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to test if polynomials have a common factor without determining
their roots explicitly. If at least one of the leading coefficients of two
polynomials is nonzero, the resultant of these polynomials is zero if
and only if they have a common factor.

A number of real roots of a real polynomial on a given interval can
be found by Sturm’s theorem. The Sturm sequence for polynomials
f(z) and f'(«) begins with these two polynomials, and each new
term is the remainder of a division of the two previous terms (Euclid’s
algorithm), but with the signs of the remainders reversed

n rows

Chattering Avoidance by Second-Order
Sliding Mode Control
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folz) = f(2), fi(z) = f{)(:g) Abstract—Relying on the possibility of generating a second-order
’ ’ . sliding motion by using, as control, the first derivative of the control
fi(z) = fimi(2)gi—1 () — fi—2(2) fori=2,--+k signal instead of the actual control, a new solution to the problem of

where g;_1(x) is the quotient obtained by dividing: »(x) by chattering elimination in variable structure control (VSC) is presented.

. . . : Such a solution, inspired by the classical bang-bang optimal control
fi—i(x) and —fi(x) is the remainder, withfx(x) being the last gyrateqy, is first depicted and expressed in terms of a control algorithm

nonzero remainder in the sequence (the greatest common divisobgfintroducing a suitable auxiliary problem involving a second-order
f(2) and f'(x)). uncertain system with unavailable velocity. Then, the applicability of the

Sturm'’s theorem states that, the number of distinct real roots of algorithm i§ extended_, \_/ia suitable modifications, to the case of nonlirjear
) betweena and 4 can be computed as systems with L_Jncertamtles of more general types. The_propos_ez_d algorithm
flx) / p does not require the use of observers and differential inequalities and can

N =V(a)=V(3) be applied in practice by exploiting such commercial components as peak
o o detectors or other approximated methods to evaluate the change of the
where V' (#) denotes the number of variations in sign in the Sturrsign of the derivative of the quantity accounting for the distance to the

sequence for a fixed value = 6. Instead of a computation of sliding manifold.
remainders by polynomial division, the standard Routh algorithm to
polynomialsf(x) andf'(x) can be applied (proofs and details appear |. INTRODUCTION

in standard texts, e.g., Bamett [2, Ch. 3]). When considering the chattering phenomenon, that is, the high-
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Their assumption is motivated by the fact that some important
systems, like complex mechanical systems with backlash in the gear
boxes, do not tolerate an abrupt commutation in the applied forceg
and torques.

Nevertheless, the use of smoothing devices, which are character
ized by a high gain to have a small approximation error, does not
guarantee that oscillations will disappear. Indeed, the approximate
sliding motion so originated is guaranteed to lay in a small vicinity
of the sliding manifold, but nothing can be told about the behavior
inside this vicinity. The variable which accounts for the distance from
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and consider the system

#i(t) = 2ipa (F)
T (f) = Tn+1 (f)

/ 6
bt = 55 JR(O]+ Sglx(t)u(t) ©

+ g[x(t)]% u(t).

the sliding manifold can oscillate at an unpredictable frequency, and2) Choose a sliding manifold in the augmented state space, i.e.,

this fact, through the high gain of the approximate switching devices,
reflects on the control signal which could be characterized by a finite
amplitude and an unpredictable frequency behavior. Since the above-
mentioned mechanical systems do not tolerate changes in the sign
of the control law at any frequency higher than some critical value,
the promised counteraction of the chattering phenomenon could not
be ensured. Further, it must be taken into account that often the
rigid body assumption, which makes one neglect the presence o
distributed or concentrated elasticity, is not motivated if the control
input frequencies belong to a range such that neglected resonant
modes could be excited. Indeed, this assumption turns out to be
motivated only for frequencies sufficiently far from such a range,
both lower and greater than the extreme critical frequencies, and it is
not guaranteed that the approximated sliding motion resulting from
the use of smoothing devices presents this feature.

Another approach, which is effective in the presence of unmodeled
dynamics, is based on the introduction of observers for the modeled
part of the system with a sliding manifold defined in terms of the
observer states [5]. The almost ideal high-frequency observer control
signal is filtered by the high-gain fast dynamical part of the system
so that a smooth control is actually applied.

Recently, this problem has been addressed within a general frame-
work with reference to known nonlinear systems [10]. A procedure
inspired by this approach, but effective also for uncertain systems
is that described in [8] and [9]. This procedure solves the following
problem. Given the system

{

with x(t) = [x1, 22, -+, x,]” representing the completely available
state andf[x(t)] and g[x(t)] uncertain smooth functions satisfying
the classical condition for the existence and uniqueness of the solution
as well as the following inequalities:

&i(t) = @i (1) i=1,--,n—1

in(t) = fIx(D)] + glx(t)]u() @

s[x(t)] = Tag1 () + chll(f) =0. (7
=1
On this manifold, (6) behaves like a linear autonomous system
with eigenvalues coinciding with the roots &f(z) = 2" +
n—1
R R CP

CnZ

) Since @, is not measurable, standard variable structure

control (VSC) cannot be applied. Then, as suggested in [9],
introduce an observer of such a quantity, i.e.,

n

2ty = —p(0)5(t) = > cowilt) + w(t) ®)
=1
where

() =z(t) + Z cizi(t)
=1

s(t) =wnia(t)+ Y ciwi(t)

=1
E(t) = s(t) — 5(1) 9)

and p(t¢), the parameter of the observer, is any piecewise
continuous function and constitutes a design degree of freedom.
The signalw(t) is chosen in such a way that the dynamics of

the whole system is characterized by the following second-

order equation:
{ (1) = —p(t)3(t) + cn E(1)
E(t) = —p(t)s(t) + cn E(t) + p(x, u)
where p(t) is a nonlinear signal depending on the uncertain

dynamics and affinely on the derivative of the control signal
u(t).

(10

0 <G <y[x(t)] £ G2 )
O] < Py + Q0] @
| 21O < py -+ Qulixto @
| 2B < py Gl ®

with G1, G2, Py, Qy, Py, Qu, Puy, and QQq, real positive
known constants, find a continuous contrdlt) such that in spite

of the uncertainties (2)—(5) the states of (1) are steered to z
exponentially. Note that conditions (4) and (5) mean that, in each ti
instant, ||0f[x(t)]/0x|| and||0g[x(t)]/0x]|| are bounded by known

(measurable) quantities.

In [8] it has been proved that if the derivative of the control signal
u(t) is chosen so tha(¢) is discontinuous ors(t) = 0 and, at
the same time, inside the region of continuity;gft) the following
differential inequality holdgi(¢) < [p(t) + e¢»]u(t), then, the states
5(t) and E(t) tend simultaneously (asymptotically) to zero; as a
consequencex(t) tends to zero asymptotically with a contre(t),
which turns out to be a continuous function, being the integral of a
bounded signal.

The purpose of this paper is to provide a solution to the problem of
steering to zero the states of (1) by forcing them to lie on a suitable
sliding manifold in the original (honaugmented) state space by using

er

3 2ontinuous control (thereby, avoiding the chattering effect as in [8],

r[tﬁ) but also presenting the following advantages over the previous

proposals.

To determine the desired continuous control, the following stepsl) It does not require the introduction of any observer.

need to be taken [9].
1) Differentiate the second equation of (1) and set

zoq1(t) = f[x(t)] + glx(t)]u(t)

2) The differential inequalities are replaced by algebraic inequal-
ities.

3) The convergence to the sliding manifold of the state trajectories
takes place in a finite time.
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The proposed methodology relies on the possibility of generating Ill. THE AUXILIARY PROBLEM

a second-order sliding motion. The latter naturally arises when theag 5 preliminary step of our treatment, we assume that instead of
control v(#) = 4(t) is used instead of the actual control). pounds (2)—(5), the following particular bounds:

Indeed, if we choose[x(t)] = 0, x(¢) € IR" as sliding manifold,

it turns out thatv(¢) affectss[x(¢)] but nots[x(¢)], and the problem 0 <G <g[x()] <G (15)
becomes that of steeringx(t)] to zero by acting on its second |F[x(t), u(t)]| < F (16)

derivative. The proposed solution procedure is outlined in this paper
first dealing with a simple case, namely a second-order system wiéife considered. This assumption will be dispensed with in the next
inaccessible states, to motivate and clarify the basic control algorithsection. On this basis, one can deal with the last two equations of
then highlighting the modifications to make to the basic algorithif14) as if they were independent of the others. That is, the following
extend its applicability to the actual case in question. auxiliary problem can be faced.

The paper is organized as follows. In Section Il the control Auxiliary Problem: Given a second-order system
problem is formulated. An auxiliary problem is stated and solved .
in Section lll. Finally, in Section IV it is shown how the original {‘f‘ (t) = z(t) ) a7
chattering elimination problem can be solved by analogy to the 2(t) = Hl=(1), z22(0)] + dl=1 (1), z2(0)]w(t)
solution procedure envisaged, in the previous section, with refere%ﬁh =5(t)

o unmeasurable and bounds
to the auxiliary problem.

|H[z:1(t), z2(t)]| < H (18)
Il. PROBLEM FORMULATION 0 < Dy <d[z:(t), 22(t)] < D2 (29)
. Cons@er (1) with uncertainties (2)—(5). Chooserah-order slid- find a control laww(¢) such thatz; (t), z2(¢) are steered to zero in
ing manifold R ) . 2
a finite time in spite of the uncertainties.
n—l By analogy to the well-known solution to the time optimal control
s[x(t)] = @ (t) + Z cizi(t) =0 (11) problem, the controko(t) can be chosen as a bang-bang control
i=1 switching between two extreme value$iviax, +Uwmax. The classical
with ¢;, i = 1,---,n — 1, real positive constants such that theWitching logic for a double integrato(z (¢), z2(t)] = 0, D1 =
characteristic equatioa™ " + "' ¢,z = 0 has all roots with Dz = 1) is
negative real parts. Consider the first and second time derivatives of 1 2o(t)|22(t)]
- ’Tfax i z —-c = 7. -
s[x(t)], namely Untax if { 1) > —3 ST }
- 1 za(f)|22(1)]
$e(] = (D] + gbe(B]u(t) + D ciria () (12) U {zdt) =5 o [1aB< 0}
d d =1 lU(f) — 1 ’
. . zo(t)|z2(2
()] = 5 FIR0]+ 5 gBBlu() + e [FIx(0)] Hlhwec it {1(0) < 3 201
n—2
+glxOluO] + 3 ciwiva(t) + glx(D]a(t).  (13) Ul ==L 20200A 45 ol
i=1 2 Lrl\'lax

If it is possible to steer[x(t)] to zero in a finite time by using a (20)

discontinuous control signai(t), then the corresponding(#) is con-  gych a switching logic, instead of being based on the sign of
tinuous, thereby eliminating the undesired high-frequency oscillatiog§(t) + (22(t)]22(1)])/(2Umax) and z (¢), and therefore depending
of u(t) typical of the standard VSC design. Once €x(f)] = 0, on bothz () and z»(¢), could be expressed only in terms of(t)
the system performs like a reduced-order linear system with a staﬁ)ﬁichy by assumption, is available for measurement. Indeed, it is
transfer function. Assume, (t) = s[x(¢)] andy-(¢t) = 5[x(t)], then, easy to verify the following.
relying on (11), the system dynamics (1) and the relevant uncertainthe optimal trajectory is a sequence of two parabolic arcs. The
dynamics (12), (13) can be rewritten as second arc of the trajectory lies on the switching ling(t) +
: i s zo(t)|z2(t 2Umax) = 0. The modulus of the: (¢) component of
X(t) = AX(t) + By (1) t(he(ir3i|tial(p)(li)r<t(of this )second arc is equal to one-(hz)ilf of tﬁe maximum

xn(t) = —Cx [ t i i

‘;1 ((f))_ 7/9(;(-1— nlt) (14)  modulus of thez () component of the points of the previous part

EA A of the trajectory.

y2(t) = F[x(t), u(t t)|v(t , .

ya(t) [x(®), u(®] + glx(Olo(t) Assume that the extremal value of(¢) along each parabolic arc
wherex = [u1, @2, -+, 2n1]*, C = [c1. c2, -+, cn 1], Alis @ of the trajectory can be evaluated, and denote it:zhy.. Then,
(n—1) x (n—1)-matrix in companion form whose last row coincideghe foregoing considerations can be summarized by the following
with vector —C, B = [0, ---, 0, 1]" € R"~', »(t) = «(t) and algorithm, which is equivalent to the optimal one in the cBge -] =

F[., -] collects all the uncertainties not involvingt). The first two 0, D1 =Dz =1, 21(0)22(0) > 0, o™ = 1, wherea” is a parameter
lines of (14) correspond to a linear system controlledybgt), and appearing in the algorithm.

this system is stable by assumption. The second two equations of\lgorithm 1:

(14) correspond to a nonlinear uncertain second-order systeff) (1) Seta™ € (0, 1] N (0, 3D1/D>).

is not available for measurement) with conte¢t). If the controlv(¢) 2) Setzmax = z1(0).

steers to zero both (¢) andy-(¢), then the linear system becomes an Repeat, for any > 0, the following steps.

autonomous system evolving on the manifold defined by (11). Note3) If [z1(¢) — § zmax][2Max — 21(t)] > 0, then setx = o, else
that the last two equations of (14) are coupled with the previous ones seta = 1.

through the uncertaintieB[x(t), u(t)], g[x(t)]. 4) If z1(t) is extremal, then setviax = z1(1).
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5) Apply the control law By means of simple computations, one can find the interval solutions
of (25) with respect tax* and Umax, that is
w(t) = —alwmax Sign{z (t) — %Z]\r’la.\'} (21) H . <0 3D, :|
—, if o €0, ————
until the end of the control time interval. O ar Dy 4Dy + D:
The aim of this section is to prove that this algorithm is valid alsqy,, - 40 i if o € < 3Dy . 1} (26)
with H[-, -] # 0, Dy # D2 # 1, 21(0)22(0) not necessarily positive, 3Dy — a*Ds 4Dy + Do’
in the sense that it allows the origin of the(¢), z2(¢) state space 3D, 3D,
to be reached in a finite time. To this end, the following result can ﬂ<m, D—>
1 2 2
be proved.

is also easy to verify that ifx® > 3D,/(4D, 4+ D), then
/Ll*D1 < 4H/(3D1 - (l*DQ), |f LI* < 3D1/(4D1 + Dz),
then H/a"Dy > 4H/(3Dy — «"D2), and that the intersection
getween the two pieces of the limiting curve fbki.x Occurs at
a* = 3D;/(4D1+D,). According to (22) that is true by assumption.
Case 2: (z1(0) = zmax < 0, 22(0) = 0, i.e., the initial point lies
o H 41H 29 on the left side of the abscissa axis.) The proof is the same as in
Max > max a*Dy’ 3D, — a* Dy (22) Case 1 but with reversed extremes of the relevant intervals.
Case 3: (Z1 (0)2’2(0) >0, z (O)ZQ(O) < 0, 21(0) =0, 22(0) #
causes the generation of a sequence of states with coordinaigse., all the other possible initial conditions.) It is trivial to see that

Theorem 1: Given the state equation (17) with bounds as in (1é
and (19) and: (t) not available for measurement, then if the extrem
value ofz1(t) is evaluated with ideal precision, for any(0), z2(0),
the suboptimal control strategy defined by Algorithm 1 with th
additional constraint

(2Max;, 0) featuring the following contraction property: after at most a finite-time interval, the system trajectory reaches a
) point of the types considered in Cases 1 and 2.
|aMax; 1| < |2aax; |y =12 (23) Part 2: Proof of the fact that the convergence to the origin takes

) __ place in a finite time.
Moreover, the convergence pf the_ s_ystgm trajectory to the origin OfAIgorithm 1 defines a sequen¢eéu.x, } of the time instants when
the state plane takes place in a finite time. an extremal value of, () occurs. It can be proved that each term

Proof—Part 1 (Proof of the Contraction PropertyFonsider the ot this sequence is upperbounded by the corresponding term of the
state equation (17) withw(¢)| < Uwmax and bounds (18) and (19). sequence

Moreover (D1 + ™ D2)Uniax

fk’{ax . - ﬁ\lax T+ - =
Ustas > — (24) s (D Ovas ~ H)Wo Dol + H

Ot*D
! SVEvNE 27)

anda” as in 1) of Algorithm 1, since, by assumption, (22) is satisfiegk,om (27), recursively
Depending on the initial conditions (0), z2(0), one can distinguish

(D1 + Q*DQ)LT]\'TaY

among the following cases. YR . -
Case 1: (21(0) = 2Max > 0, 22(0) = 0, i.e., the initial point lies (D1Umax — H)Vo*DoUntan + H
on the right side of the abscissa axis.) In this cage) = —a” Untax, :
and by integration of (17) it is trivial to show that when the ' Zl vV |2Max; | + thtaxy
i=

commutation occurs at time instant such thatz; (t.) = % zMax,

according to Algorithm 1, the corresponding valuezeft.) belongs ) k
to the interval =7 Z A/ [2Max | + tvax, (28)
J=1
[_ VoMax (@ Do Untax 4+ H), =/ 2Max (0" D1 Uniax — H)]. with tmax, being the time interval fromt = 0 to the time instant
’ when the first extremal value occurs. From previous relationships
Starting from any point in this interval, fdr> ¢, integrating system 1 (a* Dy — D1)Umax + 2H -t B 29
(17) with w(t) = Umax (o = 1), one can easily show that the state 2o | < 2 DiUnax — H |#¥tax | (29)
trajectory crosses the abscissa axis within the interval so that, in compact form, with implicit definition of the symbols
1 (a" Dy — D1)Uniax + 2H A
|:_§ k DUvux — H #Max; tMaxy 4y </ Z ¥ V2Max; |+ tvaxg
T=1
1 (D2 — a*D1)Umax + 2H . ’ k
5 T Max |- .
2 DyUntax + H =4 Z VT tMax - (30)
j=1

The right extreme of this interval is nearer to the origin tha assumption (22) is trué and, obviously,< 1. Therefore, from
the considered starting point. Then, to assess the contraction izg@) ’ B ’
sufficient that the modulus of the left bound of the previous interv

is less thanzmax. This sufficient condition, considering also (24) leI;Q ZMaxy, = 0 (31)

and 1) of Algorithm 1, can be expressed by the following system
of inequalities: and from (30)

. A’
a* <1 khm tMax, < ﬁ + tMax, (32)
< e —
@ ?101\’1"”‘ > H (25) Which concludes the proof. O
(a7 D2 = D1)Usiax + 2H < 2. The convergence of the sequer{cara, } in a finite time implies

D1Usax — H the convergence to zero of the phase trajectories, since in any time
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interval [tarax ;> tmax, ] the maximum value ofz»(#)| is bounded On the basis of the previous relationsHifx(t), «(t)] can be written
by a function of /[zmax; [, and this becomes zero in a finite time. as

IV. THE SOLUTION TO THE CHATTERING ELIMINATION PROBLEM Flx(t), u()] = O1[x(t)] + O:[x(D)]u(t) + Oslx(t)]u’(1). (39)

In this section, it will be proved that it is possible to solve th&Sing (2)=(5) and (36), it is possible to express the upperbounds of
chattering elimination problem by relying on the results obtaind®:[1l: i =1, 2, 3, in any finite interval(t;, t1), as
with reference to the auxiliary problem in the previous section. |0:[x(D)]] < Fi[ i=1,---,3 (40)
To this end, consider (14), which can be viewed as the connection . . . . . . .
of two systems coupled through the signalt) and the nonlinear with i} pemg an increasing positive function of its argument, i.e.,
term F[x(t), u(t)] + g[x()]o(t). Now, we simply assume that o_f _the.maX|mum value o§1.(t) in the interval(t;, tf)’. Hence, in any
(15) holds, which is reasonable in many practical situations, whii'é"te interval one can define an upperbound Btx(t), u(2)]| as
F[x(t), u(t)], though bounded in any bounded domain, cannot F*[Y‘m,tf)] =F [Yl(ti,w] —I—Fz[lﬁ(ti,tf)]lu(t)l
be assumed priori to be bounded since proving the boundedness + Y, Ju?(f) 41)
of its arguments is an objective of this treatment. Thus, the aim of TGyt A
the following analysis is to prove that after an initialization phaséjote that the term depending orf(¢+) would not appear in case
the state trajectories reach regions of the state space including gf(¢)] should not be dependent an,(t).
origin. Once such regions are reached, the application of AlgorithmThe foregoing considerations will be used in the following way.
1, with minor modifications, leads to a contractive process steerifgst, it will be proved that it is possible to reach the axigt) = 0
y1(t), y2(f) to zero in a finite time. After that time, the furtherin a finite time, starting from any initial condition. Then, it will be
evolution of the system states is that of an autonomous linegarified how from the time instanthi.x, when the axisy»(t) = 0
exponentially stable system. In order to formally describe this crossed, the control algorithm will force (¢) either to reach
procedure, the following theorem needs to be proved. directly a new extremal value with the same signyoftuiax, ), but
Theorem 2: Given (14), the norm of the state vecteft), in any contracted in modulus, or a value equalyidtmax, )/2, for which a
finite interval, can be upperbounded by a function of the norm of thwmmutation of the control signal will occur. As a consequence, the

f](tivtj>]7

initial value x(t;) and of the maximum value assumed py(?). control algorithm will cause the reaching of a new extremal value
Proof: Consider (14). One has of y1(¢) at the time instantyax,. Finally, it will be observed that
! . ly1 (fmaxs )| < |y1(ftmax, )|, that is, a contraction occurs and repeats
X(t) = exp{A(t — t:)}x(t:) + / exp{A(t — 7)} By (1) d. itself during the subsequent time intervisiax, . uax, ], until the
B (33) convergence of botly, (¢) andy:(t) to zero takes place. Thus, the

following theorem can be proved.
Thus, ||x(¢)|| can be bounded from above as Theorem 3: Given (14), starting from any initial condition and
. N oo relying on the knowledge of the bounds (2)—(5) on the uncertain
BN < [zl + tfgli‘)g{t 1 ()l [ system dynamics, it is possible to design a control signal such that
| exp{A(t — 7)}B|| dr. ' (34) an extremal value of:(¢) is reached in a finite time.
Proof: In the initialization phase, the fact that the control signal
can be expressed as

u(t) = u(0) + /o‘/ a(r)dr (42)

Note that the integral can be evaluated since the first two equatiqm)
of (14) describe a perfectly known stable system. Then

e ()] < ffmiax{llﬁ(fi)ll + ,max |y (7)] /
=TS t; . . . . . .
needs to be exploited. Note that it is possible, at isolated time instants
||| exp{A(t —7)}B]|| dr} +,max ly1(7)] (35) (e.g.,t = 0), to modify the sign and the amplitude & (¢)] through
== u(t). In other terms, one can initialize the algorithm by measuring

where 41(0) and choosing:(0) so as to obtainy, (0)y2(0) > 0. This can
CMax = max ¢ be accomplished, taking into account (3) and (12), by selecting
i=1, -, n—1
n—1
with ¢; being the component of vect&. As a result u(0) = C‘% {pj, + Q|Ix(0)|| + Z i (0)] + hz}
<t < Pellx(t)ll + QxYi(ti, ) (36) , , =t
- sign[y1(0)] (43)

with
whereh is any nonzero real constant. Starting from this initial choice,
it is possible to identify a signak(¢) which forces the trajectories
O in the planefy:(t), y=(t)] to reach the axig.(t) = 0 in a finite
Now, one has to exploit the known bounds relevant to the uncertdift®- The time instant when such an axis is reached constitutes the
dynamics to obtain an expression of the boufidn terms ofy, (t) actual initial instant for the subsequent contraction procedure. One

Yi(ti,t) = max | )
1(tit) ff%y%tlyl(ﬂl

andY;. From (12)—(14) one has can choosei(t) as
n—1 wt) = —M , u(t)]sign[y, 44
() = Flx(O] + glx(D]u(t) + 3 cir () (37) 7 A e ) o
—~ where
]- * * g
Flx(t), u(t)] = {;t FB)] 4 L glx(]u(1) + e [Fx(0)] M0, w0 =G O]+ Okl

+ 05 [x(t)]u’ (1))

+g[x(t)]u(t)] + Z Ciélfi+2(t)}. (38) with ©7[] being positive functions upperbounding the modulus of
i=1 ©;[-] appearing in (39). Theny:(¢)| is decreasing: indeed, the sign
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of y1(t) does not change during this phase, and, consequently, fromNote that (46) is compatible with (41) in the sense that it implies
(14) and (44)y2()g2(t) < 0. O thatVi, ., = yi(fv.sy). Indeed, it can be easily verified
Let a1y, be the time instant when the axis is reached, and considgat this fact is true for the system controlled via (45).
trax, a@s the new initial time to which the state(tviax,) = xi To conclude, it should be noted that Theorem 4 also holds for
corresponds. As the first extremal value gf(t) is reached, the the subsequent control intervalguax ., tax,y ], @ = 2,3,
procedure previously outlined can be activated, provided that thelying on Theorem 4, it turns out that the results proved before
control v(t) = 4(t) is suitably chosen in order to force the statgin particular Theorem 1) can be extended to solve the chattering
trajectories to cross again the(t) = 0 axis in a finite time, say at elimination problem. Indeed, as a consequence of Theorems 3 and 4,
the time instantiax,, With a new extremal valug: (fuax, ) SUCh  the trajectories generated by applying, during the initialization phase,
that a contraction is registered, that 8 (tmax, )| < [y1(tvax, )| the control signal (43), and, once the first extremal valug,¢f) is
To this end, the following theorem can be proved. reached, Algorithm 1 with the control signal (21) replaced by (45)
Theorem 4: Given (14), provided that fof € [fuax, . famax.] the  feature the same behavior as that of (17) controlled as indicated in
control signalv(t) is chosen as Theorem 1. As a result, both (1) = s[x(¢)] andy2(t) = 3[x(t)]

v(t) = —aVmax Sign{yi () — ;—y1(tMa‘xl‘)} tend to zero in a finite time.

= [F2[y1 (tataxy )] u(t) — w(tntax, )]

) V. CONCLUSIONS
+ Fs[y1 (tmax, )| (£) — 'uz(tl\/laxl)

Isign{y(tmax, } (45)
where « is defined according to Algorithm 1 anthi.x is chosen
equal toUmax specified in (22) withH given by
H = F"[y1 (tmax, )]
= Fi{y1 (tMaxy )] + Faly1 (Eax )] [u(Evax, )|
+ F‘J [Ul (fl\laxl )]"2 (fNIaxl )

In this paper, a new contribution to the solution to the chattering
elimination problem in VSC of single-input nonlinear systems is
presented. The proposed algorithm results in being simpler and more
feasible than the one previously presented by one of the authors, in
the sense that it does not require the use of observers and differential
inequalities. In the paper, the chattering elimination problem has
been first formulated, then a suitable auxiliary problem involving
a second-order uncertain system with unavailable velocity has been
introduced and solved by using an algorithm inspired by the classical
bang—bang optimal control strategy. The problem in question has
been solved finally by using an algorithm which coincides with that
used to cope with the auxiliary problem, apart from an additional
term in the control law. Thanks to the introduction of such a term,
the original system has been proved to have the same convergence
properties as the auxiliary one. As far as the practical feasibility
of the proposed control strategy is concerned, it is strictly related
and the axisy»(t) = 0, t., being the time instant when the firstto the availability of commercial components, like peak detectors
commutation occurs. or other approximated methods, to evaluate the change of the sign

Proof: The limiting curve (47) corresponds to the case in whiclf the derivative of the constrain{x(t)]. Experiences in the field
a constant upperbounl of F[x(¢), u(¢)] can be identified. But, as of vibration damping of elastic robotic structures are presently in

previously observed, such an upperbound cannot be found in pracii¢ggress to confirm the attractive features of the chattering elimination
because of the linear and quadratic dependendg[=ft), u(t)] on  approach herein proposed.

u(t). By choosing the control signal(¢) as indicated in (45), one
obtains an equation faj.(t) which is similar to (17) and (18) plus
a term

(46)

then, the trajectories of: (¢) and y-(¢) are internal to the limiting
curve defined by

G2, (t) = —(H + G2 Vitax)sign{y: (tMax; ) }
t e [tkiaxlv tCl]
G2,(t) = (H = G1 Vatax)sign{y1 (fatax, )}

t € (tey, tMaxy] (47)
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