Forças de tração. Uso da 2ª lei de Newton – aplicação direta	1
Força de tração	1
1. Halliday, Q.3.15 - Força de tração, qualitativo	
2. Força de tração, decomposição de forças	
3. Força de tração no cabo de guerra.	
Cinemática completa	
4. Força conhecida, mas não constante	
Forças de tração em sistemas de muitos corpos	2
5. RHK P3.7, Trem de blocos.	2
Dinâmica em sistemas de um corpo	2
6. Halliday, E.5.8 – Homem na plataforma elevadora	2
Dinâmica em sistemas de dois corpos	2
7. Blocos com polia no plano inclinado.	2

Forças de tração. Uso da 2ª lei de Newton – aplicação direta

Força de tração

1. Halliday, Q.3.15 - Força de tração, qualitativo

Dois estudantes tentam romper uma corda. Primeiro cada um puxa de um lado da corda e falham. Depois, amarram uma das extremidades numa parede e puxam, juntos, pela outra.

Explique por que este último procedimento é melhor, igual, ou pior que o primeiro.

2. Força de tração, decomposição de forças

Uma esfera de massa 2.1×10^{-4} kg e carregada eletricamente está suspensa por uma corda. Uma força elétrica age horizontalmente sobre a esfera, de modo que, quando a esfera está parada, a corda forma um ângulo de 37° com a vertical.

Determine:

- a) a tração da corda.
- b) a intensidade da força elétrica

3. Força de tração no cabo de guerra.

Considere uma corda e designe suas extremidades por A e B. Três homens puxam essa corda para a esquerda pela extremidade A e outros três, para a direita por B, com forças de mesmo módulo. Uma massa de 5 kg é pendurada verticalmente no centro da corda.

Explique se os homens podem ou não manter a corda na horizontal e, se puderem, calcule o módulo das forças necessárias em A e B.

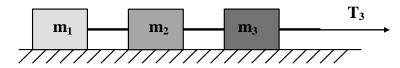
Cinemática completa.

4. Força conhecida, mas não constante

Um caminhão de 50 toneladas está parado numa estrada horizontal plana. Em t=0 s, o motorista pisa no acelerador de maneira que a força horizontal **resultante** (motor + atritos) é 100000 N (cem mil newtons), mantendo esse valor constante durante 10 s. O motorista tira, então, o pé do acelerador, de modo que a força do motor vai a zero e, em consequência, a força resultante muda bruscamente e passa a ser igual à força de atrito, apenas, com módulo 10000 N (dez mil newtons) e **oposta** à velocidade do carro, até que o caminhão para.

- a) Esboce o gráfico de força em função do tempo, desde t = 0 s até 120 s.
- b) Esboce os gráficos de aceleração e velocidade em função do tempo, desde t = 0 s até o caminhão parar; determine o instante em que o veículo para.
- c) Esboce o gráfico de posição em função do tempo, desde t = 0 s até 120 s.
- d) Determine o deslocamento do caminhão desde t = 0 s até parar.

Forças de tração em sistemas de muitos corpos.


5. RHK P3.7, Trem de blocos.

Três blocos de massas $m_1 = 1.2$ kg, $m_2 = 2.4$ kg e $m_3 = 3.1$ kg estão sobre uma mesa horizontal sem atrito e ligados como a figura abaixo ilustra. O bloco 3 é puxado para a direita por uma força de módulo $T_3 = 6.5$ N.

Calcule:

- a) a aceleração do sistema.
- b) as intensidades das forças de tração nos blocos 1 e 2, respectivamente T₁ e T₂.

Faça uma analogia com corpos que são puxados em fila, tal como um trem de vagões engatados puxado por

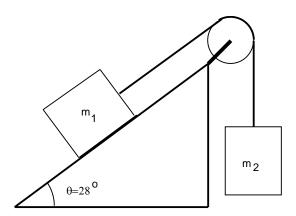
uma locomotiva. Em termos da tração nas junções dos vagões, é melhor colocar os vagões mais pesados no início ou no fim do trem? Isso faz diferença?

Dinâmica em sistemas de um corpo

6. Halliday, E.5.8 – Homem na plataforma elevadora.

O homem da figura ao lado pesa 800 N; a plataforma e a polia sem atrito têm peso total de 190 N. Ignore o peso da corda. O homem puxa a corda e se levanta junto com a plataforma com uma aceleração de 0.37 m/s^2 . Adote $g = 9.8 \text{ m/s}^2$.

Determine a força de tração na corda.


Dinâmica em sistemas de dois corpos

7. Blocos com polia no plano inclinado.

Um bloco de massa $m_1 = 3.7$ kg está sobre um plano inclinado de ângulo 28° e é ligado por uma corda que passa em uma polia pequena e sem atrito a um segundo bloco de massa $m_2 = 1.86$ kg, que pende verticalmente conforme a figura abaixo.

Determine:

- a) a aceleração de cada bloco.
- b) a tração na corda.
- c) a massa $m_{\rm eq}$ que deve ter o corpo m_2 para que o sistema fique em equilíbrio.
- d) o que ocorre se $m_2 < m_{eq}$.
- e) o que ocorre se se $m_2 > m_{eq}$.

