved.

Theorem 3: Given (14), starting from any initial condition and
relying on the knowledge of the bounds (2)–(5) on the uncertain
system dynamics, it is possible to design a control signal such that
an extremal value ofy1(t) is reached in a finite time.

Proof: In the initialization phase, the fact that the control signal
u(t) can be expressed as

u(t) = u(0) +
t

0

_u(�)d� (42)

needs to be exploited. Note that it is possible, at isolated time instants
(e.g.,t = 0), to modify the sign and the amplitude of_s[x(t)] through
u(t). In other terms, one can initialize the algorithm by measuring
y1(0) and choosingu(0) so as to obtainy1(0)y2(0) > 0. This can
be accomplished, taking into account (3) and (12), by selecting

u(0) =
1

G1

Pf +Qfkx(0)k+

n�1

i=1

cixi+1(0) + h
2

� sign[y1(0)] (43)

whereh is any nonzero real constant. Starting from this initial choice,
it is possible to identify a signal_u(t) which forces the trajectories
in the plane[y1(t); y2(t)] to reach the axisy2(t) = 0 in a finite
time. The time instant when such an axis is reached constitutes the
actual initial instant for the subsequent contraction procedure. One
can choose_u(t) as

_u(t) = �M [x(t); u(t)]sign[y1(t)] (44)

where

M [x(t); u(t)] =
1

G1

(�
�

1[x(t)] + �
�

2[x(t)]ju(t)j

+�
�

3[x(t)]u
2
(t))

with ��i [�] being positive functions upperbounding the modulus of
�i[�] appearing in (39). Then,jy2(t)j is decreasing: indeed, the sign
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of y1(t) does not change during this phase, and, consequently, from
(14) and (44)y2(t) _y2(t) < 0.

Let tMax be the time instant when the axis is reached, and consider
tMax as the new initial time to which the statex(tMax ) = x1

corresponds. As the first extremal value ofy1(t) is reached, the
procedure previously outlined can be activated, provided that the
control v(t) = _u(t) is suitably chosen in order to force the state
trajectories to cross again they2(t) = 0 axis in a finite time, say at
the time instanttMax , with a new extremal valuey1(tMax ) such
that a contraction is registered, that is,jy1(tMax )j < jy1(tMax )j.
To this end, the following theorem can be proved.

Theorem 4: Given (14), provided that fort 2 [tMax ; tMax ] the
control signalv(t) is chosen as

v(t) =��VMax signfy1(t)� 1

2
y1(tMax )g

� [F2[y1(tMax )]ju(t)� u(tMax )j

+ F3[y1(tMax )]ju2(t)� u
2(tMax )j]signfy(tMax g (45)

where� is defined according to Algorithm 1 andVMax is chosen
equal toUMax specified in (22) withH given by

H =F
�[y1(tMax )]

=F1[y1(tMax )] + F2[y1(tMax )]ju(tMax )j

+ F3[y1(tMax )]u2(tMax ) (46)

then, the trajectories ofy1(t) and y2(t) are internal to the limiting
curve defined by

_y2 (t) =�(H + �G2VMax)signfy1(tMax )g

t 2 [tMax ; tc ]

_y2 (t) = (H �G1VMax)signfy1(tMax )g

t 2 (tc ; tMax ] (47)

and the axisy2(t) = 0, tc being the time instant when the first
commutation occurs.

Proof: The limiting curve (47) corresponds to the case in which
a constant upperboundH of F [x(t); u(t)] can be identified. But, as
previously observed, such an upperbound cannot be found in practice
because of the linear and quadratic dependence ofF [x(t); u(t)] on
u(t). By choosing the control signalv(t) as indicated in (45), one
obtains an equation for_y2(t) which is similar to (17) and (18) plus
a term

�[F2[y1(tMax )]ju(t)� u(tMax )j

+ F3[y1(tMax )]ju2(t)� u
2(tMax )j]signfy(tMax g: (48)

If this term were neglected, the results of the previous section could
also be applied in the present case. This means that the system
trajectories would lie inside the region delimited by the two pieces of
the curve (47). Since any feasible trajectory included in such a region
enjoys the convergence properties of the limiting one, to prove the
theorem it is sufficient to note that the effect of the term (48) is
such that the corresponding trajectories reach the axisy2(t) = 0
at a point which is internal to the segment[y1(tMax ); y1 (tMax )],
which ensures a contractive behavior for any real trajectory. Indeed,
because of the presence of the additional term (48), during the interval
[tMax ; tc ] the time derivative_y2(t) along the trajectories obtained
by applying the control signal (45) is in modulus less than the
modulus of _y2 (t) corresponding to the first part of the limiting curve
(i.e., in the interval[tMax ; tc ]), while, in the interval(tc ; tMax ],
j _y2(t)j > j _y2 (t)j. Then, in the first intervaljy2(t)j increases less than
jy2 (t)j, while the opposite happens in the second interval. Then, it is
proved that the trajectories are included within the region delimited
by (47) and the axisy2(t) = 0.

Note that (46) is compatible with (41) in the sense that it implies
that Y1 = y1(tMax ). Indeed, it can be easily verified
that this fact is true for the system controlled via (45).

To conclude, it should be noted that Theorem 4 also holds for
the subsequent control intervals[tMax ; tMax ], i = 2; 3; � � �.
Relying on Theorem 4, it turns out that the results proved before
(in particular Theorem 1) can be extended to solve the chattering
elimination problem. Indeed, as a consequence of Theorems 3 and 4,
the trajectories generated by applying, during the initialization phase,
the control signal (43), and, once the first extremal value ofy1(t) is
reached, Algorithm 1 with the control signal (21) replaced by (45)
feature the same behavior as that of (17) controlled as indicated in
Theorem 1. As a result, bothy1(t) = s[x(t)] and y2(t) = _s[x(t)]
tend to zero in a finite time.

V. CONCLUSIONS

In this paper, a new contribution to the solution to the chattering
elimination problem in VSC of single-input nonlinear systems is
presented. The proposed algorithm results in being simpler and more
feasible than the one previously presented by one of the authors, in
the sense that it does not require the use of observers and differential
inequalities. In the paper, the chattering elimination problem has
been first formulated, then a suitable auxiliary problem involving
a second-order uncertain system with unavailable velocity has been
introduced and solved by using an algorithm inspired by the classical
bang–bang optimal control strategy. The problem in question has
been solved finally by using an algorithm which coincides with that
used to cope with the auxiliary problem, apart from an additional
term in the control law. Thanks to the introduction of such a term,
the original system has been proved to have the same convergence
properties as the auxiliary one. As far as the practical feasibility
of the proposed control strategy is concerned, it is strictly related
to the availability of commercial components, like peak detectors
or other approximated methods, to evaluate the change of the sign
of the derivative of the constraints[x(t)]. Experiences in the field
of vibration damping of elastic robotic structures are presently in
progress to confirm the attractive features of the chattering elimination
approach herein proposed.
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