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It is a pleasure to write the foreword to this excellent book on the evidence
behind radiological investigations and biostatistics in radiology. This is an area
which is not widely appreciated by radiologists and it would be an invaluable
book for those in training who should become fully versed about terminology
such as technical performance, diagnostic performance, diagnostic impact,
therapeutic impact, patient impact, patient outcomes and societal impact. They
should also know that the widely (and often erroneously) used term ‘accuracy’
may not be the best assessment!

This very readable book should not only be useful for radiologists but also
administrators who are now beginning to realise that an effective imaging
department underpins all high quality cost-efficient modern medicine. The his-
tory and development of evidence-based radiology (from Fryback and
Thornbury’s original paper right up to date with recent contributions from
Hollingworth, Hunink, Jarvik and Malone) is very well presented.

Lorenzo Mannelli, an excellent Italian Radiologist working in Cambridge,
says of the Italian Edition: “The book is easy to read and the short paragraph
titles on the side of the pages make it easy to use for future reviewing of “hot
topics” when needed. All the examples and vocabulary are from the radiolog-
ical world, making the statistics easier to understand. Although after reading
this book, you will still need statistical advice, at least you will be able to
understand what the statistician is speaking about! The final chapter on
impact factors is interesting and helps the reader to understand the dynamics
of journals. I definitely recommend this book as an easy reading for residents
in radiology”.

I am sure that this new English language edition will fill a very major void
in the radiological literature. The authors have done us a great service.

Cambridge, UK, October 2008 Adrian K. Dixon, MD
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For many years “Biostatistics for Radiologists” was an unrealized dream of the
senior author. Since that dream is now coming true, I have taken on the task of
writing this preface, which offers the opportunity for an appraisal of the years
leading up to the genesis of this book. I hope it can be useful to young col-
leagues who intend to devote themselves to radiologic research.

More than twenty-five years ago, I was a resident at the Postgraduate School
in Radiodiagnostics of the University of Genoa, directed by Professor Luigi
Oliva. My supervisor was Professor Giorgio Cittadini, Director of the Chair
“R” of Radiology of the University. He was the chairman of my medical grad-
uation thesis, entitled “Colonic hypotonic effect of fenoverine and hyoscine
N-butyl bromide: analysis of variance with nonparametric tests”. Already then
there was an attention to statistical methods predicting the events of my future
before me.

In 1984, after several years mainly dedicated to gastrointestinal double-
contrast studies, I was included in a small team made up of physicians,
physicists, and engineers who had the good fortune to work on one of the
first magnetic resonance imaging scanners installed in Italy. It was a proto-
type with a resistive magnet operating at only 0.15 T. For the best use of this
new diagnostic technology, the radiologist had to understand the NMR phe-
nomenon, the radiofrequency pulse sequences, and the role of the field gra-
dients which generate the images. At that time, physicists were teaching
magnetic resonance in courses and congresses using formal demonstrations
based on Bloch’s equations, combining both classic and quantum models.
These lessons were very hard to follow. Only when formulas and equations
were translated into a different language, positively associated with the clin-
ical meaning of the images, did the attending radiologists open their eyes
and grasp the practical sense of that theory. For the first time I understood
that scientific communication was a crucial process requiring intellect, fan-
tasy, and creativity.
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Better to light a candle
than to curse the darkness.

CONFUCIUS

Science deals with discovery
but also with communication.

It’s hard to say you have an idea
if you are not able to evoke the same idea

in the mind of your listener.

MARCUS DU SATOY



In the same year, I was involved as author in a small paper entitled
“Sensitivity, specificity, overall accuracy. What is the meaning of these three
words commonly used in scientific radiologic language?”1. This paper was the
result of an interesting discussion which had begun in Cittadini’s room late one
evening and lasted for two-three hours. The topic – how to quantify diagnostic
performance – seemed highly intriguing to me. I promised myself to gain a
deeper insight into the matter. It was a new world waiting to be explored: how
to evaluate the uncertainty intrinsic to biologic phenomena and measurements
and, as a consequence, medical diagnosis. At the time I was only a resident
cooperating towards writing an article, but I began to add some substance to
the immaterial dream of writing a book. The chapter dedicated to “Indices of
Diagnostic Performance” included in the Italian textbook “Diagnostic Imaging
and Radiotherapy”, recently published in its sixth edition, would be the embry-
onic stage of “Biostatistics for Radiologists”.

Some years later, in 1987, I became a staff radiologist of the Chair R of
Radiology at the Genoa University and San Martino Hospital. I began to add a
planned research activity to the clinical routine. The areas of research involv-
ing high-level cooperation with clinicians produced the most interesting
results. This was the case with Giuseppe Molinari (cardiologist at the Genoa
University) and Giuseppe Canavese, breast surgeon at the Genoa Cancer
Research Institute. In this period I submitted my first manuscripts to peer-
reviewed journals. Immediately, I understood that good technical knowledge
and updated clinical experience are not enough for writing an article enough
good to be accepted for publication. The crux of the matter is given by study
design, data presentation and analysis, and, in particular, statistical methods
which demonstrate the significance of the results.

Around this time I began to interact with statisticians. Once again communi-
cation was stifled. Radiologists were on one side of a wall and statisticians on
the other, as it had been earlier with the physicists for magnetic resonance. In
my personal experience, however, this wall crumbled thanks to research con-
duced on multiple sclerosis. In this field, magnetic resonance imaging was
playing an increasingly important role. My relations with Gianluigi Mancardi
(Department of Neurology, University of Genoa) and Paolo Bruzzi (Clinical
Epidemiology, Genoa Cancer Research Institute) were a turning point. Each of
us wanted to learn what the other two colleagues already knew and would
spend hours and hours to reach… understanding.

At the same time, another apparently impersonal factor was in action – the
reviewers analyzing the manuscripts I submitted to the journals. Their criti-
cisms were sometimes very harsh. However, the higher the rank of the jour-
nal, the greater the knowledge in methodology I could obtain by interacting
with the reviewers, even though the manuscript was rejected. This was anoth-
er way I begun to accumulate a limited know-how in biostatistics and
research methodology applied to radiology. While I was (and still am) learn-
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ing from my errors, a long line of textbooks on medical statistics began to
grow in my bookcase.

At the beginning of the 1990s, I became head of Diagnostic Imaging at the
Breast Unit of the San Martino University Hospital and the Genoa Research
Cancer Institute. By that time, Italian breast radiologists were involved in a
flourishing debate: clinical mammography on the one hand, organized screen-
ing mammography on the other. Which was the key-point? The majority of
Italian women who asked for a mammographic examination in radiology
departments were asymptomatic. Their request was one of spontaneous period-
ic control. This gave rise to a kind of oxymoron: clinical mammography (with
physical examination and frequent accessorial ultrasound examination) in an
asymptomatic population. Radiologists with lengthy clinical experience of
breast imaging on patients with symptoms were conditioned by a practice of
“first of all, sensitivity” which attained acceptable levels of specificity with fur-
ther work-up in a relevant fraction of patients. The application of this logic to
asymptomatic women resulted in the medicalization of a healthy population. It
was a typical problem generated by low disease prevalence. In asymptomatic
women sensitivity must be combined with a sufficiently high specificity and
positive predictive value. On the other hand, we knew that ultrasound enabled
us to detect breast cancers in women with high breast density and negative
mammography and that periodical mammography is also useful in women
under 50 and over 70. However, once again there was a wall. Clinical mam-
mography on one side, screening mammography on the other. This experience
gave me new incentive to flesh out that dream.

In the meantime, I begun to serve as a reviewer for international journals.
This gave me the opportunity to compare my evaluation of a manuscript with
those of other reviewers. Moreover, at the end of that decade I started to coop-
erate with Franca Podo from the Istituto Superiore di Sanità (Rome), a physi-
cist and world-renowned expert in magnetic resonance imaging and spec-
troscopy. Working together we conducted the HIBCRIT study for multimodal-
ity surveillance of women at high genetic-familial risk of breast cancer. Here
the high disease prevalence justified an intensive surveillance including phys-
ical examination, mammography, ultrasound, and contrast-enhanced magnetic
resonance imaging. It was a fantastic experience from which I learned a lot,
especially on the management of multicenter trials, an intense and effective
cooperation without the need of breaking down walls, with a follow-on now
extending to new topics.

From 1999 to 2000 I was Director of the Department of Radiology at the
Biomedical Institute in Genoa. This role broadened the spectrum of my expe-
rience. The higher levels of productivity in clinical radiologic activity was a
preparation for the upcoming events.

In fact, in 2001 I was assigned the Direction of the Department of Radiology
at the Policlinico San Donato near Milan. In my opinion, the principal aim was
to have a radiologic team with high levels of clinical efficiency and scientific
research. The administrators gave me free reign to start a process of training
and selection of young colleagues. Some of the fruits of this process can
already be appreciated. I have to thank several persons who have been and con-
tinue to be keystones in the day-to-day operation of the system: the radiologists
Alberto Aliprandi, Bijan Babaei and Pietro Bertolotti and the coordinators of
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radiographers Francesco Gerra and Eleonora Norma Lupo. Recently we were
joined by Carlo Ottonello, who was resident in Radiodiagnostics at the Genoa
University at the beginning of the 1990s. Our younger colleagues have the
opportunity to show their abilities in clinics and research, in part thanks to
many projects we have in cooperation with the clinical departments of our
institution.

In recent years, I combined the Direction of the Unit of Radiology of the
Policlinico San Donato (from 2006, appointed as Istituto di Ricovero e Cura
a Carattere Scientifico, IRCCS, by the Ministry of Health) with the position
of Associate Professor of Radiology at the University of Milan School of
Medicine. This new context favored my study on research methodology. The
last chapter of this book arose from a lesson entitled “How to Write a
Scientific Paper?”. I held with the residents of the Postgraduate School in
Radiodiagnostics on the express request of the Director of the School,
Professor Gianpaolo Cornalba, in a framework of close cooperation and com-
mon rationale.

At the same time I served on the National Board of the Councilors of the
Italian Society of Medical Radiology as a President’s Delegate for Scientific
Research. Over the past four years, Alessandro Del Maschio (at that time
President’s Delegate for Scientific Research) promoted a course on
Methodology of Scientific Research. It was held by Irene Floriani and Valter
Torri, from the “Mario Negri” Institute (Milan) and then repeated in several
Italian cities. The aim was to increase the level of knowledge in research
methodology among Italian radiologists, a need which had already emerged
during the first multicenter studies promoted by the Italian Society of Medical
Radiology (SIRM) on breast MR imaging. My involvement only enlarged the
scale of the audience by introducing several radiologists and a young physicist
(the second author of this book) to the faculty. We all worked together in the
preparation of the lessons during multiple meetings and long discussions, in
particular with Irene Floriani and Valter Torri. This was a new stimulus for real-
izing my dream. So they too deserve my heartfelt thanks.

However, something was still missing: I had no solid mathematical back-
ground. Giving prominence to logics over computing could not exempt me
from formal correctness. I therefore decided to associate a clever physicist
from the Naples School and full-time researcher at the Radiology Unit of the
IRCCS Policlinico San Donato, Giovanni Di Leo, with the project of this book.
Both of us worked on all the chapters, even though he drafted the first version
of the chapters with a higher mathematical content while I drafted the first ver-
sion of the chapters with a higher logical and methodologic content, with each
of us providing the other with constructive criticism.

Lastly, I would like to thank Antonella Cerri from Springer. She enthusiasti-
cally latched on to the idea of this book when I described the project to her sev-
eral years ago during a friendly chat at the end of a meeting of the editorial
board of European Radiology.

We really hope to communicate to radiologists the methodologic know-how
which is taking on an increasingly important role. Many years ago a surgeon
asked me: “Do you know what the difference is between a radiologist and a
surgeon?”. Before I could answer, he said: “You say ‘my CT scanner’, I say
‘my patient’”. It was true. We must give clear demonstrations that the images
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of higher and higher quality we are able to produce have a significant impact
on patient outcome and the population health status.

This book is a small contribution towards this challenge.
As I stated at the beginning of this preface, younger colleagues could heed the

advice from this personal history. When you wake up in the morning, keep on
dreaming. Then sooner or later, flesh out those dreams and bring them to life.

San Donato Milanese, April 2008 Francesco Sardanelli
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We enthusiastically accepted the proposal from Springer to do an English ver-
sion of this book, based on the advantage that radiologists (and more general-
ly experts in medical imaging) were unable to find a volume where the basics
of research methodology were presented as applied to diagnostic imaging.
Conversely, we had the large disadvantage related to the difficulty of explain-
ing complex matters such as biostatistics which have been extensively devel-
oped in many other splendid books written by real experts in the field.

However, insofar as we went ahead in rewriting the text in English, we real-
ized that not only was the meaning retained, but the message also became
clearer and less redundant. This was probably due not only to the effect of the
different language, but also the result of a rethinking of the content of chapters
and paragraphs several months after publishing the Italian edition. Now, our
general impression is that the Italian version has been written for ourselves (to
hone our thinking, to render it more analytic and detailed, to better understand
the subject matter) and that the English version has been written for the reader
(to provide her/him with a clearer message). We hope that this is true.
Obviously, small errors and imperfections have been corrected and some points
specifically written for Italian radiologists have been omitted.

The major change made in this English version is an expanded Introduction
with more emphasis on evidence-based medicine and evidence based radiology.

At any rate, we would like to emphasize that this book is nothing more than
an introduction to the topic, a portal to the realm of research methodology, with
the words “radiology and medical imaging” emblazoned upon it.

A sincere word of thanks to Alexander Cormack, the English copyeditor who
had the patience to transform our text into real English.

San Donato Milanese, October 2008 Francesco Sardanelli
Giovanni Di Leo
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Introduction

The practice of evidence-based medicine means
integrating individual clinical expertise

with the best available external evidence
from systematic research.

DAVE L. SACKETT

The creative principle of science
resides in mathematics.

ALBERT EINSTEIN

After all, to understand
is the intrinsic purpose of science,

and science is really much more
than mechanical computing.

ROGER PENROSE

Evidence-Based Medicine (EBM)

Over the past three decades, the following view has gained increasing favor
throughout the medical community: clinical practice should be based on the
critical evaluation of the results obtained from medical scientific research.
Today this evaluation is greatly favored by Internet which provides instanta-
neous online access to the most recent studies even before they appear in print
form. The possibility of instantaneously accessing quality-filtered and rele-
vance-filtered secondary publications (meta-analyses, systematic reviews, and
guidelines) has become real in routine practice.

This notion – a clinical practice based on the results (the evidence) given by
the research – has engendered a discipline: evidence-based medicine (EBM),
also referred to as evidence-based healthcare, or evidence-based practice
[MALONE, 2007]. In this context the term evidence is more closely associated
with the concepts of proof, demonstration, or testability than simply with visi-
bility or clarity. In fact, the general meaning of the new discipline suggests a
clinical practice no longer based on bequeathed knowledge, on opinions,
impressions, and perceptions, but on demonstrable proofs. EBM has been
defined as “the systematic application of the best evidence to evaluate the avail-
able options and decision making in clinical management and policy settings”,
i.e. “integrating clinical expertise with the best available external clinical evi-
dence from research” [EVIDENCE-BASED RADIOLOGY WORKING GROUP, 2001].

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.
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Origins of EBM

EBM definitions

Patient’s values and choice

Top-down EBM

Bottom-up EBM

This concept is not new. The basis for this way of thinking was developed in
the 19th century (Pierre C.A. Luis) and during the 20th century (Ronald A.
Fisher, Austin Bradford Hill, Richard Doll, and Archie Cochrane). However, it
was not until the second half of the last century that the Canadian School led
by Gordon Guyatt and Dave L. Sackett at McMaster University (Hamilton,
Ontario, Canada) promoted the tendency to guide clinical practice using the
best results − the evidence − produced by scientific research [EVIDENCE-BASED

RADIOLOGY WORKING GROUP, 2001; Greenhalgh, 2006a]. This approach was
subsequently refined also by the Center for Evidence-Based Medicine (CEBM)
at University of Oxford, England [CENTRE FOR EVIDENCE-BASED MEDICINE

(http://cebm.net); MALONE, 2007].
Dave L. Sackett and coworkers stated that:
Evidence based medicine is the conscientious, explicit, and judicious use of

current best evidence in making decisions about the care of individual patients.
The practice of evidence-based medicine means integrating individual clinical
expertise with the best available external evidence from systematic research
[SACKETT ET AL, 1996].

A highly attractive alternative but more technical definition, explicitly
including diagnosis and investigation, has been proposed by Anna Donald and
Trisha Greenhalgh:

Evidence-based medicine is the use of mathematical estimates of the risk, of
benefit and harm, derived from high-quality research on population samples,
to inform clinical decision making in the diagnosis, investigation or manage-
ment of individual patients [GREENHALGH, 2006b].

However, EBM is not only the combination of current best available exter-
nal evidence and individual clinical expertise. A third factor must be included
in EBM: the patient’s values and choice. “It cannot result in slavish, cookbook
approaches to individual patient care” [SACKETT ET AL, 1996]. Thus, EBM is
the integration of: (i) research evidence; (ii) clinical expertise; and (iii)
patient’s values and preferences [SACKETT ET AL, 1996; HUNINK ET AL, 2001;
MALONE AND STAUNTON, 2007]. Clinical expertise “decides whether the exter-
nal evidence applies to the individual patient”, evaluating “how it matches the
patient’s clinical state, predicament, and preferences” [SACKETT ET AL, 1996].
A synopsis of this process is given in Figure 0.1.

Two general methods are generally proposed for applying EBM [DODD,
2007; MALONE AND STAUNTON, 2007; VAN BEEK AND MALONE, 2007]
(Figure 0.2):

– the top-down method, when academic centers, special groups of experts on
behalf of medical bodies, or specialized organizations (e.g. the Cochrane col-
laboration; http://www.cochrane.org) provide high-quality primary studies
(original research studies), systematic reviews and meta-analyses, applica-
tions of decision analysis, or issue evidence-based guidelines and make
efforts to put them into practice;

– the bottom-up method, when practitioners or other physicians working in
routine practice are able “to ask a question, search and appraise the literature,
and then apply best current evidence in a local setting”, opening a so-called
audit cycle.

Biostatistics for Radiologists2



Introduction 3

Figure 0.1. The general scheme of evidence based medicine. See Figure 0.2 for the top-down and bot-
tom-up approaches to the best external evidence.

Figure 0.2. Top-down and bottom-up processes for evidence based medicine.
*Appropriateness criteria are not included in the top-down EBM method since they are based on expert
opinion, even though formalized procedures (such as the Delphi protocol) are frequently used and experts
commonly base their opinion on systematic reviews and meta-analyses [MEDINA AND BLACKMORE, 2007].
EBM = Evidence Based Medicine.



EBM limitations

We should note that the top-down method involves a small number of peo-
ple considered experts and does not involve physicians acting at the local
level. However, there is a difference between the production of systematic
reviews and meta-analyses (which are welcome as an important source of
information by local physicians who want to practice the bottom-up model)
and the production of guidelines which could be considered as an external
cookbook (mistaken for a mandatory standard of practice) by physicians who
feel themselves removed from the decision-making process [VAN BEEK AND

MALONE, 2007]. On the other hand, the bottom-up method (which was consid-
ered an EBM method before the top-down method [HOLLINGWORTH AND

JARVIK, 2007]) implies a higher level of knowledge of medical research
methodology and EBM techniques by local physicians than that demanded by
the top-down method. In either case, a qualitative improvement in patient care
is expected. At any rate, clinical expertise must play a pivotal role as integra-
tor of external evidence and patient’s values and choice. When decision analy-
ses, meta-analyses and guidelines provide only part of the external evidence
found by the local physicians, the two models act together, as hopefully
should happen in practice. Moreover, a particular aim of the top-down method
is the identification of gaps in knowledge to be filled by future research. In
this way, EBM becomes a method for redirecting medical research towards
improved medical practice [HOLLINGWORTH AND JARVIK, 2007].

However, EBM is burdened by limitations and beset by criticisms. It has been
judged as unproven, very time-consuming (and therefore expensive), narrowing
the research agenda and patients’ options, facilitating cost cutting, threatening pro-
fessional autonomy and clinical freedom [SACKETT ET AL, 1996; TRINDER, 2000;
MALONE AND STAUNTON, 2007]. At an objective evaluation, these criticisms seem
to be substantially weak due to the pivotal role attributed to “individual clinical
expertise” by EBM and to the general EBM aim “to maximize the quality and
quantity of life for the individual patient” which “may raise rather than lower the
cost of their care” as pointed out by Dave L. Sackett in 1996 [SACKETT ET AL, 1996].

Other limitations seem to be more relevant. On the one hand, large clinical
areas – radiology being one of them – have not been sufficiently explored by
studies according to EBM criteria. On the other hand, real patients can be total-
ly different from those described in the literature, especially due to the presence
of comorbidities, making the conclusions of clinical trials not directly applica-
ble. This event is the day-to-day reality in geriatric medicine. The ageing pop-
ulation in Western countries has created a hard benchmark for EBM. These
limitations may be related to a general criticism which suggests that the central
feature in the EBM perspective is the patient population and not the individual
patient [TONELLI, 1998; RAYMOND AND TROP, 2007]. Lastly, we should avoid
unbridled enthusiasm for clinical guidelines, especially if they are issued with
questionable methods [WOOLF ET AL, 1999].

However, all these limitations appear more as problems due to a still limited
development and application of EBM than intrinsic EBM limitations.
Basically, the correctness of EBM should be borne in mind, in that EBM aims
to provide the best choice for the individual real patient with the use of proba-
bilistic reasoning. EBM is investing significant effort towards improving con-
temporary medicine.

Biostatistics for Radiologists4



Delayed Diffusion of EBM in Radiology and Peculiar Features
of Evidence-Based Radiology

Radiology is not outside of EBM, as stated by David L. Sackett and coworkers
in 1996: “EBM is not restricted to randomised trials and meta-analyses […]. To
find out about the accuracy of a diagnostic test, we need to find proper cross
sectional studies of patients clinically suspected of harboring the relevant dis-
order, not a randomised trial” [SACKETT ET AL, 1996]. Evidence-based radiolo-
gy (EBR), also called evidence-based imaging, first appeared in the literature
only in recent years.

Until 2000, few papers on EBR were published in nonradiologic journals
[ACHESON AND MITCHELL, 1993; NO AUTHORS LISTED (British Columbia Office
of Health Technology Assessment), 1997; NO AUTHORS LISTED, Int J Assess
Health Care, 1997; DIXON, 1997; MUKERJEE, 1999] and in one journal special-
ized in dentomaxillofacial radiology [LIEDBERG ET AL, 1996]. From 2001 to
2005, several papers introduced the EBM approach in radiology [EVIDENCE-
BASED RADIOLOGY WORKING GROUP, 2001; TAÏEB AND VENNIN, 2001; ARRIVÉ

AND TUBIANA, 2002; BUI ET AL, 2002; GUILLERMAN ET AL, 2002; KAINBERGER

ET AL, 2002; BENNETT, 2003; BLACKMORE, 2003; COHEN ET AL, 2003; GOERGEN

ET AL, 2003; MEDINA ET AL, 2003; BLACKMORE, 2004; DODD ET AL, 2004;
ERDEN, 2004; GILBERT ET AL, 2004; MATOWE AND GILBERT, 2004; GIOVAGNONI

ET AL, 2005]. Not until 2006 was the first edition of the book entitled Evidence-
Based Imaging published by L. Santiago Medina and C. Craig Blackmore
[MEDINA AND BLACKMORE, 2006]. The diffusion of EBM in radiology was
delayed. From this viewpoint, radiology is “behind other specialties” [MEDINA

AND BLACKMORE, 2007].
As a matter of fact, according to L. Santiago Medina and C. Craig Blackmore,

“only around 30% of what constitutes ‘imaging knowledge’ is substantiated by
reliable scientific inquiry” [MEDINA AND BLACKMORE, 2006]. Other authors esti-
mate that less than 10% of standard imaging procedures is supported by suffi-
cient randomized controlled trials, meta-analyses or systematic reviews [DIXON,
1997; RCR WORKING PARTY, 1998; KAINBERGER ET AL, 2002].

The EBR delay may also be linked to several particular traits of our discipline.
In fact, the comparison between two diagnostic imaging modalities is markedly
different from the well-known comparison between two treatments, typically
between a new drug and a placebo or standard care. Thus, the classic design of
the randomized controlled trial is not the standard for radiologic studies. What
are the peculiar features of radiology which need to be considered?

First of all, the evaluation of the diagnostic performance of imaging modal-
ities must be based on a deep insight of the technologies used for image gener-
ation and postprocessing. Technical expertise has to be combined with clinical
expertise in judging when and how the best available external evidence can be
applied in clinical practice. This aspect is just as important as “clinical expert-
ise” (knowledge of indications for an imaging procedure, imaging interpreta-
tion and reporting, etc). Dodd and coworkers showed the consequences of
ignoring a technical detail such as slice thickness in evaluating the diagnostic
performance of magnetic resonance (MR) cholangiopancreatography: using a
3-mm instead of a 5-mm thickness, the diagnostic performance for the detec-
tion of choledocholithiasis changed from 0.57 sensitivity and 1.0 specificity to

Evidence-based
radiology (EBR)

EBR delay

Particular traits of radiology

Tecnical expertise
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Reproducibility

High speed of technologic
evolution

From images to patients

The ALARA principle

0.92 sensitivity and 0.97 specificity [DODD ET AL, 2004]. If the results of tech-
nically inadequate imaging protocols are included in a meta-analysis, the con-
sequence will be the underestimation of diagnostic performance.

At times progress in clinical imaging is essentially driven by the develop-
ment of new technology, as was the case for imaging at the beginning of the
1980s. However, more frequently, an important gain in spatial or temporal res-
olution, in signal-to-noise or contrast-to-noise ratio is attained through hard-
ware and/or software innovations in pre-existing technology. This new step
broadens the clinical applicability of the technology, as was the case for com-
puted tomography (CT) which evolved from helical single-slice to multidetec-
tor row scanners, thus opening the way to cardiac CT and CT angiography of
the coronary arteries. Keeping up to date with technologic development is a
hard task for radiologists, and a relevant part of the time not spent with imag-
ing interpretation should be dedicated to the study of new imaging modalities
or techniques. For radiologic research, each new technology appearing on the
market should be tested with studies on its technical performance (image reso-
lution, etc.).

Second, we need to perform studies on the reproducibility of the results of
imaging modalities (intraobserver, interobserver, and interstudy variability), an
emerging research area which requires dedicated study design and statistical
methods (e.g. Cohen k statistics and Bland-Altman analysis). In fact, if a test
shows poor reproducibility, it will never provide good diagnostic performance,
i.e. sensitivity and specificity. Good reproducibility is a necessary (but not suf-
ficient) condition for a test to be useful.

Third, the increasing availability of multiple options in diagnostic imaging
should be taken into consideration along with their continuous and sometimes
unexpected technologic development and sophistication. Thus, the high speed
of technologic evolution has created not only the need to study theory and prac-
tical applications of new tools, but also to repeatedly start with studies on tech-
nical performance, reproducibility, and diagnostic performance. The faster the
advances in technical development, the more difficult it is to do the job in time.
This development is often much more rapid than the time required for perform-
ing clinical studies for the basic evaluation of diagnostic performance. From
this viewpoint, we are always too late with our assessment studies.

However, the most important problem to be considered with new diagnostic
technology is that “a balance must be struck between apparent (e.g. diagnostic)
benefit and real benefit to the patient” [DIXON, 1997]. In fact, a qualitative leap
in radiologic research is now expected: from the demonstration of the increas-
ing ability to see more and better, to the demonstration of a significant change
in treatment planning or, at best, a significant gain in patient health and/or qual-
ity of life – the patient outcome.

Lastly, we should specifically integrate a new aspect in EBR, i.e. the need to
avoid unnecessary exposure to ionizing radiation, according to the as low as
reasonably achievable (ALARA) principle [NO AUTHORS LISTED, Proceedings
of the Second ALARA Conference, 2004; PRASAD ET AL, 2004; SEMELKA ET AL,
2007] and to governmental regulations [COUNCIL OF THE EUROPEAN UNION,
1997; BARR ET AL, 2006; FDA RADIOLOGICAL HEALTH PROGRAM, 2008]. The
ALARA principle might be considered as embedded in radiologic “technical
and clinical expertise”. However, in our opinion, it should be regarded as a

Biostatistics for Radiologists6



fourth dimension of EBR, due to the increasing relevance of radioprotection
issues in radiologic thinking and practice. A graphical representation of the
EBR process, including the ALARA principle, is provided in Figure 0.3.

Health Technology Assessment in Radiology and Hierarchy
of Studies on Diagnostic Tests

In the framework described above, EBM and EBR are based on the possibility
of obtaining the best external evidence for a specific clinical question. Now the
question is: how is this evidence produced? In other words, which methods
should be used to demonstrate the value of a diagnostic imaging technology?
This field is what we name health technology assessment (HTA) and particular
features of HTA are important in radiology. Thus, EBR may exist only if a good
radiologic HTA is available. As stated by William Hollingworth and Jeffry G.
Jarvik, “the tricky part, as with boring a tunnel through a mountain, is making
sure that the two ends meet in the middle” [HOLLINGWORTH AND JARVIK, 2007].

According to the United Kingdom HTA Programme, HTA should answer the
following four fundamental questions on a given technology [WHITE ET AL,
2000; HOLLINGWORTH AND JARVIK, 2007]:

1. does it work?
2. for whom?
3. at what cost?
4. how does it compare with alternatives?

Health technology assessment
(HTA) in radiology

Introduction 7

Figure 0.3. The process of evidence based radiology. ALARA = “as low as reasonably achievable”, with
reference to ionizing radiation exposure.



Efficacy, effectiveness
and efficiency

Hierarchy of studies
on diagnostic tests

The six-level scale

A one-way logical chain

Cost-effectiveness in HTA

In this context, increasing importance has been gained by the use of three dif-
ferent terms. While efficacy reflects the performance of medical technology
under ideal conditions, effectiveness evaluates the same performance under
ordinary conditions, and efficiency measures the cost-effectiveness [HILLMAN

AND GATSONIS, 2008]. In this way the development of a procedure in special-
ized or academic centers is distinguished by its application to routine clinical
practice and from the inevitable role played by the economic costs associated
with implementation of a procedure.

To evaluate the impact of the results of studies, i.e. the level at which the
HTA was performed, we need a hierarchy of values. Such a hierarchy has been
proposed for diagnostic tests and also accepted for diagnostic imaging modal-
ities. During the 1970s, the first classification proposed five levels for the
analysis of the diagnostic and therapeutic impact of cranial CT [FINEBERG ET

AL, 1977]. By the 1990s [FRYBACK AND THORNBURY, 1991], this classification
had evolved into a six-level scale, thanks to the addition of a top level called
societal impact [THORNBURY, 1994; MACKENZIE AND DIXON, 1995;
THORNBURY, 1999]. A description of this scale was presented more recently in
the radiologic literature [EVIDENCE-BASED RADIOLOGY WORKING GROUP, 2001;
SUNSHINE AND APPLEGATE, 2004].

This six-level hierarchy scale (Table 0.1) is currently widely accepted as a
foundation for HTA of diagnostic tools. This framework provides an opportu-
nity to assess a technology from differing viewpoints. Studies on technical per-
formance (level 1) are of key importance to the imaging community and the
evaluation of diagnostic performance and reproducibility (level 2) are the basis
for adopting a new technique by radiologists and clinicians. However, radiolo-
gists and clinicians are also interested in how an imaging technique impacts
patient management (levels 3 and 4) and patient outcomes (level 5) while
healthcare providers wish to ascertain the costs and benefits of reimbursing a
new technique, from a societal perspective (level 6). Governments are mainly
concerned about the societal impact of new technologies in comparison to that
of other initiatives they may be considering.

Note that this hierarchical order is a one-way logical chain. A positive effect
at any level generally implies a positive effect at all preceding levels but not
vice versa [HOLLINGWORTH AND JARVIK, 2007]. While a new diagnostic tech-
nology with a positive impact on patient outcome probably has a better techni-
cal performance, higher diagnostic accuracy, etc. compared with the standard
technology, there is no certainty that a radiologic test with a higher diagnostic
accuracy results in a better patient outcome. If we have demonstrated an effec-
tive diagnostic performance of a new test (level 2), the impact on a higher level
depends on the clinical setting and frequently also on conditions external to
radiology. This must be demonstrated with specifically designed studies. As a
matter of fact, we might have a fantastic test for the early diagnosis of disease
X but, if no therapy exists for that disease, no impact on patient outcomes can
be obtained. HTA should examine the link between each level and the next in
the chain of this hierarchy to establish the clinical value of a radiologic test.

Cost-effectiveness should be included in HTA at any level of the hierarchic
scale as cost per examination (level 1), per correct diagnosis (level 2), per inva-
sive test avoided (level 3), per changed therapeutic plan (level 4), per gained

Biostatistics for Radiologists8



quality-adjusted life expectancy or per saved life (levels 5-6) [HOLLINGWORTH

AND JARVIK, 2007].
New equipment or a new imaging procedure should have extensive HTA

assessment before it is adopted in routine practice. Thereafter a period of clin-
ical evaluation follows where diagnostic accuracy is assessed against a known
gold standard. Indeed, the radiologic literature is mainly composed of level 1
(technical performance) and level 2 (diagnostic performance) studies. This is
partly inevitable. The evaluation of the technical and diagnostic performance
of medical imaging is a typical function of radiologic research. However, radi-
ologists less frequently study the diagnostic impact (level 3) or therapeutic
impact (level 4) of medical imaging, while outcome (level 5) and societal
impact (level 6) analysis is positively rare in radiologic research. A “shortage
of coherent and consistent scientific evidence in the radiology literature” to be
used for a wide application of EBR was noted in 2001 [EVIDENCE-BASED

RADIOLOGY WORKING GROUP, 2001]. In recent years, several papers have
appeared exploring levels higher than those concerning technical and diagnos-
tic performance, such as the Scottish Low Back Pain Trial, the DAMASK
study, and others [GILBERT FJ ET AL, 2004; BREALEY ET AL, for the DAMASK
TRIAL TEAM, 2007; OEI ET AL, 2008; OUWENDIJK ET AL, 2008].

This lack of evidence on patient outcomes is a void also for well established
technologies. This is the case for cranial CT for head injuries, even though the
diagnostic information yielded by CT was “obviously so much better than [that]
of alternative strategies that equipoise (genuine uncertainty about the efficacy of

Shortage of scientific
evidence in radiology

Introduction 9

Table 0.1. Hierarchy of studies on diagnostic tests

Level Parameters under investigation

6. Societal impact Cost-benefit and cost-effectiveness analysis from a social perspective

5. Patient outcomes Fraction of patients improved with the test compared with fraction
improved without the test; difference in morbidity between the patients
with the test and those without the test; gain in quality-adjusted life
years (QALYs) obtained by the patients with the test compared with
those without the test

4. Therapeutic impact Fraction of patients for whom the test is judged useful for treatment
planning or for whom the treatment planning is modified on the basis
of the information supplied by the test

3. Diagnostic impact Fraction of patients for whom the test is judged useful for reaching the
diagnosis or for whom the diagnosis is substantially modified after the
test; positive and negative likelihood ratios

2. Diagnostic performance Sensitivity, specificity, accuracy, positive predictive value, negative predic-
tive value and receiver operator characteristic (ROC) analysis; intraobserv-
er, interobserver and interstudy reproducibility

1. Technical performance Gray scale range; modulation transfer function change; sharpness; spa-
tial resolution, in-plane (line pairs per mm, pixel size) and through-the-
plane (slice thickness), integrated in voxel size; signal-to-noise ratio; con-
trast resolution (contrast-to-noise ratio); time resolution (images/sec) etc

Sources: THORNBURY, 1994; SUNSHINE AND APPLEGATE, 2004; with modifications. In particular, reproducibility studies were
added at level 2.



Reasons for shortage of high
level radiologic studies

Pragmatic studies

a new medical technology) was never present” and “there was an effective treat-
ment for patients with subdural or epidural hematomas – i.e. neurosurgical evac-
uation” [HOLLINGWORTH AND JARVIK, 2007]. However, cases like this are very
rare, and “in general, new imaging modalities and interventional procedures
should be viewed with a degree of healthy skepticism to preserve equipoise until
evidence dictates otherwise” [HOLLINGWORTH AND JARVIK, 2007].

This urgent problem was recently highlighted by Christiane K. Kuhl and
coworkers for the clinical value of 3.0-T MR imaging. They state: “Although
for most neurologic and angiographic applications 3.0 T yields technical
advantages compared to 1.5 T, the evidence regarding the added clinical value
of high-field strength MR is very limited. There is no paucity of articles that
focus on the technical evaluation of neurologic and angiographic applications
at 3.0 T. This technology-driven science absorbs a lot of time and energy –
energy that is not available for research on the actual clinical utility of high-
field MR imaging” [KUHL ET AL, 2008]. The same can be said for MR spec-
troscopy of brain tumors [JORDAN ET AL, 2003; HOLLINGWORTH AND JARVIK,
2007], with only one [MÖLLER-HARTMANN ET AL, 2002] of 96 reviewed articles
evaluating the additional value of MR spectroscopy which compared this tech-
nology with MR imaging alone.

There are genuine reasons for rarely attaining the highest impact levels of
efficacy by radiologic research. On the one hand, increasingly rapid technolog-
ic development forces an endless return to low impact levels. Radiology was
judged as the most rapidly evolving specialty in medicine [DIXON, 1997]. On
the other hand, level 5 and 6 studies entail long performance times, huge eco-
nomic costs, a high degree of organization and management for longitudinal
data gathering on patient outcomes, and often require a randomized study
design (by way of example, the average time for 59 studies in radiation oncol-
ogy up to publication of the results reviewed in 2005 was about 11 years
[SOARES ET AL, 2005]). In this setting, there are two essential needs: full coop-
eration with clinicians who manage the patient before and after a diagnostic
examination, and methodologic and statistical expertise regarding randomized
controlled trials. Radiologists should not be afraid of this, as it is not unfamil-
iar territory for radiology. More than three decades ago, mammographic
screening created a scenario in which the early diagnosis by imaging con-
tributed to a worldwide reduction in mortality from breast cancer, with a high
societal impact.

Lastly, alternatives to clinical trials and meta-analyses exist. They are the so-
called “pragmatic” or “quasi-experimental” studies and “decision analysis”.

A pragmatic study proposes the concurrent development, assessment, and
implementation of new diagnostic technologies [HUNINK AND KRESTIN, 2002].
An empirically based study, preferably using controlled randomization, inte-
grates research aims in clinical practice, using outcome measures reflecting the
clinical decision-making process and acceptance of the new test. Outcome
measures include: additional imaging studies requested; costs of diagnostic
work-up and treatments; confidence in therapeutic decision-making; recruit-
ment rate; and patient outcome measures. Importantly, time is used as a funda-
mental dimension, as an explanatory variable in data analysis to model the
learning curve, technical developments, and interpretation skill. Limitations of
this approach can be the need of dedicated and specifically trained personnel
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and the related economic costs to be covered by presumably governmental
agencies [JARVIK, 2002]. However, this seems to demonstrate the potential for
responding to the dual demand of the increasing pace of technologic develop-
ment in radiology and the need to attain higher levels of radiologic studies, thus
in a single approach obtaining data on diagnostic confidence, effect on therapy
planning, patient outcome measures and cost-effectiveness analysis.

Decision analysis, based on deductive reasoning, tries to overcome the lim-
ited external validity associated with clinical trials [HUNINK ET AL, 2001;
LAUNOIS, 2003]. It is a tool for evaluating a diagnostic test on the basis of
patient outcome using intermediate outcome measures such as sensitivity and
specificity obtained by already published studies. Different diagnostic or ther-
apeutic alternatives are visually represented by means of a decision tree and
dedicated statistical methods are used (e.g. Markov model, Monte Carlo simu-
lation) [PLEVRITIS, 2005; HUNINK ET AL, 2001]. This method is typically used
for cost-effectiveness analysis. For instance, it was recently used for simulat-
ing the effectiveness of mammography, MR imaging, or both for screening of
breast cancer in women carriers of BRCA1 mutations [LEE ET AL, 2008].

A simple way to appraise the intrinsic difficulty in HTA of radiologic proce-
dures is to compare radiologic with pharmacologic research (see Chapter 8).
After the chemical discovery of an active molecule, its development, cell and
animal testing, the phase I and phase II studies are carried out by the industry
with the participation of very few clinicians (for phase I and II studies). Very
few academic institutions and large hospitals are involved in this long phase
(commonly about ten years). When clinicians become involved in phase III
studies, i.e. large randomized trials for registration, the study aims have already
reached level 5 (outcome impact). Radiologists have to climb 4 levels of
impact before reaching the outcome level. Of course it is possible to imagine a
world in which even radiologic procedures are tested for outcome endpoints
before entering clinical practice, but the real world is different, such that we
have much more technology-driven research from radiologists than radiolo-
gist-driven research on technology.

Why do we Need Biostatistics?

The application of EBM implies a fundamental difficulty. Not only producing
scientific evidence but also reading and correctly understanding the medical lit-
erature, in particular summaries of the best results such as systematic reviews
and meta-analyses, requires a basic knowledge of and confidence with the prin-
ciples and techniques of biostatistics. In fact, this is the only way to quantify the
uncertainty associated with biological variability and the changes brought about
by the patient’s disease. This theoretical background is now emerging as very
important expertise to be acquired by any physician of the new millennium.

Quantification of data variability and its presentation comprise the field of
descriptive statistics. This branch of statistics enables us to describe the sam-
ple under investigation by summarizing its features with diagrams or graphs
and various parameters (mean, standard deviation, median, etc.). The quantifi-
cation of uncertainty is needed to understand the probability we have if we
apply the results of a study to the general population from which the study sub-

Decision analysis

Looking at the pharmacologic
research

Descriptive statistics
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Inferential statistics

Difference between
statistical significance
and clinical relevance

jects were drawn, i.e. when we use inferential statistics. This allows us to pro-
pose a general view and a theoretical model of the phenomenon under investi-
gation. In this way, we can anticipate future events, namely we can make an
inference. This is a deduction which evaluates whether the results of a study on
a sample size can be applied to the general population, with a controlled error
probability. As a consequence, there is a close proximity between inferential
statistics and probability theory.

Although biostatistics uses mathematical tools, which may be very simple or
quite sophisticated, the problem is never a question of simple mechanical com-
puting (today many software packages can adequately do the job). It is rather
a question of understanding the meaning of the figures we obtain and the way
we obtain them, both theoretically (what precisely do we mean by specificity
or likelihood ratio?) and practically, for clinical decision-making.

Note that while a statistically significant result can be lacking clinical rel-
evance, clinically relevant evidence should be based on statistical signifi-
cance. A study can produce very high statistical significance without having
any clinical utility. Who would use an anti-hypertensive drug which system-
atically (i.e. in all subjects) reduces arterial pressure by 1 mmHg compared
with standard treatment? On the other hand, the considerable effect of a new
drug against a form of cancer, if real, will be demonstrated in a controlled
study (i.e. compared with standard treatment) which shows a significant
increase in the disease-free interval or survival time. In other words, the size
of a statistically significant difference needs to be evaluated to conclude that
it is also clinically relevant, while a clinically relevant difference, to become
evidence, must produce a statistically significant difference in a high-quali-
ty study.

A particular aspect plays a role in clinical radiologic research. Even for sim-
ple studies on diagnostic performance (sensitivity, specificity etc.), the com-
mon lack of assumptions needed for applying parametric statistical methods
(based on the direct computing of measured data) makes nonparametric statis-
tical methods (based on qualitative classes or ranks, or other tools) frequently
needed. However, understanding nonparametric statistics requires preliminary
knowledge of basic parametric statistics.

There are several reasons for the prevalent use of nonparametric statistical
methods in radiology. The most important are as follows: the frequent use of
nominal scales of measurement, often simply dichotomous (positive or neg-
ative) or ordinal (a typical example is the Breast Imaging Reporting and Data
System, BI-RADS®, scale [AMERICAN COLLEGE OF RADIOLOGY, 2003]); the
limited possibility of demonstrating the normal distribution of continuous
numerical data in a small sample size (a necessary assumption for using para-
metric statistical methods); and the high frequency of a small sample size. As
a consequence, most books concerning general medical statistics appear
barely appropriate for radiologists. These texts commonly dedicate numerous
pages to parametric methods and very few pages to nonparametric methods,
and even when nonparametric methods are extensively explained, no specif-
ic reference to their use in diagnostic imaging is available. An exception to
this trend in Italy is Guida alla Statistica nelle Scienze Radiologiche by
Professor Guido Galli, a nuclear physician from the University of Rome
School of Medicine [GALLI, 2002].
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The Structure of this Book

All these reasons explain the need for radiologists to possess knowledge in
applied biostatistics. In the following chapters we will propose such knowl-
edge, giving greater priority to logic than to computing.

In Chapter one we describe the classic tools for the quantification of diag-
nostic performance typically used in radiologic studies: sensitivity, specifici-
ty, predictive values, overall accuracy, and receiver operator characteristic
(ROC) curve. Moreover, we introduce here the likelihood ratios which quan-
tify the power of a diagnostic test, i.e. the ability of the test to modify the dis-
ease (or non-disease) probability, up to now rarely used in radiologic studies.
In this context, we show some aspects of probability theory and present
Bayes’ theorem.

In Chapter two we define the concept of variable and the different types
of variables with reference to their scales of measurement, as well as some
essential principles of descriptive statistics, normal distribution, and confi-
dence intervals. Indeed, understanding the scales of measurement is essen-
tial for choosing a statistical test applicable to the data to be analyzed. Being
familiar with normal distribution is a must for the use of all tools in biosta-
tistics. Confidence intervals can be thought of as a conceptual and practical
bridge between descriptive and inferential statistics: they define a range of
variability in the results in the event the same study were to be repeated for
a sample with the same size of patients having the same characteristics. An
important trend in recent times is the increasing emphasis radiologic jour-
nals have been giving to confidence intervals. The presentation of the 95%
confidence intervals should be considered mandatory for all indices of diag-
nostic performance.

Chapter three is dedicated to the theory of the scientific experiment, namely
to the null hypothesis and statistical significance. This topic has the greatest
philosophic and methodologic implications. We explain why the demonstration
of an experimental hypothesis (e.g. that two diagnostic options have a different
sensitivity for a given disease) must be obtained by working on an antithetical
hypothesis (i.e. that there is no difference in sensitivity between the two diag-
nostic options) which we name null hypothesis. The researcher’s aim is to
demonstrate that the null hypothesis is sufficiently improbable to accept the
indirect conclusion that the experimental hypothesis is probably true. However,
this conclusion is never demonstrated in a direct and definitive way.

While in Chapter four we provide some of the essentials of parametric sta-
tistics and the assumptions required for the application of parametric statisti-
cal tests, in Chapter five we describe the most important nonparametric statis-
tical tests and the assumptions needed for their application.

In Chapter six we define the concepts of association, correlation, and regres-
sion and propose the techniques for their quantification. Particular attention is
paid to the differentiation between association or correlation between two vari-
ables and the deduction of the cause-effect relationship, the latter never being
provable on the basis of a statistical calculation alone.

In Chapter seven we present the most important techniques for evaluating the
reproducibility of the result of a diagnostic test, either for continuous variables
(Bland-Altman analysis), or for nominal and ordinal variables (Cohen k). Here

Chapter 1:
diagnostic performance

Chapter 2: variables,
scales of measurement,
normal distribution,
confidence intervals

Chapter 3: null hypothesis
and statistical significance

Chapter 4: parametric statistics

Chapter 5: nonparametric
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Chapter 6: association,
correlation and regression

Chapter 7: reproducibility
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Chapter 8: study design,
sample size, systematic reviews

(meta-analysis),
levels of evidence

Chapter 9: bias

Chapter 10: recommendations
for writing a radiologic paper

What you will not find
in this book

Do not skip the examples

Formulas

we introduce the concept of intraobserver and interobserver variability. These
kinds of studies are currently highly appreciated for their ability to define the
practical role of old and new imaging techniques.

In Chapter eight the reader will find the principal types of study in relation
to their design (observational or randomized experimental; prospective or ret-
rospective; longitudinal or transversal; etc.) as well as a general description of
the methods for calculating the sample size, i.e. the number of patients which
need to be enrolled in a prospective study in order to obtain an acceptable prob-
ability of demonstrating the experimental hypothesis. Here we also include a
short section on systematic reviews, namely those studies which gather togeth-
er the information contained in already published studies on a given topic, con-
duct a critical appraisal of the methods used in those studies, select the studies
according to predefined quality standards, and pool the results of the selected
studies to provide a new and more reliable overall result, using dedicated sta-
tistical methods (meta-analysis). Afterwards, we define the so-called levels of
evidence of radiologic studies.

In Chapter nine we present a list (without doubt incomplete) of the errors to
be avoided in radiologic studies. In other words, we list the potential sources
of bias that should be recognized as readers and avoided or, at least, limited and
explicitly acknowledged as authors.

Finally, in Chapter ten we provide a series of practical recommendations for
writing a radiologic study, with particular reference to the content of the four
sections of the body of the paper and its logical structure (Introduction,
Materials and Methods, Results, and Discussion) and the two essential accom-
panying items (Abstract and References).

The subject matter of this book clearly falls short of exhaustively treating
biostatistics in radiology, in part because radiology is transversally cross-linked
with all medical subspecialties. However, a number of statistical techniques
which can be used in radiologic research are not considered in this book. For
example, the reader will not find suggestions for statistical and graphical meth-
ods for describing data; moreover, logistic regression, multiple regression, the
concept of absolute and relative risk, survival curves, and non-inferiority stud-
ies are not treated. We have avoided these topics in order to produce a book
capable of introducing biostatistics to radiologists. While it is only a prelimi-
nary approach to biostatistics, the volume does have the advantage of present-
ing the topic from the particular viewpoint of radiology.

All the examples are progressively numbered in each chapter and drawn
from the radiologic literature or invented ad hoc to facilitate the reader’s under-
standing of the theoretical concepts. We recommend that the reader who has
grasped a theoretical definition should not skip the examples, as they could be
a useful aid for committing the theoretical concept to memory. Similarly, we
advise the reader who is having difficulty coming to grips with the theoretical
definition to go straight to the following example as this could immediately
shed light on the theoretical problem.

A final word of advice. Throughout the book the reader will find several
mathematical formulas. These have been included in their entirety for the read-
ers willing to understand the mechanism of computing. However, a thorough
understanding of the formulas is by no means required to grasp the general
sense of the concepts and their practical use.
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It is far from our intention to educate radiologists so that they can replace
statisticians, as this appears neither possible nor useful. Instead it is our aim
educate radiologists so that they may interact with statisticians with proficien-
cy and critical judgment.

References

Acheson L, Mitchell L (1993) The routine antenatal diagnostic imaging with ultra-
sound study. The challenge to practice evidence-based obstetrics. Arch Fam Med
2:1229-1231

American College of Radiology (2003) ACR breast imaging reporting and data system
(BI-RADS): Breast Imaging Atlas. American College of Radiology, Reston, Va

Arrivé L, Tubiana JM (2002) “Evidence-based” radiology. J Radiol 83:661
Barr HJ, Ohlhaber T, Finder C (2006) Focusing in on dose reduction: the FDA perspec-

tive. AJR Am J Roentgenol 186:1716-1717
Bennett JD (2003) Evidence-based radiology problems. Covered stent treatment of an

axillary artery pseudoaneurysm: June 2003-June 2004. Can Assoc Radiol J 54:140-143
Blackmore CC (2003) Evidence-based imaging evaluation of the cervical spine in trau-

ma. Neuroimaging Clin N Am 13:283-291
Blackmore CC (2004) Critically assessing the radiology literature. Acad Radiol 11:134-140
Brealey SD; DAMASK (Direct Access to Magnetic Resonance Imaging: Assessment

for Suspect Knees) Trial Team (2007) Influence of magnetic resonance of the knee on
GPs’ decisions: a randomised trial. Br J Gen Pract 57:622-629

Bui AA, Taira RK, Dionisio JD et al (2002) Evidence-based radiology: requirements for
electronic access. Acad Radiol 9:662-669

Centre for Evidence-Based Medicine, Oxford University, England. http://cebm.net
Cohen WA, Giauque AP, Hallam DK et al (2003) Evidence-based approach to use of

MR imaging in acute spinal trauma. Eur J Radiol 48:49-60
Council of the European Union (1997) Council Directive 97/43/Euratom of 30 June

1997 on health protection of individuals against the dangers of ionizing radiation in
relation with medical exposure, and repealing Directive 84/466/Euratom. J Eur
Commun L 180:22-27 (http://europa.eu.int/eur-lex/en/dat/1997/en_397L0043.htlm)

Dixon AK (1997) Evidence-based diagnostic radiology. Lancet 350:509-512
Dodd JD (2007) Evidence-based practice in radiology: steps 3 and 4 – Appraise and

apply diagnostic radiology literature. Radiology 242:342-354
Dodd JD, MacEneaney PM, Malone DE (2004) Evidence-based radiology: how to

quickly assess the validity and strength of publications in the diagnostic radiology lit-
erature. Eur Radiol 14:915-922

Erden A (2004) Evidence based radiology Tani Girisim Radyol 10:89-91
Evidence-Based Radiology Working Group (2001) Evidence-based radiology: a new

approach to the practice of radiology. Radiology 220:566-575
FDA Radiological Health Program (2008). Available at: http://www.fda.gov/cdrh/rad-

health/index.html
Fineberg HV, Bauman R, Sosman M (1977) Computerized cranial tomography. Effect

on diagnostic and therapeutic plans. JAMA 238:224-227
Fryback DG, Thornbury JR (1991) The efficacy of diagnostic imaging. Med Decis

Making 11:88-94
Galli G (2002) Guida alla statistica nelle scienze radiologiche. Ecoedizioni internazion-

ali, Rome, Italy
Gilbert FJ, Grant AM, Gillan MGC (2004) Low back pain: influence of early MR imag-

ing or CT on treatment and outcome – multicenter randomized trial. Radiology
231:343-351

Radiologists interacting
with statisticians

Introduction 15



Giovagnoni A, Ottaviani L, Mensà A et al (2005) Evidence based medicine (EBM) and
evidence based radiology (EBR) in the follow-up of the patients after surgery for lung
and colon-rectal carcinoma. Radiol Med 109:345-357

Goergen SK, Fong C, Dalziel K, Fennessy G (2003) Development of an evidence-based
guideline for imaging in cervical spine trauma. Australas Radiol 47:240-246

Greenhalgh T (2006) How to read a paper. The basics of evidence-based medicine. 3rd
ed. Blackwell, Oxford, England: ix-xii (a); 1-3 (b)

Guillerman RP, Brody AS, Kraus SJ (2002) Evidence-based guidelines for pediatric
imaging: the example of the child with possible appendicitis. Pediatr Ann 31:629-640

Hillman BJ, Gatsonis CA (2008) When is the right time to conduct a clinical trial of a
diagnostic imaging technology? Radiology 248:12-15

Hollingworth W, Jarvik JG (2007) Technology assessment in radiology: putting the evi-
dence in evidence-based radiology. Radiology 244:31-38

Hunink MG, Glasziou PP, Siegel JE et al (2001) Decision making in health and medicine:
integrating evidence and values. Cambridge University Press, Cambridge, UK, 2001

Hunink MG, Krestin GP (2002) Study design for concurrent development, assessment,
and implementation of new diagnostic imaging technology. Radiology 222:604-614

Jarvik JG (2002) Study design for the new millennium: changing how we perform
research and practice medicine. Radiology 222:593-594

Jordan HS, Bert RB, Chew P et al (2003) Magnetic resonance spectroscopy for brain
tumors. Agency for Healthcare Research and Quality, Rockville, MD:109

Kainberger F, Czembirek H, Frühwald F et al (2002). Guidelines and algorithms: strategies
for standardization of referral criteria in diagnostic radiology. Eur Radiol 12:673-679

Kuhl CK, Träber F, Schild HH (2008) Whole-body high-field-strength (3.0-T) MR
imaging in clinical practice. Part I. Technical considerations and clinical applications.
Radiology 246:675-696

Launois R (2003) Economic assessment, a field between clinical research and observa-
tional studies. Bull Cancer 90:97-104

Lee JM, Kopans DB, McMahon PM et al (2008). Breast cancer screening in BRCA1
mutation carriers: effectiveness of MR imaging – Markov Monte Carlo decision
analysis. Radiology 246:763-771

Liedberg J, Panmekiate S, Petersson A, Rohlin M (1996) Evidence-based evaluation of
three imaging methods for the temporomandibular disc. Dentomaxillofac Radiol
25:234-241

Mackenzie R, Dixon AK (1995) Measuring the effects of imaging: an evaluative frame-
work. Clin Radiol 50:513-518

Malone DE (2007) Evidence-based practice in radiology: an introduction to the series.
Radiology 242:12-14

Malone DE, Staunton M (2007) Evidence-based practice in radiology: step 5 (evaluate)
– Caveats and common questions. Radiology 243:319-328

Matowe L, Gilbert FJ (2004) How to synthesize evidence for imaging guidelines. Clin
Radiol 59:63-68

Medina LS, Aguirre E, Zurakowski D (2003) Introduction to evidence-based imaging.
Neuroimaging Clin N Am 13:157-165

Medina LS, Blackmore CC (2006) Evidence-based imaging. 1st edn. Springer, New
York, NY

Medina LS, Blackmore CC (2007) Evidence-based radiology: review and dissemina-
tion. Radiology 244:331-336

Möller-Hartmann W, Herminghaus S, Krings T et al (2002) Clinical application of pro-
ton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions.
Neuroradiology 44:371-381

Mukerjee A (1999) Towards evidence based emergency medicine: best BETs from the
Manchester Royal Infirmary. Magnetic resonance imaging in acute knee haemarthro-
sis. J Accid Emerg Med 16:216-217

Biostatistics for Radiologists16



No authors listed (1997) Reports from the British Columbia Office of Health Technology
Assessment (BCOHTA). Routine ultrasound imaging in pregnancy: how evidence-
based are the guidelines? Int J Technol Assess Health Care 13:633-637

No authors listed (1997) Routine ultrasound imaging in pregnancy: how evidence-based
are the guidelines? Int J Technol Assess Health Care 13:475-477

No authors listed (2004) Proceedings of the Second ALARA Conference. February 28,
2004. Houston, Texas, USA. Pediatr Radiol 34[Suppl 3]:S162-246

Oei EH, Nikken JJ, Ginai AZ et al; From the Program for the Assessment of
Radiological Technology (ART Program) (2008) Costs and effectiveness of a brief
MRI examination of patients with acute knee injury. Eur Radiol 2008 Sep 16. [Epub
ahead of print]

Ouwendijk R, de Vries M, Stijnen T et al; From the Program for the Assessment of
Radiological Technology (2008) Multicenter randomized controlled trial of the costs
and effects of noninvasive diagnostic imaging in patients with peripheral arterial dis-
ease: the DIPAD trial. AJR Am J Roentgenol 190:1349-1357

Plevritis SK (2005) Decision analysis and simulation modeling for evaluating diagnos-
tic tests on the basis of patient outcomes. AJR Am J Roentgenol 185:581-590

Prasad KN, Cole WC, Haase GM (2004) Radiation protection in humans: extending the
concept of as low as reasonably achievable (ALARA) from dose to biological dam-
age. Br J Radiol 77:97-99

Raymond J, Trop I (2007) The practice of ethics in the era of evidence-based radiology.
Radiology 244:643-649

RCR Working Party (1998) Making the best use of a department of clinical radiology:
guidelines for doctors. 4th edn. The Royal College of Radiologists, London

Sackett DL, Rosenberg WM, Gray JA et al (1996) Evidence based medicine: what it is
and what it isn’t. BMJ 312:71-72

Semelka RC, Armao DM, Elias J Jr, Huda W (2007) Imaging strategies to reduce the
risk of radiation in CT studies, including selective substitution with MRI. J Magn
Reson Imaging 25:900-909

Soares HP, Kumar A, Daniels S et al (2005) Evaluation of new treatments in radiation
oncology: are they better than standard treatments? JAMA 293:970-978

Sunshine JH, Applegate KE (2004) Technology assessment for radiologists. Radiology
230:309-314

Taïeb S, Vennin P (2001) Evidence-based medicine: towards evidence-based radiology.
J Radiol 82:887-890

Thornbury JR (1994) Clinical efficacy of diagnostic imaging: love it or leave it. AJR
Am J Roentgenol 162:1-8

Thornbury JR (1999) Intermediate outcomes: diagnostic and therapeutic impact. Acad
Radiol 6[suppl 1]:S58-S65

Tonelli MR (1998) The philosophical limits of evidence-based medicine. Acad Med
73:1234-1240

Trinder L (2000) A critical appraisal of evidence-based practice. In: Trinder L, Reynolds
S (eds) Evidence-based practice: a critical appraisal. Blackwell Science, Oxford,
England:212-214

van Beek EJ, Malone DE (2007) Evidence-based practice in radiology education: why
and how should we teach it? Radiology 243:633-640

White SJ, Ashby D, Brown PJ (2000) An introduction to statistical methods for health
technology assessment. Health Technol Assess 4:i-iv, 1-59

Woolf SH, Grol R, Hutchinson A et al (1999) Clinical guidelines: potential benefits,
limitations, and harms of clinical guidelines. BMJ 318:527-530

Introduction 17





1
Diagnostic Performance

Don’t stop with an answer [...]
An answer is always the stretch of road that’s behind you.

Only a question can point the way forward.

JOSTEIN GAARDER

The performance of a diagnostic examination1 can be basically considered as its
degree of accuracy, namely its ability to find the subjects affected with a given dis-
ease as positive and the subjects not affected with same disease as negative. The
indices which in different ways measure this performance are defined measures of
diagnostic performance and the studies aimed at measuring the diagnostic per-
formance of an examination or, more often, at comparing the diagnostic perform-
ance of two or more examinations, are defined studies of diagnostic performance.

Firstly we will present the five most commonly used indices of diagnostic
performance in radiologic papers: sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and overall accuracy.
Thereafter, we will consider receiver operator characteristic (ROC) curves,
which are also widely used in radiologic papers, and likelihood ratios, which
are special indices which quantify the ability of a diagnostic examination to
change the disease probability (i.e. the power of the diagnostic examination)
and which to date have been little used in radiologic papers. In this setting we
will show some features of probability theory and Bayes’ theorem. For the sake
of clarity, the likelihood ratio will be explained before ROC analysis.

1 For the sake of clarity, we will avoid naming a radiologic examination as a test as much as pos-
sible. Although this term is entirely correct, we prefer to use the term exam or examination in order
to avoid confusion with statistical tests. Exceptions will be pretest probability and post-test prob-
ability for a given disease which we will approach with Bayes’ theorem to represent the ability of
each diagnostic test to increase or decrease the probability of a given disease in the subjects who
underwent the examination with a positive or a negative result, respectively. Other rare exceptions
will be evident from the context.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.
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1.1. The Results of an Examination Compared to a Reference Standard

If we want to evaluate the performance of a diagnostic examination, we need
to compare its results to a reference standard, a term which today is prefer-
able to gold standard, since the latter is considered exceedingly optimistic
(as in other fields, in Biostatistics all that glistens is not golden). In oncolog-
ic diagnostics, the typical example is to verify each result of a diagnostic
examination for a sample of n patients with the pathology report, both of
which refer to a defined lesion. Suppose that both the radiologist and the
pathologist are required to give a dichotomous judgment (yes/no) about the
malignancy of a lesion. In this case, the pathology examination is the refer-
ence standard and states whether each result of the diagnostic examination is
true or false. It will be true positive when the radiologist has correctly
defined a pathologically proven malignant lesion as positive, true negative
when the radiologist has correctly defined a non-malignant finding as nega-
tive, false positive when the radiologist has incorrectly defined a non-malig-
nant finding as positive, and false negative when the radiologist has incor-
rectly defined a malignant lesion as negative. The n cases which make up the
sample of this comparison are distributed among these four possibilities
according to the rule that each case is assigned to only one of the four cate-
gories. Using these data, we can generate a two-by-two contingency table
where the number of true positives, false positives, false negatives, and true
negatives are reported (Table 1.1).

Note that this table can be completed with the total of the lines and with the
total of the columns, namely with a series of marginal totals (all the positive
cases at the diagnostic examination; all the negative cases at the diagnostic
examination; all the positive cases at the reference standard; and all the nega-
tive cases at the reference standard), and with the grand total of the n patients
or subjects under investigation, as shown in Table 1.2.

The careful reader has probably realized that we have intermingled different
terms: cases, lesions, findings, patients, and subjects. Pay attention to the
meaning of these words. In a scientific paper, these terms cannot be inter-
changed and one of them (cases) should be carefully avoided. We can proper-
ly consider the study subjects as patients when they present with symptoms or
signs for a disease. On the other hand, we name the asymptomatic persons
enrolled in population screening program only as subjects. However, it is cor-
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Table 1.1. Two-by-two contingency table for the comparison between the results of a radiologic
examination and those of a reference standard

Reference standard

Positive Negative

Radiologic examination
Positive True positives (TP) False positives (FP)

Negative False negatives (FN) True negatives (TN)



rect to name a group of patients as subjects. Words mean things: the frequency
of disease is certainly greater in patients than in symptomatic subjects, with rel-
evant practical consequences which we will see. However, the distinction
between patients and subjects is relatively trivial.

More importantly, we should fully understand what changes when the statis-
tical unit is no longer the patient (or the subject) but each lesion (or finding).
Of course, if each patient has no lesions or only one lesion, we have no conse-
quences in statistical calculations. But a patient can have more than one lesion,
as typically we find in the study of liver metastases. The same reasoning can
be applied to each of the two kidneys, breasts, lungs, or to a single lobe or seg-
ment of the brain, liver, lung, prostate, coronary tree, etc. We should always be
extremely clear regarding the application of the indices of diagnostic perform-
ance. On what basis are they calculated? Patient by patient? Organ by organ?
Segment by segment? Lesion by lesion? Note that the term case is ambiguous
because it can be used for both patients and lesions. It should therefore be
strictly avoided in a scientific context. Refer your description to the real statis-
tical units under investigation.

We can at this point note the value of a general principle. The initial studies on
the diagnostic performance of a new imaging modality or technique benefit great-
ly from the reporting of indices on a lesion-by-lesion basis: we can have a small
number of patients and obtain a measure of what happens for each of the lesions.
Afterwards, more conclusive information on the value of the clinical application
of a new modality or technique can be obtained with a patient-by-patient analy-
sis. In the latter situation, we sometimes have to solve relevant conceptual prob-
lems (implying the clinical relevance of radiologic findings) for the definition of
true positive, false positive, true negative, and false negative patient when multi-
ple lesions are present and lobes, segments or organs are affected by the disease.

1.2. Measures of Diagnostic Performance

Using the figures of the true positives, false positives, true negatives, and false
negatives, we can calculate a series of indices which measure the diagnostic per-
formance. Table 1.3 reports definitions and formulas of these indices, as well as
their dependence or independence on disease prevalence.

The statistical unit
to be measured

Avoid the term case in a
scientific context

Initial studies versus large
clinical studies
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Table 1.2. Two-by-two contingency table for the comparison between the results of a radiologic examina-
tion and those of a reference standard in a series of subjects, completed with marginal totals and grand totals

Reference standard

Affected Nonaffected Total

Radiologic
Positive True positives False positives All positives

examination
(TP) (FP) (TP + FP)

Negative False negatives True negatives All negatives
(FN) (TN) (FN + TN)

Total All affected All nonaffected Grand total
(TP + FN) (FP + TN) (TP + FP + FN + TN)



Sensitivity: the ability to
identify the presence of a disease

All of these are simple proportions or ratios which differently combine the four
quantities of the two-by-two contingency table. The first seven indices range
between 0 and 1 and frequently are reported as percentages. The first five indices
indicate an increasingly high diagnostic performance of the examination under
investigation the closer they are to 1. The sixth and seventh indices indicate an
increasingly high diagnostic performance of the examination under investigation
the closer they are to 0. Moreover, they are frequently defined as 1 – sensitivity
and 1 – specificity, respectively. The meaning of the last two indices, i.e. the like-
lihood ratios (LRs), is a bit more complex. They theoretically range between 0
and infinity but practically indicate an increasingly high diagnostic performance
the further they move away from 1, with the positive LR moving towards values
higher than 1 and the negative LR towards values lower than 1.

1.3. Sensitivity, Specificity, FN Rate and FP Rate

The meaning of sensitivity is intuitive: it is the ability of an examination to
identify the presence of a given disease. It can also be considered as the pro-
portion between the number of positive subjects with the disease and the total
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Table 1.3. Indices measuring diagnostic performance

Note that disease prevalence is equal to (TP+FN) / (TP+TN+FP+FN), being the ratio between the number of subjects affect-
ed by the disease and the grand total of sample of subjects under investigation.

Index Definition Formula Dependence on
disease prevalence

1. Sensitivity Ability to identify the TP/(TP+FN) No
(or TP rate) presence of disease

2. Specificity Ability to identify the TN/(TN+FP) No
(or TN rate) absence of disease

3. Positive predictive Reliability of the TP/(TP+FP) Yes
value (PPV) positive result

4. Negative predictive Reliability of the TN/(TN+FN) Yes
value (NPV) negative result

5. Overall accuracy Global reliability (TP+TN)/(TP+TN+FP+FN) Yes

6. FN rate Proportion between FN/(FN+TP) = (1 – Sensitivity) No
FN and all affected

7. FP rate Proportion between FP/(FP+TN) = (1 – Specificity) No
FP and all nonaffected

8. Positive Increase in disease Sensitivity/(1 – Specificity) No
likelihood ratio probability when the result

is positive

9. Negative Decrease in disease probability (1 – Sensitivity)/Specificity No
likelihood ratio when the result is negative



number of subjects with the disease, namely the proportion of subjects with
the disease who were correctly detected by the radiologist. Sensitivity is given
by the ratio TP/(TP + FN), i.e. the proportion of positives among the subjects
with the disease.

If the number of true positives is unchanged, sensitivity is inversely related
to the number of false negatives. In fact, the false negative rate, namely the
proportion of subjects falsely considered nonaffected by the disease, summed
with the sensitivity gives a result equal to 1. In other words, the false negative
rate is the complement to 1 of sensitivity.

Example 1.1. Sensitivity of mammography and dynamic contrast
enhanced magnetic resonance (MR) imaging for the detection of malig-
nant lesions in patients candidate for mastectomy. The authors investi-
gate 99 breasts in 90 candidates for unilateral (n = 81) or bilateral (n = 9)
mastectomy. The reference standard, i.e. the pathology examination of the
whole excised breast, establishes the presence of 188 malignant lesions.
Mammography has 124 true positives and 64 false negatives, MR imaging
152 true positives and 36 false negatives. As a consequence, sensitivity is
124/(124+64) = 0.660 for mammography and 152/(152+36) = 0.809 for
MR imaging. The lesion-by-lesion sensitivity of mammography is 66.0%,
that of MR imaging is 80.9%. The FN rate is 0.340 or 34.0% and 0.191 or
19.1%, respectively. Note that the statistical unit is the lesion and not the
patient or the breast [SARDANELLI ET AL, 2004].

The meaning of specificity is evident less immediately. It refers to the abili-
ty of the examination to identify the absence of a given disease, given by the
ratio TN/(TN + FP), i.e. the proportion of the negatives among the subjects not
affected with the disease. If the number of true negatives is unchanged, it is
inversely related to the number of false positives. In fact, the false positive rate,
i.e. the proportion of subjects falsely considered to be affected by the disease,
summed with specificity gives 1. In other words, the false positive rate is the
complement to 1 of specificity.

The less immediate understanding of the term specificity is due to its com-
mon improper use, at least in spoken language, to indicate the ability of an
examination to make a certain diagnosis. This improper use often implies
several logical mistakes. For instance, if we state that computed tomography
(CT) is highly “specific” for the diagnosis of intracranial hemorrhage, we
would mean that this imaging modality can reliably identify a hyperattenu-
ation on nonenhanced scans as a hemorrhage. However, this statement has
two different meanings: if really there is an intracranial hemorrhage, it is
highly probable that CT can detect it; a CT diagnosis of intracranial hemor-
rhage is rarely a false positive.

Using correct scientific terminology, these two sentences are the same as
saying that CT has both high sensitivity and high positive predictive value for
intracranial hemorrhage. As both specificity and positive predictive value are
inversely related to false positives, if we have very few false positives, it will
be true that the examination will also be highly specific (under the condition of
having a suitable number of true negatives). At any rate, we cannot say that an
examination is highly specific thinking that our audience also understands it to

False negative rate

Specificity: the ability
to identify the absence
of a disease

False positive rate

“Specificity” in common
language
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Sensitivity and specificity:
answers to pretest questions

be highly sensitive. This is a conceptual error. If both sensitivity and specifici-
ty are high, the examination is highly accurate (not only highly specific), as CT
actually is for intracranial hemorrhage.

Care must be taken, since an examination could have few false positives and
many false negatives, thus at the same time being highly specific but not very
sensitive. As a consequence, it will be of little use as a diagnostic tool in symp-
tomatic patients, despite being highly specific.

Moreover, if we say CT is highly specific for the differentiation between
acute intracranial hemorrhage and acute brain ischemia, we fall into a deeper
complication. This sentence should imply a high sensitivity for both condi-
tions, probably relatively higher for the former than for the latter due to the
false negatives associated with tiny ischemias. Similarly, the specificity of CT
will be different due to the relatively large number of hypoattenuations caused
by previous infarcts in elderly patients or due to artifacts, etc, when compared
with the hyperattenuations which can be falsely attributed to hemorrhage. The
key point is that high CT specificity for acute intracranial hemorrhage does not
imply high specificity for acute brain ischemia. The same reasoning can be
applied to sensitivity. For the sake of clarity, we should always distinguish
between CT sensitivity and CT specificity for each of the two conditions.

Example 1.2. Specificity. Low-dose CT screening for lung cancer. Of a
total of 1611 asymptomatic subjects who undergo the first screening event,
186 are found to be positive and are further studied with high-resolution
scanning; 21 of these undergo biopsy. Thirteen subjects are found to be
affected by lung cancer. There are no interval cancers (cancers detected
between the first and the second screening event). As a result there are 1425
true negatives (the total of 1611 minus 186 positives) and 173 false positives
(186 positives minus 13 true positives). Specificity is 1425/(1425+173) =
1425/1598 = 0.892 = 89.2% [SOBUE ET AL, 2002]. In this series only one pos-
sible lesion is considered for each subject. Lesion and subject are coincident
as a statistical unit.

Sensitivity and specificity answer questions which can be raised before
requesting or performing an examination. They therefore provide answers to
aprioristic2 questions:

− If the patient is affected by the disease, what is the probability that the exam-
ination produces a positive result (sensitivity)?

− If the patient is not affected by the disease, what is the probability that the
examination produces a negative result (specificity)?
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2 The differentiation between sensitivity and specificity as answers to pre-examination questions on
the one hand and predictive values as answers to post-examination questions on the other hand
underlines the different logic of these indices of diagnostic performance. Sensitivity and specifici-
ty should be used to refer to the intrinsic diagnostic performance of a given examination while pre-
dictive values enable us to evaluate the reliability of the results of the same examination once it is
permormed. It should be borne in mind that these are not the same thing, as we will explain by
demonstrating the influence of disease prevalence on predictive values. Notice that another pre-
/post-examination differentiation is related to the concepts of pretest probability and post-test prob-
ability which we will introduce for the application of Bayes’ theorem (see Section 1.5).



Sensitivity and specificity (as well as the false negative rate and the false pos-
itive rate) depend on the technical characteristics of the examination, on the
capability of the radiologist and her/his team (radiographers, nurses, etc.) to per-
form the examination, and on the radiologist’s skill in interpreting the examina-
tion. Sensitivity and specificity are not influenced by the disease prevalence in
the study population (they are instead influenced by the degree, the stage of the
disease, as we will demonstrate in the next section). The term prevalence indi-
cates the proportion between the number of subjects affected by a disease and
the total number of subjects of an entire population (or of a sample, frequently
named study population) for a defined time interval, whereas the term incidence
indicates the number of subjects newly diagnosed as affected by the disease dur-
ing a defined time interval (see the Note to Table 1.3).

As a matter of fact, the optimal situation in clinical practice is when a single
diagnostic examination is available with levels of sensitivity or specificity high
enough to produce conclusive decision-making. These two extreme conditions are
defined as follows: an examination is SNOUT when its negative result excludes the
possibility of the presence of the disease (when a test has a very high Sensitivity, a
Negative result rules OUT the diagnosis); it is instead SPIN when its positive result
definitely confirms the presence of the disease (when a test has a very high
SPecificity, a positive result rules IN the diagnosis). In most situations, a certain
degree of certainty can be reached with a single diagnostic examination but not a
definitive conclusion. More than one examination is generally needed. They are
ordered according to a flow-chart which takes into account sex, age, familial and
personal history, clinical history, previous examinations, etc.

In other words, sensitivity and specificity alone cannot translate the result of
a radiologic examination into clinical practice.

1.4. Predictive Values, Diagnostic Accuracy and Disease Prevalence

A first possibility for the translation of the result of an examination in clinical
practice is provided by predictive values. These indicate the reliability of the
positive or negative result and answer questions posed after having performed
the examination:

− If the result of the examination is positive, what is the probability that the
patient really is affected by the disease (positive predictive value)?

− If the result of the examination is negative, what is the probability that the
patient is really not affected by the disease (negative predictive value)?

The predictive values depend not only on technical parameters and on the abil-
ity to perform the examination and interpret the results. In fact, if sensitivity and
specificity are kept unchanged, predictive values change in relation with disease
prevalence: the positive predictive value is directly related to disease prevalence
whereas the negative predictive value is inversely related to disease prevalence.

Predictive values depend on disease prevalence. This is not intuitive and
implies important practical consequences. Let us reflect upon this statement for
a moment: when the disease prevalence is very low, a very high sensitivity is
associated with a very low positive predictive value.

Sensitivity and specificity
do not depend on
disease prevalence

Prevalence

Incidence

SNOUT and SPIN

Predictive values:
answers to post-test questions

Predictive values depend
on disease prevalence

Chapter 1 Diagnostic Performance 25



The reliability of our
reports also depends

on patient selection by
the referring physicians

Overall accuracy:
the ability to correctly

identify the presence and the
absence of a disease

A useful way of envisaging this situation is provided by the following example.
If all the sample subjects have the disease, the positive predictive value is always
1.0 (i.e. 100%) even with very low sensitivity (but not 0) and the negative predic-
tive value is always 0.0 (i.e. 0%) even with very high specificity (even equal to
1.0, i.e. 100%). Similarly, if all the sample subjects do not have the disease, the
negative predictive value is always 1.0 (i.e. 100%) even with very low sensitivity
(but not 0) and the positive predictive value is always 0.0 (i.e. 0%) even with very
high specificity (even equal to 1.0, i.e. 100%). It therefore follows that an exami-
nation with the highest possible sensitivity cannot correctly diagnose a non-exis-
tent disease, and an examination with the highest possible specificity cannot cor-
rectly diagnose the absence of disease in subjects who have the disease.

We can obtain increasingly higher levels of sensitivity and specificity, but the
reliability of our reports (i.e. our predictive values) will depend on disease
prevalence, namely on the epidemiologic context and, in clinical practice, on
patient selection by the referring physician with a diagnostic query.

Now, we should at this point introduce a new variable to the system. A disease
can affect a patient with different levels of severity (or stage) and the probability
of a positive result of an examination increases with the level of severity. The level
of severity should be lower in subjects in whom the disease is diagnosed with peri-
odic screening than that found in symptomatic subjects in whom the disease is
diagnosed in clinical practice. In this way we observe a direct influence on sensi-
tivity and specificity: they are higher in symptomatic subjects than in asymptomatic
subjects in whom the disease is more likely in an early stage. This difference is
lower at the first round of an oncologic screening program (when we detect the
prevalent tumors, with numerous cases which could have been diagnosed even in
an earlier stage) and is higher in the later rounds (when we detect the incident
tumors, not present at the first round). Basically, subject selection, which deter-
mines the level of severity of the disease, also influences sensitivity and specificity.
We will return to this feature after introducing the concept of diagnostic threshold.

Overall accuracy is the ability of an examination to correctly diagnose both
subjects affected with the disease and subjects not affected with the disease as a
fraction of the total number of examined subjects. It answers the question: what is
the probability of a correct result? It is somewhat like a global index of diagnos-
tic performance, but its linear distribution ranges between the sensitivity value and
the specificity value. It approaches the higher of the two with increasing disease
prevalence and approaches the lower of the two with decreasing disease preva-
lence. In practice, it is a kind of “mean” between sensitivity and specificity which
is weighted for disease prevalence. Dependence on disease prevalence is the fea-
ture shared with the predictive values. The graphs in Figure 1.1. show the depend-
ence of predictive values and overall accuracy on disease prevalence.

Example 1.3. Predictive values of clinical and screening mammography.
Imagine 10,000 women with a palpable lump are studied (clinical mammog-
raphy), with 95% sensitivity and 80% specificity. With a disease prevalence
of 50%, we would have 4,750 true positives, 4,000 true negatives, 1,000
false positives, and 250 false negatives. The PPV would be
4,750/(4,750+1,000) = 0.826 = 82.6%; the NPV 4,000/(4,000+250) = 0.941
= 94.1%. For nearly every 5 women affected with cancer there would be a
healthy woman who undergoes diagnostic work-up with possible needle
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biopsy (4,750/1000 = 4.75). This woman with a benign palpable lump is
unlikely to consider invasive examinations as useless or dangerous.
However, if we were to study 10,000 asymptomatic women (screening
mammography) with the same levels of sensitivity and specificity (95% and
80%, respectively) with a disease prevalence of 3%, we would have 285 true
positives, 7,760 true negatives, 1,940 false positives, and 15 false negatives.
The NPV would go up to 7,760/(7,760+15) = 0.998 = 99.8%, PPV would go
down to 285/(285+1,940) = 0.128 = 12.8%. This means that nearly 7 healthy
women would be sent for diagnostic work-up with a possible needle biopsy
for every woman effectively diagnosed with cancer (1,940/285 = 6.8). The
recall rate would be very high, equivalent to 22.25% (2,225/10,000). The
overall effect would be a false alarm (if at every round we recall 20-25% of
the women, after 4-5 rounds on average all the women would be recalled).
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Figure 1.1. Distribution of positive predictive value (PPV), negative predictive value (NPV) and overall accuracy as a func-
tion of disease prevalence. The figure shows a series of paired graphs where the values of sensitivity and specificity are con-
stant and represented by a blue and a green line, respectively. For the sake of clarity, the absolute difference between sen-
sitivity and specificity is also constant, equal to 0.2. We present the following pairs of sensitivity and specificity values,
respectively: 0.3, 0.1 (A) and vice versa 0.1, 0.3 (panel B); and so on, 0.4, 0.2 (C) and 0.2, 0.4 (D); 0.5, 0.3 (E) and 0.3, 0.5 (F);
0.6, 0.4 (G) and 0.4, 0.6 (H); 0.7, 0.5 (I) and 0.5, 0.7 (L); 0.8, 0.6 (M) and 0.6, 0.8 (N); 0.9, 0.7 (O) and 0.7, 0.9 (P).
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(continued)

Note that: (i) the behaviour of the overall accuracy curve is linear between the sensitivity and specificity values, ascending
when sensitivity is higher than specificity (graphs on the left), descending when vice versa (graphs on the right); (ii) regard-
less of how high or low sensitivity and specificity are, PPV (yellow line) and NPV (pink line) always range between 0 and 1,
with linear behaviour of the curve only in the particular case where sensitivity and specificity are equidistant from the hor-
izontal middle line at 0.5 (G, H); (iii) PPV, NPV and overall accuracy intersect at 0.5 of disease prevalence when sensitivity
and specificity are equidistant from the 0.5-horizontal midline (G, H). In this case also PPV, NPV and overall accuracy are
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Work-flow and economic costs would be huge. Above all, the women would
lose confidence with the screening program. The graph representing diag-
nostic performance of an examination with 95% sensitivity and 80% speci-
ficity as a function of disease prevalence is given in Figure 1.2.

Note that we hypothized a disease prevalence equal to 50% for clinical
mammography and to 3% for screening mammography to simplify calcu-
lations in this example. In the real world, the disease prevalence in screen-
ing mammography is about ten times lower (after the first round, only 0.3-
0.5% of incident cancers). Thus, the problems we would have in screening
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(continued)

equal to 0.5 and the intersection is at the center of the graph (when sensitivity is equal to specificity, the intersection
between PPV, NPV, and accuracy is at a disease prevalence of 0.5 but at a y-coordinate corresponding to the value of sen-
sitivity and specificity, cases not shown); iv) for values of sensitivity and specificity near to those in clinical practice (i.e. over
0.5), PPV, NPV, and accuracy intersect with a prevalence higher than 0.5 (i.e. on the right) when sensitivity is higher than
specificity, while it is with a prevalence lower than 0.5 (i.e. on the left) with sensitivity lower than specificity. With refer-
ence to panels G and H, we can also note that: i) likelihood ratios (see Section 1.5), which depend on sensitivity and speci-
ficity, are constant and equal to 1.0, i.e. the examination has no power but the disease prevalence generates a range
between 0.0 and 1.0 for PPV and NPV, with linear curve behaviour; ii) if we were to progressively increase the difference
between sensitivity and specificity, the slope of the red line (overall) would tend to overlay that of the two predictive val-
ues. The extreme cases with sensitivity and/or specificity equal to 1.0 or 0.0 are not shown here.
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mammography with a relatively low specificity (which could also be
accepted in clinical mammography) are also more relevant than those
shown by the figures of this example.

Example 1.4. Cardiac CT for diagnosing coronary stenoses. Let us sup-
pose that 64-row multislice CT scanners have a 95% sensitivity and a 95%
specificity for clinically significant (≥ 50% reduction in lumen diameter)
coronary stenoses. If we were to perform the examination (with intravenous
administration of iodinated contrast medium) on 100,000 subjects with a
high pretest probability of significant stenoses (80% disease prevalence),
we would negate a therapeutic coronary angiography (with stenting of the
stenosis) in all the false negative subjects, equal to 5% (4,000 patients). If
we were to study 100,000 subjects with a low pretest disease probability
(e.g. a screening program for asymptomatic subjects over 65), with the
same level of sensitivity and specificity, we would generate 4,750 useless
coronary angiographies. This clearly shows that to avoid useless coronary
angiographies, even in the presence of high levels of sensitivity and speci-
ficity, coronary CT can only be effectively employed with accurate patient
selection based on the pretest disease probability defined by means of clin-
ical history and electrocardiogram, stress test, etc. Patients with an interme-
diate risk (i.e. pretest probability) of significant coronary stenoses (30-
70%) are the best candidates for coronary CT. The reader can calculate the
predictive values from the data given here. Figure 1.3 shows the graph of
diagnostic performance of an examination with 95% sensitivity and 95%
specificity as a function of disease prevalence.

A general view of the influence of disease prevalence on predictive values can
be obtained looking at the post-test disease probability (i.e. the disease proba-
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Figure 1.2. Distribution of posi-
tive predictive value (PPV), nega-
tive predictive value (NPV), and
overall accuracy as a function of
disease prevalence (constant sen-
sitivity and specificity, equal to
0.95 and 0.80, respectively). Note
that with increasing disease preva-
lence from 0.00 to 1.00 the predic-
tive values change according to
two different curves whereas
overall accuracy increases linearly
from 0.80 (specificity) to 0.95 (sen-
sitivity). At a disease prevalence of
about 0.65, overall accuracy, PPV,
and NPV tend to be equal (0.89).
The likelihood ratios (LRs), not
shown here, depend on sensitivity
and specificity and are also con-
stant, equivalent to 4.75 (positive
LR) and 0.063 (negative LR).
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bility after the examination has been performed) as a function of the pretest dis-
ease probability (i.e. the disease prevalence in the studied population). Of
course, the post-test probability after a positive result is equal to the PPV while
the post-test probability after a negative result is equal to 1 minus NPV. A series
of curves of PPV and 1 minus NPV are presented in Figure 1.4, each of them
obtained for a pair of sensitivity and specificity values.
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Figure 1.3. Distribution of posi-
tive predictive value (PPV), nega-
tive predictive value (NPV), and
overall accuracy as a function of
disease prevalence (constant sen-
sitivity and specificity, both of
them being equal to 0.95). Note
that: (i) the red line (overall accu-
racy) overlies the blue line of sen-
sitivity and the green line of
specificity; (ii) PPV (pink line) falls
drastically when the prevalence
falls below 30%; NPV (yellow
line) falls drastically when the
prevalence goes up above 70%.
Likelihood ratios (LRs), which
depend on sensitivity and speci-
ficity, are also constant, being
equal to 19.00 (positive LR) and
0.053 (negative LR).

Disease prevalence

Sens
Spec
PPV
NPV
Acc

Figure 1.4. Dependence of positive
predictive value (PPV) and negative
predictive value (NPV) on disease
prevalence. The x-axis represents
the pretest disease probability (dis-
ease prevalence before the exami-
nation), the y-axis indicates the
post-test disease probability (see
text). The curves of PPV (pink lines)
and of 1 minus NPV (yellow lines)
are given for pairs of values of sen-
sitivity and specificity, both of them
being equal to 0.99, 0.95, 0.90, 0.85,
0.75, 0.65, and 0.50 (from the outer
to the inner of the graph area). As
the pretest disease prevalence
increases, both PPV and 1 minus
NPV increase (i.e. NPV decreases).
The diagonal (mixed pink and yel-
low) line represents the linear
course of the two variables when
sensitivity and specificity are both
equal to a 0.50.
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Always relate the measures
of diagnostic performance

to a defined disease

Two different scenarios:
clinical radiology

and screening radiology

Bayes’ theorem

A first general comment on what we have presented so far is in order.
While the predictive values are clearly related to a defined disease (“predic-
tive of … malignant tumor”), sensitivity and specificity may appear to be
properties intrinsic to the examination and independent of the disease we
would like to confirm or to exclude. This is not the case. Sensitivity and
specificity of a radiologic examination do not depend on disease prevalence.
However, they must be related to a defined disease. Unfortunately, this rela-
tion is frequently omitted or considered implicit. This creates misunderstand-
ing and false expectations for patients and physicians who are non-radiolo-
gists. For example, see what we said above in relation to the CT diagnosis of
cerebral ischemia and hemorrhage.

A second comment is also required. Sensitivity and specificity have a differ-
ent importance according to disease prevalence and severity in the study popu-
lation. If we study symptomatic subjects (clinical radiology), we should try to
use examinations with a high sensitivity, even in the presence of a relatively low
specificity (this drawback will be compensated for in the following steps of the
diagnostic algorithm). In contrast, if we study asymptomatic subjects (screening
radiology), we should try to use examinations with a high specificity, also
accepting a trade-off for sensitivity. In fact, while in clinical radiology the major
priority is to diagnose a symptomatic disease (possibly in an advanced stage), in
screening radiology the diagnosis of an asymptomatic disease must be balanced
by the need of a limited amount of useless diagnostic work-up in the screened
population. The consequence is a different way of thinking by the radiologist in
the two settings. In clinical radiology, we emphasize even minimal signs as sus-
picious of disease (especially if related to symptoms), postponing the ultimate
diagnosis to the later steps. In screening radiology, we can ignore the minimal
signs in order to avoid too high a recall rate.

1.5. Bayes’ Theorem, Likelihood Ratios
and Graphs of Conditional Probability

The pretest disease probability is the probability that a patient has the disease,
known before she/he undergoes the examination and the positive or negative
result is obtained. In the absence of additional information (personal, family and
clinical history, physical examination, and other examinations already performed),
the pretest probability is directly equal to disease prevalence, i.e. the proportion of
the population affected with the disease compared to the entire population. In
screening programs, the pretest disease probability is always equal to the disease
prevalence in the general population. In clinical radiology, the pretest disease
probability is equal to disease prevalence in the general population modified by
the selection applied by the referring physician on the basis of medical history and
clinical evaluation. In this way we take into account demographic risk factors
(age, sex, ethnic group), family history, exposure to other risk factors (e.g. alcohol
or smoking), previous and recent medical history, and physical examination.

Bayes’ theorem, also called theorem of subjective probability or theorem of
conditioned probability, enables us to calculate − step-by-step in the decision-
al algorithm − the pretest and post-test probability for a defined disease. It
states that the probability that the result of an examination is associated with
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the presence or the absence of the disease depends on the pretest probability
and on the “power” of the examination. Let us now try to understand what the
power of a diagnostic examination is.

The theorem was proposed by the Presbyterian pastor Thomas Bayes (1702-
1761) and published posthumously in 1763. Using probabilistic notation, the
probability that an event y occurs is defined as P(y); moreover, the symbol “|”
means “given that”, “if we suppose that”, namely that another event condition-
ing the P(y) has already occurred. Hence, to indicate the probability of the y
event, given that the x event has occurred, we write P(y | x). Bayes’ theorem
states that:

where: P(y) is the a priori probability of y, P(x | y) is the likelihood function;
P(x) is the marginal probability, that is to say the probability of observing the
x event without any previous information and P(y | x) is the a posteriori
probability of y, given x. P(x | y) / P(x) is the coefficient that modifies P(y)
to give P(y | x). It can be shown that P(y | x) is always less than or equal to
1. If the x event is the positive result of a diagnostic examination and we
know the pretest disease probability, the theorem allows us to calculate the
disease probability (the y event) after having obtained a positive result, i.e.
the post-test probability.

The concept of probability as a degree of our believing that an event hap-
pens (subjective probability) is the foundation of Bayesian statistics and is in
opposition with the classic viewpoint of frequentist statistics, based on fre-
quencies and proportions (objective probability). The Bayesian school has
always been a minority among statisticians when compared with the frequen-
tist school. Frequentist methods are today mainly used in medical research, in
part due to the possibility of presenting the reliability of an investigated
hypothesis as a number (the well-known p value). However, especially with
regard to the evaluation of diagnostic performance, Bayes’ theorem has a
basic conceptual relevance, even though sensitivity, specificity, predictive val-
ues, etc are managed in the medical literature with classic frequentist statisti-
cal methods. The debate between the two schools is still open and animated,
in part thanks to the huge calculation power offered to Bayes’ supporters by
present-day computers.

An extended explanation of Bayes’ theorem (with the complication given by
the possibility of multiple alternative events) is beyond the aims of this book.
Here we shall introduce the concept of odds. This is probability in a different
sense with regard to the usual meaning of frequency as the number of events
of interest divided by the whole sample of events. In which sense? Here it is
useful to recall gambling odds, the probability of winning in a game of chance.
In fact the theory of probability was also born in the context of calculations for
crap and card games in the 15th and 16th centuries.

Let us consider a practical example. A sample of 10 subjects includes 3
patients affected by a disease. We could say that the frequency of the disease
in the whole sample is 3/10, i.e. 0.30, equivalent to 30%. The odds of disease
is the ratio between the subjects with the disease and the subjects without the
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The logical meaning
of likelihood ratios

Likelihood ratios as the
“power” of an examination

disease equal to 3/7, i.e. 0.43, or 43%. The odds tell us how many patients with
the disease we found for each subject without the disease.

There is a simple mathematic relationship between these two ways of repre-
senting the probability (or the risk) of a disease:

if odds = a/b
then frequency in the whole sample = a/(a+b)

Conversely,

if frequency in the whole sample = x
then odds = x/(1-x)

According to Bayes’ theorem:

odds of post-test disease = positive LR × odds of pretest disease

This is the equation of a straight line with an angular coefficient equal to the
positive LR.

As a consequence, if we have the odds of pretest disease and the positive LR
of an examination – which is equal to sensitivity/(1-specificity) – we can cal-
culate the odds of post-test disease. This can be ultimately changed into fre-
quency in the whole sample using the first of the three previous mathematic
relations. In practice, when the positive LR of a test is known, the clinician can
change the pretest probability into post-test probability, i.e. into the real diag-
nostic performance supplied by the test. Similar reasoning can be proposed for
the probability of the absence of disease and the negative LR, which is equal
to (1-sensitivity)/specificity.

The logical reasoning behind LRs is now clear. They answer the questions:

− To what extent does the positive result of the test increase disease probabili-
ty (positive LR)?

− To what extent does the negative result of the test reduce disease probability
(negative LR)?

These are two coefficients: when they are equal to 1, they state that the exam-
ination does not supply any new information. In fact, post-test probabilities
remain equal to the pretest probabilities. Conversely, values of positive LR pro-
gressively higher than 1 and values of negative LR progressively lower than 1
indicate increasing levels of diagnostic performance of an examination. In par-
ticular, a positive LR higher than 10 implies the examination is ultimately diag-
nostic for the presence of the disease while a negative LR lower than 0.1
implies that the examination is ultimately diagnostic for the absence of the dis-
ease. Intermediate values of LR imply an intermediate degree of diagnostic cer-
tainty. Basically, LRs quantify the power of an examination.

The reader might suggest that a similar function may also be proposed for
sensitivity and specificity. This is partly true, but it is not precisely the same
thing. The mathematic mechanism creates a substantial change. We really
obtain LRs by a particular mathematic combination of sensitivity and specifici-
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ty. However, LRs allow us to change pretest disease probability into post-test
disease probability, an important task which uncombined sensitivity and speci-
ficity are unable to do.

A simple way to obtain post-test disease probability from pre-test disease
probability using LRs is given by the use of a nomogram, a fantastic old
mathematic tool used before the advent of computers. It exploits the graph-
ic solution of an equation with multiple variables. Fagan’s Bayesian nomo-
gram [FAGAN, 1975] changes pretest disease probability into post-test dis-
ease probability using a geometric projection, without any need for calcula-
tion (Figure 1.5). The slope of the straight line on the nomogram allows us
to graphically see the power of the examination.

Another way of presenting the relation between pretest and post-test disease
probability is the graphs of conditional probability (GPCs) [MALONE AND

STAUNTON, 2007]. These graphs supply a visual representation of the change in
disease probability obtained using a diagnostic examination in a given clinical
setting. The diagnostic performance can be appreciated on the graphs in terms
of modification of disease probability for the positive and negative result of the
examination at all the points of the range of pretest disease probability and the
contribution of different techniques can be evaluated to design efficient diag-
nostic algorithms. An example is shown for a diagnostic algorithm including
D-dimer test, CT pulmonary angiography and indirect CT venography in diag-
nosing pulmonary embolism [DODD, 2007] (Figure 1.6).
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Figure 1.5. Fagan’s Bayesian
nomogram. The central vertical
axis shows the positive and nega-
tive likelihood ratio (LR) values,
the vertical axis on the left side
shows the pretest disease proba-
bility (pre-T P), and the vertical
axis on the right side shows the
post-test disease probability (post-
T P). The oblique green line shows
how a positive LR equal to +5
changes a pre-test disease proba-
bility of 0.5 (i.e. an absolute
uncertainty) into a post-test dis-
ease probability of about 0.83 (i.e.
a relatively high disease probabil-
ity). The two black lines show how
an examination with an LR equal
to 1 makes no change to disease
probability. The oblique red line
show how a negative LR equal to
0.35 changes a pretest disease
probability of 0.5 into a post-test
disease probability of 0.2. In this
way LRs act as angular coefficients
of the straight lines designed on
the Bayesian nomogram.

Pre-T P Post-T P

Likelihood
ratio



Thresholds and cutoff

1.6. Cutoff and ROC Curves

In the logical development of our discussion we have left out a relevant aspect.
In fact, we supposed that both the radiologist and the pathologist are required
to give a dichotomous judgment (yes/no) about the malignancy of the lesion.
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Figure 1.6. Graphs of conditional
probability. Diagnostic performance
of D-dimer (A), CT pulmonary
angiography (B), and indirect CT
venography (C) for pulmonary
embolism and deep venous throm-
bosis. Positive result of the examina-
tion = solid curve line; negative
result of the examination = dashed
curve line. For a pretest probability
(on the x-axis), the post-test proba-
bility of a positive or negative test is
derived by drawing a perpendicular
line up to the solid line or dashed
line, respectively, and then across to
the y-axis. For a patient with a high
pretest probability of pulmonary
embolism, the prevalence is 78%
(solid arrow in A). Post-test probabil-
ity for a positive D-dimer result is
85% (open arrow in A), which war-
rants further investigation. This
post-test probability is then applied
as pretest probability to the graph
for CT pulmonary angiography
(solid arrow in B). If the result is pos-
itive, post-test probability is 99%
(open arrow in B) and the diagnosis
is confirmed. If the result is negative,
post-test probability is 30% (curved
arrow in B), which does not allow
the disease to be ruled out: further
investigation is warranted. This post-
test probability is finally applied as
pretest probability to the graph for
indirect CT venography (solid arrow
in C). If the result is positive, post-test
probability of deep vein thrombosis
is greater than 72% (open arrow in
C) and diagnosis is confirmed. If the
result is negative, post-test probabil-
ity of deep venous thrombosis is less
than 5% (curved arrow in C) and the
diagnosis is excluded. From Dodd JD
(2007) Evidence-based practice in
radiology: steps 3 and 4--appraise
and apply diagnostic radiology liter-
ature. Radiology 242:342-354 (with
permission of the author and of
copyright owner [RSNA]).
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Effect of a modified cutoff
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Figure 1.7. Cutoff. Effect of the cut-
off positioning for a population
made up of two equivalent groups
of subjects with or without the dis-
ease. On the x-axis, a variable (also
radiologic) which has higher values
in subjects with the disease (invert-
ed Gaussian curve – red area) is
compared with the subjects without
the disease (Gaussian curve – green
area). The red area is inverted only
to facilitate the visual evaluation of
the cutoff effect. Due to the large
overlap of the two curves, the cut-
off (yellow vertical line) determines
not only the two large fractions of
true positives and true negatives,
but also the two minor but non-
negligible fractions of false positives
and false negatives. A cutoff shifted
towards the left reduces false nega-
tives but increases false positives,
and the opposite occurs with a cut-
off shifted towards the right.

However, we know that clinical radiology (and pathology, too) is not made up
only of black and white judgments. There is a large gray scale, i.e. multiple
levels of certainty when we are either more or less in favor of the presence or
absence of a disease. This problem is related to the threshold we choose for our
diagnostic decision, i.e. the cutoff. Above the cutoff a radiologic sign is consid-
ered predictive of a disease.

The cutoff is an intuitive concept when applied to laboratory blood sample
analysis. If the normal upper plasma glucose level is lowered from 120 mg/dL
to 100 mg/dL, the subjects with a plasma glucose level from 101 to 120 mg/dL
previously considered normal will now be considered abnormal. If a group of
these subjects are really abnormal, we would have increased the true positives
and reduced the false negatives, with a gain in sensitivity. On the other hand,
in the same time the remaining subjects are normal, we would have increased
the false positives and reduced the true negatives, thus losing specificity.

If we lower the cutoff, we gain in sensitivity and lose in specificity. If we raise
the cutoff, we gain in specificity and lose in sensitivity. This is clearly evident
when the variable under investigation is measured on a continuous scale (e.g.
blood sample analysis, radiologic lesion sizing in diameter or volume, CT den-
sitometry, bone densitometry, MR signal intensity, evaluation of absolute or
percentage contrast enhancement). A graphical representation of the cutoff def-
inition is given in Figure 1.7.

A typical example is the diagnosis of metastatic mediastinal lymph nodes on
CT scans on the basis of their size measured as maximal diameter. If we use the
classic cutoff which defines nodes larger than 10 mm in diameter as metastat-
ic, we cannot avoid either a fraction of false negatives (metastatic nodes small-
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Cutoff optimization

Role of disease spectrum

ROC curve

er than or equal to 10 mm in diameter) or a fraction of false positives (non-
metastatic nodes larger than 10 mm in diameter). By lowering the cutoff we
increase sensitivity but reduce specificity, whereas by increasing the cutoff we
increase specificity but reduce sensitivity.

The cutoff could be optimized by choosing the level which minimizes total
errors (the sum of false negatives and false positives). However, in clinical
practice we adjust – often unconsciously – the cutoff to distinguish normal
from abnormal findings in relation to the clinical history and the results of pre-
vious examinations which determine the pretest disease probability. For
instance, a history of previous malignancy will prompt the adoption of a lower
cutoff for the size of a mediastinal node considered suspicious of metastasis.
The presence of a deleterious mutation of BRCA1 or BRCA2 genes in women,
a relevant family history of breast or ovarian cancer, or the simple personal his-
tory of previous breast cancer in the patient prompts the adoption of a lower
cutoff reading for the mammography or MR breast examination. In this way a
radiologist unconsciously uses Bayes’ theorem, increasing sensitivity (and
probably losing specificity): s/he believes there is a higher pretest disease prob-
ability than would be expected in subjects without these risk factors.

We can now come back to the matter presented in Section 1.4, i.e. the influ-
ence of subject selection on diagnostic performance. We have already stated
that, even if the disease prevalence remains unchanged, if the spectrum of the
subjects with and without the disease changes, both sensitivity and specificity
may be significantly altered. A graphical representation of this phenomenon is
given in Figure 1.8.

If we do not change the value of variables such as disease prevalence, spec-
trum of disease severity, etc., can we represent the diagnostic performance of
an examination by taking into consideration what happens using different cut-
offs? The answer is yes. Note that again, as with the positive LR, we combine
“sensitivity” and “1 – specificity”, the last term being the false positive rate. As
stated above, the positive LR is the ratio between the first and the second term.
Now, sensitivity is graphed on the y-axis and 1 – specificity on the x-axis. The
points defined by the Cartesian coordinates using different (usually at least
five) cutoffs describe the receiver operator characteristic (ROC) curve.

As with ultrasonography and other medical imaging modalities, the ROC
curve is the result of a scientific development made in a military context. ROC
curves were introduced to optimize the signal detection after the Japanese
attack on Pearl Harbor, in order to understand why the radar receiver operators
failed to identify Japanese warplanes. Since the 1950s, ROC curves have been
used in psychophysiology and have entered the field of statistical methods.

The ROC curve is a tool able to represent the power of a diagnostic exami-
nation at virtually all possible cutoffs. In practice, at least five levels are need-
ed to obtain an acceptable curve, as with the BI-RADS® score [AMERICAN

COLLEGE OF RADIOLOGY, 2003] (Figure 1.9). The ROC curve intercepts the
oblique straight line between the upper left corner and the lower right corner of
the Cartesian quadrant. This interception point is the best affordable diagnostic
performance with a balance between specificity and sensitivity. However, as
stated above, in many situations we might prefer a higher sensitivity with a
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tradeoff in specificity or vice versa. Figure 1.10 shows a series of ROC curves
with increasing diagnostic performance.

A relevant application of the ROC curve in radiology, in the setting of the
diagnosis of a defined disease, is the comparison between different imaging
modalities or different approaches (e.g. new or old techniques), or different
readers (e.g. with extensive or limited experience) for a single imaging modal-
ity. This comparison can be performed on the same sample of patients or in dif-
ferent samples of patients. It is noteworthy that in the latter case (different sam-
ples of patients), the comparison between the two AUCs gives a result equiva-
lent to the application of the Mann-Whitney U test, the typical non-parametric
test for unpaired data (see Chapter 5). This shows that apparently different
aspects of biostatistics are actually connected by a logical-mathematic relation.

Understanding one part of the image helps us to understand another part of
the image. In the end the whole picture will seem less complicated in compar-
ison with our first impression due to the initial difficulties.

ROC analysis in radiology
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Figure 1.8. Effect of changes in disease spectrum and healthy condition on diagnostic performance. The
area under the curve of the distribution of healthy subjects is colored green; the area under the curve of
the distribution of the patients affected with the disease is colored red. Upper left (standard clinical set-
ting for outpatients): only about 50% of the symptomatic subjects are actually affected by the disease;
few subjects produce false negative (high sensitivity) or false positive (high specificity). Upper right
(screening setting): the patients affected by the disease are lower in number and they also have a dis-
ease with a lower mean level of severity. As a consequence the red area under the curve is smaller in size
and shifted towards the left with a larger overlap on the green area of the healthy subjects: there are
more false negatives resulting in a lower sensitivity and negative predictive value. Lower left (clinical set-
ting for in-patients): the mean level of disease severity is higher; the red area is smaller (some patients
have died) and shifted towards the right; by shifting the cutoff towards the right, we can distinguish per-
fectly between patients with disease and healthy subjects (no false negatives or false positives). Lower
right (changed spectrum of healthy subjects): a more aged healthy population shifts the green area to
the right, producing more false positives and a lower specificity and positive predictive value.

Standard
clinical setting

Disease in
early stage
(screening)

Elderly healthy
subjects

Disease
in late stage

TN TN

TN TN

TP
TP

TPTP



References

American College of Radiology (2003) ACR breast imaging reporting and data system
(BI-RADS): breast imaging atlas. Reston

Dodd JD (2007) Evidence-based practice in radiology: steps 3 and 4 – appraise and
apply diagnostic radiology literature. Radiology 242:342-354

Fagan TJ (1975) Nomogram for Bayes theorem. N Engl J Med 293:257
Malone DE, Staunton M (2007) Evidence-based practice in radiology: step 5 (evaluate) –

caveats and common questions. Radiology 243:319-328
Sardanelli F, Giuseppetti GM, Panizza P et al (2004) Sensitivity of MRI versus mam-

mography for detecting foci of multifocal, multicentric breast cancer in fatty and
dense breasts using the whole-breast pathology examination as a gold standard. AJR
Am J Roentgenol 183:1149-1157

Sobue T, Moriyama N, Kaneko M et al (2002) Screening for lung cancer with low-dose hel-
ical computed tomography: anti-lung cancer association project. J Clin Oncol 20:911-920

Biostatistics for Radiologists40

Figure 1 9. ROC (receiver operator
characteristic) curve. The graph rep-
resenting the relation between sen-
sitivity and 1 – specificity (i.e. the
false positive rate) enables the quan-
tification of the power of a diagnos-
tic examination as the area under
the curve (AUC). In the example, five
levels of cutoff are indicated on the
ROC (like the BI-RADS® score system).
The Cartesian coordinates of point 5
are the sensitivity and 1 – specificity
we obtain considering only the find-
ings scored as BI-RADS® 5 as positive
with low sensitivity and very high
specificity, and so on until point 1
with 100% sensitivity and 0% speci-
ficity (BI-RADS® 1 is the score for a
completely normal examination).
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Figure 1.10. ROC (receiver operator
characteristic) curves. Examinations
with larger areas under the ROC
curve have diagnostic performances
higher than those with smaller areas
under the ROC curve. Only the ROC
curves above the oblique straight
line between the upper right corner
and the lower left corner supply
useful diagnostic information. The
different degree of gray indicates
areas of poor, good, and excellent
ROC curves.

Se
ns

iti
vi

ty

1 – Specificity

Exc
elle

nt

Good

Po
or



2
Variables and Measurement Scales,

Normal Distribution, and Confidence Intervals

Science is built up of facts, as a house is with stones.
But a collection of facts is no more a science

than a heap of stones is a house.

JULES HENRI POINCARÉ

The dilemma between sensitivity and specificity noted by the choice of thresh-
old arises from the intrinsic variability of biologic phenomena, both at the cel-
lular level and the organ level in the human body in the presence and absence
of pathologic processes. When one measures the same hallmark in a sample of
individuals there always appears a spectrum of values which is a more-or-less
wide numerical set characterizing that sample for the measured hallmark. It is
not by chance that in Figure 1.6 we used a bell-shaped curve to represent the
set of possible values of the measured variable. Such curves indicate that the
variable may take all the values within them, and that the most frequently
observed values correspond to the central part of the curves.

In other circumstances the variable of interest may assume only qualitative val-
ues. This happens, for example, in the presence or the absence of a radiologic sign:
if we study a sample of n individuals, only a part of them will show that sign.

The object we are measuring is termed a variable. The values that it may take
depend on a mathematical law called distribution. One of the goals of statistics
is the characterization and representation of variables and their distributions. In
this chapter we will discuss the main types of variables and the essential ele-
ments of Descriptive Statistics (statistics which describes the characteristics of
the data). Therefore, we will see the main features of Gaussian distribution.

The reader should note that the subjective perception of a radiologic sign also
has its own variability: it can be different for two or more observers in the same
study and different for the same observer in different conditions. This concerns
a special topic, the reproducibility of a diagnostic study, which will be given
particular attention in Chapter 7.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.
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depends on the variable type

Link between variable type
and measurement scale

Nominal variables

Ordinal variables

2.1. Variables and Measurement Scales

We define variable a feature that can be observed and/or measured and that
may take at least two different values. Common synonyms (also in this book)
include characteristic and quantity. A variable is a kind of container that can
contain any type of information, but the representation and processing of this
information depend on the type of the data.

An important point is the subtle difference between the variable, its type and
the measurement scale used to represent it. The measurement scale is depend-
ent on the values the variable may take and the procedure (instrumental meas-
urement or subjective judgment) with which these values are obtained.
Changing the measurement scale may switch the variable from one type to
another. For example, let us consider the degree of stenosis of the carotid arter-
ies. We can indicate this variable with a numerical value that represents the per-
centage of occlusion; otherwise, we can visually distinguish the degree of
stenosis as mild, moderate or severe. In both cases, the variable of interest is
the degree of stenosis, but in the former case we have a measurement scale
ranging from 0% to 100%, while in the latter case we may use only three cat-
egories. As we shall see, this change in the measurement scale makes the vari-
able (the degree of stenosis) switch from the continuous type to the ordinal
type. The measurement scale therefore clearly defines the type of variable. For
this reason, some authors believe that the classification we propose in Sections
2.1, 2.2 and 2.3 can be attributed to the measurement scale, with no distinction
between the type of variable and the measurement scale. Although in practice
the two concepts are equivalent, in some circumstances the difference between
the type of variable and the measurement scale is evident.

In what follows, we report a brief summary of the different types of variables
and measurement scales [SIEGEL AND CASTELLAN, 1992]. The difference
between types of variables is very often quite subtle and at a first glance this
difference may not be so clear. We therefore invite the reader to pay close atten-
tion, since the statistical analysis strongly depends on the type of the variables
of interest. The first important distinction is between categorical variables and
numerical variables.

2.1.1. Categorical Variables

Categorical variables are variables whose values define categories, i.e. charac-
teristics of the individual that have no natural order. Typical examples are race,
gender, imaging technique, radiologic subspecialty, etc. For these examples,
the values they may take represent only names (Asian, female, MR imaging,
interventional radiology, etc.) and for this reason these variables are also called
nominal. A special case of categorical data is the dichotomous variable, like the
result of a diagnostic study in “positive” or “negative”.

In some cases, for example in the BI-RADS® score system for reporting
mammograms [AMERICAN COLLEGE OF RADIOLOGY, 2003], there is an intrinsic
order in the data, even though the difference between different scores cannot
be quantified. In these cases the variable is called “ordinal”. Another example
is TNM cancer staging [UICC, 2002].
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The statistical analysis of ordinal data is often performed by converting
each category into ranks, i.e. with the association of progressive numerical
values which are easier to manage. Typically, a sequence of integer numbers
(1, 2, 3…) is assigned to the various values of the variable. The radiologist’s
judgment may, for example, be expressed using the BI-RADS® measurement
scale (from 1 to 5) instead of negative, benign, probably benign, suspicious
abnormality, highly suggestive of malignancy.

Converting the ordinal variables into ranks is the conceptual link between the
categorical and numerical variables. The statistical analysis for the latter is gen-
erally more powerful.

2.1.2. Discrete Numerical Variables

Discrete numerical variables may take only a limited number of numerical values.
Generally, they regard countable values such as age, the number of lesions, etc.

The difference between discrete numerical variables and ordinal variables is
an important one. For example, let us focus our attention on number of malig-
nant lesions (discrete numerical variable) and tumor staging (ordinal variable):
four malignant lesions are twice as many as two malignant lesions, but tumor
stage II cannot be considered as twice the value of tumor stage I.

With discrete numerical variables the difference between two consecutive val-
ues is constant (e.g. Hounsfield units in CT)1 and this difference represents an
interval. For this reason, these variables are also known as interval variables.

2.1.3. Continuous Numerical Variables

Continuous numerical variables may take an infinite number of values which
are generally obtained by direct or indirect instrumental measurement. Due to
the possibility of being expressed with an arbitrary number of decimals, these
variables may, in theory, take every value in a given interval. In radiology, typ-
ical examples are lesion size, MR signal intensity, organ volume, artery diam-
eter, etc. These variables are often measured by dedicated computational tools
within the processing units.

In some circumstances, discrete variables can be managed as if they were contin-
uous variables, provided the sample has many different values. For example, let us
consider the age of a sample of 30 individuals, expressed in years: if the age distri-
bution covers a range from 20 to 80 years, then this variable can be considered as
continuous, even if it is a discrete variable. To do the same with children, age needs
to be expressed in months instead of years, and with a sample of newborns, in days
instead of months. Therefore, choosing the right measurement scale is important for
the statistical analysis one wants to perform. Moreover, the opposite procedure to the
one just explained can also be performed. Indeed, a continuous variable can be con-

Ranks

Difference between discrete
numerical and ordinal variables

Interval variables

Dimensional measurements
are continuous variables

Continuous variables may
also be considered discrete
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1 With Hounsfield units, the difference between the electron density of tissues and that of water is
divided by the water electron density and then multiplied by 1000. This approach distributes image
contrast over a wide range.



Analogies between variable
types and measurement scales

sidered discrete if we divide its value interval into two or more subintervals. These
subintervals may have the same amplitude (the continuous variable becomes an
interval variable) or different amplitudes (the continuous variable becomes an ordi-
nal variable). For example, the NASCET criteria [NASCET, 1991] for the classifi-
cation of carotid artery stenosis uses the following categories:

≤ 29% = mild stenosis;
30%-69% = moderate stenosis;
≥ 70% = severe stenosis.

In this case, a continuous variable like percentage occlusion is converted into
ordinal data thanks to the switch from one measurement scale to another.

2.1.4. Measurement Scales

The reader should have noted that the different data types have been defined in
relation to the possible values they may take, i.e. on the corresponding meas-
urement scales. As stated above, these are not independent concepts. The clas-
sification of measurement scales can be done in the same way as the classifi-
cation for variables, as Table 2.1 shows.

In medicine all types of variables and measurement scales are constantly in
use. A relevant part of the radiologist’s interpretation consists of converting
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Table 2.1. Measurement scales

Type Definition Hallmarks Examples

Qualitative Nominal Absence of a hierarchy Positive/negative
or categorical or order within categories (dichotomous variable); race,

gender, imaging technique,
radiologic subspecialty

Ordinal Presence of a hierarchy within BI-RADS® score for reporting
or ranked categories but the difference breast examinations

between two consecutive
values  cannot be quantified

Quantitative Interval Constant interval between two Electron density in computed
consecutive values without tomography (Hounsfield
a starting zero point; the units), temperature
variable may take positive and measured in degrees Celsius,
negative values; it does not T-score in bone densitometry
allow proportional calculation

Rational Constant interval between Heart rate,
two consecutive values with a signal-to-noise ratio
starting zero point; the variable
may take only positive or
negative values; it allows
proportional calculation



continuous data into a categorical evaluation, up to defining the examination as
positive or negative for the presence of a given disease.

As stated above, recognizing the data type being analyzed is highly relevant
because, while under certain conditions numerical variables may be manipulat-
ed with parametric statistical techniques (see Chapter 4), categorical data must
always be analyzed with non-parametric methods (see Chapter 5).

2.2. Gaussian Distribution

In the previous section we learned about the classification of variables. Now
we shall introduce an extension of what was stated above regarding continuous
variables. The concept of a distribution is very intuitive. A complete explana-
tion of all possible distributions (both continuous and discrete) is beyond the
aims of this book. To this end the interested reader may consult specialized
texts [SOLIANI, 2007]. However, the reader should pay particular attention to
this section given its importance for parametric statistics.

Let us suppose that a sample of 50 males, aged 20-50 years and without car-
diovascular diseases, undergo abdominal CT; for each subject the diameter of
the suprarenal abdominal aorta is measured. Table 2.2 shows the results.

In this sample the values of the abdominal aortic diameter are very close to
30 mm, with a minimum of 26.5 mm and a maximum of 33.4 mm. Data are
expressed using only a decimal place with the 50 individuals being distributed
over a range of 33.4-26.5 = 6.9 mm.

The observation of the raw data cannot provide a complete evaluation of all
the information contained. A more suitable way of handling the data is to divide
the observed value interval into subintervals and to determine how many meas-
urements lie in each. For example, we may consider the number of aortas

How Gaussian
distribution is built
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Table 2.2. Aortic diameter of a sample of 50 healthy individuals

No. Diameter (mm) No. Diameter (mm) No. Diameter (mm)

1 29.8 19 30.3 37 32.5
2 30.2 20 31.0 38 33.4
3 30.1 21 30.5 39 26.5
4 31.2 22 29.6 40 27.4
5 28.6 23 32.3 41 30.4
6 29.7 24 27.9 42 30.5
7 30.5 25 28.5 43 31.0
8 30.9 26 28.9 44 29.6
9 31.2 27 31.4 45 29.8
10 29.4 28 31.6 46 33.1
11 29.2 29 30.1 47 30.0
12 29.9 30 30.6 48 30.1
13 27.5 31 30.7 49 29.8
14 27.2 32 29.7 50 30.1
15 31.8 33 29.9
16 32.2 34 29.3
17 30.2 35 30.1
18 29.9 36 30.2



Histogram

whose diameter lies in the subintervals 26.0-26.9 mm, 27.0-27.9 mm, 28.0-
28.9 mm, and so on. Table 2.3 summarizes the number of counts within each
subinterval.

There are no aortic diameters outside the interval 26.5-33.4 mm, while a
substantial proportion (30/50, 60%) of them lie within the two central subin-
tervals. The next step is to report the data of Table 2.3 as a graph, as shown
in Figure 2.1.

This type of graph is called a histogram and it provides an immediate insight
into the information contained in Table 2.2. Indeed, the more populated subin-
tervals are the central ones and the number of diameters diminishes rapidly
when moving away from the centre. The subdivision into subintervals is arbi-
trary and depends on the sample size; however, a good compromise between
number of subintervals and counts is advisable.

Let us now suppose we increase the sample size from 50 to 200. The reader
may easily see that in this new case many more subintervals with a reduced
amplitude may be taken into consideration. When instead of considering only
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Table 2.3. Number of aortic diameters in each subinterval

Interval (mm) Counts

26.0-26.9 1
27.0-27.9 4
28.0-28.9 3
29.0-29.9 13
30.0-30.9 17
31.0-31.9 7
32.0-32.9 3
33.0-33.9 2

Total 50

Figure 2.1. Histogram of the
abdominal aortic diameter. The x-
axis reports the subdivision into
subintervals proposed in Table 2.3.
The y-axis indicates the number of
aortic diameters within each subin-
terval. The reader should note that
the x-axis does not start at zero.

Diameter (mm)

Co
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a sample we consider the whole population2 of males aged 20-50 years without
cardiovascular diseases in a given geographic area, we would reduce the subin-
terval amplitude to such a point that the histogram will appear as a continuous3

bell-shaped curve, as showed in Figure 2.2.
The curve in Figure 2.2 is called population distribution and represents a

limit case never encountered in practice. One of the most interesting aspects of
statistics is its capacity to extrapolate information obtained from a sample (nec-
essarily limited) to the entire population. This aspect is the goal of inferential
statistics and will be explained at length in the following chapters.

When analyzing data from more-or-less limited samples, the term of refer-
ence will always be histograms. Often the word “distribution” is also used for
limited samples, but it is important to stress the terminological difference: his-
tograms for samples; distributions for populations.

The reader may be wondering why patients with cardiovascular diseases and
those younger than 20 years and older than 50 years of age were excluded. This
was done so that the trend in aortic diameter should be a random variable bare-
ly dependent on other factors (age, gender, diseases). Later we will come back
to this feature.

The distribution of a random variable is always bell-shaped, as shown in
Figure 2.2. From a rigorous point of view, this curve is described by a mathe-

Difference between histogram
and distribution

From the sample
to the population

Histograms for samples,
distributions for populations

Random variable
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Figure 2.2. Histogram of abdom-
inal suprarenal aorta diameter of
the entire population. Note the
bell-shaped curve which repre-
sents the limit condition when the
amplitude of each subinterval
becomes zero.

2 In statistics, the population is an ideal set made up of an infinite number of units. However, in
medical statistics population stands for a real set of individuals (persons) who have a common
characteristic such as a defined nationality, the whole set of patients with myocardial infarct or with
prostate cancer, or breast cancer, or patients studied with a certain contrast agent, etc.
3 From a mathematical point of view, the histogram becomes a real continuous curve only when the
interval amplitude is reduced to zero.
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Gaussian distribution is also
defined normal

Mean and standard deviation
of a probability distribution

The main feature of
Gaussian distribution

Asymmetric distributions

matical function introduced by Karl F. Gauss (1777-1855) who started his
investigation from the geodetic measurements of the German State of Hanover.
This function was then used by Gauss to describe the motion of heavenly bod-
ies. Francis Galton (1822-1911) then proposed its use to describe many natural
phenomena, arguing that this distribution was the “norm” in nature. For this
reason Gaussian distribution is also defined “normal”4.

No formal demonstration of the fact that a random variable always has a nor-
mal distribution is available. Indeed, this is a principle, i.e. a law always empir-
ically verified and never contradicted. The reverse of this law is also used to
verify the randomness of a given variable: in practice, if we have a statistical
sample from which we measure a continuous variable, drawing up the corre-
sponding histogram and verifying that it has an almost Gaussian shape is
enough to conclude that the variable is random5.

The population distribution (built with counts) may be converted into a prob-
ability distribution, expressed by a mathematical function which allows us to
calculate the probability that the measured variable lies within a given interval.
This function is6:

(2.1)

where μ indicates the curve centre, i.e. the x-axis point where the distribution
takes its maximum value; σ is a width parameter, such that if σ is small, the
curve is narrow and high, whereas if σ is large, the curve is short and wide7.

We have decided to introduce the mathematical equation of the normal curve in
order to discuss one of its most important features. With this function, 95% of the
observations lie within the interval [μ – 1.96σ, μ + 1.96σ] (Figure 2.3). In prac-
tice, if we measure a characteristic (variable) of the whole population, 95% of
them would have a value lying within this interval. Therefore, the probability a
given individual has a measured value within [μ – 1.96σ, μ + 1.96σ] is just 95%.
Only the remaining 5% of individuals will have a value of x within the two tails
of the curve. As we shall see in Section 2.6, the definition of the confidence inter-
vals is based on this feature.

Now let us reconsider the previous example of the abdominal aorta. If we add
children to the sample, we introduce a series of values lower than that report-
ed in Table 2.2 and the left tail of the histogram becomes closer to zero. If,
instead, we insert adult females, another maximum in the histogram will be
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4 The terms Gaussian and normal are synonymous.
5 Note that the frequent occurrence of normal distributions in biologic phenomena is due to their
genesis being made up of a large number of factors (of which we know only a small part). Such
factors tend to both increase and decrease the value of the variable, thus determining the substan-
tial randomness of the result.
6 This function gives the probability p(x) that the measured variable lies within the interval
[x, x+dx].
7 2σ is the distance between the two curve points where the concavity changes its sign. It repre-
sents the curve width in a point placed at 60.7% of the maximum (see Figure 2.3).



produced at a lower value than that observed in the adult males at about 30 mm.
Similarly, if we insert patients with cardiovascular diseases into the sample, we
have a percentage of individuals with a higher aorta diameter who tend to push
the right histogram tail to higher values. In these three cases, the histogram will
appear asymmetric and, as stated above, this means that the measured variable
is no longer random.

The Gaussian probability distribution is symmetric about μ and its width
depends on σ (see Fig. 2.3). Without going into the mathematical demonstra-
tion, it is easy to see that μ coincides with the mean and σ coincides with the
standard deviation of the variable we are measuring in the population.

To further elucidate this feature, let us consider once again the example of
the abdominal aorta and proceed step by step. In the data presented in Table 2.2
the aortic diameter tends to lie at about 30 mm and the arithmetic mean (which
will be defined in the next section) confirms this trend, being equal to 30.1 mm.
However, the sample of Table 2.2 includes only 50 individuals instead of the
entire population. The only way to obtain the real mean of the abdominal aorta
diameter is to measure this variable in the entire population; but this is practi-
cally impossible. However, as stated above, the probability distribution is ide-
ally built only for the entire population. It is therefore clear that the maximum
point of the histogram of samples with progressively increasing size, which
coincides with μ, slowly becomes the mean of the entire population. Similarly,
the standard deviation (which will be defined in the next section) of the data in
Table 2.2 is a measure of the histogram width and it will become the standard
deviation of all the population as the sample size increases. Since the trend of
the histogram is to appear as a normal curve with width σ, the standard devia-
tion will clearly become equal to σ.

The normal probability distribution is completely defined by the two parame-
ters μ and σ: once we know their values, the curve is obtained with Equation 2.1
and it is unequivocally defined. Two distributions with different μ values are
displaced from each other on the x-axis, whereas if they have different σ val-
ues the two curves have different amplitudes and widths. In the example of the
abdominal aorta, the diameter distribution in the adult female population is

Sample mean and population
mean

Gaussian distribution
only depends on mean
and standard deviation
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Figure 2.3. Gaussian probability
distribution centered at μ and
with width 2σ. The probability an
individual of the population has x
within the interval [μ − 1.96σ, μ +
1.96σ] is 95%.

p(
x)

μ – 1.96σ μ + 1.96σ xμ

σ σ



Standard normal distribution

probably centered about a lower value, with a partial overlapping with the
curve representing adult males.

Figure 2.3 clearly shows that each point on the x-axis, i.e. each value of the
measured variable, may be expressed in terms of the distance from the mean
(x – μ). For example, the point x = μ + 1.96σ is placed at a distance equal to
x – μ = 1.96σ. Since this statement holds for each pair of parameters (μ, σ),
they can be made independent by considering the variable:

It can be demonstrated that if x is a random variable and, therefore, has nor-
mal distribution, then z is also a random variable with normal distribution
(called standard normal distribution), but unlike x it has a mean always equal
to 0 and a standard deviation always equal to 1. The z distribution graph is
shown in Figure 2.4.

In practice, for each random variable it is always possible to build the cor-
responding standard normal distribution which is always the same regardless
of the starting variable (aorta diameter, size of a lesion, renal volume, etc.).
Since x, μ and σ have the same unit of measurement (mm in the case of the
aorta diameter), then z is a pure number, i.e. it has no unit of measurement.
For all these reasons, the standard normal distribution is universally used in
all inferential statistics. The reader should note that, with respect to Figure
2.3, in Figure 2.4 the x on the x-axis has been replaced with z, and the p(x)
on the y-axis has been replaced with p(z). The two points x = μ ±1.96σ
become z = ±1.96 and the interval [-1.96, 1.96] contains 95% of the observa-
tions. In terms of probability, the z value for each individual in the population
has 95% probability of lying within this interval.

It should be stressed that a deep mathematical understanding of this section
is not fundamental. For all practical purposes a number of easy-to-handle data
tables are available.
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Figure 2.4. Standard normal
distribution.



2.3. Basics of Descriptive Statistics

As stated in the Introduction, the goal of descriptive statistics is to describe the
data of a sample. The word “sample” identifies a set of statistical units (often,
in medicine, humans, but sometimes organs, anatomic structures or lesions)
extracted from a population with one or more features. For example, the pop-
ulation may be all the members of a country (epidemiology), the entire set of
newborns (neonatology), all cancer patients (oncology), all patients with a clin-
ical indication for a certain radiologic examination (radiology) etc. Although in
all these cases the size of the population is not actually infinite, this size is so
large that we can treat it as if it really were infinite.

The population from which the sample is extracted has a precise distribution
(not necessarily a normal distribution) and its features reflect that of the sam-
ple. If, for example, in a sample of n pulmonary nodules at CT screening we
observe a high fraction of benign lesions, this suggests that in the entire popu-
lation of nodules the observed variable (the fraction of benign lesions) will
have a value8 close to that obtained in the sample, and the larger the sample is,
the more valid such a statement is.

The example just reported introduces a fundamental concept: random sam-
pling. This consists of extracting the sample from the population in a totally ran-
dom way, without selection or influence of any type9. Otherwise, the sample
characteristics do not reflect those of the population: in this case, the study is
affected by systematic distortion or bias (bias will be discussed in Chapter 9).

Descriptive statistics is extremely broad and a complete discussion goes
beyond the aims of this book. Instead, we shall introduce the most important
and most used parameters.

2.3.1. Measures of Central Tendency

Measures of central tendency are parameters that provide information about the
position of the distribution.

The first is the arithmetic mean, often simply called mean. Let x indicate a
continuous variable and let {x

1
, x

2
,…, x

n
} be a sample of x. The arithmetic

mean m is defined as:

(2.2)

and is the ratio between the sum of all the measurements and the size of
the sample. The reader will have noted that we used the Latin letter “m”,
in contrast to the previous section where we used the Greek letter “μ”.

The population

The population always has
an unknown true value

Random sampling

Arithmetic mean

“m” and “μ”
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8 The mean value of the population is often called the true value, because it exists even if we do
not know what it is.
9 It is not by chance we use the verb “to extract”, derived from the extraction procedure of a bal-
loon from a box.



The mean of ordinal variables
cannot be calculated

Median

Outliers

Mode

This notational difference is generally used to distinguish the estimation
of the mean (calculated from the sample) from its true value (that of the
entire population).

The arithmetic mean takes into account all the sample values and it is
strongly dependent on possible extreme, isolated (outlier) data typical of
asymmetric histograms. At this point the reader should recall that the mean
of ordinal variables cannot be calculated. If, for example, we use the BI-
RADS® classification (0, 1, 2, 3, 4, 5 and 6) to describe a sample of mam-
malian lesions, we could be tempted to calculate the mean sample value.
However, although it is possible from a mathematical point of view, we
would obtain an absolutely nonsense value. A mean score equal, for example,
to 3.4 is not correctly interpretable, because we are unable to quantify the dif-
ference between two consecutive scores.

Another commonly used measure of central tendency in statistics is the medi-
an. It is not calculated from the sample data, as with the mean, but it is defined
as the value that divides the sample in two sub-samples with the same size, as
defined by the following operating procedure:

1. All values should be reorganized in ascending or descending order;
2. For an odd value of n, the median coincides with the central value;
3. For an even value of n, the median is the arithmetic mean of the two central

values.

Let us consider a practical example. Let the following samples be the age
(expressed in years) of two different groups made up of 15 patients:

18, 18, 23, 27, 32, 35, 36, 38, 38, 42, 47, 51, 52, 56, 57 Group I

18, 18, 23, 27, 32, 35, 36, 38, 38, 42, 47, 51, 52, 86, 87 Group II

The two groups are almost identical samples apart from the last two values
that are markedly different (outliers). We obtain:

mean = 38, median = 38 (years) Group I

mean = 42, median = 38 (years) Group II

Because of an odd value of n for both groups, the median coincides with the
central value, in such a way that seven values are lower and seven values are
higher than the median. The mean is 38 years for Group I and 42 years for
Group II: it is clear how the mean is influenced by the two extreme values of
Group II (86 and 87 years), unlike the median which in contrast is the same
value for both groups. This effect depends on the definition of the mean, which
is calculated using all the sample data, while the median is a position index,
placed at the middle of an ordered series of values.

Lastly, let us introduce another measure of central tendency: mode. The
mode is the most frequent value of the sample, i.e. the value observed with the
highest frequency. It is not necessarily a single value (in the last example the
values 18 and 38 are observed twice). In the event of more than one mode the
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sample is called multimodal10. Generally the mode is rarely used, in part
because it may be very far from the distribution centre. However, it has great
conceptual significance: when we are dealing with a nominal scale of measure-
ment, the mode is the only index of what actually happens in the sample. We
usually think of it as the most frequently observed category. In other words,
when we have nominal data, asking which of two or more categories is more
frequent is the same as defining the mode.

In order to clarify the relationship between mean, median and mode let us
consider the following example.

Example 2.1. Let us consider the size of the mediastinal lymph nodes stud-
ied by CT in a sample of patients with lung cancer. The sample may con-
tain many small lymph nodes (healthy, inflamed and metastatic) and a pro-
gressively decreasing number of enlarged lymph nodes (these are especial-
ly, but not only, metastatic lymph nodes). An example of the possible pop-
ulation distribution from which the sample could be extracted is shown in
Figure 2.5A. For the purpose of comparison, the distribution of lymph node
diameter in the healthy population is also shown (Fig. 2.5B). Note that the
relative position among the three indices depends on the symmetry/asym-
metry of the distribution: they coincide only in the event of symmetrical
distribution.

Example 2.1 shows the importance of calculating both the mean and the
median of a sample. By comparing them we derive a fundamental bond for
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10 This can be adequately demonstrated with the abdominal aorta example introduced in Section
2.2. If the population from which the sample is extracted includes both males and females, the dis-
tribution has two maximum values: a maximum corresponding to the mean diameter of the abdom-
inal aorta in males, and another corresponding to that in females.

Figure 2.5. Mean, median and
mode. The x-axis depicts the diam-
eter of lymph nodes and the y-axis
indicates the number of lymph
nodes in the population with lung
cancer (A) and in the healthy pop-
ulation (B). The reader should note
the difference between mean,
median and mode for asymmetric
distribution (A) whereas the three
indices coincide for the symmetric
curve (B).
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Mode Median Mean

Diameter of lymph nodes

Number
of
lymph nodes
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When the arithmetic
mean is not suitable as

a measure of central tendency

Distribution shape indices

Variance

applying the methods of parametric statistics: the symmetry or asymmetry of
the population distribution11. If the difference between mean and median is too
large, the median should be used as the measure of central tendency.

2.3.2 Data Spread about the Measurement of Central Tendency:
Variance and Standard Deviation

In the previous section we introduced some measurements of central tendency
which, when calculated on a sample, provide information about the position of
the distribution. If we measure the same variable in two samples extracted from
different populations (with different distributions), the two means will tell us
how much the two centroids12 are separated. However, we do not have any
information about the shape of the distribution, i.e. the way data spread about
the distribution centroid. The reader will undoubtedly have realized that what
we are searching for is an index that measures the distribution width.

Let us reconsider the example of the abdominal aorta that we introduced in
Section 2.2. The arithmetic mean diameter is 30.1 mm, the minimum value is 26.5
mm and the maximum value is 33.4 mm. Both the minimum and the maximum
values define the range of the observed values, but do not provide information on
what happens within this interval: data could be distributed in several ways, but
we know that most of the values are grouped about the mean (see Fig. 2.2).

The starting point is to calculate the distance between each sample value and
the mean. Let x

i
be the i-th sample value and x- be the sample mean. The dis-

tance between them is the difference d
i
= x

i
– x-. The difference d

i
is also called

“residual” and it is a positive value when x
i
> x-, a negative value when x

i
< x-

and it is zero when x
i
= x-. For a well known theorem, the sum of all the resid-

uals is zero13, so we need a different indicator. One possibility is to use the
square of the residuals, d2

1
= (x

i
– x-)2. The variance is defined as:

and is calculated as the sum of the square of all residuals divided by the degree
of freedom14, i.e. (n-1). For variance (s2) we also used a Latin letter, in order to
differentiate the variance calculated in the sample15 and the variance of the
entire population, expressed with σ2.
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11 Actually, verifying the symmetry of the distribution is not enough. If we want to use the meth-
ods of parametric statistics we need to check for normal distribution.
12 We cannot speak of a center because asymmetric distributions do not have a true center.
13 In fact, for each positive residual there is a corresponding negative residual.
14 To better understand the degree of freedom concept the reader may like to consider the follow-
ing: if we know n-1 values of a sample whose size is n and we also know the sample mean, then
the remaining sample value is unequivocally determined and is not free to take any value. In this
case the degree of freedom is n-1.
15 In the next section we shall see that the mean and the variance calculated from the sample are
also called sample mean and sample variance.



The variance does not have the same unit of measurement as the measured
variable x, but it does have its square. For this reason it is more suitable to cal-
culate its square root. The standard deviation is defined as:

(2.3)

and is the square root of the variance. The standard deviation, often abbreviat-
ed as “SD”, has the same unit of measurement as x and it is a direct estimation
of the population distribution width, indicated with σ. The standard deviation
is the best known spread measure and it is commonly associated with the mean
as mean ± SD.

The standard deviation always has positive values and it is a very good
indicator of the width of the symmetric distributions. As stated with regard
to the difference between mean and median, when we are dealing with
asymmetric distributions, we need more useful spread measures than the
standard deviation. The curves shown in Figure 2.5 will help to clarify this
point. In graph A the curve is asymmetric on its right side. Since the stan-
dard deviation is calculated on the entire data sample, it is significantly
influenced by the extreme values. On the other hand, although the curve
width in graph B is equally divided between the right and the left side of the
mean, this is not the case in graph A. So when we are dealing with asymmet-
ric distributions we have to consider quartiles rather than standard devia-
tion. We shall now provide a rigorous definition of quartiles followed by a
clarifying example.

Let n be the size of the sample and let the data be reorganized in ascending
order. The 1st quartile (or, alternatively, 25th percentile) is the value below
which we find the first quarter (n/4, 25%) of the observations; similarly, the
2nd quartile (50th percentile) is the value below which we find half (n/2, 50%)
of the observations; the 3rd quartile (75th percentile) is the value below which
we find 75% (3n/4) of the observations. The reader will have recognized that
the 50th percentile coincides with the median.

Let us consider the following example:

21, 36, 4, 85, 4, 56, 87, 65, 12, 24, 2, 54, 9, 32, 30, 26

which indicate the age of n = 16 patients. The first step is to rewrite the data in
ascending order, as follows:

2, 4, 4, 9, 12, 21, 24, 26, 30, 32, 36, 54, 56, 65, 85, 87

Since n is an even number, the 50th percentile (median) is the arithmetic
mean of the two central values (26 and 30), i.e. 28. Let us look at the first half
of the sample. Since n/2 has again an even value, the 25th percentile is the
mean of the two central values 9 and 12, i.e. 10.5. In the second half of the
sample we calculate the mean of 54 and 56, i.e. 55, which represents the 75th
percentile.

Standard deviation

Quartiles and percentiles

50th percentile coincides
with median
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Difference between
estimator and estimation

Sample mean and sample SD

The arithmetic sample mean
is the best estimation of the

population true value

2.4. Standard Error of the Mean

In the previous section we introduced the two main parameters for describing
the hallmarks of a sample obtained measuring a continuous variable on n indi-
viduals randomly extracted from the population: mean and SD.

Both the mean and standard deviation of a sample only provide an estima-
tion of the true values of mean and SD. The two mathematical relations (2.2)
and (2.3) only represent the way by which these estimations are calculated. In
order to distinguish the formulas from the calculated values the term estimator
is often used. In practice, the two estimators mean and SD provide an estima-
tion (m and s, respectively) of the true values of the population (μ and σ,
respectively).

In the past many other estimators were proposed as central tendency and data
spread measurements and, to be perfectly honest, our preference for mean and
SD has not been justified. Without going into details, we may simply state that
mean and SD are the only estimators which have all the features that an esti-
mator must have.

Since they are only estimations, the numerical values of mean and SD
are imprecise evaluations. Their values depend on the sample considered;
if, for example, we extract a different sample from the same population
and recalculate the mean and SD of this new sample, we will clearly obtain
different values. In order to stress this link with the sample, the mean and
the SD calculated in (2.2) and (2.3) are also called sample mean and sam-
ple SD.

Example 2.2. Sample mean and sample SD. Let us consider the population
of all women with breast cancer and let us evaluate the mean size of the
tumor. Using the same instruments and diagnostic technique, two different
hospitals measure the mean diameter on two different samples made up of
100 patients. The findings of the first hospital are: m = 2.3 cm and s = 1.1 cm;
the findings of the second hospital are: m = 2.5 cm and s = 1.0 cm. The results
obtained by the two hospitals represent two sample estimations of the true
mean and SD.

Example 2.2 demonstrates that even under the same conditions the sample
estimations depend on the particular extracted sample. At the same time, in the
medical literature we often find many studies reporting several different values
for the same variable. If the population from which the samples are extracted
is the same and if there are no errors in designing and performing the study, this
is simply the result of random sampling16.

Although we have not demonstrated it, the arithmetic mean of a sample is the
best estimation that we have for the true mean value of the measured variable.
Let us now ask the following question: “To what extent is the sample mean a
good estimation of the population mean?” In order to answer this question we
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16 The reader should also note that the different values of sensitivity, specificity, accuracy and pre-
dictive values of a diagnostic technique found in the literature for a given disease simply represent
estimations and have the same features of an arithmetic mean.



have to know the uncertainty associated with our estimation: the higher this
uncertainty, the less precise our estimation becomes, and vice versa.

Now let us consider the following ideal experiment. We extract a large num-
ber of samples from the same population, all made up of n individuals17, and
we calculate the mean for each sample. We build a histogram on which we
report the observed means on the x-axis, instead of the single observations.
Based on the central limit theorem, this histogram appears as Gaussian with
mean μ (i.e. the same mean as the population) and SD equal to:

The SD of this ideal distribution is the ratio between the SD of the population
(σ) and the mean square root of the sample size (n). Therefore, the result of the
previous ideal experiment clearly gives rise to a new normal distribution (the
distribution of the sample mean) with the same center as for the population, but
the greater the sample size, the lesser its width is. In fact, if the mean of a sam-
ple differs significantly from μ, it is true that by calculating the mean of many
samples and then the mean of the means we obtain a more precise estimation.

When we talk about the distribution of the sample mean we implicitly refer to
the result of the ideal experiment just developed, i.e. a distribution for which on
the x-axis we pose the mean of one of the extracted samples instead of the single
observations. Moreover, the central limit theorem shows that the distribution of
the sample mean appears approximately as Gaussian even if the measured data is
not a normal variable, and the larger n is, the better this approximation becomes.

The SD of the distribution of the sample mean is called standard error of the
mean, often simply called standard error (SE), defined as:

As the reader may note, since the distribution of the sample mean is the result
of an ideal experiment, the SE depends on the true SD, which remains an
unknown parameter. On the other hand, in practice we only analyze one sam-
ple. All we can do is estimate the SE by substituting σ with the SD of the sin-
gle extracted sample, namely:

Therefore, once we have a sample, the SE is a measure of the uncertainty
associated not with the single measurement but with the arithmetic mean since
it is the best estimation of the true value of the population: the lower the SE,
the higher the precision of the sample mean is, and vice versa.

The question we posed earlier (To what extent is the sample mean a good
estimation of the population mean?) has not obtained a complete answer. Now

Sample distributions:
the central limit theorem

Standard error of the mean (SE)

The standard error is a measure
of the precision of the sample
mean estimation
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Confidence intervals

we know how to calculate the uncertainty associated with the sample mean, but
we do not have a mathematical relationship between the two quantities. What
does it mean that the SE of the mean represents the uncertainty associated with
the sample mean? In other words, is the arithmetic mean equivalent to the true
value of the population? And if not, how much do they differ?

The sample mean, m, may differ significantly from the true value, μ. Therefore,
we need a mathematical object able to calculate the probability that m does not
differ from μ by more than an arbitrary chosen quantity. This approach focuses on
the true value and its goal is the calculation of a probability. Apart from the prac-
tical difficulties involved, there is a conceptual error based on the impossibility of
knowing the true value. The right approach is, in fact, the reverse one, i.e. to fix
a probability (confidence level) and obtain the interval that contains the true value
with that probability. This interval is called confidence interval.

Let us come back to example 2.2. The first hospital found a mean tumor size
equal to 2.30 cm with a SD equal to 1.10 cm. Since the size of the analyzed
sample is n = 100 patients, we may calculate the SE of the mean as:

As stated above, the best estimation of the mean tumor size of the population is
2.30 cm with an uncertainty equal to 0.11 cm. Now we want to calculate the inter-
val (in terms of tumor size) that, with a given confidence level, contains the true
value. The greater the a priori fixed probability, the greater is the width of the inter-
val we are seeking. If, to the limit, we would like to be sure and calculate the inter-
val containing the true value with a probability of 100%, the result should be from
zero to infinity, i.e. the set of all the values the variable may assume18. In recent
decades it has become widely accepted in the literature that the optimal confidence
level is equal to 95%, such that in most cases the 95% confidence interval is calcu-
lated (95%CI)19. Now we will see how to calculate the 95%CI.

We stated that the mean is the best estimation of the true value, so the confi-
dence interval is obtained summing and subtracting a certain quantity Δm to
the mean. In this way we obtain the interval boundaries as:

95%CI = m ± Δm

We also saw that the uncertainty of the mean is represented by the SE, so Δm
is proportional to the SE, that is:

Δm = t
95%

SE

from which:

95%CI = m ± t
95%

SE
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18 Note that the measured variable is the size of the breast cancer which obviously cannot have neg-
ative values.
19 We will see the reasons (including historical reasons) for this choice in Chapter 3. However,
wider (e.g. with 99% confidence level) or narrower (e.g. with 90% confidence level) confidence
intervals can also be calculated.
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where t
95%

is a quantity that has a Student’s t distribution with n – 1 degree of
freedom. A complete description of the Student’s t distribution is beyond the
aims of this book. Here we simply state that t

95%
represents a numerical value

easily retrievable from published datasheets [ALTMAN, 1991].
In Example 2.2 the sample size is n = 100 and, therefore, the degree of freedom

is n – 1 = 99. From the published datasheets we obtain t
95%

= 1.984. Therefore:

95%CI = 2.3 ± 1.984.0.11 = [2.08, 2.52] cm

Therefore, at the confidence level of 95%, the mean breast cancer size of
the entire population lies between 2.08 cm and 2.52 cm; at any rate, there
remains a 5% probability that the true value is lower than 2.08 cm or higher
than 2.52 cm. This statement represents a bridge between the features of the
sample and that of the population. Confidence intervals will be discussed in
more details in Section 2.6.

2.5. Standard Error of the Difference between Two Sample Means

Here we introduce a simple generalization of the standard error of the mean
which will be useful in Chapter 4.

In many circumstances encountered in medical research a comparison is
made between the means of two independent samples.

Example 2.3. Myocardial delayed enhancement measurement with car-
diac MR imaging. We want to evaluate the difference between two contrast
agents (CAs) in terms of delayed enhancement. For this reason, a sample of
21 post-ischemic patients undergo a cardiac MR examination with inversion
recovery turbo-gradient-echo sequence ten minutes after the injection of 0.1
mmol/kg of CA 1. We measure the signal intensity (SI), expressed in arbitrary
units (a.u.), in a region of interest placed in the infarcted myocardium. A sec-
ond sample of 7 post-ischemic patients is studied with the same technique but
with 0.1 mmol/kg of CA 2. Data are reported in Table 2.4.

Example 2.3 shows the typical situation in which two independent samples
(whose sizes are n

1
and n

2
and which were extracted from two different popu-

lations) are treated in different ways: with different drugs or CAs, with differ-
ent imaging modalities, or even with different techniques of the same imaging
modality, etc. In these cases, the question is: “If we find differences in the
results, is this effect due to the treatment difference or simply to chance?” In
Example 2.3, the mean signal intensity is 43.7 a.u. in the sample treated with
CA 1 and 20.4 a.u. in the sample treated with CA 2. It is correct to suspect that
this difference, even if large, is simply the result of sample diversity. In fact,
nobody may exclude that using both the CAs with the same sample one would
obtain very similar results (we will discuss this possibility in the next section).
The difference between the delayed enhancement obtained with both the CAs
is highly significant (p = 0.0004) if analyzed with a non-parametric statistical
test (Mann-Whitney U test), for which we refer to Chapter 5. Here we use the
data of this example to illustrate a fundamental mathematical parameter.
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Distribution
of the difference

between two means

In the previous section we introduced the standard error as the result of an
ideal experiment in which one calculates the mean of several independent sam-
ples all with the same size, n. Now let us slightly modify this experiment by
extracting not one sample but couples of samples at a time; the two samples of
a couple have to be treated with the two different treatments that we are com-
paring. We calculate the mean of each sample of the couple and their differ-
ence. In this way we may build the distribution of the difference of the means
that has variance, σ2, equal to the sum of the two single variances σ2

1
and σ2

2
.

Therefore, it is:

where SE(μ
1
– μ

2
) is the standard error of the difference between the means of

the two populations. Since the two true variances remain unknown, we substi-
tute σ2

1
and σ2

2
with their best estimations s2

1
and s2

2
, such that:
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Table 2.4. Signal intensity for the two contrast agents of Example 2.3

Sample 1 SI (a.u.) CA 1 Sample 2 SI (a.u.) CA 2

1 32.8 1 18.8
2 30.6 2 13.0
3 34.2 3 17.8
4 18.2 4 25.8
5 36.0 5 15.8
6 37.6 6 22.4
7 45.4 7 29.0
8 52.4
9 66.8 m

2
20.4

10 67.8 s
2

5.7
11 23.2 SE

2
2.1

12 33.0
13 62.0
14 51.2
15 72.2
16 28.6
17 29.4
18 46.0
19 51.8
20 33.0
21 65.8

m
1

43.7
s

1
16.1

SE
1

3.5

SI = signal intensity; CA = contrast agent; a.u. = arbitrary units.



where SE(m
1
– m

2
) is the standard error of the difference between the two sam-

ple means m
1

and m
2

(in Section 4.2 we will see that there is another method
for calculating standard error). For Example 2.3:

In practice, our focus shifts from the two single means, m
1
and m

2
, to their dif-

ference m
1
– m

2
= 43.7 – 20.4 = 23.3 a.u., which becomes a new variable whose

estimation has an uncertainty equal to 4.1 a.u. Similar to what we saw in the pre-
vious section, the confidence interval of the difference of the means is:

95%CI = (m
1

– m
2
) ± t

95%
SE(m

1
– m

2
)

where t
95%

has to be obtained in the datasheet of the Student’s t distribution with
(n

1
– 1) + (n

2
– 1) = n

1
+ n

2
– 2 degree of freedom. For Example 2.3, t

95%
= 2.056 and:

95%CI = (43.7 – 20.4) ± (2.056 × 4.1) = [14.8, 31.8] a.u.

that is, with a 95% confidence level, the true difference between the means of
the two populations lies between 14.8 a.u. and 31.8 a.u.

2.5.1. Paired Data

A particular case in comparing two sample means is when each statistical unit
of the sample undergoes the two treatments; this circumstance introduces the
denomination of paired data. For the comparison of the two contrast agents in
Example 2.3, the radiologist could repeat the diagnostic examination adminis-
tering both contrast agents (with a time delay of, for example, one day) to the
21 + 7 = 28 patients.

In this case the starting point for obtaining the confidence interval is to cal-
culate the subject-by-subject difference of the measured values. So our focus
shifts from each couple of values to their difference.

In Table 2.5 the column of the difference represents a variable with an almost
normal distribution centered about the true value of the difference between the
two means m

1
and m

2
with m being an estimation of the true value.

The procedure for the calculation of the confidence interval is similar to the
previous one. In fact, we have to calculate the SE in this case too and to use the
t

95%
value as follow:

95%CI = m ± t
95%

2.6. Confidence Intervals

In the previous sections we introduced the confidence intervals of the mean and
of the difference of two sample means. In this section we wish to provide a
broader view of the general concept of confidence intervals.

The confidence interval of the
difference between two means
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Let us start our discussion by stressing an important hallmark of Gaussian
distribution. Under conditions of normal distribution with mean equal to μ and
standard deviation equal to σ, 95% of the observations lie in the interval:

μ ± 1.96σ (2.4)

This result holds for all values of μ and σ (i.e. for each continuous and random
variable) as it is based only on the particular mathematical shape of the Gaussian
curve. For example, if we measure a continuous variable for a sample of 500 indi-
viduals and calculate mean and SD, then, on average20, 95% of them (450) lie with-
in the interval mean ± 1.96SD. We may also state that if we extract another individ-
ual from the population, this will have 95% probability of lying within that interval.

The general mathematical relation (2.4) keeps this feature even if we consid-
er the distribution of the sample mean, i.e. the hypothetical distribution we built
in Section 2.4 as the result of an ideal experiment. Thanks to the central limit
theorem, the distribution of the sample mean is almost normal, its mean (m)
coincides with that of the population and its SD is equal to that of the sample
(s) divided by the mean square root of the sample size (n). Then 95% of the
sample means lie in the interval:

m ± 1.96 = m ± 1.96 SE

The format of the latter relationship is very similar to that of the CI95% of
the mean, that is:

95%CI = m ± t
95%

SE
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20 The feature of normal distribution for which 95% of the observations lie in the interval μ ±1.96σ
holds rigorously only for the entire population. For a limited sample we have to state that the 95%
of the observations lies within this interval, on average.

Table 2.5. Comparison of two sample means for paired data

Individual 1st measurement 2nd measurement Difference

1 a b a-b
2 c d c-d
… … … …
… … … …
n y z y-z

Mean m
1

m
2

m

SD s
1

s
2

s

SE =

SD = standard deviation; SE = standard error.



The two mathematical expressions are very close to one another. When the
degree of freedom (n – 1) is large enough (n > 100), the difference between the
Student’s t and Gaussian distributions is very small. In fact, if n = 101 the num-
ber of degree of freedom is n – 1 = 100 and t

95%
= 1.98, very close to 1.96. In

practice, with small samples (n < 100) one should use the t
95%

coefficient, rather
than the value of 1.96, because the smaller the sample size, the higher the dif-
ference between the two coefficients. The reader should note that it is more cor-
rect to use the t distribution (therefore the t

95%
coefficient) than the normal dis-

tribution (therefore the 1.96 coefficient), because in the standard error formula
the SD of the population (σ) is estimated by the SD of the sample (s).

What we stated with regard to the mean may also be said about the differ-
ence between two means. The reader will have noted that in Sections 2.4, 2.5
and 2.5.1 we followed the same procedure. The 95% confidence interval of
every estimation always has the following format:

95%CI = estimated value ± coefficient
95%

SE
estimated value

The coefficient
95%

depends on the case, but it is always retrievable from pub-
lished datasheets [GARDNER AND ALTMAN, 1990].

A limited sample provides an imprecise sample estimation of the true value of
the population and this imprecision is expressed by the width of the confidence
interval: the wider these intervals are, the less precise the estimation is, and vice
versa. An estimation with a very wide confidence interval casts more than a shad-
ow of doubt on the reliability of the observed value. Let us suppose, for exam-
ple, we have measured the specificity21 of a certain diagnostic modality for the
detection of a given disease and have obtained the value of 0.75 with a confi-
dence interval equal to [0.57, 0.93]. Although 0.75 is the best estimation we have,
the true specificity could be as low as 0.57 or as large as 0.93, a very wide inter-
val indeed. In this case we cannot trust the obtained estimation because the prob-
ability of overestimating or underestimating the true specificity is very high.

The confidence intervals shift the focus from the variable estimation, also
called point estimation, to an interval of value considered as compatible with
the population. It is important to understand that confidence intervals depend
on the sample size and on the sample variability and do not provide any infor-
mation on possible errors of design, implementation and statistical analysis of
a study.

2.7. Confidence Interval of a Proportion

Each ratio between two numerical values is a proportion. Typical examples
are the sensitivity and the specificity (for the detection of a given disease),
the predictive values, the fraction of the subjects of a sample who have or do
not have a given characteristic, etc. On the other hand, this latter definition
represents the most general case: the sensitivity, for example, is defined as

General form of a 95%
confidence interval

The confidence interval
width is a measure of the
point estimation precision

Confidence intervals do
not provide any information
on the estimation accuracy

Proportion
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true negatives and the false positives (see Chapter 1).



The standard error
of a proportion

Use of a binomial distribution

the ratio between the number of individuals who obtained a positive test
result and actually had the disease and the number of all the individuals who
actually had the disease.

For the proportions we may also say that the numerical value calculated
for a limited sample only represents an estimation of the true proportion
and for this reason it is somewhat imprecise. The calculation of the confi-
dence interval of a proportion, p, follows the same general rule we saw in
the previous section. As in all cases, one needs to obtain the standard error
of p, SE(p), and the coefficient

95%
. Based on an approximated procedure, we

may calculate the standard error using the hallmarks of normal distribution
and obtain:

Using coefficient
95%

= 1.96:

The larger n is, the better the approximation. However, the latter formu-
la can only be used when p is not too far from 0.5 (50%); in the extreme
cases, namely when p is close to 0 (0%) or to 1 (100%), it may provide non-
sense results, with confidence intervals that contain negative values or val-
ues higher than 1. For example, if in a sample of 15 post-ischemic patients
undergoing contrast-enhanced cardiac MR two of them show delayed
enhancement, then p = 2/15 = 0.13 and 95%CI(0.13) = [-0.04, 0.30]: with
a 95% confidence level, the true proportion could even be -4%, which is
clearly impossible. Conversely, if for example p = 0.92, we could obtain an
interval like [0.80, 1.04], with the possibility that the true proportion
exceeds 100%.

With the diagnostic performance indices (sensitivity, specificity, etc.) we
very often observe values close to 1. In these cases, a calculation procedure
based on binomial distribution should be used. The formula for the calculation
of the confidence interval using binomial distribution is more complicated and,
for this reason, our advice is to always refer to a statistician or use a statistical
software package.
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3
Null Hypothesis,

Statistical Significance and Power

When you get new data,
be ready to change your hypothesis.

FRED TUREK

Observation and theory get on best when they are mixed together,
both helping one another in the pursuit of truth.

It is a good rule not to put overmuch confidence in a theory
until it has been confirmed by observation.

I hope I shall not shock the experimental physicists too much
if I add that it is also a good rule not to put overmuch confidence

in the observational results that are put forward
until they have been confirmed by theory.

ARTHUR S. EDDINGTON

The strategic purpose of a scientific work is to demonstrate a hypothesis pro-
posed by the authors. The hypothesis arises from their own anecdotic observa-
tions or previous scientific works or from papers previously published by other
authors. The primary requirement for a scientific study is an idea we want to
verify by means of a series of facts. The facts could also be those which other
authors have already described (e.g. meta-analysis – see Chapter 8). Hence, we
can say that the only technology we absolutely need is the neuronal circuitry of
our brains as evolved primates.

This joke highlights that a scientific work must always arise from a clear
explicit hypothesis. In the classic case, in order to demonstrate that the hypoth-
esis is true, the scientist designs an ad hoc experiment. In this sense, we name
the hypothesis as experimental1 hypothesis. We should note that the hypothesis
is almost always derived from previous observations and from the discussion
about them, thus confirming or failing to confirm previous well-established
knowledge. There is a continuous interaction between practical experience and
development of theories with deep philosophical implications [BELLONE, 2006].

1 Note that here the adjective experimental is used with reference to the planning and performing of
an experiment which supplies new data to be analyzed with defined methods. In other contexts, it has
the restricted meaning of animal or phantom testing, to be distinguished from research on humans.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

The scientific experiment:
to test an idea using facts

We need a clear explicit
hypothesis

Experimental hypothesis

Experience and theory



The logical flow of a scientific
report

An apparent paradox

Null hypothesis (H
0
)

Experimental hypothesis (H
1
)

Can we really accept
the experimental

hypothesis as true?

However, here we must make a clean break. We have to define a starting
point (the experimental hypothesis, whatever origin it has) and a goal to be
reached (the demonstration that the experimental hypothesis is true or false).
Between these two extremes there are crucial phases such as the design and
performance of the experiment, data collection, data analysis (and not only sta-
tistical analysis) and discussion. The structure of a scientific report implies the
following logical flow: definition of the experimental hypothesis (at the end of
the Introduction); design and implementation of the experiment (Materials and
methods); presentation of the results (Results); interpretation of the results
(Discussion). This matter will be expanded in Chapter 10.

Here we will describe the particular arrangement of the logic of scientific
demonstration (with particular reference to the biologic and medical field),
which has become relatively well-established in the last 50-60 years.

3.1. Null Hypothesis and Principle of Falsification

Now we are confronted with a paradox. The scientist who wishes to demon-
strate an experimental hypothesis must adopt the reverse hypothesis to the
experimental one. This reverse hypothesis is named statistical hypothesis
or null hypothesis (H

0
). Specialized calculations on the data resulting from

the experimental work quantify the probability that the null hypothesis is
true. These calculations (the technical core of statistics) can have different
logical and computational structure, suitable for the particular setting due
to the study design, the type of variables under investigation, and other
aspects. This is the crucial problem of choosing the right statistical test. If
the probability (the well-known p value) that the null hypothesis is true is
lower than a predefined threshold (usually 5%, frequently presented as a
fraction of the unit, therefore 0.05), we reject the null hypothesis. As an
indirect consequence, this rejection allows us to accept the reverse hypoth-
esis, i.e. the experimental hypothesis, which we name H

1
. This conceptual

system and its terminology were introduced by Ronald A. Fisher (1890-
1962) in the 1930s.

The debate on the “acceptance” of H
1

as a result of the rejection of H
0
is

still open. Formally, obtaining a p value lower than 0.05 only states that
rejecting the experimental hypothesis is impossible. The overriding opin-
ion is that we can never consider the experimental hypothesis as demon-
strated, not even indirectly, at least with regard to the meaning we attrib-
ute to the word demonstration in mathematics. Statistical significance is a
long way from the mathematical demonstration of a theorem, such as in
the Elements by Euclid. According to some authors, a p < 0.05 only allows
the experimental hypothesis not to be rejected, keeping it available for fur-
ther experiments. Even if these experiments confirm the significance, the
degree of truth of the experimental hypothesis does not increase. Still
other authors argue that a series of experiments concordant for statistical
significance only tends towards the demonstration of H

1
, without reaching

an ultimate demonstration. There is a subtle difference between these two
ways of thinking. At any rate, the demonstration of H

1
is linked to the fal-

sification of H
0
.
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The principle of falsification plays a well-known role in the philosophy
of science and is commonly attributed to Karl Popper. Actually, at least in
the logical context of statistical thought, it should be attributed to Ronald
A. Fisher. Moreover, while in Popper’s thinking it is derived from “simple
epistemological affirmations, mainly left to the reader’s intuition”, in
Fischer’s thinking it is based on “well-established mathematical-proba-
bilistic models” [CARACCIOLO, 1992]. According to Luca Cavalli-Sforza:

“Even all the recent epistemological work, from Kuhn to Popper, seems to
me overdone. The Vienna Circle […] already stated the same things. In the last
fifty years all we have had is a great deal of popularization, with these ideas
perhaps being presented more clearly, more frequently with synonyms or more
popular neologisms (as with the idea that only «falsifiable» theories are scien-
tific” [CAVALLI-SFORZA L AND CAVALLI-SFORZA F, 2005].

What is the reason for this logical process that tests the reverse hypothesis
of the one we wish to demonstrate? To answer this question let us consider the
classical experimental design aimed at testing whether two samples are differ-
ent for a defined characteristic. Here the null hypothesis is that the two sam-
ples are drawn from the same population and that the observed difference is
caused only by random sampling. The hard core of the problem is the variabil-
ity intrinsic to all biologic phenomena. In fact, if we draw two random sam-
ples from the same population and we measure a defined characteristic, the
probability of observing a difference is very high. As a consequence, when we
observe a difference between two groups or two samples, the first thing we
should exclude is that this difference is simply due to the effect of variability
within the same population from which the two samples could have been
drawn. In other words, the observed difference would not have the meaning
that the two samples are different because they were drawn from two popula-
tions which actually are different for the feature under investigation. As we
will see, this difference due to random sampling has high probability of being
not significant. This is the reason for which we reject the null hypothesis when
the difference is significant and we accept the null hypothesis when the differ-
ence is not significant.

In this reasoning we did not consider the possibility that our data are flawed
by some bias (i.e. a systematic distortion or error). Bias may generate a signif-
icant but false distortion, as with a defect in random sampling or a systematic
error in measuring the variable under investigation in one of the two samples
we are comparing. This issue will be systematically examined in Chapter 9.

The reader should now understand the following general concept: some-
times we can correct for bias using statistical tools in data analysis but com-
monly there is no way to eliminate the effect of bias in study design or data
acquisition. Only correct study design (which should be carefully planned
together with the definition of H

1
and H

0
before starting with data acquisition)

enable us to minimize the sources of bias. Only in this way can we pose the
crucial question: Is the observed difference due to a real difference between
the two different populations from which the two samples have been drawn or
is it due to variability within the single population from which both samples
have been drawn?

Principle of falsification

Karl Popper or Ronald A. Fisher?

Why do we work against our
experimental hypothesis?

Biological variability
(and that related
to the measuring process)
is the basic problem

Significant and not significant
differences

Bias which cannot
be eliminated

The crucial question
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False positive =
type I error = α error

α = 0.05

p < 0.05

Relation with Gaussian
distribution

3.2. Cutoff for Significance, Type I or α Error and Type II or β Error

How should we define the cutoff, i.e. the decisional threshold, we use to
decide whether to accept or reject the null hypothesis? This problem is very
similar to the problem regarding the distinction between positives and nega-
tives of a diagnostic examination (see Chapter 1). In this case we also have
four possibilities:

− true positive, when we judge an existing difference as real, i.e. as not attrib-
utable to random sampling;

− true negative, when we judge a non-existing difference as not real, i.e. as
attributable to random sampling;

− false positive, when we judge a non-existing difference as real, i.e. as not
attributable to random sampling;

− false negative, when we judge an existing difference as not real, i.e. as attrib-
utable to random sampling.

However, in statistical test applications the false positive case and the false
negative case are given a different name:

− the false positive is named type I error or α error;
− the false negative is named type II error or β error.

The acceptable level of error (i.e. the cutoff definition) for both type I and
type II is represented as a probability.

The cutoff for type I error is conventionally fixed at 5%. The null
hypothesis is refused when the statistical test tells us that the probability
of obtaining a difference equal to or larger than the observed one is lower
than 1 in 20, i.e. 5% (α = 0.05). The cutoff is rarely more restrictive, for
instance equal to 1% (α = 0.01), or less restrictive, for instance equal to
10% (α = 0.1). The p value obtained with the statistical test, i.e. the
observed level of significance, defines the acceptability of the null hypoth-
esis (H

0
): if the cutoff (α) is chosen at 0.05, we consider the p values lower

than the cutoff (p < 0.05) as significant. The smaller the p value, the more
improbable H

0
becomes, and as a consequence the experimental hypothe-

sis (H
1
) is more probably true, within the philosophical limitations exam-

ined in Section 3.1.
The definition of the probability of obtaining a difference equal to or larger

than the observed one implies the following reasoning: if I repeat the same
experiment n times randomly drawing two samples of subjects from the same
population, how many times do I observe a difference equal to that previously
observed or larger due to the combination of the intrinsic variability of the pop-
ulation with the random sampling?

The careful reader will have noticed that even though the cutoff level is
conventional and sometimes may be increased or reduced, the choice of 5%
(α = 0.05) can be related to a basic feature of Gaussian or “normal” distribu-
tion (see Section 2.4) whereby 95% of data are in the range mean ± 1.96 stan-
dard deviation. Due to the bell shape of normal distribution, this 5% is even-
ly distributed between the two tails of the curve, as shown in Figure 3.1.
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The result of a two-tailed statistical test takes into consideration the possibility
that the two compared measurements of the same variable (e.g. a and b) can be sig-
nificantly different for either a > b or a < b, i.e. it takes into consideration both tails
of the distribution (2.5% for a > b and 2.5% for a < b). If the test driver can a pri-
ori exclude one of the two possibilities, one of the two tails of the distribution can
be ignored (one-tailed statistical test). As a consequence, the error probability is
halved and the significance of the test result is doubled. The same result which
gives p = 0.9 (not significant) using a two-tailed test, gives p = 0.045 (significant)
using a one-tailed test, since the cutoff remains unchanged (α = 0.05). However, if
the test driver is not absolutely certain that the difference between the data may
occur in only one direction, the use of a two-tailed test is recommended.

The cutoff for type II error should be commonly chosen equal to 80% or
90%. This means that we accept to not consider an existing difference as real
no more than one in five times (80% cutoff) or no more than one in ten times
(90% cutoff). In the first case the β error is 0.20, in the second case the β error
is 0.10. However, the definition of the β error of a study is much less common
in the (radiologic) literature than the definition of the α error, as we shall see
in the next section and in Chapter 8 (Section 8.8).

3.3. Statistical Power

In published articles, the explicit declaration of the cutoff is very frequent for
α error (almost always α = 0.05) and much less common for β error. The rea-
son is that most published articles report results with at least one statistical-
ly significant difference. In these articles, the possibility of a β error is
excluded by the detection of one or multiple significances with p < 0.05. In
other words, if we have rejected the null hypothesis and not rejected (indi-
rectly accepted) the experimental hypothesis, this implies that the statistical
test has given a positive result with increasing probability that this is true, the
smaller is the p value (p is the residual probability of false positive). In all
these cases, given the positive result, there is no sense to questioning the
probability of false negative (β) and true negative (1 – β). If the result is pos-
itive, it cannot be negative.

One-tailed, two-tailed

False negative =
type II error = β error

β = 0.20 or β = 0.10

p as the residual probability of
false positive
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Figure 3.1. The two tails of nor-
mal standard distribution. The
graph shows two tails at the
extremes of the distribution, posi-
tioned at the values of z = ± 1.96,
each accounting for 2.5% of the
statistical units of the population
(total equal to 5%, i.e. 0.05).



The β error problem

Power

Similarity between statistical
testing and clinical diagnosing

Four factors determing
the power

The β error problem arises when we do not obtain any significance (p ≥ 0.05).
In this case the null hypothesis is accepted and the experimental hypothesis
rejected. Here the question is: which β error (i.e. type II error, false negative)
was considered acceptable in the study? In other words, did the study have
sufficient power to detect a difference judged clinically relevant as signifi-
cant? If β is the probability of a II type error, the power is the complement to
1 of β:

power = 1 – β

We have already mentioned the useful similarity between true and false pos-
itives and negatives of a statistical test and those of a diagnostic examination.
In diagnostics, these numbers give rise to performance quantification in terms
of sensitivity, specificity etc. Even though there is a logical parallelism
between diagnostic sensitivity and statistical power (1 – β) just as there is
between diagnostic specificity and statistical complement to 1 of the α error
(1 – α), the diagnostic terminology classically does not apply to statistical
tests. In Table 3.1 we present the comparison between the 2 × 2 contingency
table of a diagnostic examination and that of a statistical test. Given the defi-
nitions of α error and β error, the true positives become 1 – β, i.e. a portion of
the unit, equal to sensitivity. Similarly, the true negatives become 1 – α, i.e. a
portion of the unit, equal to specificity.

What does power depend on? Basically, on four factors:

1. On the α error chosen by the authors. Larger α, less probable the acceptance
of the null hypothesis and lower the risk of type II error; smaller α, more
probable the acceptance of the null hypothesis and higher the risk of type II
error;

2. On the spread of the observed values, i.e. on the variability of the phe-
nomenon under investigation. When two samples are compared, this vari-
ability is added to the effect of random sampling: the lower the variabil-
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Table 3.1. Comparison between the 2 × 2 contingency table of a diagnostic examination (A) and a sta-
tistical test (B)

A Truth
Disease present Disease absent

Diagnostic
Positive True positives (TP) False positives (FP)

examination Negative False negatives (FN) True negatives (TN)

B Truth
H

0
false; H

1
true H

0
true; H

1
false

Positive (1 – β) Error α
Statistical (p < 0.05)
test

Negative
(p ≥ 0.05) Error β (1 – α)



ity, the lower the possibility that the two means of two samples drawn
from two different population are similar, causing a type II error; the
larger the variability, the larger the probability of a type II error. In fact,
the numerator of the standard error of the sample mean is the standard
deviation, i.e. a parameter measuring the spread of the observed values
(see Chapter 2);

3. On the amount of the minimal difference judged as clinically useful to
demonstrate. The larger this minimal difference, the smaller the probability
of type II error. This is simply due to the fact that detecting large differences
is easier than detecting small differences. Moreover, although real but unde-
tected, small differences are not a real type II error in medicine, since we
have a priori considered them as clinically irrelevant;

4. On the sample size. The larger the samples, the more frequently their
means tend to be the same as the single population from which they could
be drawn. As a consequence, the probability of detecting small real differ-
ences increases.

Now let us consider that: (1) α is almost always chosen equal to 0.05;
(2) the variability of the phenomenon under investigation cannot be sub-
stantially changed for the defined clinical and technical setting; (3) the
amount of minimal difference judged as clinically useful to demonstrate
depends on clinical considerations external to the study itself (a kind of
precondition of the study, as with pathophysiologic knowledge derived
from previous studies). Hence, the only factor we can handle to increase
the power of a study (i.e. to reduce the probability of type II error) is the
sample size. When we design a study, we should define not only the level
of α error, but also the amount of minimal difference judged as clinically
useful to demonstrate, the sample size, and the power of the study (1 – β).
Remember that the power of the study is basically determined by the sam-
ple size (see Chapter 8).

The similarity between the results of a diagnostic examination and the results
of a statistical test deserves one more comment. In the two fields the logical
path is inverted.

In diagnostics we put sensitivity in the front row, specificity in the second
row. In fact, diagnostic reasoning arose from clinical activity on symptomatic
subjects (the patients). In this setting the detection of an existing disease and
avoidance of false negatives is the main task. Only recently have we begun to
screen asymptomatic subjects where the first priority is to avoid false positives
(otherwise we would medicalize the normal population – see Section 1.3). In
diagnostic reasoning, sensitivity (β error) comes first.

Conversely, statistical testing was introduced in medicine due to the need to
judge the efficacy of new treatments. In this setting the main aim is to avoid
falsely judging a new therapy as better than the placebo or standard of care, i.e.
we must avoid false positives. The calculation of the study power to quantify
(and minimize as much as possible) the risk of false negative (to judge an effec-
tive therapy as noneffective) is on a second line of reasoning. In medical sta-
tistical testing, α error (specificity) comes first. Thus, we have an inverted log-
ical path in comparison with diagnostic reasoning. Statistical reasoning follows
alpha… betic order!

Sample size: the only factor
we can handle to increase the
power

Diagnostic versus statistical
reasoning
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Do we distinguish false
from true or improbable

from probable?

p < 0.05: historical and
methodologic reasons

p < 0.05 according
to R.A. Fisher

p < 0.05 according
to J. Neyman and E.S. Pearson

Decision-making

3.4. Why 0.05?

This is not a contrived question. We cannot simply answer the question by
stating that from around the 1960s onwards scientists increasingly chose α
= 0.05 as an established convention. In fact, this cutoff seems to have the
magic ability of distinguishing truth from untruth. This appears not very
“scientific”.

Firstly, a statistical cutoff separates what is probable from what is improb-
able as regards the null hypothesis, not untruth from truth. The philosophical
difference between the quantification of the uncertainty and the ultimate
demonstration of the experimental hypothesis was discussed above.
However, even if we remain in the field of probability, another question
needs to be asked: Why accept the null hypothesis with p ≥ 0.05 and reject it
with p < 0.05? In other words, why does the scientific community universal-
ly accept that p < 0.05 implies statistical significance?

Historical and methodologic reasons explain this fact [SOLIANI, 2007]. In the
early part of the last century, books on statistics reported many tables with long
series of p values. Ronald A. Fisher (1890-1962) shortened the tables previous-
ly published by Karl Pearson (1857-1936), not only for reasons of editorial
space but probably also for copyright reasons (Fisher and Pearson were not on
good terms). Some p values were selected and became more important. This
was due to the fact that Fisher wrote for researchers (the users) and not for
expert in statistics (the theoreticians). According to Soliani, Fisher “provides a
selection of probabilities which simplifies the choice and helps in decision
making” [SOLIANI, 2007]. Fisher himself attributed a special status to p = 0.05,
asserting explicitly: “The value for which p = 0.05, or 1 in 20, is 1.96 or near-
ly 2; it is convenient to take this point as a limit in judging whether a deviation
ought to be considered significant or not” [FISHER, 1956].

However, Fisher and his school (including Frank Yates, 1902-1994) were not
unshakeable for the use of the 0.05 cutoff. On numerous occasions, they pro-
posed a soft and problematic interpretation [SOLIANI, 2007], taking into
account factors of uncertainty, first of all the sample size. If n is small, the
interpretation of p values near the cutoff is uncertain.

From the late 1920s/early1930s, Jerzy Neyman (1894-1981) and Egon S.
Pearson (1896-1980), son of Karl, proposed a different approach – hypothesis
testing. In this conceptual framework, the cutoff value for p should be defined
before the experiment and the statistical result is taken into consideration only
as under the cutoff (significant) or equal to or over the cutoff (not significant).
The real value of p is barely relevant. Fisher was against this attribution of an
absolute value to the predefined cutoff and highlighted the need to report in
manuscripts the exact p value and to interpret its evidence. This conflict of
opinion can also be related to the debate between the frequentist statisticians
(like Fisher and Yates) and Bayesian statisticians (like Neyman and Pearson)
[SOLIANI, 2007].

The Neyman-Pearson approach is useful in decision making, but it has evi-
dent limitations when we have small samples, especially when categorical vari-
ables make the use of non parametric tests mandatory. In these cases, changing
only one result may modify the p from values near to 0.01 to values over 0.05.
With large samples and asymptotic distributions we have more certainty.
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Moreover, modern computers permit the calculation of exact p values which
can be presented to the reader for an evaluation of the level of evidence.

What is the current practice in medical and radiologic journals? The α error
is almost always defined equal to 0.05. Hence, values of p < 0.05 are consid-
ered significant and values of p ≥ 0.05 are considered not significant. The use
of a different cutoff (e.g. 0.1 or 0.01) should be explicitly justified (a job for a
professional statistician). It is recommended that exact p values always be pre-
sented, at least for the values which imply a significance (< 0.05), so that the
reviewer and the possible reader of the journal can evaluate the amount of
uncertainty associated with your p. Many journals accept that for p ≥ 0.05 only
the non significance (n.s.) is reported. However, exact p values are increasing-
ly reported also for p ≥ 0.05.

Therefore, we are in an intermediate situation between the rigid use of the
cutoff and a more debated evaluation of the p value we obtained. At any rate,
as we will see in the next section, even a rigid interpretation cannot ignore the
difference between statistical significance and clinical significance.

3.5. How to Read a p Value

The medical research conducted in recent decades has been characterized by
the application of this conceptual system (hypothesis H

0
and hypothesis H

1
, sta-

tistical significance) and of technical statistical tools (parametric and non-para-
metric tests – see Chapters 4 and 5). Today, an original article (see Chapter 10)
without at least a minimal statistical analysis is barely acceptable by a peer-
reviewed journal. Moreover, original articles reporting one or multiple statisti-
cal significances (p < 0.05) and thus demonstrating the efficacy of new diag-
nostic or therapeutic procedures have a higher probability of being published
than articles reporting non significant results (p ≥ 0.05)2. This implies a selec-
tion in publishing medical researches known as publication bias.

How then should a p value be interpreted?
The first rule is to evaluate its real amount. Knowing that “p < 0.05” is not

enough. There is a huge difference between p = 0.049 and p = 0.0049: the prob-
ability of being in error when stating there is a real difference between the two
samples changes from nearly 1 in 20 to nearly 1 in 200. We recommend always
giving the exact p value, with at least three decimals. This practice is increas-
ing even for p values ≥ 0.05, which for a long time have simply been reported
as not significant (n.s.).

Remember that the p value directly measures the probability of a false posi-
tive result of the test, i.e. the probability of rejecting H

0
when H

0
is true and as

a consequence of accepting H
1
when H

1
is false. For example, suppose we com-

pare the sensitivity for a given disease of a new advanced imaging technique
(New) with that of the old technique (Old). If we obtain a p < 0.05 in favor of
a higher sensitivity of New compared with that of Old, the smaller the p value
is, the lower the error probability is which affirms that New is more sensitive

Always report the p values

Evaluate the real value of p

The p values directly measures
the probability
of a false positive result
of the statistical test
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Look at the raw data!

The p values does not quantify
the amount of the difference

between the two samples

than Old. It is counterintuitive that the amount of p does not measures the
amount of the difference in sensitivity between New and Old; p only measures
the reliability of our affirmation that New is more sensitive than Old, not the
extent to which New is more sensitive than Old.

A simple recommendation is to look at the data, the real raw numbers given
as results before any calculation or processing. For the example proposed
above, this involves asking how many true positives does New have compared
to Old. Compare the two sensitivities by evaluating the two ratios which gen-
erate them.

Example 3.1. Comparative study of the sensitivity of the New technique
versus the Old technique for disease X. Out of 1,000 patients, at the ref-
erence standard 682 are found to be affected and 318 not affected with X.
The sensitivity of Old is 0.72 (490/682), whereas the sensitivity of New is
0.73 (498/682). In fact, New detects all the 490 true positive at Old plus
another 8 which are false negative at Old. The sensitivity increases by about
1%, from 72% to 73%, with p = 0.008 (McNemar test – see Chapter 5), i.e.
lower than 0.01, and therefore with a high statistical significance. Thus, we
have less than 1% probability of being in error when stating that New is
more sensitive than Old for the disease X. However, the real amount of the
gain in sensitivity (only 1%) is clinically not relevant.

Always bear in mind that p does not quantify the amount of the difference
between two samples, rather p values quantify the reliability of our rejection of
H

0
. To see its practical meaning, we must look at the raw data. Use your common

sense to evaluate the real difference, even if this is statistically highly significant.
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4
Parametric Statistics

Only naughty brewers deal in small samples.

KARL PEARSON

In Chapter 2 we introduced the fundamental hallmarks of Gaussian distribution,
thereby neglecting many other theoretical distributions which may also be found
in medical research. This preference is based on the simple fact that, even with
some limitations, almost all the other distributions tend to coincide with normal
distribution. The links between the theoretical distributions allow one to analyze
the sample data using, at the first level of approximation, statistical techniques
based on the hallmarks of Gaussian distribution. When, for example, we use the
coefficient 1.96 for the confidence interval calculation, we are implicitly using a
well known hallmark of normal distribution. If, on the other hand, we want to be
rigorous, we have to use the correct theoretical distribution, case by case.

The foundations of Statistics were mainly laid by Lambert A.J. Quetelet (1796-
1874), Francis Galton (1822-1911), Karl Pearson (1857-1936), William S.
Gossett (1876-1937), Ronald A. Fisher (1890-1962) and George W. Snedecor
(1881-1974). As stated in previous chapters, one of the goals of Statistics is to
infer the results observed in a limited sample to the entire population. However,
this approach was born around 1925, about 20 years after the publication of
research by William Sealy Gossett, in the journal Biometrika, conducted on sam-
ples of Guinness beer, the company he was working for due to the lack of an aca-
demic job [SOLIANI, 2007]. So as not to reveal trade secrets to rival breweries,
Gossett’s employment contract restricted him from publishing the results of his
research. To circumvent this problem, he therefore published his results using the
pseudonym “A. Student”1. These studies were published between 1907 and 1908.

1 In a controversial fashion about the academic world.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

The importance of 
Gaussian distribution

Statistics founding fathers



The dispute which gave rise
to modern statistics

Differences between theoretical
and modern statistics

Before the publication of Gossett’s studies, statisticians were focused on the
exploration of theoretical distributions, namely the distribution of the entire
population2. Karl Pearson responded to the thesis of A. Student stating: “Only
naughty brewers deal in small samples”. Later, Ronald A. Fisher took up the
defense of Gossett replying:

“… the traditional machinery of statistical processes is wholly unsuited to the
needs of practical research. Not only does it take a cannon to shoot a sparrow,
but it misses the sparrow! The elaborate mechanism built on the theory of infi-
nitely large samples is not accurate enough for simple laboratory data. Only by
systematically tackling small sample problems on their merits does it seem pos-
sible to apply accurate tests to practical data” [quoted in SOLIANI, 2007].

We wanted to report this debate not only to provide an idea about the histor-
ical reasons that very often lie behind universally accepted theories, but also to
comment on the birth of modern statistics or practical statistics, which deals
with the methods suitable for analyzing small samples. Before this time,
nobody took into account the question of checking whether two samples
belonged to the same or to different populations, i.e. whether the two samples
were different for a variable, an effect, a treatment, etc. Before practical statis-
tics was born, the differences between two or more populations were studied
(when possible) by comparing the corresponding theoretical distributions.

In practical statistics, one of the most frequent practices is the comparison
between two or more samples initially considered as belonging to different popu-
lations. The typical example is that in which a group of individuals is treated with
the standard treatment and a second group with the experimental treatment. In this
case the logical approach is the following. One hypothesizes that the first group
belongs to the population treated in the standard way and that the second group
belongs to the population treated in the experimental way. If the diversity between
the two treatments produces a real statistically significant effect, then they actually
are different populations. On the other hand, if the two treatments do not produce
statistically significant differences, then the two populations coincide with each
other and the two samples have both been extracted from the same population.

In this chapter the main parametric statistical tests are presented. Student’s t
test will be given the broadest treatment because it is very easy to handle.
Moreover, it allows us to discuss the general approach which is adopted with
all parametric statistical tests.

4.1. The Foundations of Parametric Statistics

Gaussian distribution is characterized by only two parameters: mean and
standard deviation. Once we know these parameters, the distribution is
unequivocally defined. We saw in Chapter 2 how to obtain an estimation
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of mean and standard deviation based on the sample data. The set of analy-
sis techniques whose logical approach is based on the features of normal
distribution make up parametric statistics. Alongside parametric statistics
is non-parametric statistics which does not rely on the features of normal
distribution.

Parametric statistics provides very powerful methods of analysis, but their
application requires that some hypotheses be verified, hypotheses which are
rarely encountered in radiologic research. A list of the necessary assumptions
for using parametric statistics is given in Table 4.1.

It is clear that parametric statistical tests can only be applied in the compar-
ison of continuous variables or variables measured with interval scales.
However, the classification of a radiologic examination is very often an ordi-
nal or dichotomous (positive/negative) result. The typical example of an ordi-
nal scale of measurement is the BI-RADS® [AMERICAN COLLEGE OF

RADIOLOGY, 2003] for mammography: 0, inconclusive; 1, negative; 2, benign;
3, probably benign; 4, suspicious abnormality; 5, highly suggestive of malig-
nancy; 6, already known malignancy. If we consider, for example, two samples
differing in the diagnostic examination used for their detection and for which
the measured variable is the BI-RADS® score, they cannot be compared using
parametric statistical tests. We shall see in the next chapter that the statistical
analysis of categorical data always requires non-parametric methods.

The second condition for applying parametric statistics involves the shape of
the distribution of the measured variable. In order to apply parametric statisti-
cal methods we always have to verify that the sample data have normal distri-
bution or, at least, provide some reasons for explicitly supposing this to be the
case. The use of parametrical methods with non-normally distributed samples
may provide false significant results. The further the data distribution is from
the Gaussian curve, the greater the error we make.

The third condition for using parametric methods, which is almost always
not verified, is homoschedasticity. This term indicates the situation in which
the compared variable has the same variance in the two populations. In prac-
tice we analyze the possible difference between, for example, two sample
means, even though our hypothesis is that the populations from which the
samples are extracted have the same variance. Let us suppose we extract two
random samples of breast cancers in symptomatic women (clinical mam-
mography) and asymptomatic women (screening mammography) and we
assess the difference of the mean tumor diameter. Even if we suspect that the
mean diameter is larger for clinical mammography than for screening mam-
mography, to use a parametric test we have to suppose (or to demonstrate)

Using parametric statistics
requires that some hypothesis 
be verified

Requisition for continuous 
variables

Requirement for normal 
distribution

Requirement
for homoschedasticity
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Table 4.1. Necessary conditions for applying parametric statistical tests

Object Description

Type of variables Continuous or at least interval variables

Distribution of the variables Normal or near-normal distribution

Variances Variances equal to each other (homoschedasticity)



Homoschedasticity hypothesis
simplifies the theory

that the variance is the same for the two samples, a condition which is not
necessarily true.

The characteristic of homoschedasticity is not an intuitive concept. The main
reason for taking this condition into account is the presence of the true vari-
ances at the numerator and at the denominator of the mathematical formula
developed in parametric methods. Although the true values are never known, if
they coincide with each other they disappear from the ratio, so leaving the for-
mula independent of them.

The reader should be aware that the concept of homoschedasticity may give
rise to confusion. Although this feature is among the necessary assumptions for
applying parametric methods, it is possible to modify the theory of Student’s t
test so as to include the most general case of non-homoschedasticity (het-
eroschedasticity). The inclusion of the general case is not intended to make the
discussion more difficult to understand, but it is necessary so that the reader
may understand the results provided by statistical software packages. In fact,
when performing Student’s t test, these computer programs calculate the p
value both with and without the hypothesis of homoschedasticity.

Lastly, radiologic studies often deal with very small sample sizes which
makes checking the hypotheses reported in Table 4.1 all the more difficult.
Therefore, most of the time radiologists will prefer non-parametric statisti-
cal methods.

4.2. Comparison between Two Sample Means: Student’s t Test

In Chapter 3 we discussed the logical approach which lies behind the statisti-
cal tests for the verification of the null hypothesis H

0
. There we stated that if

the probability of obtaining a result equal to or even larger than the observed
one (probability which is calculated with the null hypothesis being true) is
lower than the threshold value, conventionally chosen as 5%, then the null
hypothesis has to be rejected. Now let us consider how to calculate this proba-
bility when comparing two sample means.

We retrieve the definition of the 95% confidence interval of a sample mean m:

95%CI = m ± t
95%

SE

where SE is the standard error of the mean, equal to the ratio between the sam-
ple standard deviation (s) from which m is calculated and the mean square root
of the sample size. Therefore, once we have a statistical sample, the width of
the 95%CI depends (other than on m and on s) on the t

95%
coefficient, which is

provided by suitable tables [ALTMAN, 1991].
By definition, 95%CI contains the true value of the population (also called

expected value) with a probability equal to 95% and we hope that the width of
this interval is as small as possible. As the width reduces we gradually have a
more precise estimation of the expected value; when to the limit, this width
becomes zero, the 95%CI coincides with the expected value. Without going
into the mathematical details, we may rewrite the previous equation as follows:

expected value = observed value – t
95%

SE
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where the expected value takes the place of the 95%CI, while the observed
value is only an alternative way of indicating the sample mean m.

From the last equation we have:

t
95%

SE = observed value – expected value

from which:

The aim of this mathematical process is not to propose a new way of cal-
culating confidence intervals; indeed, in the last equation the expected value
remains unknown. However, its utility becomes clear when we want to com-
pare two sample means, m

1
and m

2
. In this case we have a statistical test

whose null hypothesis is that the two means are not significantly different
from each other.

When comparing two sample means we focus on the difference (m
1

– m
2
)

which, if the null hypothesis H
0
: m

1
= m

2
is true, produces an expected value

equal to zero. Now we have all we need to calculate t
95%

, as:

where SE(m
1

– m
2
) is the standard error of the difference of the two sample

means, whose calculation is illustrated in Sections 2.5 and 2.5.1. The t
95%

value
has to be compared with the same tables used for the calculation of the confi-
dence intervals [ALTMAN, 1991], from which one obtains the probability p
which allows us to establish whether the difference (m

1
– m

2
) is statistically sig-

nificant. From a mathematical point of view, t
95%

can take positive or negative
values3 and the larger its absolute value, the lower the corresponding p value is
and, therefore, the higher the significance of the difference between m

1
and m

2

is. Conversely, the closer t
95%

is to zero, the larger the corresponding p value is
and the lower the significance of the difference is.

The theory reported here was developed by Gossett and the statistical test
performed by the calculation of the previous equation is known as Student’s t
test for the comparison of two sample means.

As we stated in the Sections 2.5 and 2.5.1, in practice we may encounter two
circumstances: the case of paired data and the case of independent data. In the first
case, the two compared statistical samples are obtained by measuring the same
continuous variable for a group of individuals before and after a certain treatment,
where the term treatment, as usual, has to be interpreted in the most general way.
The same is when two different treatments are applied to the sample. In the case
of independent data, the two sample means rely on different samples, namely on

Conceptual bridge between
confidence intervals and 
statistical hypotheisis verification

The larger the t
95%

value,
the lower the correspondent 
p-value

Student’s t test may 
apply both to independent 
and paired data
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observed value – expected value

SE

3 The reader should note that since Student’s t distribution is symmetric about the zero, in the cor-
responding published tables only the positive values are reported, with which the absolute value of
t

95%
should be compared.



two groups made up of different individuals. At any rate, the logical approach of
Student’s t test is the same for the two cases and the sole difference is the calcula-
tion of the standard error of the two mean difference, SE(m

1
– m

2
).

Let us consider the following example.

Example 4.1. Measuring myocardial delayed enhancement in cardiac MR
imaging. Let us suppose we want to evaluate the difference in delayed enhance-
ment of the myocardium provided by two contrast agents (CAs). A sample of
50 post-ischemic patients undergo a cardiac MR with inversion recovery turbo-
gradient-echo sequence ten minutes after the injection of 0.1 mmol/kg of CA 1.
The signal intensity (SI), expressed in arbitrary units (a.u.), is measured in a
region of interest placed in the infarcted myocardium. A second sample made
up of another 50 post-ischemic patients is studied with the same technique but
using 0.1 mmol/kg of CA 2. Data are reported in Tables 4.2 and 4.3.

Now the question is: “Is the observed difference between the means 50.7 –
39.0 = 11.7 a.u. statistically significant? Or is this difference due to chance?”
In other words: “Should we accept or reject the alternative hypothesis H

1
: m

1
=

39.0 a.u. � m
2

= 50.7 a.u.?” What we are proposing is a typical comparison
between two sample means for independent data in which n

1
= n

2
= 50.

The signal intensity is a continuos variable. Therefore, to apply Student’s t
test we have to verify that the data are normally distributed and that the vari-
ances of the two samples are approximately equal to each other. Figures 4.1
and 4.2 show the histograms of the signal intensity of Example 4.1. Since the
graphs have a near Gaussian shape, we are quite sure that signal intensity is a
random variable in both samples; moreover the two curves have about the same
width. The three assumptions reported in Table 4.1 for the application of the
parametric tests have all been verified.
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Table 4.2. Signal intensity measurements after the administration of CA 1

Individual SI (a.u.) Individual SI (a.u.) Individual SI (a.u.)

1 38.74 19 39.39 37 42.25
2 39.26 20 40.30 38 36.40
3 39.13 21 39.65 39 36.50
4 40.56 22 38.48 40 35.62
5 37.18 23 41.99 41 39.52
6 38.61 24 36.27 42 39.65
7 37.40 25 37.05 43 40.30
8 40.17 26 37.57 44 38.48
9 40.56 27 40.82 45 38.74

10 38.22 28 41.08 46 38.60
11 37.96 29 39.13 47 39.00
12 38.87 30 39.78 48 39.13
13 38.30 31 39.91 49 38.74
14 37.18 32 38.61 50 39.13
15 41.34 33 38.87
16 41.86 34 38.09 m

1
39.0

17 39.26 35 39.13 s
1

1.5
18 38.87 36 39.26 SE

1
0.2

SI = signal intensity; CA = contrast agent; a.u. = arbitrary units.

Verifying the conditions 
for applying the t test
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Table 4.3. Signal intensity measurements after the administration of CA 2

Individual SI (a.u.) Individual SI (a.u.) Individual SI (a.u.)

1 50.36 19 51.21 37 54.93
2 51.04 20 52.39 38 47.32
3 50.87 21 51.55 39 47.45
4 52.73 22 50.02 40 46.31
5 48.33 23 54.59 41 51.38
6 50.19 24 47.15 42 51.55
7 48.62 25 48.17 43 52.39
8 52.22 26 48.84 44 50.02
9 52.73 27 53.07 45 50.36
10 49.69 28 53.40 46 50.18
11 49.35 29 50.87 47 50.70
12 50.53 30 51.71 48 50.87
13 49.79 31 51.88 49 50.36
14 48.33 32 50.19 50 50.87
15 53.74 33 50.53
16 54.42 34 49.52 m

2
50.7

17 51.04 35 50.87 s
2

1.9
18 50.53 36 51.04 SE

2
0.3

SI = signal intensity; CA = contrast agent; a.u. = arbitrary units.

Figure 4.1. Histogram of the signal
intensity (SI) measured in arbitrary units
(a.u.) for the data of Table 4.2.

Figure 4.2. Histogram of the signal
intensity (SI) measured in arbitrary units
(a.u.) for the data of Table 4.3.
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Variance pooled estimation

In order to calculate t
95%

we now calculate the standard error of the difference.
Two possibilities are open to us. We can make the hypothesis of equal variance
in the two populations, or we can estimate such variance through the sample
variances s2

1
and s2

2
.

Homoschedasticity. If we have clear reasons to believe that the variances of
the two populations are the same or we have previously demonstrated that they
are not significantly different4, we can obtain a pooled estimation of the stan-
dard deviation, s, using both the sample variances as follows:

which represents the best estimation we have of the standard deviation of the
two pooled populations. In this way, the standard error to be used for the cal-
culation of t

95%
is:

Substituting each value we obtain:

from which:

From the published tables of t distribution with (50 – 1) + (50 – 1) = 98
degrees of freedom [ALTMAN, 1991] we obtain p < 0.001 (p < 0.1%)5. Such a
value has to be interpreted as follows: if the null hypothesis H

0
: m

1
= m

2
were

true, then we would have a probability less than 0.1% of observing a difference
as large as the observed one (11.7 a.u.) or larger. The advent of such a low prob-
ability leads us to reject the null hypothesis and to accept the alternative
hypothesis H

1
. The signal intensity of the delayed enhancement using CA 2 is

therefore significantly higher than that obtained using CA 1.

Heteroschedasticity. If we do not wish to make the hypothesis that the vari-
ances of the two populations are the same or we have previously demonstrated
that they are significantly different from one another, the standard error of the
difference is calculated as defined in Section 2.5:
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4 There is a specific statistical test, called F test, for verifying homoschedasticity. This test, how-
ever, is beyond the aims of this book.
5 The reader should note that when values less than 0.001 are obtained the indication p < 0.001 is gen-
erally reported, which nonetheless fails to provide information on how much p is less than 0.001.

a.u.



where s2
1

and s2
2

are the two sample variances. Substituting each value we
obtain:

from which:

From the published tables of t distribution with (50 – 1) + (50 – 1) = 98
degrees of freedom [ALTMAN, 1991] we obtain p < 0.001 (p < 0.1%). This value
should be interpreted in exactly the same way as in the case of homoschedas-
ticity: if the null hypothesis H

0
: m

1
= m

2
were true, then we would have a prob-

ability less than 0.1% of observing a difference as large as or larger than the
observed one (11.7 a.u.). The advent of such a low probability leads us to reject
the null hypothesis and to accept the alternative hypothesis H

1
.

The reader should note that the two methods provide almost identical results
and, in fact, the heteroschedasticity calculation produces even higher signifi-
cance (t

95%
= 34.5 instead of t

95%
= 20.4). The greater the difference between the

two variances, the larger the difference is between the results of the two calcu-
lation methods. Conversely, if the two sample variances coincide with each
other, then the two methods provide exactly the same results.

Let us make another observation. We just saw that Student’s t test may be
applied both to paired and independent data and that the sole difference for the
calculation of the t

95%
coefficient is the way of obtaining the corresponding

standard error of the difference SE(m
1

– m
2
). With independent data we also

saw how to differentiate between homoschedastic and heteroschedastic data.
The distinction between homoschedasticity and heteroschedasticity may also
be applied when calculating the confidence interval of the difference of the two
sample means. In fact, also for the calculation of the confidence interval, the
sole difference between the case of paired data and independent data is the cal-
culation of the standard error. In Section 2.5, for the sake of simplicity, we only
discussed the general case of heteroschedasticity.

4.2.1. The Link with Confidence Intervals

We wanted to introduce Student’s t test starting from the definition of confi-
dence intervals in order to stress the strong link between the two concepts: a
probabilistic conceptual bridge.

Let us consider once again the comparison between two sample means, m
1

and m
2
. Suppose we compare the mean electron density in CT of a certain

anatomic structure in two samples and we obtain a difference equal to 25

Analogies with 
confidence intervals
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Alternatives to Student’s t test

Three or more samples

Hounsfield units (HU) with a 95%CI = [10, 40] HU. For the observed dif-
ference to be statistically nonsignificant, the 95%CI would need to contain
zero, i.e. the expected value we would obtain if the null hypothesis were
true. In the proposed example zero is not contained in the 95%CI, so we may
conclude that the difference of 25 HU is statistically significant, even with-
out performing Student’s t test. Conversely, if the 95%CI had been, for
example, [-5, 55] HU, then the observed difference should be statistically
nonsignificant.

Another way of comparing two sample means is to compare the correspon-
ding confidence intervals. In Example 4.1, the confidence intervals of the two
sample means are:

95%CI(50.7) = 50.7 ± 2.010×0.3 = [50.2, 52.7] a.u.

95%CI(39.0) = 39.0 ± 2.010×0.2 = [38.6, 41.0] a.u.

The two confidence intervals do not overlap each other, so again we can con-
clude that the difference of 11.7 a.u. is statistically significant.

Therefore, we have introduced three methods of checking whether the differ-
ence between two sample means is statistically significant:

– performing Student’s t test;
– calculating the confidence interval of the difference and verifying whether

zero is contained in this interval;
– calculating the confidence intervals of the two sample means and verifying

whether they are overlapping.

Although these three methods may appear different from each other, from a
mathematical point of view they are all equivalent.

4.3. Comparing Three or More Sample Means: 
the Analysis of Variance

In some circumstances one wants to compare three or more sample means, for
example, in cases where the overall group of individuals is subdivided into
three or more samples instead of two. Reconsidering Example 4.1, if we had
introduced a third contrast agent we would have divided the initial group of
100 patients in three independent samples with sizes n

1
, n

2
and n

3
; the null

hypothesis should be modified as follows:

H
0
: m

1
= m

2
= m

3

The alternative hypothesis should involve at least one inequality between the
means.

The case just described concerns the comparison of three or more independ-
ent samples. Another possibility is the comparison between three or more treat-
ments in the same statistical sample. Let us suppose, for example, we measure
renal volume by ultrasound, MR and CT and we compare the observed results
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to assess any differences between the three diagnostic methods. In order to do
so, a sample made up of n individuals could undergo all the three examinations.

Can Student’s t test be performed for all the possible combinations? With only
three sample means, for example, we could perform the t test to compare m

1
and

m
2
, m

1
and m

3
, m

2
and m

3
. However, this approach, although possible, is unad-

visable. With both paired and independent data the right analysis method is the
analysis of variance (ANOVA, ANalysis Of VAriance) but the calculation proce-
dure is different for the two cases. In the next two sections we will see how to
approach and interpret the analysis of variance, referring the reader to special-
ized texts for the mathematical details. Obviously, the ANOVA method may also
be applied to the comparison of only two sample means: in this case it provides
the same results as Student’s t test. Lastly, note that the application of the
ANOVA method also requires the verication of the conditions listed in Table 4.1.

4.3.1. ANOVA for Independent Groups

This type of analysis is applied to data organized as in Table 4.4.

As its name suggests, the analysis of variance consists of exploring the com-
ponents of the overall observed variance. The overall variance is calculated
pooling the data from all the groups, in such a way as to make a single sample
whose variance is indicated by s2 and whose mean is indicated by m.
Remembering the definition of the variance, the overall variance is the sum of
the squares of the differences between each sample unit and the mean, divided
by the number of degrees of freedom (n

1
+ n

2
+ … + n

N
– 1)6. Now we have to

introduce two other types of variability: the within groups variance and the
between groups variance. The within groups variance is calculated as the sum
of the squares of the differences between each statistical unit and the mean of
the corresponding group.

Now we shall apply the analysis of variance to the data of Example 4.1. The
overall mean (calculated on all 100 patients) is m = 44.9 a.u. with an overall
variance s2 = 37.4 a.u.2. From the signal intensity of each patient treated with

ANOVA

Within groups and between
groups variances
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Table 4.4. Data organization scheme for the analysis of variance*

Group 1 Group 2 … Group N

Individual 1 Individual 1 … Individual 1
Individual 2 Individual 2 … Individual 2

…. …. … ….
Individual n

1
Individual n

1
… Individual n

1

m
1

m
2

… m
N

s
1

s
2

… s
N

*The measured variable has to be the same for all the groups.

6 For the following discussion, it is convenient to express variance in this way, i.e. the sum of the
squares of the differences between each sample unit and the mean, divided by the number of
degrees of freedom.



The overall variance is the 
sum of the variances within 

and between groups

If the null hypothesis were 
true, F would tend to 1

The F distribution has two 
types of degrees of freedom

CA 1 we subtract m
1
= 39.0 a.u., while from the signal intensity of each patient

treated with CA 2 we subtract m
2
= 50.7 a.u.; each difference has to be squared

and, last of all, these squares have to be summed. The overall sum is divided
by the number of degrees of freedom (equal to n

1
+ n

2
+…+ n

N
– N), 100 – 2 =

98 for Example 4.1. The between groups variance is calculated as the sum of
the squares of the differences between each sample mean (m

i
) and the overall

mean m; this sum is then divided by the number of degrees of freedom N – 1
(i.e. the number of groups minus 1). Now we can demonstrate that the overall
variance is the sum of the variances within and between groups.

The logic of the analysis of variance for independent data is the following: if
the null hypothesis were true, i.e. if all the sample means m

i
were equal to each

other, then we would think of the data in Tables 4.2 and 4.3 as all extracted from
the same population and that there should be no differences between the two
types of variance. In other words: belonging to any group does not influence the
overall variability. For this reason, if the null hypothesis were true, the ratio

between groups variance
within groups variance

should be equal to 1. In response to the previous statement the reader may think
of the between groups variance as a measure of how much the individual
means differ from the overall mean, a variability that could depend on an actu-
al difference between the groups. In addition, the within groups variance is a
measure of the variance that we would observe if all individuals belonged to
the same population. Therefore, it is clear that if belonging to one group instead
of another has a real effect on the corresponding mean, then F increases, and
the larger the difference between the sample means, the larger the F value is.

As for Student’s t test, the F value has to be compared with suitable published
tables [ALTMAN, 1991] from which one can obtain the corresponding p value,
namely the probability of observing an F value as large as or higher than the
observed one, if the null hypothesis were true. Since F is defined as a ratio, and
since the numerator and denominator have different degrees of freedom, the F
value is characterized by both the degrees of freedom, and the published tables
of F values are organized in such a way as to report the most common combi-
nations of degrees of freedom. Table 4.5 reports the results of the analysis of
variance applied to Example 4.1.

In this case, if the null hypothesis H
0
: m

1
= m

2
were true, then the probabili-

ty of observing a difference equal to or higher than 50.7 – 39.0 = 11.7 a.u. is
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Table 4.5. Result of the analysis of variance applied to Example 4.1*

Source of Degrees of Sum of Variance F p
variation freedom the squares (a.u.)2 (a.u.)2

Between groups 1 3425.6 3425.6 1193.1 < 0.001
Within groups 98 281.4 2.87

Total 99 3707.0

*The variance is calculated as the sum of the squares divided by the number of degrees of freedom.

F = 



less than 0.1%. Since this possibility was actually observed despite the low
probability, we may conclude that the null hypothesis has to be rejected and
that the alternative hypothesis H

1
: m

1
� m

2
may be accepted. Again, the read-

er should note that the p value is the same value obtained using Student’s t test
with the homoschedasticity hypothesis7.

4.3.2. ANOVA for Paired Data

The ANOVA method for independent data introduced in the previous section is
the natural generalization of the case of more than two sample means of
Student’s t test for independent data. Now we shall see the corresponding gen-
eralization of the t test for paired data.

Let us consider the following example.

Example 4.2. Comparison of four regimens of administration of contrast
agent for myocardial delayed enhancement. Suppose we wish to assess the
difference between the following four regimens of administration of contrast
agent for delayed enhancement of the myocardium with MR imaging8:

– injection of a dose equal to 0.05 mmol/kg of bodyweight;
– injection of a dose equal to 0.05 mmol/kg of bodyweight followed by a

second injection after ten minutes with the same dose;
– injection of a dose equal to 0.1 mmol/kg of bodyweight;
– injection of a dose equal to 0.1 mmol/kg of bodyweight followed by a

second injection after ten minutes with the same dose.

For this purpose the signal intensity (in arbitrary units) is measured in a
region of interest placed in the infarcted myocardium for a sample of 13 post-
ischemic patients undergoing an MR examination with inversion recovery
turbo-gradient-echo sequence. Data are reported in Table 4.6.

In Example 4.2 all 13 patients undergo four MR examinations, one for each
regimen of administration, unlike Example 4.1, where we extracted a different
sample for both contrast agents. This approach is much more powerful than that
used for independent data, because it allows us to focus on the differences with-
in each individual of the sample, differences due to the variable placed in
columns9. For the sake of clarity, we will not verify the conditions for the appli-
cation of the ANOVA analysis.

The reader may easily see that the distinction we introduced in the previous sec-
tion regarding between groups variance and within groups variance no longer holds

Between and within
subjects variances
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7 To be rigorous, when the F numerator has only one degree of freedom (i.e. when we are compar-
ing only two sample means) it is F = t2.
8 Note that a study like this has been really performed by our research group. However, for ethical
reasons, to avoid the need of four examinations and four contrast injections in the same patient,
each patient underwent only two exams, each of them with two sequential contrast administrations
(0.05 mmol/kg followed by 0.05 mmol/kg and 0.1 mmol/kg followed by 0.1 mmol/kg, in random-
ized order of priority).
9 Often, the variable placed in a column is called factor.



and that a new distinction has to be made regarding between subjects variance and
within subjects variance. This difference depends on the data symmetry (see Table
4.6) which allows for the calculation of the mean and of the variance both in a hor-
izontal and in a vertical way. However, while the overall variance with independ-
ent data is the sum of the between groups and within groups variances, with paired
data, in addition to the between subjects and within subjects variances there is also
a residual variance. Moreover, for Example 4.2 the within subjects variance may
also be considered as a kind of between regimens of administration variance. The
question is: “Does the mean signal intensity depend on the regimen of administra-
tion of the contrast agent?” In other words: “Are the differences between the means
calculated for each regimen of administration statistically significant?”

For the mathematical details the reader should refer to specialized texts. Here
we report the results of the ANOVA method for the data in Example 4.2, as pro-
vided by a common statistical software package (Table 4.7).

Now we shall see how to interpret the data in Table 4.7.
As usual, each single variance is calculated by dividing the corresponding

sum of squares by the degrees of freedom, while the F value is obtained by
dividing the corresponding variance by the residual variance. From the pub-
lished tables [ALTMAN, 1991] of the F distribution with 12 and 36 degrees of
freedom and with 3 and 36 degrees of freedom we obtain the p value. The
first p value (p = 0.027) indicates that the differences between the patients (in
terms of signal intensity) are statistically significant; this result is of little
interest and does not answer the question we posed. The second and more
important p value (p = 0.016) indicates that also the differences between the
four regimens of administration of the contrast agent are statistically signifi-
cant, i.e. the mean signal intensity depends on dose and administration regi-
men of the contrast agent.
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Table 4.6. Signal intensity for the four regimens of administration of contrast agent of Example 4.2*

Patient 0.05 mmol/kg 0.05+0.05 mmol/kg 0.1 mmol/kg 0.1+0.1 mmol/kg m s

1 51.0 48.5 32.1 45.1 44.2 8.4
2 27.5 57.2 55.5 75.2 53.9 19.7
3 66.9 45.7 54.0 81.6 62.1 15.7
4 15.2 54.6 39.4 49.8 39.8 17.6
5 48.4 49.1 43.7 52.1 48.3 3.5
6 12.1 24.3 45.2 49.9 32.9 17.8
7 29.1 30.6 43.3 75.3 44.6 21.5
8 38.6 34.0 25.2 50.3 37.0 10.5
9 51.6 36.2 37.1 26.2 37.8 10.5
10 11.6 37.0 22.7 36.3 26.9 12.1
11 41.6 26.9 30.6 28.1 31.8 6.7
12 38.2 42.1 41.0 38.7 40.0 1.9
13 24.3 52.8 29.0 53.6 39.9 15.5

m 35.1 41.5 38.4 50.9 41.5
s 17.0 10.8 10.2 17.5 9.4

*Data are signal intensities expressed in arbitrary units.
Note that the occurence of different standard deviation (s) should be considered as a contraindication to the use of para-
metric ANOVA. The reader can retain this table only as an example to show the logic of the method.



4.4. Parametric Statistics in Radiology

Due to the underlying assumptions related to normal distribution, parametric
techniques have a general meaning in biostatistics. In fact, it can be demon-
strated that all parametric techniques belong to the same mathematical scheme.
Moreover, they introduce the general conceptual scheme of the hypothesis
tests. These are very powerful tests, able to demonstrate the significance of
small differences and/or of differences found in small samples.

However, this power depends on stringent conditions, which include:

– the variable type (necessarily continuous);
– the data distribution (necessarily normal);
– the variance (which when comparing two or more sample means are neces-

sarily not statistically different from each other).

Therefore, parametric techniques depend on distribution.
In radiologic research we commonly measure categorical or ordinal vari-

ables. Moreover, even when measuring continuous variables, we often have
non-normal distributions (mean and median are far from each other) or the
sample size does not allow us to demonstrate if we are dealing with normal dis-
tributions. Therefore, rarely may we correctly use parametric methods; even
rarer are the cases in which the conditions for their application are verified (this
verification should always be performed by statisticians).

Despite their lower power than the corresponding parametric tests, non-paramet-
ric statistical tests are more frequently used in scientific radiologic studies because:

– they are able to handle non-continuous variables;
– they allow the radiologist to not verify the conditions described above.

However, the fundamental concepts of parametric statistics need to be under-
stood in order to understand those of non-parametric statistics.

Parametric techniques all have
the same mathematical logic
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Table 4.7. Results of the analysis of variance for Example 4.2*

Source Degrees of Sum of Variance
of variation freedom the squares (a.u.)2 (a.u.)2 F p

Subjects 12 4245.3 353.8 2.30 0.027

Regimens of 3 1820.5 606.8 3.94 0.016
administration

Residuals 36 5540.9 153.9

Total 51 11606.7

*The variance is the ratio between the sum of the squares and the number of degrees of freedom. The F value is the
ratio between the corresponding variance and the residual variance. a.u. = arbitrary unit.
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5
Non-Parametric Statistics

Mathematicians are like Frenchmen:
whatever you say to them

they translate into their own language
and forthwith it is something entirely different

JOHANN WOLFANG GOETHE

The birth of non-parametric statistics is historically related to the solution of
methodologic problems in experimental psychology. It was Stanley S. Stevens
(1906-1973) who solved the question about the inappropriate use of measure-
ment scales; he also proposed a new classification that gave rise to the distinc-
tion between nominal scales, rank scales, interval scales and continuous scales, a
distinction we introduced in Chapter 2 (see Table 2.1). Based on this, behavioral
science statistics was developed in the 1940s, in part thanks to other researchers
such as Quinn McNemar (1900-1986), Frederick Mosteller (b., 1916) and
Anthony W.F. Edwards (b., 1935), with a large use of non-parametric methods
[CARACCIOLO, 1992]. Moreover, non-parametric statistics is also the result of a
broader discussion between the founding fathers of Theoretical Statistics and the
founding fathers of Modern Statistics (see Introduction to Chapter 4).

Since the studies of Francis Galton (1822-1911), statisticians have extensive-
ly applied the hallmarks of Gaussian distribution. In practice, they performed
calculations and arrived at conclusions without verifying the necessary condi-
tions for the use of parametric methods. They made many relevant errors such
as using the analysis of variance with dichotomous variables.

The definition of non-parametric statistics is based on the absence of bonds
related to normal distribution parameters. The logical link is the following:
parametric statistics is based on Gaussian distribution features which, in turn,
depends on only two parameters, the mean and standard deviation. Since the
new methods do not impose any conditions on the distribution shape, they are
called non-parametric tests, because they are not based on the mean and stan-
dard deviation.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

Non-parametric statistics
poses fewer bonds
to data distribution



Distribution-free

Advantages of
non-parametric stastics

McNemar test

This definition may be confusing for the reader, especially if we consider that,
when going into mathematical details, non-parametric statistics also uses many
indices and parameters. A more correct terminological framework sees the
absence of a priori assumptions regarding distribution shape. For example, a
more appropriate term may be distribution-free. However, the term “distribution
free” suggests the data distribution type has no importance. Actually, many non-
parametric methods also require that some less stringent assumptions on distri-
bution shape be satisfied. At any rate, regardless of the above considerations,
these tests are now most commonly referred to as “non-parametric tests”.

One very important advantage of these tests is their versatility – in fact they
have a wide range of applications. As stated in Chapter 4, we may only use
parametric statistics with continuous data. This limitation is due to the type of
the mathematical calculations that the data undergo, starting from the calcula-
tion of the mean and standard deviation; moreover, this limitation reduces the
number of parametric tests. On the other hand, non-parametric statistical tests
can be used to analyze all types of variables and measurement scales and this
important feature enabled the development of many statistical tests, each for a
specific task. This latter characteristic has an important impact on radiologic
research, where all types of variables appear. Another valuable advantage of
non-parametric statistics is its power with small samples.

This chapter, unlike the previous one, does not describe the mathematical
details of these tests. This decision was made on the one hand to give more
space to conceptual aspects, and on the other to provide the reader with a kind
of practical guide, i.e. a reference book to establish which is the more suitable
test on a case-by-case basis. Although for each test we briefly describe the cal-
culation procedure, our advice is to use dedicated statistical software. The dis-
cussion scheme is organized based on the various circumstances one can come
across in practice. For each test one or more examples are presented. We refer
to the systematic classification proposed by Sidney Siegel and N. John
Castellan Jr [SIEGEL AND CASTELLAN, 1992].

5.1. One Sample with Two Paired Measurements

The comparison between pairs of dependent measurements (paired data), typ-
ically two observations within the same individuals, may be performed by
many non-parametric tests. Examples of this include patients undergoing two
different imaging modalities or with two different techniques of the same imag-
ing modality (high and low spatial resolution, with and without contrast agent,
two different MR sequences, etc.) or before and after a certain therapy with the
same modality and technique.

5.1.1. Variables Measured with Dichotomous Scale

In this case the right test is the McNemar test on changes or, with small sam-
ples, the binomial test. These tests can be applied every time the measurement
has a dichotomous trait such as yes/no or positive/negative. This is the typical
case of studies of diagnostic performance, because a radiologic examination
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provides its result in terms of the presence (positive result) or absence (nega-
tive result) of disease. It is also possible to use the McNemar test with variables
measured with higher level measurement scales, after being dichotomized dis-
tinguishing values lower and higher than a certain threshold. In the following
example we consider the simple case of the presence/absence of a certain find-
ing in two mammograms performed by the same patient but with two different
breast compression techniques.

Example 5.1. One hundred women who undergo a periodically scheduled
mammography are enrolled in a prospective study aimed at evaluating a
new breast compression system called biphasic compression (BC). With
this technique the compression plate initially comes down at an angle of
22.5° to the film cassette and then finishes parallel to it. Following a ran-
domization protocol, 25 women undergo the craniocaudal (CC) view of the
right breast twice, once with the standard monophasic compression (MC)
system and once with the biphasic compression; similarly, 25 women
undergo the CC view of the left breast twice; 25 women undergo the medio-
lateral-oblique (MLO) view of the right breast twice; 25 women undergo
the MLO view of the left breast twice. Moreover, the performing order of
the two compression techniques and the execution of the mammogram
pairs by Radiographer 1 and Radiographer 2 are also randomized. During
the examinations measurements are made of the compressed breast thick-
ness and the distance between the anterior nipple surface and the posterior
margin of the film for the CC view and the distance between the anterior
nipple surface and the anterior margin of the pectoral muscle for the MLO
view (posterior nipple line). The visibility of the pectoral muscle for the CC
view and that of the submammary fold for the MLO view serve as quality
index [SARDANELLI ET AL, 2000].

The reader will have noted that example 5.1 deals with different variables. The
breast thickness and the exposure parameters are continuous variables; the visibil-
ity of the pectoral muscle and the submammary fold are dichotomous variables.

A part of the results is summarized in Table 5.1.

Now let us here consider the dichotomous variable. As shown in Table 5.1,
for the CC view the pectoral muscle was visible in 27 out of 50 mammograms
(54%) performed with biphasic compression and in 17 out of 50 mammo-
grams (34%) performed with standard compression. For the MLO view, the
submammary fold was visible in 45 out of 50 mammograms (90%) and in 36
out of 50 mammograms (72%), respectively. The McNemar test demonstrates
a significant difference in favor of the biphasic compression both for the CC
view (p = 0.006) and for the MLO view (p = 0.022).

Procedure. The McNemar test only considers changes, i.e. the sample units
whose two measures are different from each other. The null hypothesis expects
that the number of changes should be equiprobable in both directions and,
therefore, that half of the discrepancies concern individuals that pass from
“positive” to “negative” and that half pass from “negative” to “positive”
(expected discrepancies). The concordances, i.e. the statistical units whose

The McNemar test
only considers changes
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judgment does not change, do not enter into the calculation. If the observed dis-
crepancies differ from the expected ones other than due to chance, then the test
is significant.

In the example, there were 22 cases for the CC view in which the pectoral
muscle was not visible with both techniques and 16 cases in which it was vis-
ible; in 11 cases the pectoral muscle was visible with biphasic compression
and not visible with standard compression and, lastly, in 1 case it was visible
with standard compression and not visible with biphasic compression.
Mathematically, the test only considers the 12 discrepancies, 11 in favor of the
biphasic compression and 1 in favor of the standard compression, and pro-
vides p = 0.006.

Likewise, for the MLO view there were 3 cases in which the submamma-
ry fold was not visible with both techniques and 34 cases in which it was
visible; in 11 cases the submammary fold was visible with biphasic com-
pression and not visible with standard compression; and, lastly, in 2 cases it
was visible with standard compression and not visible with biphasic com-
pression. Mathematically, the test only considers the 13 discrepancies, 11 in
favor of biphasic compression and 2 in favor of standard compression, and
provides p = 0.022.

Since the number of the discrepancies was very small, the p value is calcu-
lated using binomial distribution (binomial test).

Example 5.2. The application of the McNemar test to the general case is
illustrated in the following theoretical example.
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Table 5.1. Results of the study of the Example 5.1 (part one)

BC = biphasic compression; MC = monophasic compression. From: Sardanelli F, Zandrino F, Imperiale A et al (2000) Breast
biphasic compression versus standard monophasic compression in x-ray mammography. Radiology 217:576-580 (with
permission of the copyright owner [RSNA]).



The diagnostic modalities A and B are compared with the reference standard
for a sample of 200 cases (patients or lesions) for the detection of disease D. At
the reference standard, 100 are positive cases and 100 are negative cases.
Diagnostic modality A has a sensitivity equal to 78% (78/100), while B has a
sensitivity equal to 58% (58/100); A has a specificity equal to 68% (68/100), B
equal to 85% (85/100). In order to establish if A is actually more sensitive than
B and if B is actually more specific than A, we have to evaluate concordances
and discrepancies, case by case.

Let us consider the 100 positive cases at the reference standard:

– in 45 cases both A and B are true positives;
– in 8 cases both A and B are false negatives;
– in 34 cases A is true positive and B is false negative;
– in 13 cases A is false negative and B is true positive.

The McNemar test only considers the 47 discrepancies and provides p = 0.004:
diagnostic modality A is significantly more sensitive than B for disease D.

Let us consider the 100 negative cases at the reference standard:

– in 7 cases both A and B are false positives;
– in 60 cases both A and B are true negatives;
– in 25 cases A is false positive and B is true negative;
– in 8 cases A is true negative and B is false positive.

The McNemar test only considers the 33 discrepancies and provides p = 0.005:
diagnostic modality B is significantly more specific than A for disease D.

In both cases, the sample size was large enough to perform the McNemar test
instead of the binomial test.

The diagnostic accuracy of modality A is 73.5% (147/200) and the diagnos-
tic accuracy of modality B is 71.5% (143/200). If we want to establish if A is
more accurate than B we have to consider the number of cases in which A and
B agree with both the reference standard and each other:

– in 105 cases (45 + 60) A and B are either true positives or negatives;
– in 15 cases (8 + 7) A and B are either false positives or negatives;
– in 42 cases (34 + 8) A is either true positive or negative and B is either false

positive or negative;
– in 38 cases (13 + 25) A is either false positive or negative and B is either true

positive or negative.

The McNemar test only considers the 80 (42 + 38) discrepancies and pro-
vides p = 0.738: we do not have evidence to reject the null hypothesis which
states “A is as accurate as B for disease D”. In other words, the accuracy dif-
ference between the diagnostic modalities A and B is not significant.

Comment. As often happens, the approximations made when performing a sta-
tistical test no longer hold with small sample sizes. To use the McNemar test
the number of expected discrepancies should be at least equal to 5. Otherwise,
it is more correct to use the binomial test. The reader should note that both the

If the number of expected
discrepancies is lower
than 5, use the binomial test
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Sign test

McNemar test and the binomial test apply to the same data type and, therefore,
many statistical software packages automatically choose which test to perform
based on the sample size. For this data type there is no corresponding paramet-
ric test and therefore the power of the McNemar test cannot be estimated. For
a broader understanding of the logical-mathematical setting of this test, the
reader is invited to consult McNemar [MCNEMAR, 1969].

An important point which needs to be made regards the use of the McNemar
test for comparing diagnostic performance indices. Using this test for compar-
ing paired data is quite simple. In its original version, the test cannot be applied
to compare predictive values, since the number of the positive test findings is
included in the denominator of the positive predictive value while the number
of the negative test findings is included in the denominator of the negative pre-
dictive value. For this reason, the denominator may be different for the two
diagnostic modalities and the comparison between them cannot be based on a
complete series of paired data. A modified McNemar test for the comparison of
the predictive values involves mathematically complex procedures which go
beyond the aims of this book. The interested reader may consult Leisenring et
al. [LEISENRING ET AL, 1997; LEISENRING AND PEPE, 1998].

5.1.2. Variables Measured with Ordinal Scales

In this instance the test to be performed is the sign test, based on the direction
(positive or negative) of the changes of the pairs. The sign of the change may
be assessed thanks to the nature of the ordinal variable.

Example 5.3. To assess the image quality of the aortic valve at multidetec-
tor CT with retrospective ECG gating with and without iodinated contrast
agent, 25 patients are studied prior to surgery. Two radiologists evaluate
image quality by consensus using an ordinal scale with the following
scores: 1 = nondiagnostic quality; 2 = poor but diagnostic quality; 3 = good
quality; 4 = excellent quality. They then evaluate the definition of the aor-
tic valve morphology using an ordinal scale with the following scores: 1 =
possibly correct definition; 2 = probably correct definition; 3 = definitely
correct definition. The authors of this study report the details of the criteria
used for assigning both the scores. The sign test provides a highly signifi-
cant difference towards CT with iodinated contrast agent rather than CT
without contrast agent both for image quality (p = 0.004) and for the defi-
nition of the aortic valve morphology (p = 0.006) [WILLMANN ET AL, 2002].

Procedure. For each data pair we need to established which value is higher
than the other. The pairs with identical values are not included in the calcula-
tion. With regard to Example 5.3 for the definition of aortic valve morphology,
we may hypothesize the data distribution shown in Table 5.2.

We may hypothesize 11 pairs in favor of CT with iodinated contrast agent, 1
pair in favor of CT without contrast agent, and 3 pairs with the same score. The
sign test only considers the 12 pairs with different scores in the two techniques
and provides p = 0.006.
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Example 5.4. To assess the impact of ECG gating on the image quality of
thin-slice CT of the lung, 45 patients prospectively undergo the examina-
tion, with and without ECG gating. Three radiologists evaluate by consen-
sus the image quality of the superior lobes, the central or lingula lobe and
the two inferior lobes using a five point ordinal scale from 1 (worst) to 5
(best) for the presence of noise, motion artifacts and overall diagnostic
assessment. The sign test with Bonferroni’s correction1 demonstrates no
significant differences for the presence of noise for any one of the lobes; it
demonstrates a significant difference for the presence of movement arti-
facts for the central lobe, the lingula lobe and both the left and right infe-
rior lobes (p < 0.004); it demonstrates a significant difference for the over-
all diagnostic assessment only for the inferior left lobe (p < 0.004) [BOHEM

ET AL, 2003].

Comment. Data couples may also come from two different individuals,
belonging to different populations. However, it is important for the data to be
matched in a homogenous way, thereby canceling the influence of other fac-
tors. Also in this case the calculation is made only with individuals with two
different values; pairs of identical values are not included in the calculation. If
we use the sign test on data for which the Student t test is applicable, its power
is 95% with N = 6, where N is the number of couples with different values; this
power decreases as N increase, up to 63% (asymptotic power).

When dealing with interval or rational variables and with small N values
using the test of the permutations is advisable. This test takes into account all
the possible observed differences (equal to 2N) through combinatory calcula-
tion. It has 100% power. There is also a modification of this test for inde-
pendent data.

Bonferroni’s correction

Sign test power is between
63% and 95%

Test of the permutations
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Table 5.2. Definition of aortic valve morphology for Example 5.3 [WILLMANN ET AL, 2002]*

Morphology definition
1 2 3

CT without iodinated contrast agent 9 3 3
CT with iodinated contrast agent 0 5 10

* The authors report the distribution of 15 patients who underwent CT without contrast agent and 25 patients who
underwent CT with contrast agent. For the sake of simplicity the distribution of only the 15 patients who underwent
both techniques is hypothesized here.

1 Bonferroni’s correction is a very conservative method which is applied when making multiple
paired comparisons (in this case 18 comparisons: 3 comparisons for each of the 6 lung lobes). It
consists of multiplying each of the observed p values by the number of comparisons. The correc-
tion for multiple comparisons is beyond the aims of this book, but it is important the reader is
aware of it. The problem arises from the need to take into account that choosing the α error as 0.05
produces a 5% possibility of obtaining a false positive. For Example 5.4, with 18 comparisons, we
should have a very high probability of obtaining a false positive without Bonferroni’s correction.
However, some authors consider Bonferroni’s correction is a too conservative correction. For fur-
ther details refer to Douglas G. Altman [ALTMAN, 1991].



Wilcoxon test

Statistically significant and
clinically relevant difference

The null hypothesis states that
the two distribution medians

coincide with each other

The power of the
Wilcoxon test is 95.5%

5.1.3. Variables Measured with Interval or Rational Scales

If the variable is measured with an at least interval measurement scale and if
its distribution may be considered as continuous, then the Wilcoxon signed
rank test, commonly called Wilcoxon test may be used.2 This test compares the
medians of the two samples. Unlike the sign test, in the Wilcoxon test the larg-
er the difference between the two values is, the larger the weight for the calcu-
lation of that difference.

Example 5.5. For the sake of simplicity let us refer to Example 5.1 and
Table 5.3 regarding the length of the posterior nipple line. With the cranio-
caudal (CC) view the difference between biphasic and standard compression
is 0.35 ± 0.04 cm (mean ± standard error); 0.34 ± 0.05 for the medio-later-
al-oblique (MLO) view. Using the Wilcoxon test we get p < 0.001 for the CC
view and p = 0.002 for the MLO view. This means that biphasic compres-
sion significantly increases the imaged breast amount. Note how a difference
as small as few millimeters may not only be statistically significant, but also
clinically relevant. In fact, such a small difference for a one-dimensional
measurement implies a larger difference for the two-dimensional measure-
ment of breast surface and even more for the three-dimensional measure-
ment of breast volume. This allows for a more extended analysis of the
region placed between the gland and the pectoral muscle, a typical site of
breast carcinoma. On the other hand, as we may see in Table 5.2, there are
no statistically significant differences between the two compression systems
in terms of breast thickness, neither for the CC nor the MLO views.

Procedure. The Wilcoxon test takes into account the absolute difference
between the two measurements of each statistical unit. Such differences are
associated with ranks and each rank obtains a sign (positive or negative) based
on the initial difference sign. If one or more statistical units have a zero differ-
ence, then those units are excluded from the calculation and the sample size
decreases. The null hypothesis states that the observed difference is not signif-
icant and that the two medians coincide with each other. Thus, separately
adding the positive and the negative ranks we would have two identical sums.
The test is significant if the difference between the above sums is larger than
that which can be explained with normal statistical fluctuations.

Comment. Because it is non-parametric in nature, the Wilcoxon test does not
require normal data distribution. Nevertheless, it does need symmetric distribu-
tion for the differences. If this latter requirement is not verified, the data may
be transformed by generating a new, more symmetric distribution.

If used on data that verify the conditions for applying the Student t test, the
power of the Wilcoxon test is equal to 95.5%. For more details the reader may
consult Conover [CONOVER, 1999].
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5.2. Two Independent Samples

5.2.1. Variables Measured with Nominal or Ordinal Scales

Two independent samples, even of different sizes, may be produced by the ran-
dom extraction from two populations or by the random association of two
treatments. This happens, for example, when comparing the performance of
two diagnostic techniques for a given disease, one performed in one patient
group and the other in a different patient group.

With categorical (nominal or ordinal) data the right test to be performed is the chi-
square (χ2) test. This test compares all the features of the distributions from which
the two samples are extracted (central tendency, spread, symmetry, etc.). It is the
general test to be performed when comparing occurrence frequency in different
groups. If we are dealing with a dichotomous variable and with small sample
sizes, the Fisher exact test may be used. The starting point is a typical 2 × 2
contingency table. Through the technique of the combinatory calculation, the
Fisher exact test arrives at the exact probability of obtaining the observed fre-
quency distribution. If the total number of observations (N) is larger than 20,
the calculation may become prohibitive. In these cases the χ2 test may be used.

Example 5.6. Let us reconsider Example 5.1 for assessing the performance
of the two radiographers who performed the mammographies, as reported in
Table 5.3. The χ2 test or the Fisher Exact test is used to assess for any differ-

χ2 test
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Table 5.3. Results of the study of Example 5.1 (part two)

BC = biphasic compression; MC = monophasic compression. From: Sardanelli F, Zandrino F, Imperiale A et al (2000)
Breast biphasic compression versus standard monophasic compression in x-ray mammography. Radiology 217:576-
580 (with permission of the copyright owner [RSNA]).



The Fisher exact test
with small samples

Yate’s correction for continuity

Mann-Whitney U test

ence in performance of the two radiographers. All differences in visualizing
the pectoral muscle in the CC view and the submammary fold in the MLO
view were not statistically significant, even if Radiographer 1 showed better
improvement using the MLO view while Radiographer 2 showed better
improvement using tho CC view.

Procedure. The χ2 test can be applied to data organized in contingency tables.
In Table 5.3 the two compression systems (BC and MC) are placed into
columns, while in the rows we find the two radiographers3; the four cells of this
contingency table report the number of times in which the radiologic sign (the
pectoral muscle and the submammary fold) was detected (with percentages in
parentheses). The χ2 test compares the frequency of each cell with the corre-
sponding expected frequency, with the latter calculated by hypothesizing that
there is no relationships between the two variables. The further the observed fre-
quencies are from the expected ones, the more significant the test is.

Comment. The χ2 test can be applied without verification of any assumptions
for samples whose sizes are not too small (N > 40). With small samples the
expected frequencies may be too small. In this case, the Fisher exact test should
be used, since it differs from the χ2 test in the way the expected frequencies are
calculated. The Fisher test is called “exact” because it uses the exact formula
in calculating the expected frequencies, instead of the approximated formula as
in the χ2 test. The choice between the two tests is based on the following crite-
ria [SIEGEL AND CASTELLAN JR, 1992]:

– for N ≤ 20 always use the Fisher exact test;
– for 20 < N < 40 the χ2 test may be used if all the expected frequencies are

larger than 5; if one or more of the expected frequencies is smaller than 5 the
Fisher exact test may be used;

– for N ≥ 40 always use the χ2 test.

The reader should note that both the χ2 and the Fisher test apply to the same
data type and that many statistical software packages automatically choose the
right test to be performed based on the sample size; if the χ2 test is chosen,
these computer programs also apply the correction for continuity introduced by
Yates in 1934 [Yates, 1934]. Moreover, unlike the Fisher exact test, the χ2 test
may also be applied to contingency tables with more than 2 rows or more than
2 columns [ARMITAGE AND BERRY, 1994].

The χ2 test has no corresponding parametric test; so there is no sense speak-
ing about its power.

5.2.2. Variables Measured with Interval or Rational Scales

In these cases the Mann-Whitney U test may be used, which compares the
medians of the two samples.
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Example 5.7. Let us reconsider Table 5.3 of Example 5.1 in order to eval-
uate the difference between the performance of the two radiographers with
regard to the posterior nipple line. With both the CC and the MLO views,
the Mann-Whitney U test demonstrates no significant differences between
the two radiographers.

Procedure. The calculation procedure consists of combining the two groups of
data (X, Y) into a single sample and associating ranks. For each X value one has
to count how many values of the single sample are lower than X: U(YX

i
); then

one has to calculate the mean of U(YX
i
) based on all the X values. The same

calculation is made for Y, obtaining the mean of U(XY
i
) for all the Y values.

Thus we have two variability indices, one for U(YX
i
) and the other for U(XY

i
).

Combining these indices we calculate U from which we obtain the p value.

Comment. The Mann-Whitney U test, together with the Wilcoxon test for
paired data, verifies the null hypothesis that the two medians coincide with
each other, without hypotheses regarding the variances and distribution type.
Compared to the Student t test, the power of the Mann-Whitney U test is about
95% even for small samples. The comparison between two independent sam-
ples whose corresponding populations have different variances is known as
Behrens-Fisher problem and the non-parametric statistical tests for this circum-
stance have only recently been introduced [Conover, 1999].

5.3. Three or More (k) Dependent Samples 4

5.3.1. Variable Measured with Dichotomous Scale

In this case the test to be performed is the Cochran Q test.

Example 5.8. Let us suppose we have to compare the performance of k = 4
radiology residents (each one attending a different year of the study course)
for the detection of a certain radiologic sign in a sample of N individuals all
undergoing the same examination. The goal is not the evaluation of the rel-
ative sensitivity and specificity (requiring a standard of reference which, in
this case, could be a senior radiologist) but rather the assessment of possible
perception differences among the four residents.

Procedure. The data have to be placed in a table with N rows (in which we
will put the sample individuals) and with four columns (in which we will put
the reports of the four residents), in exactly the same way the ANOVA
method for paired data is done. The Cochran Q test verifies if the outcomes
of the four residents significantly differ from each other. The procedure cal-
culates a coefficient, denoted Q, by hypothesizing that there are no differ-

The power of the
Mann-Whitney U test
is close to 95%

Cochran Q test
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The Cochran Q test is an
extension of the McNemar test

Friedman test

The Friedman test has a power
between 64% and 91%

ences among the four residents. This coefficient has an approximated χ2 dis-
tribution with k – 1 = 4 – 1 = 3 degrees of freedom. The test is significant if
Q is larger than a certain critical value.

Comment. The Cochran Q test is the extension of the McNemar test for more
than two dependent samples. It cannot be used with a small sample size. As a
rule, the sample size should be:

– N ≥ 4;
– N·k ≥ 24.

Since there is no corresponding parametric test, the power of the Cochran Q
test cannot be established.

5.3.2. Variables Measured with Ordinal, Interval or Rational Scale

In this instance the test to be performed is the Friedman test or two-way rank
ANOVA.

Example 5.9. Let us suppose that N patients with myocardial infarct under-
go contrast enhanced cardiac-MR to measure the area showing myocardial
delayed enhancement. This measurement is repeated four times every five
minutes: the goal is to check for any significant difference.

Procedure. The data have to be arranged as for the ANOVA method. The
Friedman test verifies if all four medians coincide with each other, against the alter-
native hypothesis which states at least one inequality. Each value in the rows is
converted into ranks from 1 to 4: if the null hypothesis is true, all of the ranks will
have the same frequency in the four columns and the mean ranks will coincide with
each other. The calculation procedure obtains a coefficient whose distribution is
known. The test is significant if this coefficient is larger than a certain critical value.

Comment. When k ≥ 5 or if the sample size is very large, the coefficient calculat-
ed using the Friedman test has an approximated χ2 distribution with k – 1 degrees
of freedom. Compared to the analysis of variance, the Friedman test has a power
equal to 64% for k = 2 and it increases as k increases, until the asymptotic value
of 91%. For more details the reader may consult Conover [CONOVER, 1999].

5.4. Three or More (k) Independent Samples5

5.4.1. Variables Measured with Nominal or Ordinal Scale

In these circumstances the test to be performed is the χ2 test.
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Example 5.10. Let us suppose that N patients with carotid artery stenosis
undergo contrast-enhanced MR angiography and post-contrast scans to assess
carotid plaque enhancement. We divide the sample into two groups: a group
consisting of all the patients showing plaque enhancement and the other group,
consisting of the patients who do not show plaque enhancement. In this way we
divide the whole sample into two subgroups which are not necessarily equal in
size. In addition, we evaluate the degree of stenosis with the following score:

– 0, stenosis less than 30%;
– 1, stenosis between 30% and 75%;
– 2, stenosis greater than 75%.

We would like to know whether there is a possible relationship between the
two variables: plaque enhancement and degree of stenosis6.

Procedure. In this case we simply apply an extension of the χ2 test already
used for two independent samples. However, the data now has to be structured
in a 2 × 3 contingency table, because the degree of stenosis may take three dif-
ferent values on an ordinal scale. Again, the χ2 test compares the observed fre-
quencies of each cell of the table with the corresponding expected frequencies,
with these latter being calculated by hypothesizing that there is no relationship
between the two variables. The larger the difference between the observed and
the expected frequencies, the more significant the χ2 test is.

Comment. The same comments on the sample size and on the power we saw
for the classic χ2 test are valid. Nevertheless, the Fisher exact test is not appli-
cable for contingency tables other than the classic 2 × 2 type. If the expected
frequency is less than 5 in over 20% of the total cell number, it is advisable to
combine the cells in order to reduce its total number.

5.4.2. Variables Measured with Interval or Rational Scale

In this instance the test to be performed is the Kruskal-Wallis test or one-way
rank ANOVA.

Example 5.11. Let us reconsider Example 5.6 with a modification of the
number of radiographers: now we will compare the performance of three
instead of two radiographers in terms of the posterior nipple line.

Procedure. The data have to be converted into a single series of ranks. For
each radiographer, the sum of the ranks and their mean have to be calculated.
This test uses a coefficient, denoted KW, whose distribution is known. The test
is significant if this coefficient is larger than a certain critical value.

The generalized χ2 test

Kruskal-Wallis
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the degree of stenosis between the two groups.



The Kruskal-Wallis test has
a power close to 95%

Comment. When k > 3 and when the number of individuals is larger than 5 for
each group, the coefficient calculated using the Kruskal-Wallis test has an
approximated χ2 distribution with k – 1 degrees of freedom. The power of this
test tends to 95.5% when compared with the ANOVA method. For more details
the reader may consult Conover [CONOVER, 1999].

5.5. Some Considerations Regarding Non-Parametric Tests

In this chapter we introduced the non-parametric statistical tests most common-
ly used for radiologic research. For schematization purposes we briefly indicat-
ed the calculation procedure, without weighing down the discussion with math-
ematical details which can be easily found in specialized texts.

Now we will provide some specific considerations for some of these tests.
We stated that in most cases the null hypothesis (H

0
) takes into account the

medians of the two or more samples that are compared to each other. However,
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Table 5.4. Commonly used parametric and non-parametric statistical tests

Goal Variables and Non-parametric Parametric
measurement scales methods methods

To compare two Categorical with McNemar test NA
dependent samples dichotomous scale Binomial test

Categorical with Sign test NA
ordinal scale Binomial test

Continuous with interval Wilcoxon Student t test for
or rational scale test paired data

To compare two Categorical with χ2 test NA
independent samples nominal or ordinal scale Fisher exact test

Continuous with Mann-Whitney U test Student t test for
interval/rational scale independent data

To compare three or Categorical with Cochran Q test NA
more dependent dichotomous scale

samples

Categorical with ordinal Friedman test Two-way ANOVA
scale or continuous with (F-test)

interval/rational scale

To compare three or Categorical with χ2 test NA
more independent nominal or

samples ordinal scale

Continuous with Kruskal-Wallis test One-way ANOVA
interval/rational scale (F-test)

To estimate the Continuous with Spearman correlation Pearson correlation
association strength rational scale coefficient coefficient

between two variables

NA = not available.



in the case of the χ2 test for two independent samples, the null hypothesis takes
into account all the characteristics of the corresponding distributions. This is a
generalist test: it can be used to assess the overall significance due to differ-
ences in the central tendency, data spread, symmetry, etc. It is not a dedicated
test for any one of these indices and, if it returns a significant result, other tests
need to be used to understand which index gave rise to the difference.

A similar observation may be made about all the tests which compare three
or more samples (dependent or independent): these tests provide an overall
result on, for example, the equality of the medians. A significant result allows
us to reject the null hypothesis and therefore accept the alternative hypothesis.
However, it does not allow us to establish which pairs of samples gave rise to
the significance. In these cases, further analysis is required – so called “post-
hoc” analysis.

A general consideration has to be made regarding the validity of non-para-
metric tests.

As stated above, non-parametric tests do not require normal data distribution
and, for this reason, they are often indiscriminately used. However, even when
using non-parametric tests some conditions need to be verified, which despite
being less important than those for parametric tests, limit the applicability of
these tests for small samples. Note that almost all the tests presented involve
requirements on the sample size. Moreover, these tests are only a part of the
whole set of available non-parametric tests. Many other tests have been devel-
oped to test various hypotheses. However, “most of the statisticians might sur-
vive with a set of about a dozen of tests” [GREENHALGH, 2006].

There is no consensus of opinion regarding the choice between parametric
and non-parametric tests. Some authors believe that parametric tests are prefer-
able, even when it cannot be demonstrated that the data have been extracted
from a normal distribution. Some others prefer non-parametric tests because,
despite being generally less powerful (often with a small difference or at times
even more powerful), they are more reliable and therefore less rebuttable. The
debate on the more appropriate test has provided no objective universal
answers, but only general guidelines. It is here useful to remember that in all
unclear cases one may use the two types of tests, because the comparison
between their results allows one to obtain more information on the estimated
probability [SOLIANI, 2007].

Table 5.4 shows the criteria for choosing the right test to be performed for
various experimental conditions. To be complete we also included the linear
regression methods which will be presented in Chapter 6.
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6
Linear Correlation and Regression

Error always consists
in making a wrong inference,

that is, in ascribing a given effect
to something that did not cause it.

ARTHUR SCHOPENHAUER

When conducting a radiologic research study on a sample of patients or healthy
volunteers, a database to collect the data needs to be built. These data may be
of various types (patient history, clinics, radiology, histopathology, etc.). In
practice, we obtain the information thought to be useful to the research study
for each enrolled individual. Frequently, we are interested in understanding if
there are relationships between the data, i.e. in testing the existence of associ-
ations between the variables.

The quantification of the relationships between variables is done by correla-
tion and regression analyses. Unlike what we stated in the previous chapters,
this type of statistical analysis involves the measurement of two or more vari-
ables for each statistical unit. In this chapter we will limit ourselves to the sim-
ple case of only two variables: bivariate analysis. For the general case of more
than two variables we refer the reader to specialized texts.

6.1. Association and Causation

Let us consider the following example which will be useful for understanding
the way to assess the possible association between two variables.

Example 6.1. MR imaging of prostate for the evaluation of the association
between image features and histopathologic Gleason grade. Seventy-four
patients undergo endorectal MR imaging before radical prostatectomy to
assess the relationship between the signal intensity on T2-weighted images

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

Association

Bivariate analysis



Association between
two variables

Demonstrating an
association is not enough
to demonstrate causation

Caution in concluding for a
casual relationship

and the histopathologic Gleason grade of the lesion. The authors of this study
build a table containing the ratios between the signal intensity of the tumor tis-
sue and that of the obturator muscle and the ratio between signal intensity of
the healthy prostate tissue and that of the same muscle. The authors demon-
strate a significant (p = 0.006) association between the tumor/muscle signal
intensity ratio and the Gleason grade for the peripheral part of the prostate (the
lower this ratio, the higher the Gleason grade) [WANG ET AL, 2008].

An association between two continuous variables means that as one of them
increases, the other increases or decreases in value, although not necessarily
involving a cause-effect relationship. If an association between A and B is
demonstrated, then one of the following possibilities can be true:

– A causes B;
– B causes A;
– A and B depend on one or more concomitant factors.

Therefore, we cannot conclude that one of the two variables is the cause and
the other is the effect, because both of them may depend on other factors not
taken into account and acting in the background. To make the discussion clear-
er, let us consider the following example.

Example 6.2. Coexistence of stenosis in both cerebral and coronary arter-
ies. Eighty patients with coronary artery disease undergo both coronary and
cerebrovascular angiography. The goal of the study is to investigate whether
there is an association between cerebrovascular (intra- and extracranial) arte-
rial stenoses and coronary artery stenoses. Considering an artery with a lumen
narrowing larger than 50% as stenotic, the authors find only extracranial
stenoses in 18 patients (22.5%), only intracranial stenoses in 14 patients
(17.5%), and both extracranial and intracranial stenoses in 20 patients (25%).
Out of 80 patients, 52 (65%) have coexistence of both coronary and cere-
brovascular arterial stenoses (r = 0.562, p < 0.001) [LI ET AL, 2007].

In Example 6.2 the authors demonstrated an association between the pres-
ence of stenoses of the coronary arteries and the presence of stenoses of the
cerebral arteries. The two phenomena have the same pathogenesis and clearly
depend on the patient’s age. However, we cannot conclude in favor of a causal
relationship, i.e. the development of coronary stenoses implies the develop-
ment of the same disease in cerebral arteries. In this case the third possibility
of the list above is at play: over time the same disease develops in different
sites. In the absence of complete understanding of the observed phenomenon,
it is always appropriate to speak of association, without coming to a definitive
conclusion regarding causal relationship.

Lastly, if the value of one variable does not influence the value of the other
variable, we say that they are independent (of each other) variables. In the same
study proposed in Example 6.2 [LI ET AL, 2007], the authors demonstrated that
there is no association between the disease degree and the cholesterol blood
level: the two variables (stenosis degree and cholesterol blood level) are inde-
pendent of each other.
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In Example 6.1 we reported the association between a continuous variable
(the ratio between two values of signal intensities) and an ordinal variable
(Gleason grade), but the discussion may be extended to any type of variable. A
radiologist might be interested in assessing if in a CT study there is an associ-
ation between the volume or the contrast enhancement of tumors of the
hypophysis or endocrine pancreas secreting hormones and the blood levels of
the secreted hormone. In this case, we evaluate two continuous variables.

There are many statistical methods for assessing associations between data
and they principally depend on the data type. In this chapter we introduce the
main methods.

6.2. Correlation between Continuous Variables

The statistical technique used for assessing associations between continuous
variables is correlation analysis. Let x and y be two continuous variables: if in
the presence of an increase in the x value we observe an increase in the y value,
then there is a positive correlation; if in the presence of an increase in the x
value we observe a decrease in the y value, then there is a negative correlation.
One may say that x and y are linearly correlated with each other, or that a lin-
ear correlation between them exists, when the mathematical relationship is a
straight line with the equation:

y = ax + b  (6.1)

In this equation a is the angular coefficient, i.e. a measure of the slope of the
line, while b is the intercept, i.e. the intersection point between the straight line
and the y-axis. The meaning of a and b may be made clearer by observing
Figure 6.1 which shows two straight lines with the same intercept but different
angular coefficients.

In medicine, because of wide biological variability, data are rarely perfectly
aligned as in Figure 6.1. Data tend to show some spreading about a general
trend. Note the following example of positive and negative correlation.

Positive and negative
correlation
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Figure 6.1. The graph shows two straight
lines with the same intercept but differ-
ent slopes.
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Pearson correlation
coefficient

The correlation coefficient
is a measure of the state

of being contemporary

Example 6.3. Correlation between the uptake of 18FDG and gadopente-
tate dimeglumine (Gd-DTPA). The authors assess the in vivo relationship
between the 18FDG (18-fluorodeoxyglucose) uptake at positron emission
tomography (PET) and the tumor functional vascularization at MR imaging
in patients with colorectal cancer and hepatic metastases. The metastasis
metabolism is assessed through the ratio between the uptake of 18FDG by
the tumor and that of the liver healthy tissue. From the time course of Gd-
DTPA enhancement, the authors calculate the rate constant k

ep
(s-1) of the

contrast agent as a measurement of tumor blood flow. Moreover, the vascu-
lar density (number of vessels per mm2 of viable tumor surface) is measured
through a computed microscope. The authors demonstrate a negative corre-
lation between the tumor/non tumor (T/NT) 18FDG uptake and the rate con-
stant of Gd-DTPA k

ep
(Figure 6.2). They also demonstrate a linear positive

correlation between Gd-DTPA k
ep

and vascular density (Figure 6.3). Finally,
no correlation between T/NT 18FDG uptake and vascular density is
observed (p = 0.944) [VAN LAARHOVEN ET AL, 2005].

The correlation is mathematically described by the correlation coefficient (or
Pearson correlation coefficient), denoted with r. Suppose we measure the vari-
ables x and y for a sample of n individuals; the linear correlation coefficient is
defined as:

where m
x

and m
y

are the two arithmetical means.
This formula may appear complicated, but looking at the numerator we may

recognize that it is a measure of the state of being contemporary of the varia-
tion of x and y. Once the index of the sum, i, is fixed (i.e. once a sample indi-
vidual is chosen), the differences (x

i
– m

x
) and (y

i
– m

y
) indicate the variation

of the two variables with respect to their means. The more the differences vary
simultaneously from each other, the larger is their product. If there is no rela-
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Figure 6.2. The graph shows the relation
between the T/NT 18FDG uptake and the
rate constant of gadopentetate dimeglu-
mine k

ep
, as well as the regression line,

the corresponding confidence interval,
the confidence interval for the single
measurement (see next sections), the
value of the Pearson correlation coeffi-
cient, and the corresponding p value.
From: van Laarhoven HWM et al (2005)
Radiology 237:181-188 (with permission
of the authors and of the copyright
owner [RSNA]).



tionship between the two variables, the variations (x
i
– m

x
) and (y

i
– m

y
) are

completely random and their product on average is zero. Conversely, if an
increase in the difference (x

i
– m

x
) is accompanied by an increase in the differ-

ence (y
i
– m

y
), then the numerator tends to increase, and the more x and y are

aligned, the larger r is.

The key information we want to obtain is completely contained in the numer-
ator of the correlation coefficient1. The denominator is introduced only to make
r a pure (without measurement unit) coefficient, so as to allow the direct com-
parison of two or more studies2.

The correlation coefficient may take all the values included in the interval [-
1, 1]: positive r values indicate that if x increases (i.e. if we shift from an indi-
vidual with a certain x value to another with a larger x value), then the corre-
sponding y value increases as well; negative r values indicate the opposite
trend. An r value close to zero indicates that there is no linear relationship,
although a mathematical relation other than the linear type may exist. An r
value equal to 1 or to -1 is observed only when the graph points are perfectly
aligned as they are in Figure 6.1: the r value indicates the data alignment
degree along a straight line. The better the points of the graph are aligned, the
closer r is to 1 or -1, regardless of the line slope.

6.3. Interpreting the Correlation Coefficient

The linear correlation coefficient does not represent the amount of increase (or
decrease) of y when x increases, it is rather a measure of the degree of align-
ment of the experimental points along a straight line. The association strength
is expressed by the line slope which, in Equation (6.1), is represented by the a
coefficient. Only when by “association strength” we mean the trend for the

The correlation coefficient
varies between -1 and 1

The correlation coefficient
is a measure of the degree
of alignment between
the experimental points
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Figure 6.3. The graph shows the relation
between the rate constant of gadopente-
tate dimeglumine k

ep
and the vascular den-

sity, as well as the regression line, the corre-
sponding confidence interval, the confi-
dence interval for the single measurement
(see next sections), the value of the Pearson
correlation coefficient, and the correspon-
ding p value. From: van Laarhoven HWM et
al (2005) Radiology 237:181-188 (with per-
mission of the authors and of the copyright
owner [RSNA]).

1 To be rigorous, the numerator is a measure of the covariance.
2 Note that the denominator of the correlation coefficient is equal to (n – 1)s

x
s

y
, i.e. the product of

the standard deviation of x (s
x
) and of y (s

y
) and the number of degree of freedom (n – 1).



The determination coefficient

The correlation coefficient
is aimed to assess linear

relationships

experimental points to “associate around” the line may we state that r is a
measure of the association strength.

To confirm what we have just stated, the reader may observe Figure 6.4, which
reports the data of two independent samples: although the pink points (sample 1)
follow the line with the steeper slope, the corresponding r value (0.91) is lower than
that the blue points (sample 2; r = 1.00). The larger association strength (meaning
the slope) is observed for sample 1, while the alignment is better in sample 2 than
in sample 1. As you can see, only the degree of alignment influences the r value.

You might like to know what difference there is between two samples whose
r values, even if large, substantially differ from one another. Observing Figure
6.4, you may ask why sample 1 is characterized by a larger spread than sample
2 which shows no spread at all3. In order to answer this question, we need to
remember that the data spread depends on several factors, including measure-
ment errors, intrinsic biological variability and, obviously, x variation. The
analysis of variance shows that only a part of the y variation depends on the
corresponding x variation. This percentage is expressed by the determination
coefficient defined as 100r2, i.e. by the square of the correlation coefficient mul-
tiplied by 100. In the case of Figure 6.4, about 83% of the y variation observed
in sample 1 (pink points) is associated with the x variation, while the remain-
ing 17% depends on other factors. In sample 2 (blue points) this proportion is
equal to 100%, a limit case where both biological variability and measurement
errors are equal to zero. In this extreme situation, an increase in the x value
entirely corresponds to a y variation, with a perfectly linear trend.

Lastly, the correlation coefficient is dedicated to assessing linear relation-
ships, and even though it may be calculated on data showing curved behavior,
it has a no meaning in these cases. In Figure 6.5, r = 0.87 should indicate a high
correlation, but the graph points are aligned along a parabolic curve.
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Figure 6.4. Graph showing data of two
independent samples with different asso-
ciation strengths. The example shows
how the r value depends on the align-
ment and not on the line slope.

3 By choice, the data in sample 2 are perfectly aligned to stress the conceptual difference between
association strength and alignment.
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6.4. Test for Significance

Consider the following example.

Example 6.4. Relationship between number of excitation and noise in
MR imaging. Suppose we assess the relationship between image noise and
number of excitation (NEX) using a certain pulse sequence in MR. To do
so, ten patients undergo a brain MR imaging examination with an increas-
ing NEX, patient-by-patient4. Noise, expressed in arbitrary units (a.u.), is
measured in a region of interest placed in a patient- and artifact-free part of
the field of view. Table 6.1 shows the results.

Once we have calculated the correlation coefficient, we may ask: “Is the
observed r value significant? In other words, are the two variables actually cor-
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Figura 6.5. Graph showing a set of
points with parabolic behavior. The
example demonstrates that limiting our-
selves to calculating r is not enough and
that we need to verify if a linear relation-
ship exists.

4 The phase oversampling technique enables a fractional NEX value to be selected.

y

Table 6.1. Number of excitations (NEX) and noise measurements in MR imaging

Patient NEX Noise (a.u.)

1 2.0 10.3
2 2.2 12.1
3 2.6 10.2
4 3.0 10.5
5 3.5 6.7
6 3.6 8.2
7 4.2 8.3
8 4.8 4.2
9 5.0 5.1

10 5.3 3.0

r = -0.93

a.u.= arbitrary units.



Test for significance of the
correlation coefficient

Spearman correlation coefficient

related or is the observed association apparent, probably due to the wide data
variability?” An apparently high r value might also be not significant; on the
other hand, a low r value may unexpectedly prove significant.

To answer the previous question we need to perform a significance test with the
null hypothesis H

0
: r = 0, i.e. that the two studied variables are not correlated.

If the null hypothesis is true, then the quantity

has a Student t distribution with n – 2 degrees of freedom. The value calculat-
ed with the previous formula has to be compared with suitable published tables
[ALTMAN, 1991] to retrieve the corresponding p value and to establish the sig-
nificance of r. For Example 6.4, r = -0.93 provides t = 7.11 and p < 0.001: there-
fore, the negative correlation between the two variables is highly significant.

Now let us consider a simple generalization of the significance test that may
be useful in some circumstances. Sometimes it may be interesting to change the
null hypothesis to verify that the correlation coefficient is not statistically dif-
ferent from a fixed value r

0
. The new hypothesis is H

0
: r = r

0
. This approach is

used when the researcher knows that the two variables correlate with each
other and wants to verify if the correlation coefficient is equal to or larger than
the hypothesized value (r

0
). For sample size n ≥ 30, it may be demonstrated that

the standard error of r is approximately equal to:

and that the quantity

has an approximated standard normal distribution. The observed z value has to
be compared with suitable published tables [ALTMAN, 1991] to retrieve the cor-
responding p value.

6.5. Rank Correlation

The use of the Pearson correlation coefficient depends on some a priori
assumptions that limit its applicability. The studied variables need to be meas-
ured on a random sample and at least one of them should have normal distri-
bution. Preferably, it would be better if both variables have Gaussian distribu-
tion, especially when performing the significance test.

The fastest way to verify these hypotheses is to build the histogram of both
the variables: it will suffice to check that the two histograms approximately
have normal distribution. If not, a valid modification of the Pearson correlation
coefficient is its non-parametric version, known as rank correlation coefficient
or Spearman correlation coefficient.
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In Table 6.2 we have retrieved the data of NEX and image noise from
Example 6.4 and added two columns reporting the corresponding ranks.

The Spearman correlation coefficient, r
s
, may be calculated with the formula

for the Pearson correlation coefficient using the ranks instead of the original
data. Like before, if the null hypothesis H

0
: r

s
= 0 is true, then the quantity:

has normal distribution for sample size n ≥ 30. The observed t value has to be
compared with suitable published tables [ALTMAN, 1991]5. For data reported in
Table 6.2, r

s
= -0.88, t = 5.22 and p < 0.001. Thus, the significance of the lin-

ear relationship between the two variables is confirmed.

Let us consider another example with the use of the rank correlation coefficient.

Example 6.5. Spearman correlation coefficient. Twenty patients with
bone marrow lesions undergo spinal MR imaging using spin-echo and four-
echo Carr-Purcell-Meiboom-Gill sequences. For each patient, T1 and T2
values are obtained through regions of interest placed in L2, L3, and L4
vertebrae. The bone marrow cellularity is measured by morphometric count
techniques. The authors analyze the correlation between T1 or T2 and cel-
lularity, calculating the rank correlation coefficient with the following
results: r

s
= 0.74 (T1 versus cellularity) with p < 0.001 and r

s
= -0.18 (T2

versus cellularity) with p = 0.1 [SMITH ET AL, 1989].

The numerical difference between the two correlation coefficients is a meas-
ure of the satisfaction degree of the hypotheses we introduced at the beginning
of this section: the more the two distributions are different from normal distri-
bution, the larger the difference between the two coefficients is [SOLIANI,

Differences between
Pearson and
Spearman coefficients
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a.u. = arbitrary units.

Table 6.2. Data from Example 6.4 with ranks

Patient NEX Rank Noise (a.u.) Rank

1 2.0 1 10.3 8
2 2.2 2 12.1 10
3 2.6 3 10.2 7
4 3.0 4 10.5 9
5 3.5 5 6.7 4
6 3.6 6 8.2 5
7 4.2 7 8.3 6
8 4.8 8 4.2 2
9 5.0 9 5.1 3

10 5.3 10 3.0 1

r
s
= -0.88

5 Obviously, the significance test for both r and r
s
is performed by a statistical software package, as

with all the other statistical tests.

t =



An extension
of correlation analysis

Regression line or line
of best fit

2007]. In Example 6.4, we obtained r = -0.93 and r
s
= -0.88, with a poor differ-

ence: in this case we may choose which of the two coefficients to use as corre-
lation coefficient without any other verification. However, when this difference
increases, the rank correlation coefficient, which requires no assumption
regarding variable distributions, should always be reported.

6.6. Linear Regression

In many statistical texts the discussion of correlation is often followed by lin-
ear regression which, despite being a different statistical technique, shares the
basic concepts of correlation. Indeed, linear regression analysis may be consid-
ered as an extension of correlation, as it provides more general information on
the same data.

When we measure two or more variables for all the individuals of a certain
random sample, in addition to checking whether any correlations between the
data exist, we are often interested in describing these correlations with mathe-
matical formulas which summarize all information. In Example 6.4 we
observed a negative correlation between image noise and NEX in MR imaging
but we are not able to predict the noise level which corresponds to an interme-
diate NEX value. To do so, we would need to obtain the noise level correspon-
ding to the hypothesized NEX value.

Now let us reconsider Example 6.4 and report the data of Table 6.1 on a
Cartesian graph (Fig. 6.6).

The graph in Figure 6.6 confirms the negative linear correlation between
the two variables, but it does not provide information about the straight line
which would better approximate the experimental data. What we are
searching for is a mathematical method that provides a line that passes
through all graph points, on average. Such a line is denoted regression line
or line of best fit.
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Figure 6.6. Cartesian graph of the
data in Example 6.4. The y-axis cor-
responds to image noise in arbi-
trary units (a.u.); the x-axis to NEX.
The graph shows a strong negative
correlation (r = -0.93).
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6.6.1. Coefficients for Linear Regression

There are many methods for obtaining the regression line. The most used is the least
square method. This method, whose demonstration is omitted, acts on the quantity

We obtain both the a and b coefficients that minimize the sum. At first
glance, this formula might appear complicated, but Figure 6.7 will help the
reader to clearly understand the approach of this method.

The vertical bars represent the difference between the yi
observed

(which corre-
sponds to the xi

observed
) of the i-th sample individual and the expected value based

on the regression line (a . xi
observed

+ b) relative to the same xi
observed

value. This dif-
ference is called residual. In Equation (6.2) all residual squares are summed:
the larger the sum, the poorer the goodness of fit. Therefore, the regression line
is the line that reduces the sum of the residual squares to a minimum, trying to
pass as close as possible to all graph points. The reader will have recognized
that the goodness of fit depends on the degree of alignment of the graph points
and, therefore, on the linear correlation coefficient.

Let m
x
and m

y
be the mean values of the two variables and let x

i
and y

i
be the

single values of the sample. It may be demonstrated that the regression line
passes through the point of coordinates (m

x
, m

y
) and that it is:

m
y

= am
x

+ b

from which we immediately obtain the intercept as:

b = m
y

– am
x

that may be calculated once we obtain the slope as:

The slope calculation may be simplified once we calculate the sum of squares
and the sum of products:

The least square method
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observed observed observed
minimum  (6.2)

expected



In this case:

To summarize, if you have a table similar to the one in Example 6.4, where
two continuous variables are measured, firstly you should report the data on a
Cartesian graph to provide a first impression of the data trend. If this graph sug-
gests a linear relationship, calculate both the Pearson and Spearman coeffi-
cients. Secondly, calculate the two arithmetic means and the two regression
coefficients, a and b.

Consider the following example.

Example 6.6. Relationship between muscle fibers and T1 and T2 relax-
ation times in MR imaging. The authors hypothesize that by measuring
the relaxation times T1 and T2 in a region of interest placed in the vastus
lateralis muscle it would be possible to assess muscle fiber composition and
distinguish between fast-twitch and slow-twitch fibers. For this purpose, 16
volunteer athletes undergo muscle biopsy to establish the fiber composition
in terms of fast-twitch fiber percentage (%FTf). About two weeks later,
they undergo an MR imaging examination using a 0.22-T magnet of the
same muscular region (inversion recovery sequence; TR = 2000 ms; TI =
500 ms; TE = 34 ms). Considering %FTf as a dependent variable and T1
and T2 as independent variables6, they obtain the following results:

%FTf = 0.66T1 – 172.4 (r = 0.924, p < 0.01)
%FTf = 4.9T2 – 81.4 (r = 0.889, p < 0.01)

with a highly significant correlation [KUNO ET AL, 1988].
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6 This notation may be confusing to the reader. Remember that in Cartesian graphs the x-axis vari-
able is called “independent variable” while the y-axis variable is called “dependent variable”, with-
out any reference to correlation.

Figure 6.7. Regression line for the
data in Example 6.4. The vertical
bars indicate the residuals, i.e. the
differences between the noise of
each point and the expected noise
based on the regression line.
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Example 6.6 provides food for thought. Firstly, it demonstrates a very
important aspect of the research: the working hypothesis. Kuno et al. began
from an intuition: they suspected that the type of muscle fibers may affect the
two main MR physical parameters, T1 and T2. Generally, this is the idea, the
starting point of studies which have the demonstration of a possible correla-
tion as an endpoint.

Secondly, this example shows how the predictive use of the regression line
has to be limited to the observed data interval. Data analysis showed that T1
ranged from 313 ms to 382 ms while T2 ranged from 22 ms to 33 ms, with the
corresponding %FTf values ranging from 25% to 95%. For T1 and T2 values
beyond the respective data intervals, the two regression lines may provide non-
sense results, such as negative values or values larger than 100%. On the other
hand, we are not sure that the relationships between the variables still behave
in a linear fashion beyond the observed interval where they may also assume
curved behavior. For this reason, it is not advisable to extend the results of a
linear regression line beyond the observed data interval.

For the sake of completeness, we reported the mathematical formulas for the
calculation of the regression line coefficients, but our advice is to use a statis-
tical software package or to ask a Statistician to do the job.

In order to further clarify the least square method, we now briefly describe
the algorithm followed by computers when calculating these coefficients.
Once the data are placed in a table similar to the one in Example 6.4, the
computer initially assigns two random values to the coefficients a and b and
then it calculates the residual square sum as in Equation (6.2). In the second
step, it retains b, increases a by a small amount and recalculates the residual
square sum: if the new value is lower than the previous one, then the com-
puter again increases a while retaining b, until it reaches a minimum point
(which it finds when the sum starts to increase). If in the second step the
residual square sum is larger than the previous one, then the computer starts
to decrease a by the same small amount as before and recalculates the sum,
continuing until it reaches a minimum. When it obtains the value of coeffi-
cient a that minimizes the sum, it retains a and repeats the cycle for coeffi-
cient b.

This automatic computed procedure is the basis of the least square method
and gives the reader an idea of the adapting process of the regression line
around the experimental points, while searching for the minimum possible
error. For the data in Example 6.4 the regression line is:

noise = -2.39NEX + 16.50 a.u. (6.3)

which describes the behavior of the image noise for any given NEX value. The
slope a = -2.39 a.u. represents the decrease in image noise for one unit (1 NEX)
of the number of excitations: each unitary increase of NEX involves a decrease
of 2.39 a.u. in image noise. The intercept b = 16.50, from a mathematical point
of view, indicates the noise level when NEX = 0, i.e. the intersection point
between the line in Figure 6.7 and the y-axis. As often happens in medicine, the
intercept has no physical meaning, since the value of the x variable (the NEX
in Example 6.4) can never be zero: setting NEX to zero would mean not per-
forming the MR sequence at all.

The working hypothesis

An important limitation

Automated procedures
for coefficients calculation

Adapting the regression
line around the
experimental points
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The confidence interval
of the regression line

6.7. Interpreting the Regression Line

The regression line can be considered the line joining the mean values of the
dependent variable (y) for given values of the independent values (x). Let us
reconsider Example 6.4. We can interpret Equation (6.3) as an estimation of the
mean noise value for a given NEX value. If, for example, we perform the same
MR sequence in n patients with NEX = 4, we obtain a mean noise level equal
to (-2.39 · 4) + 16.50 = 6.94 a.u.

As with all estimations obtained from a sample, the 95% confidence inter-
val (95%CI) can also be calculated for the regression line. Figure 6.8 shows
the regression line for the data in Example 6.4 with the corresponding confi-
dence interval.

The two curves enclosing the regression line represent the constraints with-
in which the true regression line of the whole population can be found, with a
confidence level equal to 95%. Similarly, once we fix a NEX value, the two
curves give both the inferior and the superior boundaries of the confidence
interval of the mean noise estimated by the regression line.

What is the procedure for calculating the confidence interval? Let us consid-
er a sample of n individuals of which we measure the variables x and y and let
m

x
be the arithmetic mean of x. Let y

fit
be the y value estimated by the regres-

sion line corresponding to a given x
0

value, that is:

y
fit

= ax
0

+ b

It is possible to demonstrate that the standard error of y
fit

is:

where S
res

is the standard deviation of the residuals, equal to:

The 95%CI is:

y
fit

± t
0.975

· SE(y
fit
) (6.4)

where t
0.975

is the t value corresponding to an area equal to 0.025 in the t dis-
tribution with n – 2 degree of freedom7. Once t

0.975
is obtained from the pub-

lished tables [ALTMAN, 1991] and allowing x
0

to vary its value, Equation (6.4)
provides the confidence interval of the regression line. In Example 6.4, with
x

0
= 4, we have:
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7 The reader should note that t
0 975

does not correspond to the t
95%

we defined in previous chapters.



a = -2.39 a.u.
b = 16.50 a.u.

x
0

= 4
y

fit
= 6.94 a.u.

S
xx

= 12.54
S

yy
= 82.66 a.u.2

S
xy

= -29.90 a.u.
S

res
= 1.18 a.u.

SE(y
fit
) = 0.40 a.u.

t
0.975

= 2.31
95%CI = 6.94 ± 2.31 · 0.40 = [6.02, 7.86] a.u.

The 95%CI indicates that with a 95% confidence level, the image noise
acquired with NEX = 4 ranges from 6.02 a.u. to 7.86 a.u. As the reader can
observe, the width of the 95%CI is quite small, due to the good alignment of
the experimental points of Figure 6.8.

With regard to the confidence interval of the slope a, it may be demonstrat-
ed that its standard error is:

The 95%CI of the slope is:

a ± t
0.975

·SE(a)

where t
0.975

is the t value corresponding to an area equal to 0.025 in the t dis-
tribution with n – 2 degree of freedom. Lastly, we can perform a test for sig-
nificance with the null hypothesis H

0
: a = 0, where the regression line is not

significantly different from a line parallel to the x-axis. This hypothesis can
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Figure 6.8. Regression line for
the data in Example 6.4. The two
curves represent the 95% confi-
dence interval, i.e. the constraints
within which the true regression
line of the entire population can
be found.
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Limiting the inference to the
observed data interval

Requirements for using linear
regression analysis

be tested by verifyng whether the correlation between the two variables is
statistically significant, i.e. the correlation coefficient is larger than 0. For
Example 6.4, the 95%CI of the a coefficient is the interval [-3.16, -1.61],
with p < 0.01.

6.8. Limitations of the Use of the Regression Line

One of the main limitations of the use of regression analysis is the restriction
of the inference toward the whole population only to the observed data inter-
val. We are not authorized to calculate the dependent variable value outside the
range used for regression analysis. This concept must be stressed because phys-
ical and biological phenomena tend to have curvilinear behavior when going
beyond certain boundaries. For example, take the darkness of a film when
exposed to x-rays. The graph of the optical density versus the radiation dose
absorbed is linear within a certain dose interval, but tends to curve and to reach
a saturation level for higher dose values.

Moreover, the use of linear regression analysis is subject to the verification
of the following hypotheses:

– the values of the dependent variable (y) must have normal distribution for
each value of the independent variable (x);

– the standard deviation of y must be the same for each x value;
– the relationship between x and y must be linear.

The latter of these may appear repetitive, but this is necessary. Even though
this statistical technique may be applied to each pair of continuous variables,
it loses its meaning when applied to data with a curvilinear graph, as already
stated for the correlation coefficient. However, unlike the correlation coeffi-
cient, when performing regression analysis both variables need not be normal-
ly distributed.
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7
Reproducibility: Intraobserver and

Interobserver Variability

Who shall decide when doctors disagree?

ALEXANDER POPE

In clinical practice, the radiologist interprets an examination by qualitative eval-
uation and/or based on the value of continuous variables such as lymph node
diameter, ejection fraction of the two cardiac ventricles, degree of stenosis of an
artery, etc. Moreover, in cases of qualitative assessment, her/his judgment may
be given either as a dichotomous variable (yes/no) or as an ordinal variable.

In Chapter 1 we introduced the diagnostic performance of an imaging modal-
ity compared with a reference standard. This chapter deals with a more general
discussion which answers the following question: What is the degree of the
intrinsic reliability of a measured value? In other words: If we repeat the same
measurement n times, what is the probability of obtaining the same value?

7.1. Sources of Variability

The result of a measurement, whatever the variable may be (ventricular vol-
ume, sensitivity, a proportion), is only an estimation of this variable. In most
cases the radiologist only records the first obtained value and rarely repeats the
measurement to improve the precision of the estimate.

Let us consider the following example. A post-ischemic patient undergoes
cardiac MR imaging using a cine sequence for the assessment of left ventricu-
lar function. In this case, the radiologist measures the volume of the ventricular
cavity both in the systolic and diastolic phase and calculates the ejection frac-
tion. Let us now have a closer look at this measuring process. Figure 7.1 shows
the procedure which uses a software package suitable for this type of analysis.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

What is the intrinsic reliability
of a measured value?

An estimation
of the measured variable



Variability is intrinsic to the
measurement process

Intraobserver variability

Interobserver variability

The radiologist should depict the endocardial surface in all the slices
judged to contain ventricular blood both for the diastolic and the systolic
phases; if he/she is interested in measuring heart mass, he/she should also
delineate the epicardial contour. As the figure shows, the program tries to fit
each curve to the relative contour using algorithms which, despite their
power, rarely provide optimal results. Therefore, the radiologist must manu-
ally correct the result proposed by the software. In this latter step (and dur-
ing the choice of the slices as well as the cardiac phases to be segmented) the
observer1 introduces measurement variability. Since repeating exactly the
same procedure is practically impossible, the repetition of the measurement
by the same observer will produce different values.

This example introduces the concept of intraobserver variability, i.e. the
variability which occurs when the same observer repeats the same measure-
ment under the same conditions two or more times. Even if the observer,
images, and tools are all the same, small differences in the choice of slices,
regions, and cardiac phases to be segmented provide different results. Since the
only weak link in this chain is the observer, the variability we observe in these
cases is known as intraobserver variability.

Now let us consider the differences which arise when the measurement is not
performed by a single observer but by two or more observers. Since each
observer has his own intraobserver variability, the overall variability is larger
than each single contribution. In this case, we are dealing with interobserver
variability, i.e. the variability that exists between two or more observers. To
clarify the difference between intra- and interobserver variability, let us exam-
ine the following example which we will develop in the upcoming sections
with the introduction of each new concept.
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Figure 7.1. The same short-axis end-diastolic image of the heart, obtained at 1.5 T with a four-chan-
nel phased-array coil (prospective ECG trigger; true-FISP sequence; TR 45-50 ms; TE 1.5-1.7 ms; FA 65°;
slice thickness 8 mm; FOV 196 × 262 mm; matrix size 160 × 256 pixels) is shown with three different
phases of segmentation. On the left, two circumferences are placed by the radiologist in such a way
that the computer can fit one to the epicardial contour (outer green circle) and the other to the endo-
cardial contour (inner red circle). This fitting is shown in the central panel. On the right, the radiolo-
gist has manually corrected the mistakes of automatic fitting of the outer circle.

1 From now on we will name the operator who performs the measuring process the “observer”.



Example 7.1. Intra- and interobserver variability. The authors estimate
intra- and interobserver variability in segmenting both left and right cardiac
ventricles using a semi-automated segmenting system (ISAM, interactive
semi-automated method) and standard manual contouring (MC). Two
observers, a radiologist with one-year experience of cardiac MR imaging
(R1), and an engineer trained to recognize and segment cardiac cine-MR
images (R2), perform four segmenting sessions: two independent sessions
for each of them with at least a ten days delay between sessions. The two
observers measure the ejection fraction for a sample of n = 10 consecutive
patients with a wide spectrum of cardiac diseases [SARDANELLI ET AL,
2008]. The results of this study are shown in Table 7.1.

Example 7.1 will enable us in the following sections to make a series of con-
siderations on the importance of the variability estimate. Although variability
and reproducibility are complementary concepts (if a measurement has high
variability it has low reproducibility and vice versa) we prefer to continue the
discussion in terms of variability because the statistical techniques we will
introduce were developed for estimating variability.
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Table 7.1. Ejection fraction of the two cardiac ventricles for ten patients, measured through segmen-
tation of short-axis cine-MR images by two observers (R1, R2) with two different techniques

Left ventricle

ISAM MC
Patient R1-1 R1-2 R2-1 R2-2 R1-1 R1-2 R2-1 R2-2

1 51.8 55.0 51.3 54.3 55.7 61.7 61.4 57.2
2 56.0 52.5 59.4 59.1 57.7 58.2 56.0 63.6
3 57.8 56.5 66.8 65.8 53.9 58.3 70.2 71.5
4 50.4 70.0 55.4 47.1 70.6 73.6 59.2 55.9
5 15.7 18.7 18.2 14.7 18.3 23.6 18.3 22.3
6 62.2 69.2 68.5 63.5 69.4 68.8 71.1 73.5
7 31.4 29.7 30.1 24.4 23.6 22.1 33.7 30.4
8 61.3 56.6 49.0 49.7 61.4 59.0 47.0 45.7
9 21.1 35.0 31.6 33.1 33.2 31.8 32.2 31.6

10 62.5 71.0 71.5 72.9 70.2 72.0 74.4 70.0

Right ventricle

ISAM MC
Patient R1-1 R1-2 R2-1 R2-2 R1-1 R1-2 R2-1 R2-2

1 23.8 47.6 25.0 47.6 17.2 47.1 18.1 31.5
2 61.0 46.0 50.0 52.2 46.6 46.1 50.7 46.5
3 76.9 73.9 66.7 65.2 68.0 72.0 65.5 62.6
4 42.2 40.0 51.3 46.1 58.5 54.9 38.4 54.5
5 74.9 68.4 30.6 63.0 67.0 70.1 37.4 59.1
6 72.6 43.3 48.5 61.0 67.1 52.6 69.7 54.9
7 48.0 46.0 44.0 46.3 46.4 46.5 45.8 46.4
8 18.1 14.2 22.9 19.5 18.3 12.8 24.7 21.2
9 37.5 36.7 56.1 53.2 14.2 23.1 43.8 35.6
10 28.7 30.9 54.3 41.3 16.0 33.4 68.1 49.9

R1-1 and R1-2 represent the results of the first and second measure by R1; similarly for R2. All ejection fractions are given
as percentages. ISAM = interactive semi-automated method; MC = manual contouring.



The influence of variability

The least detectable difference

A preliminary analysis of the
variability enables us to avoid
repeating the measurements

7.2. Why do we Need to Know the Variability of Measurements?

To understand the importance of knowing the measurement variability, let us
consider the following example. A patient with ischemic cardiopathy who
undergoes surgical remodeling of the left ventricle repeats the MR examination
six months after the intervention in order to assess the efficacy of therapy. The
radiologist measures the ejection fraction as 46.1%, larger than the value
obtained before surgery (38.8%). The question is: Is the observed difference
(7.3%) a real effect of therapy or is it due to intraobserver variability? In other
words: If we repeat the measurement once more, is the new value closer to
46.1% or to 38.8%? On the other hand, the observer who measured the ejec-
tion fraction six months after surgery might not be the same observer who per-
formed the measurement before the intervention. If the two observers disagree
on the choice of systolic and/or diastolic phases, they may also produce very
different values of ejection fraction, thus causing the observed difference. This
consideration may also be made when the second MR examination is per-
formed using a different MR technique or a different MR unit2.

The problems presented here raise serious doubts regarding the interpretation
of an observed difference. Thus, the key point is: How should an observed dif-
ference in the measured variable be interpreted? Knowing the variability of
measurement is clearly very useful before drawing conclusions. This variabili-
ty may be expressed in terms of the least detectable difference. This parameter
is a way of understanding how large a difference should be to be considered an
effect not due to measurement variability, within a certain confidence level.

The reader will have noted the close link with the concept of confidence interval.
In fact, one way of answering these questions is to simply compare the confi-
dence intervals of the two estimations or to test the null hypothesis which states
that the difference between the two measurements is zero. Let us reconsider the
example of the patient who repeated MR imaging six months after surgical car-
diac remodeling. A radiologist who performed both ejection fraction measure-
ments (before and six months after the intervention) should assess the efficacy
of treatment by comparing the two corresponding confidence intervals.

However, this approach has two important limitations. First, it no longer
holds if the measurements are taken by different observers, adding interobserv-
er variability. Second, in clinical practice there is little or no time available for
repeating the same measurement, in part due to the need of a suitable interval
between measurements to avoid a learning effect, i.e. the tendency for an
observer to obtain the same results when repeating the same measurement after
a short time. Therefore, it is more practical to perform a preliminary analysis
of intra- and interobserver variability.

Another important aspect needs to be considered. Even if the automatic algo-
rithm of our software does not introduce variability sources3, it should be born
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2 Examples include the performance difference between 1.5-T and 3-T units, or the use of coils with
a different number of channels.
3 This statement is not precisely true. Some procedures, especially with statistical software, begin
with random assignment to temporary variables. On rare occasions the final result of such proce-
dures may depend on the initial random assignment. Note the minimization of χ2 in Section 6.6.1.



in mind that when two or more uncertainty sources are present the overall vari-
ability is a weighted sum4 of the individual components. Recalling the example
of cardiac MR imaging six months after surgery, measurements performed by
two different observers on images acquired with two different MR units will be
characterized by a variability consisting of the following elements:

1. the intraobserver variability of the radiologist who performed the measure-
ment prior to surgery;

2. the intraobserver variability of the radiologist who performed the measure-
ment after surgery;

3. the interobserver variability;
4. the interstudy variability, due to the repetition of the MR examination;
5. the inter-instrumentation variability, due to the use of two different MR units;
6. the biological variability, due to changes in the patient’s health status during

the six months elapsed between the two examinations (the effect of therapy
may also be a part of this variability).

All these variability sources act simultaneously and, as a consequence, the
overall variability is a weighted sum of all sources.

In the next sections we will see how to estimate the intra- and interobserver
variability for both continuous and categorical variables.

7.3. Intraobserver and Interobserver Variability
for Continuous Variables: the Bland-Altman Analysis

John M. Bland and Douglas G. Altman [BLAND AND ALTMAN, 1986; BLAND

AND ALTMAN, 1999] developed a statistical technique which bears their names
for comparing two methods of measurement in medicine. In their studies, the
term method refers to the instrumentation. Many authors have since extended
this approach to the evaluation if intra- and interobserver variability for con-
tinuous variables.

When comparing the standard method with a new one, the purpose is to
demonstrate that the latter provides results similar to the standard method in
such a way as to enable their alternative use. In other cases, the new method is
so advantageous in terms of invasiveness and/or costs that, despite being less
reproducible than the old method, it might replace it anyway. Just how less
reproducible it may be is a clinical and not statistical issue and, in the end, this
depends on its effects on patient management.

The Bland-Altman analysis results in a value expressed with the same meas-
urement units as the measured variable. This allows for a direct interpretation.
The analysis of intra- and interobserver variability may be performed in a par-
allel way, through a measurement protocol similar to the one in Example 7.1.
It is enough that two observers perform two measurements for each individual

Variability sources
sum each other
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4 The way the several elements sum each other is beyond the aims of this book and would make no
essential contribution to the discussion.



The Bland-Altman analysis
interprets variability

in terms of agreement

A bit of history

Criticisms regarding the use of
linear correlation analysis

of the sample5. The Bland-Altman analysis interprets the interobserver variabil-
ity in terms of agreement between the two observers: the higher the agreement,
the lower the variability. Similarly, the higher the agreement that a single
observer has with himself is, the lower the intraobserver variability is.

When measuring a variable in this methodologic setting, instead of the true
value we are interested in knowing if the measurement is reproducible, i.e. if
repeating the same measurement in the same conditions we obtain values very
close to each other. Let us suppose, for example, that the most commonly used
MR sequence for measuring T1 relaxation time provides a value that is system-
atically 10% lower than the true value. If regardless of this the procedure is the
standard one, it will be enough to take this systematic error into account when
using those measurements.

For a long time, linear regression analysis has been used to estimate intra- and
interobserver variability, reporting the Pearson correlation coefficient as a meas-
ure of data agreement. Since Bland and Altman published their article in The
Lancet [BLAND AND ALTMAN, 1986] the use of their method has become very
widespread. We will now examine the criticisms regarding the use of linear cor-
relation analysis for the evaluation of intra- and interobserver variability.

Now we will try to evaluate the intraobserver variability of the first observer
(R1) in Example 7.1 when measuring the ejection fraction of the left ventricle
using the ISAM method. Figure 7.2 reports the second measurement (R1-2) ver-
sus the first measurement (R1-1) of the same reader. As you can see, the r value
is quite large, indicating a high correlation among the data. However, the two
Cartesian axes report the same variable, i.e. the ejection fraction in the same
patients at the same time: clearly there is a correlation, the opposite would be
hard to believe. In actual fact, we are not assessing the possible correlation
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5 Actually, not only is it enough but it is also the only way: two measurements for both of the two
observers.

Figure 7.2. This Cartesian graph
shows the ejection fraction for the
ten patients in Example 7.1. The y-
axis and the x-axis report the sec-
ond (R1-2) and the first (R1-1)
measurement of the first observer
(R1), respectively. The graph also
shows the regression line and its
equation, the r value and the cor-
responding p value.
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between two different variables such as the size of a tumor and the blood level
of a tumor blood marker, for which there may or may not be an association. The
value p < 0.001 indicates the probability of the true r value being zero, or rather
there is no correlation between the data. However, to estimate the variability,
what we need to verify is whether the experimental points lie close to the equal-
ity line, i.e. the line whose points have identical coordinates.

Figure 7.3 reports the same graph as in Figure 7.2, but instead of the regres-
sion line, the equality line is depicted, i.e. the line we would expect if both the
first and the second ejection fraction measurements coincide with each other
for each patient. This would be the case of perfect agreement. The further the
points are from this ideal line, the lower the agreement is. The spread of the
points around this line is a measure of R1 intraobserver variability.

From a mathematical point of view, the equation of the equality line is6 y = x,
i.e. a line with slope a = 1 and intercept b = 0. If we wanted to use linear regres-
sion analysis to estimate the agreement between the two measurements by the
same observer, we would verify that the regression line has those coefficients.

By simply observing the graph we have no clear indication of the agreement.
The starting point of the method proposed by Bland and Altman is the calculation
of the difference between R1-1 and R1-2 for each patient in the sample. In this
way we get a new sample made up of these differences, as shown in Table 7.2.

Table 7.2 also reports the mean and the standard deviation of the differences
and there is an extra column with the mean of the two measured values. The
mean difference (-4.4% in the example), also called bias, represents the mean
error, namely the average quantity that the second measurement adds to or
subtracts from the first one. In practice, the second ejection fraction measure-
ment is 4.4% greater then the first, on average. It is important to take into

Bias is a mean systematic error
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6 We are using the same notation we introduced in Chapter 6, for which the linear equation is
y = ax + b.

Figure 7.3. This Cartesian graph
shows the same data as in Figure
7.2. Note the equality line on
which the experimental points
would lie in the event of perfect
agreement between the first and
second measurement.
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The distribution
of the differences is almost

always normal

Limits of agreement

Bland-Altman graph

account the order with which we calculate the differences: if we had considered
the difference between R1-2 and R1-1, the bias would change its sign.

The variable we are measuring might have non-normal distribution, especial-
ly if the sample is extracted from a pathologic population. However, this does
not prevent us from using the Bland-Altman analysis. It is more important for
the distribution of the differences to be normal, as it generally is due to ran-
domness. This hypothesis enables us to state that 95% of the differences lie in
the interval bias ± 1.96SD, where SD is the standard deviation of the differ-
ences. This interval defines the limits of agreement, often approximated to bias
± 2SD. For Example 7.1, this interval is [-20.2, 11.4]%. Later on we will see
how to interpret this interval.

An important feature of the Bland-Altman analysis is the building of the
graph bearing their name. Instead of using the graph in Figure 7.3, we need a
graph which shows the difference between the two measured values versus
their mean, i.e. the last two columns in Table 7.2. Figure 7.4 shows the Bland-
Altman graph for the measurement by R1 of the ejection fraction of the left
ventricle using the ISAM method (Example 7.1).
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Table 7.2. Application of the Bland-Altman method to the data of Table 7.1

Patient R1-1 (%) R1-2 (%) R1-1 – R1-2 (%) Mean (R1-1, R1-2) (%)

1 51.8 55.0 -3.2 53.4
2 56.0 52.5 3.5 54.3
3 57.8 56.5 1.3 57.2
4 50.4 70.0 -19.6 60.2
5 15.7 18.7 -3.0 17.2
6 62.2 69.2 -7.0 65.7
7 31.4 29.7 1.7 30.6
8 61.3 56.6 4.7 59.0
9 21.1 35.0 -13.9 28.1

10 62.5 71.0 -8.5 66.8

Mean -4.4
Standard Deviation 7.9

R1-1 and R1-2 represent the first and the second measurement by R1, respectively; similarly for R2.

Figure 7.4. Bland-Altman graph
for the data in Example 7.1. The y-
axis reports the difference between
the two measurements (R1-1 – R1-
2), while their mean is reported on
the x-axis. The continuous line rep-
resents the bias, i.e. the mean of
the differences, while the dotted
lines indicate the limits of agree-
ment (bias ± 2SD). As may be seen,
the points are not well centered
around zero.
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In the ideal situation, the experimental points would be aligned along the zero
line (i.e. the x-axis), which is the same as what we stated above regarding the equal-
ity line. Generally, the points will show two features: a more-or-less wide spread
and a shift up or down of a quantity that is just the bias. Moreover, the graph shows
three horizontal lines: one corresponds to bias (continuous line) and two correspond
to the limits of agreement (dotted lines). Based on the main feature of Gaussian dis-
tribution, 95% of the points lie within the limits of agreement, on average.

An important point concerns the need to report the mean of the two measure-
ments on the x-axis instead of just one of them. For example, when assessing
interobserver variability the senior observer might be thought of as a kind of ref-
erence standard. This is an incorrect approach, since the difference between the
two measurements is obviously related to the value from which it is calculated
and reporting this difference against one of the two measurement introduces a
well known statistical artifact. The true value of the variable we are measuring
is not known and its best estimation is the mean of the two measurements.

Let us continue to analyze data from Example 7.1. We now take into consider-
ation the R2 intraobserver variability in segmenting the left ventricle using the
ISAM method. Repeating what we stated for R1, we find: bias = 1.7%, SD = 3.7%
and limits of agreement [-5.6, 9.1]%. Intuitively, the R2 intraobserver variabil-
ity is lower than the R1. In fact, both the bias and the standard deviation are
lower than the values relative to R1 and the limits of agreement have a lower
width. Figure 7.5 shows the corresponding Bland-Altman graph. The y-axis
scale is the same as before to provide the reader with a visual inspection of the
lower variability associated with R2.

Now let us evaluate the interobserver variability between R1 and R2 in meas-
uring the ejection fraction of the left ventricle using the ISAM method
(Example 7.1). The reader may wonder which of the two measurements (R1-1
and R1-2 for the first observer, R2-1 and R2-2 for the second observer) to use
for the analysis. One of the possibilities is to use their means. However, this
choice increases the estimation precision7 and would result in an underestima-
tion of interobserver variability. A good alternative is to use the first measure-

No reference standard
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7 Remember how the confidence interval of a continuous variable is calculated.

Figure 7.5. Bland-Altman graph
for the data in Example 7.1. The y-
axis reports the difference between
the two measurements (R2-1 – R2-
2), while their mean is reported on
the x-axis. The continuous line rep-
resents the bias, i.e. the mean of
the differences, while the dotted
lines indicate the limits of agree-
ment (bias ± 2SD).
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Table 7.3. Results of the Bland-Altman analysis for Example 7.1

Left ventricle

Bias (%) SD (%) Limits of agreement (%)

Variability (ISAM)
Intraobserver (R1) -4.4 7.9 [-20.2, 11.4]
Intraobserver (R2) 1.7 3.7 [-5.6, 9.1]
Interobserver -3.2 6.7 [-16.6, 10.3]

Variability (MC)
Intraobserver (R1) -1.5 3.0 [-7.6, 4.6]
Intraobserver (R2) 0.2 4.0 [-7.8, 8.1]
Interobserver -0.9 9.1 [-19.2, 17.4]

Right ventricle

Bias (%) SD (%) Limits of agreement (%)
Variability (ISAM)
Intraobserver (R1) 3.7 13.3 [-23.0, 30.3]
Intraobserver (R2) -4.6 13.9 [-32.4, 23.2]
Interobserver 3.4 20.5 [-37.5, 44.4]

Variability (MC)
Intraobserver (R1) -3.9 12.5 [-28.9, 21.0]
Intraobserver (R2) 0.0 13.2 [-26.4, 26.4]
Interobserver -4.3 23.0 [-50.3, 41.7]

Bias = mean of the differences; SD = standard deviation; Limits of agreement = bias ± 2SD.

ment of both observers (R1-1 and R2-1) since, generally, in clinical practice
only one value is measured. In this way we obtain: bias = -3.2%, SD = 6.7%
and limits of agreement [-16.6, 10.3]%.

The data analysis of Example 7.1 should also take into consideration the seg-
mentation with the MC method and that of the right ventricle. Table 7.3 shows
the final results in terms of bias, SD and limits of agreement.

In the next section we will explain how to interpret these results. Here we limit the
discussion to noting that the standard deviation of the differences is systematically
larger for the right ventricle than the left ventricle; similarly, the limits of agreement
are systematically wider for the right ventricle than for the left ventricle. On the other
hand, this result was expected, due to the more complex geometry and the less reg-
ular morphology of the right ventricle with respect to the left ventricle. Moreover,
by using short-axis images, we end up segmenting the right ventricle on images
which are spatially oriented perpendicular to the long axis of the left ventricle, which
could not be the best approach for the evaluation of the right ventricle.

7.4. Interpreting the Results of Bland-Altman Analysis

In the previous section we explained how to estimate the intra- and interobserv-
er variability through the Bland-Altman analysis. When presenting the results
of this analysis, bias and limits of agreement must be reported.



Now we will discuss the interpretation of these results. Let us consider the
interobserver variability between R1 and R2 in measuring the ejection fraction
using the manual contouring method of Example 7.1. Suppose that during the
segmentation process R2 excludes the papillary muscles to the ventricular cav-
ity. Since the papillary muscles tend to be more visible in the diastolic phase
than the systolic phase, there will be a tendency for R2 to measure lower vol-
umes than R1 with a consequent underestimation of the ejection fraction.
Therefore, instead of oscillating between positive and negative values around
zero, the differences will tend to have positive values, on average8. In the
Bland-Altman graph the experimental points will not be centered around zero
but around a positive value (barycenter): in practice the points will be shifted
up, on average. The barycenter is the mean of the differences (bias) which is
depicted in the graph with a continuous line. Therefore, the bias represents a
systematic error, i.e. the trend for one of the two observer to underestimate or
overestimate (with respect to the other observer) the measured variable.

In Example 7.1, the R2 intraobserver variability in segmenting the right ven-
tricle using the ISAM method has the following values: bias -4.6%, SD 13.9%
and limits of agreement [-32.4, 23.2]%. Since 95% of measurements with a nor-
mal distribution lie within the interval mean ± 2SD, the R2 variability is such
that if the first measurement had given an ejection fraction value equal to 28.2%,
the second measurement could vary from 28.2% – 23.2% = 5.0% to 28.2% +
32.4 % = 60.6%. In other words, the difference between the first and the second
measurement may take a negative value (first < second) up to 32.4% and a pos-
itive value (first > second) up to 23.2%. This is a very wide interval indeed!

The coefficient 2SD, i.e. twice the standard deviation of the differences, is also
called coefficient of repeatability. If, for example, we compare the value of a vari-
able obtained before treatment and that obtained six months after treatment, we
have to take into account that differences lower than the coefficient of repeatabil-
ity cannot be attributed to the treatment, but to chance. This coefficient assumes
the meaning of the least detectable difference: an observed difference should be
at least as large as the coefficient of repeatability to be considered real.

The repeatability coefficient, 2SD, has the same measurement units as the
variable we are measuring. If R1 and R2 in Example 7.1 had measured the ven-
tricular volume (expressed in mL) instead of the ejection fraction, then 2SD
should represent the least detectable difference in mL. The result of a Bland-
Altman analysis is in itself a continuous variable and it provides more informa-
tion than a result such as “The reproducibility is equal to 87%”. Such a result,
despite appearing very informative, does not help us to definitively interpret
the observed differences.

Let us make another observation. We stated that the limits of agreement are
calculated as bias ± 2SD, a formula close to that for the confidence interval cal-
culation. Be careful of not confusing the limits of agreement and the confidence
interval of the bias.

Lastly, the reader should note that studies assessing the intra- and the interob-
server variability do not necessarily demonstrate that the variability is low and

Bias as a systematic error

Interpreting the limits
of agreement

The coefficient of repeatability
as the least detectable difference

Limits of agreement are not
a confidence interval
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Variability may be reduced,
not eliminated

Overall agreement

that the reproducibility is high. The variability is an aspect intrinsic to the meas-
urement processes. It may be reduced but not completely eliminated. A way of
reducing variability is to make the measurement as objective as possible, by
defining rules and procedures for carrying it out. In Example 7.1, a method for
reducing interobserver variability could be the definition of a common protocol
in selecting the slices and the phases to be segmented and in segmenting images
(e.g. inclusion or exclusion of the papillary muscles). An error to be avoided is
to select the patients of the sample from among those with the best images. The
variability exists in itself and all we have to do is estimate it. Therefore, we
should choose a sample which is representative of clinical practice.

7.5. Intra- and Interobserver Variability for Categorical Variables:
the Cohen k

Until now we have considered intra- and interobserver variability for continu-
ous variables. In this section we introduce the methods for estimating variabil-
ity for categorical variables. Unlike continuous variables, the values that a cat-
egorical variable may take are often – but not always – the fruit of a personal
judgment of the radiologist. An exception is the discretization of a continuous
variable into two or more categories based on its numerical value. An example
is the NASCET criteria [NASCET, 1991] which subdivides the degree of
stenosis of carotid arteries (a continuous variable that may take values in the
interval [0, 100]%) into the classes mild [0, 29]%, moderate [30, 69]%, and
severe [70, 100]%9. Notice that the information is greater with continuous vari-
ables than with categorical variables and to analyze data based on the original
continuous variable is undoubtedly better.

We need a method which provides information on the reproducibility of the
judgment of two or more radiologists or the reproducibility a radiologist has
with her himself if he/she repeats the evaluation. The logical approach is the
same as the one developed in the two previous sections, with the only excep-
tion being that now we are studying categorical variables. Unlike the Bland-
Altman analysis, the method we are going to introduce expresses the intra- and
interobserver variability in terms of reproducibility and provides results in term
of a percentage.

We begin our discussion with the data of the following example.

Example 7.2. The Cohen k. Two radiologists, R1 and R2, independently
provide a dichotomous judgment (positive/negative) for the presence of
secondary hepatic lesions in a sample of 150 abdominal CT examinations.
Data are reported in Table 7.4.

Consider the concordances: the number of individuals judged as positive or
negative by both observers is equal to 7 and 121, respectively. These data are
placed on the main diagonal of Table 7.4, while on the secondary diagonal the
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discordances are placed. The number of individuals judged as negative by R2
and as positive by R1 is equal to 10, while the number of individuals judged as
positive by R2 and as negative by R1 is equal to 12. Intuitively, we consider
the proportion of the concordances on the total number of patients:

This ratio (0.85) represents the overall agreement and is generally expressed
as a percentage. Therefore, for the data in Table 7.4, R1 and R2 agree in 85%
of their evaluations.

The overall agreement is rarely used since it does not provide information on
the type of agreement. If, as is the case in Example 7.2, one of the components
prevails over the others (the number of negative individuals is much larger than
the number of positive individuals), p

0
may give a false feeling of high per-

formance. Let us take the example of mammographic screening: since most
women have a negative exam, the probability that both observers give a nega-
tive judgment is very high and this hides the possible agreement or disagree-
ment on the positive cases.

A good alternative is to separately calculate the agreement on the positive
cases, p

+
, and on the negative cases, p

-
. For Example 7.2:

In practice, the positive concordances (both the observers judge 7 cases as
positive) are added and this sum is divided by the total number of cases judged
as positive (19 by R2 and 17 by R1). Similarly:

the negative concordances (both the observers judges 121 cases as negative)
are added and this sum is divided by the total number of cases judged as neg-
ative (131 by R2 and 133 by R1).

As you can see, the overall agreement is between p
+

and p
-
and is strongly

affected by p
-
. In actual fact, R1 and R2 highly agree only on the negative cases

(92%), while their agreement on the positive cases (39%) is much lower. If we
calculate p

+
and p

-
, separately any imbalance in the positive/negative propor-

The overall agreement depends
on disease prevalence
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Table 7.4. Contingency table of the data in Example 7.2

R2
Positive Negative Total

R1
Positive 7 10 17

Negative 12 121 133

Total 19 131 150



The random agreement

The Cohen k

tion clearly appears. The disadvantage is that we cannot calculate the corre-
sponding confidence intervals.

Let us now take a step forward. In addition to disease prevalence and opera-
tor experience, we have to consider the probability that the two judgments
agree by chance. If for example R1 and R2 were to toss a coin and to judge an
examination as positive if they get heads and negative if they get tails, there
would be a fraction of patients with identical results. We have to account for
this fraction and subtract it from the overall agreement, thus obtaining the true
agreement. Let p

a
be the expected agreement by chance: the true agreement is

p
0

– p
a
. Now we should divide this value by the maximum achievable true

agreement (1-p
a
).

In 1960 Jacob Cohen from New York University [COHEN, 1960] proposed a
coefficient (later denoted as Cohen k) defined as:

Therefore, the Cohen k is the ratio between the true agreement (p
0

– p
a
) and

the maximum achievable true agreement (1 – p
a
). It is the fraction of the

observed agreement on its maximum value not due to chance.

Now we will see how to calculate the expected agreement p
a
. To simplify this

calculation, we modify Table 7.4 by dividing each cell by the total number of
individuals (150 in Example 7.2). Table 7.5 shows the frequency of each cell and
it also shows the expected value calculated as the product of the relative margin-
al totals. For the upper left cell the observed frequency is 7/150 = 0.04, while the
expected frequency is 0.11 × 0.12 = 0.01; similarly for all other cells. The
observed overall agreement is the sum of the frequencies on the main diagonal:

p
0

= 0.04 + 0.81 = 0.85

while the expected agreement is the sum of the expected frequencies on the
main diagonal:

p
a
= 0.01 + 0.78 = 0.79
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Table 7.5. Contingency table for calculating the Cohen k

R2
Positive Negative Total

R1

Positive 0.04 0.07 0.11
(0.01) (0.10)

Negative 0.08 0.81 0.89
(0.11) (0.78)

Total 0.12 0.88 1.00

The expected frequencies are shown in parenthesis.



As the reader may see, 79% agreement was expected simply due to chance,
and the remaining true agreement is p

0
– p

a
= 0.85 – 0.79 = 0.06 (6%), with

respect to the maximum value equal to 1 – 0.79 = 0.21 (21%). The Cohen k is:

Thus, we shift from an overall agreement equal to 85% to an agreement cor-
rected for the effect of chance (the Cohen k) equal to 31%.

From a mathematical point of view, the Cohen k may vary in the interval
[-1, 1], but the only logical part of this interval is the positive one, i.e. [0, 1].
Many statisticians agree in considering k = 0 as total absence of agreement
between the observers and k = 1 as perfect agreement. In 1977, J.R. Landis
and G.G. Koch [LANDIS AND KOCH, 1977] proposed the classification of the
k value shown in Table 7.6.

This classification is arbitrary but it is commonly used. According to Table
7.6, the agreement other than due to chance shown by R1 and R2 in Example
7.2 is fair (31%), though associated with 85% overall agreement. This appar-
ent paradox (large overall agreement and low Cohen k) is due to the high
prevalence of negative cases and, therefore, to a very unbalanced data distribu-
tion. A more balanced distribution among negative and positive cases would
result in a larger value of the Cohen k.

A. Feinstein and D. Cicchetti [FEINSTEIN AND CICCHETTI, 1990; CICCHETTI

AND FEINSTEIN, 1990] explored this paradox suggesting that in studies dealing
with intra- and interobserver reproducibility for categorical variables the
Cohen k, p

+
, and p

-
should be reported. In this view, Cohen k may be consid-

ered as a measure of the reliability of the overall agreement.
Clearly, we cannot trust the overall agreement because it is overly affected

by disease prevalence. However, we may assess it by calculating the Cohen k:
the closer k is to 1, the more reliable the p

0
value is, whereas the closer it is to

0, the less reliable the p
0

value becomes. Lastly, this approach is similar to the
one used for the confidence interval: the reliability of the estimated value
depends on the width of the corresponding confidence interval.

The Cohen k may be generalized to take into account non dichotomous cat-
egorical variables and ordinal variables. Data must be organized in a contin-
gency table with n rows and n columns, where n is the number of values that

Cohen k ranges
between -1 and 1

A paradox?

The Cohen k is a
measure of the reliability
of the overall agreement

The generalized Cohen k
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Table 7.6. Classification of the agreement based on the k value

k Agreement other than chance

< 0 None
0-0.20 Slight

0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost perfect

From: LANDIS AND KOCH, 1977.



The weighted k

the variable may take. If two radiologists evaluate a series of mammogra-
phies using BI-RADS® 1-to-5 scale, the data should be placed in a 5 × 5 con-
tingency table.

With this generalization, k statistics shows an intrinsic limitation: it only takes
into account the concordances and discordances without considering the weight
of each discordance. A BI-RADS® discordance between scores 1 (negative) and
2 (benign finding) is clearly much less clinically relevant than the discordance
between scores 3 (probably benign finding) and 4 (suspicious abnormality). We
can overcome this limitation of k statistics (up to now considered in its simplest
form, denoted as unweighted) by introducing some coefficients that give differ-
ent weights to the discordances according to the magnitude of the discrepancy.
These coefficients account for the discordances by giving more weight to those
discordances the radiologist holds to be more important.

Although we have not provided a mathematical explanation, the reader may
easily see that the value of the weighted k numerically depends on the chosen
coefficients. The arbitrary choice of these coefficients makes the weighted k
observer-dependent and does not allow comparison between different experi-
ments. The only way to compare several k values is to use standard weights.
However, in medicine, alongside purely statistical considerations we also need
to add biological, patient-specific and ethical considerations such as the differ-
ence in terms of importance between BI-RADS® scores 3 and 4.
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8
Study Design, Systematic Reviews

and Levels of Evidence

It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories,

instead of theories to suit facts.

SHERLOCK HOLMES

(ARTHUR CONAN DOYLE)

In Section 3.1 we stated that when we observe a difference between two groups
or two samples, the first thing we should exclude is that this difference is sim-
ply due to the effect of variability within the population from which the two
samples were taken. From this we derived the method that the use of probabil-
ity allows us to reject the null hypothesis (H

0
) and to accept the experimental

hypothesis (H
1
). Therefore, if we have excluded variability within the popula-

tion, does this mean we have a direct demonstration of the experimental
hypothesis? Unfortunately, this is not the case. Before we can conclude in favor
of the experimental hypothesis, we need to be sure that the entire process (from
study design to its practical implementation, in all its details) is free from bias,
i.e. systematic distortions, which might have influenced the results. If a study
is flawed by substantial bias, its application to clinical practice is doubtful or
not possible at all.

As with other fields, prevention is better than cure. Correctly designing
and implementing a study is the right way for producing a good scientif-
ic work. In this chapter we will discuss the topic of study design, begin-
ning with the classic four phases of pharmacologic research. We will also
briefly examine systematic reviews, namely those studies which evaluate
– using meta-analysis – the evidence from already published studies, as
well as the hierarchy of the levels of evidence, which depend in particu-
lar on study design. In the next chapter we will describe the errors to be
avoided in studies on diagnostic performance, i.e. the sources of bias in
radiologic studies.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

Is the difference due
to the variability?



Radiologic research
on contrast materials

Diagnostic imaging
to demonstrate drug activity

Pharmacodynamics

Cure the patients,
not their images

Four phases of
pharmacologic research

Peculiar features of clinical
research in oncology

8.1. Phases 1, 2, 3, and 4 of Pharmacologic Research

At least ten years are needed from the time the manufacturer has the possibly
active molecule in their hands to the launch of the new drug onto the market and
its use in clinical practice. Radiologic research is obviously involved in the
development of contrast materials, but medical imaging is being increasingly
used in drug research in a broader sense. In fact, diagnostic imaging can give
end-points which are alternative to the clinical course of a disease. These end-
points are commonly earlier and more objective than those of the clinical
course. This is the case of imaging techniques applied to the study of the num-
ber and size of tumors before/after chemotherapy. Criteria for this evaluation
were first proposed by the World Health Organization [WHO, 1979]. In 2000,
the response evaluation criteria in solid tumors (RECIST) appeared as a stan-
dardized method [THERASSE ET AL, 2000]. Currently this evaluation is under
investigation and the criteria will probably be modified [THERASSE ET AL, 2006].
Fields of clinical research other than oncology use end-points frequently taken
from longitudinal imaging studies. An example is the use of MR imaging for the
study of new therapeutic approaches for multiple sclerosis [FILIPPI ET AL, 1999].

The main advantage of diagnostic imaging is the possibility of an early non-
invasive quantification of the action of an experimental drug, i.e. to provide
information on the drug pharmacodynamics. In an early experimental phase,
imaging modalities give objective, robust, and repeated measurements on small
samples of patients, reducing the costs and duration of the studies. In this way,
initial promising results from small studies can subsequently be tested in stud-
ies with larger samples and an evaluation can be made of drug efficacy in terms
of better clinical course, increased years of life adjusted for quality of life and,
when applicable, mortality reduction. Notwithstanding the increasing role of
diagnostic imaging in clinical research, we must always remember that the
ultimate purpose is to cure the patients, not their images.

After preclinical cell or animal testing, a new drug reaches the clinical exper-
imentation stage, i.e. human testing. This test on humans is classically subdi-
vided into four phases [BACCHIERI AND DELLA CIOPPA, 2004; HOFFMAN ET AL,
2007] (Table 8.1), with some special features for anticancer drugs. In fact, in
oncology, each of the four phases has a particular role:

– phase 1 includes patients who cannot benefit from other therapies (these
patients are frequently in advanced stages of the disease) with the main pur-
pose of finding the right dosage for phase 2 studies;

– phase 2 is aimed at confirming pharmacodynamic action, at least in terms of
partial or complete response;

– phase 3 is aimed at demonstrating clinical efficacy in terms of survival rate
(and also at verifying safety and tolerability);

– phase 4 involves surveillance after the drug has entered the market.

Pharmacologic studies rarely involve radiologists as principal investigators,
with the obvious exception of contrast materials. However, radiologists should
have a broader knowledge of the clinical experimentation of drugs, firstly
because the fundamental methodology is the same for both pharmacology and
diagnostic performance, secondly because – as stated above – pharmacody-
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Table 8.1. The classic four phases for clinical testing of a new drug

Phase Number Type of Aims
of subjects subjects

Phase 1: clinical Tens Healthy To obtain initial information
pharmacology volunteers on safety and tolerability
and toxicity or patients (side effects) and on
(initial pharmacokinetics* on a wide
administration range of doses. If phase 1
to humans) is conducted on patients,

preliminary information
on pharmacodynamics**
can also be obtained.
These are fundamental data
for designing a phase 2 study

Phase 2: initial Tens-hundreds Patients Phase 2a, proof of concept:
clinical study to demonstrate that the
(first controlled drug at high doses is active on
studies) important pharmacodynamic

end-points, well established
for small samples of patients.
Phase 2b: to select the best
dosage and administration
regimen to be used in phase 3.
Possible secondary aims
to obtain information
on pharmacodynamics
and therapeutic efficacy***

Phase 3: extended Thousands Patients To confirm safety and
evaluation of treatment (typically pharmacodynamic action
(further controlled and 2,000–5,000 as well as to demonstrate
non-controlled studies) for each arm of therapeutic efficacy on a sample

randomization) representative of patient
population, preferably
using clinical end-points***.
The study design implies
randomization to a group
of patients treated with the
experimental drug and to a control
group (patients treated with
the standard therapy or a placebo)

Phase 4: surveillance Thousands and Patients To confirm safety,
after the drug enters over pharmacodynamic action,
the market and therapeutic efficacy after

drug registration for approved
indications, frequently with
comparison with other treatments.
Studies on economic impact.
Drug surveillance

* Pharmacokinetics quantitatively studies drug uptake, distribution, metabolism, and clearance, i.e. the effects of the
action of the human body on the drug.
** Pharmacodynamics studies the biochemical and physiological effects of the action of the drug on the human body.
*** In phase 2 and, more frequently, in phase 3, special studies can be conducted on elderly patients, different ethnic
groups, patients with kidney or liver disease, or on the interaction with other drugs, food and/or water [BACCHIERI AND

DELLA CIOPPA, 2004].
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namic end-points are increasingly based on imaging findings. Here radiologists
should play a more active role, and not simply suppliers of data managed by
other professionals to demonstrate drug activity and efficacy.

8.2. Study Classification

Studies1 can be firstly classified as observational or experimental. While obser-
vational studies can be prospective or retrospective and longitudinal or trans-
versal (i.e. cross-sectional2), experimental studies are necessarily prospective
and longitudinal (Table 8.2).

Here we need several definitions [ALTMAN, 1991]. Studies which evaluate one
or multiple groups of subjects without any modification of the context of the
events by the test driver are defined observational. When the measured events
happen after subjects have been enrolled, the study is prospective. When the meas-
ured events happened before the subjects have been enrolled, the study is retro-
spective. In other words, in prospective studies enrollment precedes the measured
events, in retrospective studies enrollment follows the measured events.

Epidemiologic studies of disease incidence are typically observational.
Distinguishing between prospective and retrospective observational studies is
also crucial for regulatory issues of radiologic studies. For both study types,
approval by the Ethics Committee (or Institutional Review Board, IRB) is an
absolute prerequisite. Moreover, for prospective studies, informed consent to
participate in the study must be obtained by each enrolled subject. For retro-
spective studies, IRB approval dispenses with the need for informed consent,
under the obvious condition that data and images reported in possible publica-
tions allow the subjects to remain anonymous (see Chapter 10).

To understand the difference between prospective and retrospective studies,
consider the following example. Suppose you want to estimate the prevalence
of arterial hypertension in the patients admitted to a hospital. You could enroll
all the patients admitted to the hospital during a defined time interval and
measure their arterial pressure at the first visit (prospective study). Otherwise,
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1 Here we refer to studies on humans but many concepts can also be applied to cell or animal test-
ing, i.e. on biological systems evolving in time. The design of studies on phantoms is simpler, gen-
erally observational and transversal.
2 The use of the term cross-sectional for transversal studies is ambiguous: in radiology this term is
used for imaging modalities which provide images of body slices, i.e. tomographic techniques.

Table 8.2. General classification of studies

Observational Experimental

Retrospective Prospective Prospective

Longitudinal Transversal Longitudinal Transversal Longitudinal
(case-control) (cross-sectional) (cohort) (cross-sectional) randomized



you could obtain the same information using the first arterial pressure reported
in the medical record of all patients admitted to the hospital during a previous
time interval (retrospective study).

Similarly, suppose you want to estimate the prevalence of the azygos lobe in
subjects who undergo chest x-ray examination. You could enroll all the subjects
with indications for a chest radiograph during a defined time interval and record
all those who have this anatomic anomaly (prospective study). Otherwise, you
could re-evaluate all the digital images stored in the picture archiving and com-
munication system (PACS) obtained for the subjects who have undergone a chest
x-ray examination in a previous time interval (retrospective study).

Retrospective radiologic studies require particular specification. There is a
relevant difference between the use of the reports produced when the examina-
tions were originally performed and the re-evaluation of images previously
obtained (this second option offers the possibility of multiple readings and of
measuring intra- and interobserver reproducibility – see Chapter 7). Note that
a study evaluating the original readings (the previous reports) remains retro-
spective, even though it uses the reports prospectively produced when the
examination was performed: it refers to events (the examinations) which hap-
pened before the decision to do the study. However, the prospective routine
reading could be less meticulous (or the routine reports might have omitted non
relevant findings, even though they were detected) than a new ad hoc reading
performed by a motivated radiologist. We can test this hypothesis comparing
the prospective reading (the original reports) with the re-evaluation. In any
case, all these studies are retrospective.

Studies aimed at investigating the variation of a variable over time are
defined longitudinal. At least two measurements are needed for each subject,
commonly in temporal relation with an event (for instance, the administration
of a drug or surgical treatment) which subdivides the time context into before
and after. When the variable is measured only once for each subject (typically
in opinion polls), the studies are defined transversal. This term highlights that
the measurement takes a picture of the situation at a single point in time.

Finally, let us reiterate the concept that while observational studies can be
prospective or retrospective and longitudinal or transversal, experimental stud-
ies are necessarily prospective and longitudinal.

8.3. Experimental Studies and Control Group

When the conditions in which the events happen are modified by the test driv-
er according to a planned scheme, a study is defined experimental.3 In general
the purpose is to obtain information on the action or the efficacy of a treatment
by making it emerge from the background, i.e. from the variability present in
the population under investigation. A sample of subjects who are administered

Radiologic retrospective studies

Longitudinal versus
transversal studies

Experimental design
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3 Note that the adjective “experimental” is used here to highlight a basic feature of the study design,
while in a different context it is used either to define the research hypothesis we would like to
“demonstrate”, the H

1
hypothesis, opposite to the H

0
hypothesis or null hypothesis (see Chapter 3),

or to define cell, animal, or phantom testing (see Chapter 10).
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an experimental treatment (commonly a new therapy) is compared with a sam-
ple of subjects who are administered the standard treatment or a treatment sim-
ulator (placebo). This second sample of subjects is named control group. When
patients are assigned to the experimental or control group by means of a ran-
domization procedure, the study is defined randomized controlled trial.

Why can we not simply administer the new treatment to a group of patients
and observe the events like we typically do in a phase 2 study? The answer is
that an improvement in one group of patients alone does not allow us to draw
reliable conclusions in favor of the efficacy of a treatment.

A well known phenomenon explaining this statement is the regression to the
mean. Many diseases cause symptoms which change over time, without a
steadily progressive course, even when the disease is not treated. In practice,
patients exhibit relapsing and remitting phases or, at least, phases with heavy
symptoms and phases with light symptoms. A key point is that the probability
of the patient asking for a medical diagnosis or treatment is higher in the relaps-
ing phase. If a remitting phase follows, we have a regression to the mean of the
clinical status. Even in the absence of treatment, patients in this phase show an
improvement, even though they will show a worsening in the future. In this
experimental scheme (before/after on a single group of patients), even com-
pletely ineffective treatment could appear as effective. This phenomenon is
highly evident for disease with a seasonal trend (e.g. peptic ulcer, allergic asth-
ma). A control group allows us to see whether patients undergoing standard
treatment or placebo have a clinical course similar to that observed in patients
undergoing experimental treatment. Only this comparison enables us to
demonstrate that the experimental treatment is more effective than the standard
treatment or placebo. Obviously, we might also see the opposite result, i.e. the
experimental treatment is less effective than the standard treatment or placebo.

Once this standpoint has been accepted, the basic problem is how to assign
each patient to the experimental or control group. This assignment must be ran-
domized. Neither the patient nor any of her/his relatives, the physician or any
of the other members of the medical team should play any role in determining
the attribution to either the experimental or control group.

This hard rule is extremely important and opens serious problems, also for
ethical concerns. When a randomized controlled trial is done for a new anti-
cancer treatment, the new (potentially more effective) treatment is withheld
from all the patients randomized to the control group. On the other hand, if the
patients were assigned in an open modality (i.e. if patients and/or physicians
could freely choose the assignment), the experimental group would probably
be larger and, more importantly, composed of patients with more advanced
stages of disease than the control group. The paradoxical result would be that
the patients undergoing the new treatment would show a worse clinical course
than those of the control group, which would thus lose its control function. We
would conclude in favor of the standard treatment or of the placebo, making a
major (false negative) error. In such circumstances an effective drug could be
judged ineffective.

Events such as this can actually occur. Some years ago, the negative results
of a Canadian breast cancer screening program provoked widespread debate
[ANDERSSON ET AL, 1988]. The findings were not in favor of screening mam-
mography and some authors even hypothesized that mammographic breast
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compression could have worsened the clinical course in the women with breast
cancer. Upon critical analysis [BAINES ET AL, 1990; DI MAGGIO, 1992] many
technical and methodologic flaws were found in this screening program. One
of the several problems was that a number of symptomatic women (with a pal-
pable lump) who had asked spontaneously for a mammographic examination
appeared to have been assigned by nurses to the experimental group (women
who underwent mammography). In a case like this, the good intentions of the
nurses to accelerate the examination in symptomatic women doomed the
experimental design to an unavoidable failure: a higher number of cancers
were found in the screened women and these tumors were more advanced than
those in the non screened women (the control group). What should the nurses
have done? They should have admitted the symptomatic patients to an imme-
diate clinical mammography (complete with physical examination, ultrasound,
and needle biopsy, if needed), without placing them in the experimental screen-
ing group. Beyond the specific controversies which were aroused [BAINES ET

AL, 1990; MILLER ET AL, 1991; BAINES, 1994; TARONE, 1995; BAILAR AND

MACMAHON, 1997], this episode clearly demonstrates the negative effects
which can arise from flaws in randomization.

Unbiased randomization is crucial. Only in this way can we minimize pos-
sible bias and make the experimental group and the control group as similar as
possible. Only in this way can the administration of the new drug in the exper-
imental group and the standard treatment or placebo in the control group
become the main source of difference between the two groups.

Douglas G. Altman [ALTMAN, 1991] shrewdly suggests that this issue is sim-
ilar to that of signal-to-noise ratio, well known in radiology as a main factor
determining image quality. Biological variability is the background noise on
which we try to distinguish the signal, i.e. the effect of the experimental treat-
ment. If variability is high and the experimental treatment is not “miraculous”,
the only possibility available to us is to make the background noise as homog-
enous as possible between the two groups. In this way, the signal (the effect of
the experimental treatment) will appear as the only main difference between
the two groups. Every inhomogeneity between the two groups acts as a con-
founding factor, reducing the possibility of detecting the signal.

In radiology, when a contrast agent is intravenously (or also intra-arterious-
ly) administered to study a vascularized lesion or a vessel (as in x-ray angiog-
raphy, CT angiography, or MR imaging and angiography), radiologists use a
technical procedure to make the signal-to-noise ratio higher – image digital
subtraction. This procedure is effective only if the precontrast images (which
work as a mask) are entirely equal to the postcontrast images with the single
exception of the contrast-enhanced lesions and the vessels, which will appear
bright on a dark background (or vice versa) on the subtracted images. If other
differences are present between the precontrast and postcontrast images, the
subtracted images are burdened by artifacts (if the patient moves, we have an
artifact produced by insufficient image coregistration).

High homogeneity between experimental group and control group can be
obtained by comparing the two treatments in the same subjects, when each
patient is the control of herself/himself. However, this intraindividual design is
possible only when the disease can be treated in a different way in the same
subject. Examples include topical dermatologic or ophthalmologic therapies

A well-known problem:
the signal-to-noise ratio

Inhomogeneity between two
groups as a confounding factor

Intraindividual comparison
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(right arm treated with drug A, left arm treated with drug B; right eye treated
with drug A, left eye treated with drug B) or the study of a chronic disease
where drug A can be tested in a first time period and drug B in a second peri-
od in the same patient, with a washout period between treatments (cross-over
studies). Later on, we will see that an intraindividual design can be used for
prospective radiologic studies on diagnostic performance.

Lastly, note that a control group is also very useful for observational studies,
even though choosing historical control groups (data retrospectively obtained
from series of patients not treated with the experimental treatment) is a very
difficult task [ALTMAN, 1991].

8.4. Observational Studies

There are situations which do not allow experimental studies to be carried out.
We cannot prospectively randomize healthy subjects to the exposure or non
exposure to a harmful substance in order to demonstrate that in exposed sub-
jects we observe a higher incidence of the substance-related disease. Here, the
only methods for demonstrating the association between the harmful substance
and the disease (and to infer a causal relationship) are observational studies,
typically used in epidemiology.

A first method is the prospective longitudinal observational study, also called
cohort study or follow-up study. The efficiency of this study depends on the fre-
quency of the expected events. Inclusion and exclusion criteria for patient enrol-
ment are fundamental. Serious problems can be created by the temporal extent
of the study: a great number of subjects can be lost at follow-up or initial con-
ditions which favored the enrollment may significantly change. Moreover,
groups of subjects with different risk of disease could undergo different surveil-
lance protocols: subjects at higher risk would have a more intensive surveillance
with a higher probability of an earlier disease diagnosis (surveillance bias).

A second method is the retrospective longitudinal observational study, also
called case-control study. We identify a group of patients affected with the dis-
ease and a group of subjects not affected with the disease. From the history of
each subject in both groups we try to evaluate whether one or multiple factors
contributed to disease pathogenesis in the cases or prevented the development
of disease in the controls.

A basic aspect of case-control studies is the selection of a suitable control
group (which should be very similar to the group of cases except for the pres-
ence of the disease). This goal is sometimes reached by matching each case
with a control very similar to the case (for example for age and sex), obtaining
couples of paired subjects. However, this method prevents us from investigat-
ing the role of these variables (age and sex) in disease pathogenesis.

A current example is given by the reports on nephrogenic systemic fibrosis
(NSF), a disease associated with the intravenous administration of Gd-based
paramagnetic contrast materials in patients with chronic kidney disease (CKD) in
stage III or, more frequently, stage IV or stage V [TAMBURRINI ET AL, 2007].
Studies describing only NSF patients are undoubtedly less useful than those
[SADOWSKI ET AL, 2007; RYDAHL ET AL, 2008, PRINCE ET AL, 2008] which describe
both NSF patients (the cases) and CKD patients who received Gd-based contrast
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material and did not develop NSF (the controls). Only this comparison can pro-
vide information on cofactors in disease pathogenesis.

Other critical aspects of case-control studies are as follows:

– selection of cases;
– better possibility of investigating the history of cases than that of controls

(recall bias: cases remember the exposure to risk factors, controls do not
remember them);

– general lower accuracy of retrospective investigation;
– different intensity of surveillance protocols (surveillance bias), as stated

above for prospective longitudinal observational studies.

A third method is offered by transversal (cross-sectional) observational
studies. Here we do not have any comparison between cases and controls.
Information is obtained only once and does not regard longitudinal history.
When we investigate actual events (e.g. presence or absence of a life habit, as
with a survey) or events immediately following enrollment (e.g. the result of a
diagnostic examination), the study design is prospective. When we investigate
single past events without case-control comparison, the study design is retro-
spective. Critical aspects of transversal observational studies are as follows:

– the sample selection (if the subjects are volunteers, we can have volunteer bias);
– the response rates;
– the evaluation of cause-effect relations between the variables under investigation.

As a general warning, bear in mind that observational studies enable us to
detect possible associations between events. When ethically possible, a more
reliable evaluation of the incidence of these events and, above all, the inference
of cause-effect relations should be done by means of experimental studies, i.e.
prospective, longitudinal, randomized studies. Among the observational stud-
ies, cohort studies (prospective longitudinal) are commonly more reliable and
less biased than transversal and case-control studies.

8.5. Randomized Controlled Studies: Alternative Approaches

In the previous sections, we referred to randomized controlled trials as
designed using parallel groups. Alternative approaches can be used. Here we
list the most important ones [ALTMAN, 1991]:

1. cross-over, when all the patients receive both treatments, one before the
other, with a randomized order of priority. Limitations are as follows:
enrolled subjects can withdraw (drop-out) after the first treatment (e.g.
because of side effects); when the effect of the first treatment can still be
present after the administration of the second treatment (carry-over effect),
we need to introduce a washout time interval between the evaluation of the
effect of the first treatment and the administration of the second treatment;
the cross over design can only be used for chronic diseases and when the
effect of the treatment we are investigating is relatively rapid;

Recall bias

Surveillance bias

Transversal studies

Surveys

Volunteer bias

Randomized studies
as a first choice

Types of randomized
controlled trials

Cross-over design
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2. intraindividual paired data, when each subject receives both treatments at
the same time (only for topical therapies of double organs or skin areas –
see Section 8.3). This scheme is frequently used for comparative radiolog-
ic studies;

3. matched paired data, when pairs of subjects are set up for defined factors
(e.g. age, sex, or other prognostic factors);

4. sequential, when a study on parallel groups is carried out until one of the two
treatments proves to be significantly better than the other treatment (the over-
all results are calculated and evaluated after every new patient enters the study);

5. factorial, when all the possible combinations among treatments are evaluat-
ed with different groups of patients. For instance, for three treatments (A, B
and C), we have six parallel groups of patients, treated as follows: A alone,
B alone, C alone, A+B, A+C, and B+C.

8.6. Studies on Diagnostic Performance: Classification

Studying diagnostic performance always implies at least one comparison
between the results of an examination and a reference standard (typically
histopathology) which supplies the truth for defining whether a positive or neg-
ative result of the examination is true or false. Not in all studies, nor in all
patients enrolled in a study, is the reference standard given by histopathology.
It may be another diagnostic examination (e.g. the examination considered the
standard of care up until the time of the study design) or a combination of
histopathology for the positive cases and clinical and/or radiologic follow-up
for the negative cases.

To evaluate diagnostic performance, two general variants of study design can
be adopted: non-comparative studies or comparative studies. Moreover, com-
parative studies can be inter- or intra-individual, as shown in Table 8.3.

Non-comparative studies are apparently simple: each result of the examina-
tion is compared with the reference standard. Hence, a comparison really exists
also in non-comparative studies, but only with the reference standard.
Obviously, the reading of examinations needs to be performed independently
from the reading of the reference standard and vice versa. This blinded reading
is not at all a common event in clinical practice. However, in radiologic
prospective studies, the blindness can be favored by the physical separation
between the radiology department and the pathology department.

Comparative studies – increasingly performed due to the multiple diagnostic
options offered by the technologic evolution of medical imaging – are more
complex. When two (or multiple) imaging modalities are compared with each
other, but each modality is performed in a different group of patients, we have
an interindividual comparative study. When two (or multiple) imaging modal-
ities are compared with each other but each modality is performed in the same
group of patients, we have an intraindividual comparative study. In both set-
tings, three conditions need to be met:

1. randomization of patients to different imaging modalities (interindividual
studies) or of the temporal sequence of the different imaging in each patient
(intraindividual studies);
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2. independent reading of each examination from that of the reference
standard;

3. reading of each examination independent from the reading of the other
examination(s).

The first condition explains how randomization is a pivotal factor for all
prospective comparative studies and how non-randomization in all retrospec-
tive comparative studies is a substantial limitation, being a potential source of
relevant bias. The second condition is the same needed for non-comparative
studies. The third condition, the independent reading among the examina-
tions, implies that different radiologists interpret the examinations, each of
them blinded to the results obtained by her/his colleagues. When the technical
implementation of the examinations is standardized and the number of
patients is high enough for a single reader not to recognize the cases at a
repeated evaluation, an independent reading of one or multiple examinations
of the same patients can be obtained by a single radiologist. However, two
conditions need to be met:

1. a mental washout period lasting at least one or two weeks is required to pre-
vent the reading radiologists from remembering the cases already evaluated.
If during the washout period the radiologist reads other cases not included
in the study, the efficiency of the mental washout is increased;

2. the examinations need to be presented in random order.

Study blindness has some special features in radiology. The classic definition
of single, double, or triple blindness is quite simple for randomized controlled
trials. We have single blindness when only the patient [ALTMAN, 1991] or only

Single, double, triple blindness
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Table 8.3. Studies on diagnostic performance

Study type Description Measures Example: accuracy
in diagnosing
liver metastases

Non-comparative Examination A versus RS Diagnostic performance of A CT versus IOUS
in a series of patients

Comparative In different groups Diagnostic performance of A CT versus IOUS
(interindividual design): Diagnostic performance of B MR versus IOUS
patients randomized to Comparison between the CT versus MR
group I (A versus RS) or diagnostic performance
to group II (B versus RS) of A and B
In the same patients Diagnostic performance of A+B CT+MR versus IOUS
(intraindividual design): Comparison between the CT versus CT+MR
examinations A and B diagnostic performance
in each  patient versus RS; of A and A+B
randomization Comparison between the MR versus CT+MR
of the temporal sequence diagnostic performance
(group I: A before B; of B and A+B
group II: B before A)

RS = reference standard; CT = computed tomography; IOUS = intraoperative ultrasound; MR = magnetic resonance.
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Greater power of the
intraindividual design

Randomization as a marker
of experimental studies

the physician [MOTULSKI, 1995] does not know who has been assigned to the
experimental or control group. We have double blindness when both the patient
and the physician do not know who has been assigned to the experimental or
control group. When also the reader responsible for the evaluation of the effect
of the diagnostic examination does not know who has been assigned to the
experimental or control group, we have triple blindness. In the latter case, we
have a differentiation between the physician administering the treatments and
the physician evaluating the clinical status of the patients.

For studies on diagnostic performance, blindness of reading radiologists can be
required not only with respect to the reference standard but frequently also with
respect to demographics, clinical history, and previous imaging or laboratory
examinations. The latter requirement is aimed at determining the individual con-
tribution of the imaging modalities under investigation but has the intrinsic limi-
tation of being greatly different from the usual reading in clinical practice. In fact,
in clinical practice each examination is positioned within a diagnostic sequential
flow-chart for the planning of multiple examinations. Moreover, exact knowledge
of clinical history, results of previous examinations, and diagnostic queries is
needed to perform many examinations typically required as further workup.

The comparison of the diagnostic performance of multiple examinations is gen-
erally more powerful when using an intraindividual rather than an interindividual
design. In fact, when performing multiple examinations in the same patients, we
obtain a reduction in variability which could be obtained only with a much larg-
er number of patients using an interindividual design. The greater power of the
intraindividual design compared to the interindividual design makes possible not
only a reduction in the number of subjects, but also in financial costs and dura-
tion of the study. Statistical analysis takes into consideration this important differ-
ence: tests for paired data should be used for the intraindividual data (e.g. the
McNemar test); tests for independent data should be used for the interindividual
data (e.g. χ2 and Fisher exact test). See Chapters 4 and 5 on this matter.

Note that comparative studies can evaluate the performance of more than two
imaging modalities or techniques. If we compare three modalities, we need three
groups of patients for an interindividual study and the performance of all the three
examinations (in randomized order) in all the patients for an intraindividual study.

How can we combine this classification of the studies on diagnostic performance
with the general scheme we presented in Table 8.2? The answer is quite complex.

In our opinion, from a scientific viewpoint, all studies using some form of
randomization should be considered as experimental studies, including intrain-
dividual radiologic studies with randomization of the sequence of the examina-
tions or with randomization of the reading order. In fact, the use of a random-
ization scheme implies that the test driver has introduced an experimental mod-
ification to reduce some variability or some source of bias as well as to increase
the probability of observing a difference in diagnostic performance.

A possible classification of radiologic studies can be summarized as follows:

– retrospective studies are considered observational;
– longitudinal prospective cohort studies (e.g. following a cohort of subjects

who undergo periodic screening examinations, without a parallel control
group) are considered observational;
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– transversal comparative intraindividual prospective studies with randomiza-
tion of the sequential order of the exams are considered observational;

– controlled longitudinal studies with randomization to an experimental group
or to a control group (e.g. periodic screening examinations versus no screen-
ing) are considered experimental;

– transversal comparative interindividual studies with randomization to an
experimental group of subjects who undergo an imaging protocol and a con-
trol group who undergo another imaging protocol (e.g. a new technique ver-
sus a standard technique; CT versus ultrasound; MR versus CT etc.) are con-
sidered experimental.

Lastly, we should remember that studies on diagnostic performance are only
the second of the six ranks of efficacy of radiologic studies reported in Table
0.1. At high levels of the scale, especially at the fifth (impact on outcome) and
at the sixth (societal impact), a diagnostic examination has to be considered as
a treatment of which we are testing the efficacy with standard methods of clin-
ical research.

8.7. Randomization and Minimization

We have already emphasized that randomization is a crucial feature of most
studies. Douglas G. Altman [ALTMAN, 1991] highlighted that “random does not
mean the same as haphazard”. To randomize means to assign a subject to a
treatment (or an imaging modality, or an order of reading) according to a
defined probability, which is usually the same for the different groups (0.5 or
50% in the typical case of two groups), without any possibility of predicting
the assignment of each subject.

In contrast to what common sense would suggest, assigning patients in an
alternate fashion to two imaging modalities (e.g. patients 1, 3, 5, 7 etc. to
modality A and patients 2, 4, 6, 8 etc. to modality B) is not equivalent to ran-
domization. The same can be said for the use of the ordinal numbers of the day,
the week, or the month of enrollment as well as the date of birth of each patient.
All these types of systematic allocation of patients can be affected with bias
and are therefore named pseudo-random. Another possibility of bias is using
an open list of “random” numbers. One example is the telephone numbers on
a page of the phone book of a large town. We match the first patient with the
first number, the second patient with second number, the third patient with the
third number, and so on. The patients with an even number undergo modality
A, those with an odd number undergo modality B.

What is the problem with these pseudo-random procedures? The problem is
that we can predict the assigned group before enrolling each patient. This
breaks a basic rule for correct randomization. The list of random numbers (as
with the phone book) can be a valid method only if the list is blinded, that is to
say if an independent person holds the list and tells the test driver the result of
the matching between each patient and number only after their enrollment.
Commonly, to ensure correct assignment in multicenter randomized trials, each
center communicates each new enrollment to a central unit (e.g. a unit of epi-
demiology) which gives back the randomized assignment of the patient to one

Radiologic studies measuring
impact levels higher than that
of diagnostic performance

“Random does not mean
the same as haphazard”

Systematic allocation

Pseudo-random allocation
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Simple randomization

Block randomization

of the groups. For single-center studies, we suggest the use of a computer pro-
gram for generating random numbers to be consulted after each enrollment. In
optimal conditions, the person consulting the computer should not be the test
driver.

Why should we pay such high attention to randomization procedures? The
test driver may unconsciously alter the distribution of patients by typically
placing patients with more severe disease or a higher suspicion of disease in the
experimental group (which is given the new treatment or imaging modality).
When the list of numbers is open, i.e. already known at the time of enrollment,
the test driver can propose enrollment to a patient in a more or less convincing
manner, guiding in such a way the patient’s decision to give or not to give their
consent to participate in the study according to the patient’s condition and the
known pseudo-random assignment.

However, even a correct randomization procedure can bring quantitative and
qualitative distortions to the distribution between the groups. Let us consider
the following example. Using a commercial software package we generate a
sequence of 20 random numbers comprised in the interval [0, 9] to be used
according to the following rule:

– the patients paired with a number from 0 to 4 undergo treatment A;
– the patients paired with a number from 5 to 9 undergo treatment B.

The sequence generated by the computer is:

4-2-7-8-3-5-0-9-1-0-9-2-5-5-6-7-8-4-9-7

We have 8 out of 20 numbers from 0 to 4 versus 12 out of 20 numbers from
5 to 9 (note that the odd/even distribution is also imbalanced: 11 odd versus 9
even). Therefore, a simple randomization procedure can produce an imbal-
anced distribution, especially when the sample of patients is small. The imbal-
ance can be not only quantitative but also qualitative, concerning patient char-
acteristics. As a consequence, the study results could be biased. These imbal-
ances can be corrected using special types of randomization.

Block randomization (or restricted randomization) is performed according to
a scheme which has a balanced distribution within each block. The number of
blocks is usually a multiple of the number of the groups. A simple example is
the use of 6 blocks, each of them composed of 4 patients, to randomize to treat-
ment A or treatment B, as follows:

1. AABB
2. ABAB
3. ABBA
4. BAAB
5. BABA
6. BAAB

In practice, we take on a random number from 1 to 6 and we assign the first
four patients according to the corresponding scheme. For the next four patients,
we take on a second random number, and so on. At the end of the enrollment,
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the quantitative imbalance is limited to a maximum of one or two patients.
However, patient-by-patient, the assignment of the last one of each block can
be predicted. A solution is not to reveal the block size to the test driver or to
change the block size during the study.

To avoid distortions in the distribution of patient characteristics – e.g. age and
sex, disease severity, comorbidities etc. – we can use stratified randomization.
Lists of blocks are generated for each subgroup (namely each stratum). In a sim-
ple case, we use a block randomization scheme for the females and another block
randomization scheme for the males. In more complex cases, when we want to
control multiple factors, the number of subgroups is equal to the number of possi-
ble combinations of factors. If we want to stratify for sex and three age brackets,
we need 2×3 = 6 subgroups. However, a large number of subgroups is not a good
idea due to the small number of subjects who finally are enrolled in each subgroup.

A particular type of randomization is cluster randomization. Here we ran-
domize not each subject but a group of subjects. These groups are commonly
determined by the family, the town, the house district, the hospital etc.
However, a preliminary analysis is needed to verify the absence of biases due
to patient difference among the clusters. In some cases we can use weighted
randomization to obtain a different sample size for each patient group.

Finally, we can adopt a nonrandom approach which permits a balanced
assignment considering multiple prognostic factors: this is known as minimiza-
tion. It offers advantages in comparison with classic randomization, unless we
have a very large sample size (i.e. hundreds of patient for each randomized
group) which tends to give homogeneous patient groups.

How does minimization work? It tends to minimize imbalances at each new
enrollment. A computer program decides what to do after having considered all the
previous enrollments. Suppose you want to assign patients to treatment A or to treat-
ment B taking into consideration sex (male versus female) and age (lower than 35
years versus equal to or higher than 35 years). Observe the following simulation:

1. patient 1: male, 30-y.o. Being the first, he can be indiscriminately assigned
to treatment A or B. A random procedure decides to assign the patient to
treatment A;

2. patient 2: male, 28-y.o. To balance the assignment of patient 1, the mini-
mization procedure assigns patient 2 to treatment B;

3. patient 3: female, 50-y.o. Being the first female, the software uses a random
procedure and assigns patient 3 to treatment B;

4. patient 4: female, 40-y.o. To balance the assignment of patient 3, the mini-
mization procedure assigns patient 4 to treatment A;

and so on…

We recommend the use of a dedicated software package.

8.8. Sample Size

The sample size calculation is one the most important aspects of a study. It
should be done early during the phase of protocol definition. A correctly
designed study should include the definition of statistical power and the calcu-

Stratified randomization

Cluster randomization

Weighted randomization

Minimization

The importance of
sample size calculation
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When p is less than 0.05

When p is equal to
or greater than 0.05

Pubblication bias

The sample size influences
the study quality

lation of the sample size already in the protocol submitted for approval to the
Ethics Committee.

However, we have noted that most medical imaging studies, including those
which are published in highly ranked radiologic journals, lack a calculation of
the sample size (which is the main factor determining statistical power).

The authors almost always define the α error (mostly 0.05, i.e. 5%) in the final
part of materials and methods section (subsection statistical analysis). As we
stated in Chapter 3, this implies a 1:20 maximum probability of obtaining a false
positive result, i.e. of reporting a real difference when it is only due a random
effect of variability. Because most published studies presents one or more sig-
nificant results, i.e. with p < 0.05, the problem of sample size and power does
not come into question: the sample has provided significant differences which
allows the null hypothesis H

0
to be rejected and the experimental hypothesis H

1

to be accepted. If a result is positive, it can only be true positive or false posi-
tive. And the probability of a false positive result is just the obtained p value. If
the observed p value is very small (say lower than 0.01), the sample size and
power might have been excessive, thus wasting time and money.

When a study reports no significant differences, the problem of sample size
and power comes into question. In fact, without a preliminary calculation of
sample size and power, we should take into consideration the possibility that
the number of enrolled subjects is too small to demonstrate a real difference as
significant. In this case, we can retrospectively calculate the study power.
Because the β error should be between 0.2 (20%) and 0.1 (10%) and the power
is equal to 1-β, if the power proves to be much less than 0.8 (80%), we can state
that the lack of significance of the study is not conclusive. The study should be
repeated with a sufficient sample size and power. This important problem
rarely appears in the literature because many studies with nonsignificant results
are not published. The reasons for this publication bias are as follows:

1. these studies are frequently not submitted for publication to the journals;
2. when they are submitted to the journals, they have a high probability of

being rejected.

This is a self-reinforcing loop which increases the trend of the non publica-
tion of studies with nonsignificant results.

What is the role of sample size in determining the quality of a study? Suppose
you compare the overall accuracy of two diagnostic examinations, A and B, for
a given disease in two randomized different groups of patients, each of them
composed of 20 patients. The accuracy of A is found to be 30% (6/20) while that
of B is 50% (10/20). The difference in overall accuracy is 20 % (50%-30%) but
the statistical analysis (χ2 test) gives us p = 0.1967 (nonsignificant). We conclude
that there is insufficient evidence in favor of the greater accuracy of B with
respect to A. Then we study 100 patients with examination A and 100 patients
with examination B, adding 80 patients to those already studied for each of the
two groups. The overall accuracy is again 30% for A and 50% for B, generated
now by a ratio of 30/100 for A and by a ratio of 50/100 for B. Again we have
obtained a difference equal to 20% but the χ2 test now gives p = 0.0038 (highly
significant). We now conclude that there is strong evidence in favor of the greater
accuracy of B with respect to A. In Table 8.4 you can see how by increasing the
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sample size, the p value progressively decreases (i.e. the significance increases),
even though the overall accuracies of A and B are the same. Note that signifi-
cance (p < 0.05) can already be obtained with a sample of 50 + 50 patients and a
high significance (p < 0.01) with a sample of 80 + 80 patients. A sample size cal-
culation would have defined an optimal size at 65 + 65 patients.

This example raises a provocative question. If we progressively increase the
sample size, will we reach statistical significance for an existing difference?
Even if the difference is very small? The simple answer is: Yes, but we should
not do so. The golden rule for a good research study is to define a priori sam-
ple size and power. Three facts testify in favor of this rule:

1. in large clinical randomized controlled trials sample size and power are
always calculated a priori;

2. some highly ranked journals publish the research project and protocol of a
clinical trial as a self standing article, submitted before starting enrollment;

3. during a randomized controlled trial a partial data analysis can be performed
(typically when half the sample has been enrolled), named interim analysis,
but this should be planned a priori and, to be rigorous, an interim analysis
should imply harder thresholds for significance (α error lower than 0.05) at
the final analysis.

How should the sample size be calculated? This task requires the cooperation
of a professional statistician. However, bear in mind that a basic factor for cal-
culating the sample size is the definition of the minimal difference thought to
be clinically relevant which we want to demonstrate as statistically significant.
This amount cannot be calculated with mathematical formulas. It should be
derived from a critical analysis of the papers previously published on the mat-
ter under investigation and from an evaluation – necessarily subjective – of the
clinical and scientific context. This can only be done by the radiologist(s) con-
ducting the study.

Sample size calculation is technically based on the standardized difference,
equal to the ratio between the minimal difference thought to be clinically rele-

Preliminary definition of power
and sample size

Interim analysis

Sample size calculation

Standardized difference
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Table 8.4. Simulation of a series of interindividual comparative studies of the overall accuracy of two
examinations for a given disease: examination A in a group of patients, examination B in another
group of patients (after randomization)

Examination A Examination BPatients p*
TP + TN Accuracy TP + TN Accuracy

20 + 20 = 40 6 0.30 10 0.50 0.1967
30 + 30 = 60 9 0.30 15 0.50 0.1138
40 + 40 = 80 12 0.30 20 0.50 0.0679

50 + 50 = 100 15 0.30 25 0.50 0.0412
60 + 60 = 120 18 0.30 30 0.50 0.0253
70 + 70 = 140 21 0.30 35 0.50 0.0157
80 + 80 =160 24 0.30 40 0.50 0.0098

100 + 100 = 200 30 0.30 50 0.50 0.0038

TP = true positives; TN = true negatives; * χ2.



vant (δ) and the standard deviation (s) which quantifies sample variability.
Therefore, standardized difference = δ/s.

The larger the standardized difference, the smaller the sample size, and vice
versa. In fact, with a given standard deviation, the larger δ (numerator) is, the
higher the probability of obtaining a significant difference with a lower num-
ber of patients. Similarly, with a given δ, the lower the standard deviation is,
the lower the overlap between the effects of the two compared treatments and,
again, the higher the probability of obtaining a significant difference with a
lower number of patients.

For the comparison between continuous variables in two independent
groups, we have to define not only δ/s but also α error and power (1-β; usual-
ly from 0.8 and 0.9). The use of a nomogram such as proposed by Douglas G.
Altman [ALTMAN, 1980] and shown in Figure 8.1 makes possible a rough cal-
culation having at hand the above mentioned parameters.

For the comparison between continuous variables for paired data, we
should consider not the standard deviation of the measured data but the stan-
dard deviation of the differences between the measured data for each pair of
data in the same subject (s). Here the standardized difference is equal to 2δ/s.
Again, Altman’s nomogram shown in Figure 8.1 makes possible a rough
sample calculation.

For categorical data, if we define the expected proportion of events in the two
samples as p

1
and p

2
, the standardized difference is equal to:

where: p
m

= (p
1

− p
2
)/2

Using this definition, we can use Altman’s nomogram shown in Figure 8.1
for categorical data as well.
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Figure 8.1. Altman’s nomogram
for calculating sample size or sta-
tistical power. Drawing a straight
line from the value of the stan-
dardized difference to that of
the power, we can calculate the
sample size. Drawing a straight
line from the value of the stan-
dardized difference to that of
the sample size, we can calculate
the power. From: Altman DG
(1980) Statistics and ethics in
medical research. III. How large a
sample? Brit Med J 281:1336-
1338 (with permission of the
author and of the copyright
owner [BMJ group]).



8.9. Systematic Reviews (Meta-analyses)

Multiple published studies on a certain matter make a mass of data and results
available to the scientific community. Sometimes, the results may be inconclu-
sive (e.g. insufficient statistical power due to small sample size) or conclusive but
controversial. An example of the latter case is the presence of studies in favor of
a superior diagnostic performance of A compared to B, studies considering A and
B to be equivalent, and studies in favor of B compared to A. Note that:

a. the quality of the studies can be extremely different due to limitations in
design and implementation;

b. the results of the studies are based on immediately available analytical data
(from the Results section of the articles) or we need to ask the authors in per-
son to provide their analytical data.

We may think of the already published studies on the subject we would like
to investigate as a population of units to be potentially enrolled in a study of a
population of studies. All the data contained in the studies judged of acceptable
quality are a large dataset which can be analyzed with suitable statistical tech-
niques (meta-analysis) to generate a new result, based on a larger sample than
that included in the individual studies.

The authors of a systematic review should:

1. describe in detail the matter under investigation, i.e. define one (or more) clear
end-point(s) (e.g. the diagnostic accuracy of examination A for disease X);

2. establish inclusion and exclusion criteria of the studies in the meta-analysis
(metaprotocol);

3. utilize a systematic procedure for searching all the published studies on the
matter under investigation (firstly, by means of websites available on the
internet, using predefined key words; secondly, by means of the References
of the studies initially found);

4. analyze the whole text of all the studies found and include in the meta-analy-
sis only those corresponding to the defined quality criteria;

5. make new calculations on the new whole dataset to provide a new result;
6. conclude, if possible, giving a new and more precise estimate of the end-

point (for the example of the accuracy of examination A for disease X, the
confidence interval will be narrower than that obtained in the individual
studies included in the meta-analysis, meaning a more precise estimation).

Using this method we can study the comparison between different treatments
or between different imaging modalities or techniques. The mathematical and
statistical techniques used for performing a meta-analysis, including the tests
for homogeneity across the studies included, are specialized in nature and go
beyond the limits of the current book.

Meta-analysis has advantages but also intrinsic limitations. The following
reasoning stands in favor of this approach. To further investigate controversial
problems in clinical research, instead of a new big prospective study with high
economic costs and a long time needed for obtaining the results (e.g. survival
studies), we can re-use the data of already published high quality studies to

A study of a sample of studies

Systematic review

Metaprotocol

Meta-analyses: pros
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Meta-analyses: cons

Publication bias

Forest plot

Levels of evidence

The GRADE system

obtain new and more robust evidence. This advantage is maximal for the eval-
uation of the treatment of rare disease for which individual studies on very
small samples cannot reach the power needed for a statistical demonstration of
a therapeutic effect.

The basic limitation of meta-analysis is related to the above mentioned pub-
lication bias. Because the publication of studies reporting statistical signifi-
cances is more probable than that of studies reporting the absence of statistical
significances, systematic reviews and meta-analyses reinforce this bias, pre-
senting a sum of results emphasizing the bias in favor of positive results.
However, the importance of systematic reviews in radiology is increasing. One
of the most prominent journals in this field, Radiology, recently introduced a
new series of articles entitled Evidence-Based Practice mainly composed of
systematic reviews.

At any rate, we advise radiologists who want to enter this field as authors to
work in close cooperation with professional statisticians.

A technical aspect we want to describe is the graphical representation of the
results of a meta-analysis. This is very useful for grasping the high level of
information and synthesis offered by this method. A good example is given by
a recent meta-analysis on the diagnostic performance of breast MR imaging
[PETERS ET AL, 2008]. The authors identified a total of 1096 studies. Of them,
251 were eligible but only 44 were included (sample size, from 14 to 821
patients; breast cancer prevalence from 23% to 84%). From these studies the
authors extracted data for 2,808 examinations in patients with breast cancer and
1,827 examinations in subjects not affected with breast cancer. The meta-analy-
sis estimated the sensitivity of breast MR imaging equal to 0.90 (95%CI: [0.88,
0.92]) and the specificity equal to 0.72 (95%CI: [0.67, 0.77]). Figure 8.2 shows
the forest plot of sensitivity and specificity of individual studies and of their
overall estimate.

8.10. Levels of Evidence

The need to evaluate the relevance of the various studies in relation with the
reported level of evidence has generated a hierarchy of the levels of evidence
based on study type and design.

According to the Centre for Evidence-Based Medicine (Oxford, UK), studies
on diagnostic performance can be ranked on a five-level scale, from 1 to 5
(Table 8.5). On the basis of similar scales, some authors distinguish four
degrees of recommendations, from A to D (Table 8.6).

However, we should consider that today we have multiple different classifi-
cations of the levels of evidence and of degrees of recommendation. The same
degree of recommendation can be represented in different systems using capi-
tal letters, Roman or Arabic numerals, etc, generating confusion and possible
errors in clinical practice.

A new approach to evidence classification has recently been proposed by the
GRADE working group [ATKINS ET AL, 2004] with special attention paid to the
definition of standardized criteria for releasing and applying clinical guide-
lines. The GRADE system states the need of an explicit declaration of the
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methodologic core of a guideline, with particular regard to: quality of evidence;
relative importance, risk-benefit balance, and value of the incremental benefit
for each outcome. This method, apparently complex, finally provides the fol-
lowing four simple levels of evidence:

– high, when further research studies are thought unlikely to modify the level
of confidence of the estimated effect;

– moderate, when further research studies are thought likely to modify the
level of confidence of the estimated effect and the estimate itself of the
effect;

– low, when further research studies are thought very likely to modify the level
of confidence of the estimated effect and the estimate itself of the effect;

– very low, when the estimate of the effect is highly uncertain.
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Figure 8.2. Graphical representation of the results of a meta-analysis. The authors systematically
reviewed the studies on breast MR imaging in which sensitivity and specificity were evaluated. In both
columns, the numbers on the left from 15 to 58 indicate the 44 included studies (as numbered in the
references), the small black squares show the point estimate of sensitivity or specificity of each study,
while the horizontal line crossing the small black square represents the 95% CI associated with this esti-
mate; on the last line (overall) on the bottom of each of the two columns the new estimate and 95% CI
of sensitivity and specificity is reported (with a triangle instead of a square). Note that the 95% CIs asso-
ciated with the new estimates are reduced in comparison with most of the included studies. From: Peters
NH, Borel Rinkes IH, Zuithoff NP et al (2008) Meta-analysis of MR imaging in the diagnosis of breast
lesions. Radiology 246:116-124 (with permission of the author and of the copyright owner [RSNA]).



Similarly, the risk-benefit ratio is classified as follows:

– net benefit, when the treatment clearly provides more benefits than risks;
– moderate, when the treatment provides important benefits, but there is a

tradeoff in terms of risks;
– uncertain, when we do not know whether the treatment provides more ben-

efits than risks;
– lack of net benefit, when the treatment clearly provides more risks than benefits.
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Table 8.5. Levels of evidence of studies on diagnostic performance

Level of evidence Study type

1a Systematic reviews with homogeneous meta-analyses of level 1 studies
Multicenter studies, in consecutive patients with a reliable and systematically
applied reference standard, of diagnostic criteria previously established
by explorative studies

1b Single-center studies, in consecutive patients with a reliable and systematically
applied reference standard, of diagnostic criteria previously established
by explorative studies

1c Studies of diagnostic examinations with very high sensitivity (SNOUT)
and of diagnostic examinations with very high specificity (SPIN) *

2a Systematic reviews with homogeneous meta-analyses of level 2 or higher studies

2b Explorative studies of diagnostic criteria in cohorts of patients with a reliable
and systematically applied reference standard; definition of diagnostic criteria
on parts of cohorts or on databases

3a Systematic reviews with homogeneous meta-analyses of level 3 or higher studies

3b Studies of non consecutive patients and/or without systematic application
of the reference standard

4 Case-control studies
Studies with inadequate or non-independent reference standard

5 Experts’ opinions without critical evaluation of the literature

Source: Centre for Evidence-Based Medicine, Oxford, UK (http://www.cebm.net/index.aspx?o=1025; accessed February
24, 2008), with modifications.
* For the definitions of SPIN and SNOUT, see Chapter 1.

Source: Centre for Evidence-Based Medicine, Oxford, UK (http://www.cebm.net/index.aspx?o=1025; accessed February
24, 2008), with modifications. *Extrapolation is the translation of a study to clinical situations different from those of the
original study.

Table 8.6. Degrees of recommendation

Degree of recommendation Study type

A Level 1 studies
B Consistent level 2 or 3 studies or extrapolations* from level 1

studies
C Consistent level 4 studies or extrapolations* from level 2 or 3

studies
D Level 5 studies or low-quality or inconclusive studies of any

level



The procedure gives only two levels of recommendations:

– do it or don’t do it, when we think that the large majority of well informed
people would make this decision;

– probably do it or probably don’t do it, when we think that the majority of well
informed people would make this decision but a substantial minority would
have the opposite opinion.

As the reader can see, the GRADE system finally differentiates between
strong recommendations and weak recommendations, making the application
of the guidelines to clinical practice easier. Detailed information on this method
can be found in the article by Atkins et al [ATKINS ET AL, 2004].

Recently, the application of GRADE to diagnostic tests and strategies has
been discussed [SCHÜNEMANN ET AL, 2008], including a list of particular factors
that decrease the quality of evidence for studies on diagnostic performance and
how they differ from other interventions. When randomized controlled trials
comparing the impact of alternative diagnostic strategies on “patient-impor-
tant” outcomes are available, the general GRADE system can be directly used.
When this is not the case, we should make inferences about the impact on
patient-important outcomes from the available studies on diagnostic perform-
ance. In other words, diagnostic performance is only a surrogate for patient-
important outcomes. To make inferences in favour of diagnostic tools implies
the availability of effective treatment, reduction of test-related adverse effects
or anxiety, or improvement of patient wellbeing from prognostic information.
“The key questions are whether a reduction in false negatives (cases missed) or
false positives and corresponding increases in true positives and true negatives
will occur, how accurately similar or different patients are classified by the
alternative testing strategies, and what outcomes occur in both patients labelled
as cases and those labelled as not having disease” [SCHÜNEMANN ET AL, 2008].
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9
Bias in Studies on

Diagnostic Performance

He uses statistics as a drunken man uses a lamp post…
for support rather than illumination.

REX STOUT

Torture numbers,
and they will confess to anything.

GREGG EASTERBROOK

Introducing Chapter 8, we emphasized that statistical testing of the null
hypothesis H

0
and potential acceptance of the experimental hypothesis H

1
can

be reliably done only if a study is not flawed by substantial biases, namely sys-
tematic distortions which could explain the observed difference as an alterna-
tive to a real difference between the compared samples.

The adjective systematic gives the term a particular meaning. Note that the
presence of distortions in practical experiments cannot be entirely avoided.
This is due to measurement errors or to other aspects of physical and biologi-
cal variability. However, if these errors are randomly distributed, when the
sample is large enough, they tend to annul themselves. They can generate back-
ground noise causing a more difficult detection of the signal, which here is the
difference between two samples for a given characteristic. But this problem can
be solved with a suitable study design and lastly with a preliminary calculation
of the sample size. If the distortion is not randomly distributed but systematic,
we have a real bias which can determine a false result.

The situation is similar to when the navigator of a car indicates the wrong loca-
tion of the vehicle on the map on the videoscreen. The difference is that, in scientif-
ic research, we cannot look out the window to see where we really are. The experi-
mental data are the only messages we receive from reality. If there is bias, the mes-
sage is misleading. If the bias affects the study design, quantifying its magnitude in
order to remove it from the data can be very difficult. In special cases, some statis-
tical techniques can be used to try to remove the bias, but the result of these proce-
dures is frequently questionable. If bias is due to a non-independent reading, all the

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

Bias or systematic distortion

Random or systematic?

Hard removal of a bias effect



External and internal validity

Planning and implementation

examinations can be reevaluated independently by new blinded readers. However,
some bias can be unavoidable, often for ethical reasons. This must be recognized in
the Discussion of the paper, in a subsection dedicated to Study Limitations.

In Chapter 8 we presented the study design and its variants, including sys-
tematic reviews, and the levels of evidence provided by the studies. There we
gave you some idea regarding what to do in order to implement a good research
study. In this chapter we present a list of errors, i.e. what not to do, namely the
most important sources of bias in radiologic studies. Particular attention will be
paid to the studies on diagnostic performance, level 2 of the hierarchical scale
of the studies on efficacy of imaging modalities (see Table 0.1). However, the
discussion is also widely valid for studies on technical performance (level 1),
and diagnostic impact (level 3). For higher levels of efficacy (4, therapeutic
impact; 5, outcome impact; 6, societal impact) we should also take into consid-
eration other general aspects and statistical techniques of clinical research not
included in the current book (e.g. measurement of clinical end-points, calcula-
tion of quality-adjusted life years, survival analysis, cost per saved life, etc.).

9.1. Classification

We should distinguish between bias influencing the external validity of a study,
that is the applicability of its results to clinical practice, and bias influencing the
internal validity of a study, that is its inherent coherence. Bias influencing the
external validity is due to errors in planning the study, those influencing the
internal validity are due to errors in implementing the study (Figure 9.1). The
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Figure 9.1. Synopsis of the sources of bias in studies on diagnostic performance. To apply the results
of a study to clinical practice, it must have internal validity (no errors in implementation) and external
validity (no errors in planning).

α β



reader should pay attention to the distinction between external and internal
validity. The two concepts are not independent of each other: the internal
validity is a necessary but not sufficient condition for a study to have exter-
nal validity.

Thus, all kinds of bias influence the external validity of a study. However,
while errors in planning have a negative effect on the external validity but pos-
sibly no effetc on internal validity, errors in implementation have a negative
effect primarily on internal validity and secondarily on external validity. The
lack of internal validity makes the results themselves unreliable. In this case the
question about the external validity (i.e. the application of the results to clini-
cal practice) makes no sense. As a consequence, only the results of a study not
flawed by errors in planning and implementation can be applied to clinical
practice [KELLY ET AL, 1997]. In fact:

− a study without bias from errors in planning but with important bias from
errors in implementation produces intrinsically unreliable data, hence not
applicable to clinical practice;

− a study without bias in implementation has no intrinsic contradictions but
could be non applicable to clinical practice due to errors in planning;

− a study with bias from errors in planning and implementation not only pro-
vides intrinsically misleading results, but, also if repeated without errors in
implementation, cannot be applied to clinical practice due to persisting errors
in planning.

The reader will have realized that several items are present in both planning
and implementation. Consider the reference standard: the error in planning is
to choose an inadequate reference standard (imperfect standard bias); the error
in implementation is an incorrect use of the planned reference standard. We can
go the wrong way by either choosing the wrong rules or applying the right rules
incorrectly (but also adding errors in the application of already incorrect rules).
Indeed, there is probably only one right way to do a correct study but infinite
ways to make errors that render the study worthless.

A bias in implementation can be due to:

1. flaws in protocol application;
2. unforeseen events or events due to insufficient protocol specification;
3. methods defined in the study protocol which implied errors in implementation.

For items 2 and 3, the flaws in implementation depend in some way on errors
in planning. This does not seem to be the case for item 1. However, if in a study
we have many protocol violations, the study protocol was probably theoretical-
ly correct but only partially applicable. In other words, bias in implementation
frequently originates as an error in planning.

9.2. Bias Affecting External Validity

This can be subdivided into four groups: (1) study design, (2) subject selection,
(3) radiologic methods and reference standard, and (4) statistical analysis.

All kinds of bias limit external
validity

Infinite ways to make errors
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Potential bias of a retrospective
comparative study

9.2.1. Study Design

See Chapter 8 for a detailed discussion about study design. Errors in study design
determine commonly irrecoverable bias. From this point of view, always consid-
er the substantial superiority (meaning lower probability of bias) of experimental
versus observational studies as well as of prospective versus retrospective studies.

A simple example is the evaluation of a new technology in comparison with
an old technology. Suppose we want to compare 64-row with 16-row multide-
tector CT (MDCT) in the diagnosis of hemodynamically significant coronary
stenoses. In 2005 we installed a 16-row unit and performed 200 coronary stud-
ies with conventional coronary angiography (CCA) as a reference standard. In
2007 we installed a 64-row unit and performed 200 coronary studies, again
using conventional coronary angiography as a reference standard. In both
series, MDCT examinations were analyzed and reported before coronary
angiography was performed. We have the impression that image quality gener-
ally increased and that the number of nondiagnostic MDCT exams decreased.
Moreover, we remember many more cases of substantial correspondence
between the MDCT report of the CCA findings. Using all these examinations,
can a reliable retrospective study be done which compares 16-row MDCT and
64-row MDCT for the diagnosis of significant coronary stenoses?

The answer is: No, it is better to work on an alternative project. Why? There
are many reasons:

1. We have no certainty that the two series of patients (those who received a 16-row
MDCT and those who received a 64-row MDCT) are similar for presence of sig-
nificant coronary artery disease (CAD) and for disease severity (number of ves-
sels involved). For example, if more patients with high pretest probability of
CAD are present in the second series, we have a potential bias in favor of 64-row
MDCT, at least in terms of per patient sensitivity and positive predictive value;

2. Changes in the radiologic team working on MDCT before/after starting with
the second series might have influenced the diagnostic performance creating
a power confounding factor in favor of one of the two series;

3. In the first two years of experience with the 16-row equipment we have indu-
bitably progressively increased our diagnostic performance according to an
obvious learning curve, thus generating a bias in favor of the 64-row study;

4. During the four-year period of the retrospective study, the diagnostic per-
formance of CCA might have changed (modifications of the medical team
or of technology), determining a change in the reference standard between
the two groups;

5. If CCA was performed knowing the MDCT results, there is a problem of
incorporation of the MDCT result in that of CCA which serves as a reference
standard, for both the two series. However, the situation would be even more
marked if the CCA team started taking into consideration the MDCT results
only after the installation of the 64-row unit (which would again be favored).

The reader will have realized that in these circumstances potential study
defects can cause bias in patient selection, readers, reading, and reference stan-
dard. However, the bias in the study is not determined by our actions. It is
instead the retrospective design which is burdened by a series of serious flaws,

Biostatistics for Radiologists168



similar to those we face when using an observational before/after design in a
clinical phase 2 study with a new drug. Patient randomization to one of the two
MDCT units is lacking. This reasoning holds also for other situations regard-
ing the development of technology. Retrospective comparative studies which
evaluate the performance of a new contrast agent in comparison with an old
agent are burdened by the same defects and bias.

What should we do with our data on MDCT coronary angiography? We
could write two separate articles, without a direct comparison between the new
and the old technology. In the Discussion of the paper on the first series we
would compare our results with those obtained by other authors with 16-row
units, recognizing the technologic limitations of our study. In the Discussion of
the paper on the second series with 64-row MDCT, we would comment that
sensitivity and/or specificity appear better than those obtained using 16-row
units (including our already published study) and compare our results with
those obtained by other authors with 64-row units. In both papers we would
acknowledge the limitation due to the retrospective design.

However, the best solution is to plan a new study on the diagnostic performance
of the 64-row unit, preliminarily discussing all the aspects of the study design with
a statistician, including the calculation of the sample size. This is certainly the
most promising hypothesis, where time and money can be more suitably invested.

The method of a prospective comparative intraindividual (cross-over) study
is not a valid alternative, especially for ethical reasons: this would mean the
same patient would undergo both the 16-row and the 64-row MDCT with a
double radiation exposure and a double contrast injection.

The last hypothesis is to randomize patients to the 16-row unit or the 64-row
unit. However, another ethical concern renders this solution unfeasible. If the
literature has already demonstrated that 64-row MDCT provides better diag-
nostic performance in comparison with historical data obtained with 16-row
MDCT, the patients randomized to the old technology would have an unaccept-
ably high probability of undergoing an examination with lower diagnostic per-
formance. The IRB would not approve the study or patients might refuse to be
enrolled. If our 64-row MDCT were one of the first installed in the world we
could adopt a sequential design with planned data analysis after each enroll-
ment to demonstrate the superiority of 64-row MDCT. Finally, we could design
a phantom study (with relatively low economic costs) or animal testing (with
much heavier economic costs).

As you can see, the study design is crucial for the scientific quality of a
research study on diagnostic performance. This affirmation is even more valid
for radiologic studies at higher levels of efficacy than those on diagnostic per-
formance (see Table 0.1).

The limitations of retrospective studies are made clear by the following
example.

Contrast-enhanced breast MR imaging is well known as a technique character-
ized by a very high sensitivity and good specificity. This last feature was recent-
ly confirmed by a systematic review of 251 studies [PETERS ET AL, 2008]. These
authors selected 44 suitable studies and the meta-analysis provided an overall
sensitivity of 0.90 (95%CI [0.88, 0.92]) and an overall specificity of 0.72 (95%CI
[0.67, 0.77]). This diagnostic performance has a potential clinical impact for pre-
operative staging. In fact, breast MR imaging was demonstrated to be more sen-

Possible solution
to the problem

Greater sensitivity
does not imply a positive
outcome impact

Chapter 9 Bias in Studies on Diagnostic Performance 169



Selection bias

sitive than mammography in detecting multiple malignant lesions (multifocal
and multicentric cancers), a finding confirmed in the Italian multicenter study
using the whole excised breast as pathologic reference [SARDANELLI ET AL, 2004].
Moreover, breast MR imaging is also highly sensitive in detecting synchronous
cancers at the contralateral breast [LEHMAN ET AL, 2007].

The clinical problem of preoperative breast MR imaging is now open. In fact, we
should take into consideration that radiotherapy (and chemotherapy, when per-
formed) have a high probability of curing the malignant lesions undetected with con-
ventional imaging. Thus, whether preoperative breast MR imaging has a positive
impact (less recurrences and less contralateral cancer, higher quality of life, higher
survival), a null impact, or a negative impact (overdiagnosis and overtreatment,
more mastectomies, more aggressive surgery) in breast care is a matter of debate.

In this context, in 2004 Fischer et al. published an extremely interesting article
[FISCHER ET AL, 2004]. They compared 121 patients who performed preoperative
breast MR imaging (MR group) with 225 patients who did not undergo preopera-
tive breast MR imaging (non-MR group). Both groups were followed up for a
mean time of about 41 months. The rate of conservative surgery was 71.1% for the
MR group and 61.3% for the non-MR group; the rate of ipsilateral recurrence 1.2%
and 6.8%, respectively; the rate of contralateral tumors was 1.7% and 4.0%, respec-
tively. For the latter two comparisons, the statistical significance was very high (p
< 0.001). The question is: Are the results of this study (almost 10% more conser-
vative surgery and a highly significant reduction in local recurrence and contralat-
eral cancers in the MR-group) clearly conclusive in favor of preoperative breast
MR imaging to be performed in all patients with a newly diagnosed breast cancer?

No, they are not. On this basis alone (or based on other similar studies), we can-
not say yes. Fischer’s article reports an observational retrospective study, not a
prospective randomized clinical trial. The authors correctly report the characteris-
tics of the two groups of patients: the MR group had 88% of invasive tumors and
a 12% of in situ tumors while in the non-MR group these data were 96% and 4%,
respectively. The tumors in stage pT1 were 64% in the MR group and only 48% in
the non-MR group, those in stage pT3-4 7% and 28%, respectively. Moreover, the
MR group had a higher number of patients with negative nodal status and lower
histologic grading. Here the problem is that the two retrospective groups are not
similar. The patients belonging to the MR group had smaller and less invasive and
aggressive tumors. There is bias in favor of the MR group, at least for the rate of
breast conserving surgery and ipsilateral recurrence. The result on the rate of con-
tralateral cancers is probably more robust but does not have the sharpness which
could be obtained by a randomized controlled trial. At any rate, for the supporters
of preoperative breast MR imaging it is good news that a retrospective study did
not reveal an increased rate of mastectomies, but the findings are not conclusive. A
recent meta-analysis [HOUSSAMI ET AL, 2008] confirmed the therapeutic impact of
preoperative breast MR imaging. But the evaluation of the outcome impact will be
possible only when results from randomized studies will be available.

9.2.2. Subject Selection

Patient selection is a fundamental issue for any study. If you want to translate
the results of a study to clinical practice, the study sample needs to be repre-
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sentative of the population on which you want to apply these results. Bear in
mind that some selection bias cannot be avoided. Sometimes it is produced by
the context or related to the study design. At any rate, the authors must
acknowledge this explicitly in the Discussion section, in order to avoid that the
readers draw the wrong conclusions.

We name centripetal bias the distortion due to a high concentration of rare,
difficult, or complex cases in a large, specialized, or university hospital.
Popularity bias is the same effect obtained by the physicians who voluntarily
selected these cases. Conditions of limited access (diagnostic access bias) can
be due to the geographic location of the hospital or to the social and economic
level of the patients who could access it. Centripetal bias, popularity bias, and
diagnostic access bias can be grouped into what is known as referral bias.

The enrollment can favor symptomatic or high-risk subjects or subjects with
peculiar demographic features (patient filtering bias). Invasive diagnostic
modalities or procedures associated with non-negligible risks (ionizing radia-
tion exposure, contrast material injection) may have a higher likelihood of
being performed in subjects suspected of having a disease (diagnostic safety
bias). The presence of co-treatments (therapies, or other diagnostic examina-
tions) can limit enrollment or determine changes in the radiologic findings in
all the subjects of the sample (if co-treatments are administered only to a part
of the sample, the internal validity of the study is flawed).

A well known bias in subject selection is the disease spectrum bias
[RANSOHOFF AND FEINSTEIN, 1978]. This happens when disease type (e.g. his-
tologic type), severity (e.g. tumor stage), or duration (e.g. acute or chronic
phase) of the enrolled patients are clearly different from those of patients com-
monly treated in clinical practice.

For spectrum bias we strictly mean an inhomogeneity in the characteristics
of the disease in enrolled patients, with a relevant difference with those we find
in clinical practice. A relatively different case is that of an unusual (too high or
too low) disease prevalence in the studied sample in comparison with what we
find in clinical practice: this case is named population bias. Of course, these
two biases can sum each other, with a large negative effect on the external
validity of the study. Spectrum bias and population bias can be grouped under
the name of patient cohort bias.

There are particular situations where the study design knowingly implies a
spectrum bias. This is the case of the first attempts to evaluate the diagnostic
performance for a given disease of a new imaging modality. Suppose we plan
an observational prospective transversal study: the new modality is performed
on a small sample of patients with advanced, fully evident disease and on a
small sample of healthy volunteers1. Now suppose that the new imaging modal-
ity is demonstrated unable to distinguish the patients with advanced disease
from healthy volunteers. Without wasting time and money, we know that the

Centripetal bias

Popularity bias

Diagnostic access bias

Referral bias

Patient filtering bias

Diagnostic safety bias

Co-treatments

Spectrum bias

Population bias

Patient cohort bias

A small sample of patients with
advanced disease and healthy
volunteers (huge spectrum bias)
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1 Note that due to subject selection this study has the logical structure of a comparison between
cases and controls. However, the chronologic features of a study like this, beginning with a known
diagnosis (disease or no disease) and subsequently investigating the result of a future event (a radi-
ologic examination) prevent us from classifying this as a classic case-control study (which instead
investigates past events; see Section 8.2).



Enthusiasm for the first reports,
afterwards delusion

Comorbidities

Enrolling a consecutive
series of patients

new modality is not useful at all for this application. Conversely, if the new
imaging modality is demonstrated to make this distinction, we can go ahead
with other larger studies. However, even in the event of a very good perform-
ance of the new modality in this first study, we cannot transfer this experience
to clinical practice. The reason is the presence of a huge spectrum bias. With
reference to Chapter 1 (Section 1.6, Figures 1.7 and 1.8), the two curves of the
distribution of patients and healthy volunteers are markedly shifted away from
each other along the x-axis with a consequent reduction in false positives and
false negatives. In clinical practice, we instead find patients with less advanced
disease, patients with a different disease but similar symptoms, non-volunteer
healthy subjects who are older and with similar symptoms, and comorbidities
in patients and healthy subjects.

This is one of the reasons explaining the enthusiastic results of the first
reports on the diagnostic performance of a new imaging modality or technique,
which later are frequently downsized. An example of this initial overestimation
of the diagnostic performance was described for the diagnosis of carpal tunnel
syndrome with MR imaging [RADACK ET AL, 1997].

At the other end of the scale, an alternative case of spectrum bias which is
less common in the radiologic literature is to put a diagnostic modality on the
benchmark of a series of cases selected for high diagnostic complexity. The
obvious result is an underestimation of sensitivity and specificity.

Lastly, comorbidities can differently characterize a study sample, influencing
the diagnostic performance of a radiologic examination.

After the initial experimental phase, if our purpose is to estimate the diagnos-
tic performance of an imaging modality to be applied in clinical practice, the
solution to the problem of patient cohort bias is to enroll a random sample of
the population which could undergo the imaging modality in clinical practice.
If we are testing a screening method, we invite a random sample of asympto-
matic subjects with suitable demographics (age and sex). If we are testing a
method for clinical diagnosis, we enroll a random sample of patients with clin-
ical features (symptoms, findings at physical examination or at previous
exams) to have a defined pretest disease probability, certainly higher than that
of the sample used to test a screening method.

When we want to test a method for clinical diagnosis, the practical solution
most frequently adopted is to try to enroll a consecutive series of patients. This
solution however does not solve all the problems. In fact, even a consecutive
series is the result of a selection done by the local context, due to a number of
factors, such as:

– geographic location of the testing site;
– temporal interval of the test during the year (important for seasonal diseases);
– type of hospital or diagnostic center;
– selection of out-patients or in-patients (or ratio between them in the sample);
– selection by referring physicians.

Thus, all studies estimating the clinical (non-screening) diagnostic perform-
ance of a method are limited to some degree by patient cohort bias.

For all these reasons, the section of Materials and Methods of a paper report-
ing the results of a clinical study should provide:
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1. detailed information regarding demographic and clinical data of the studied
patients (with inclusion and exclusion criteria explicitly stated);

2. an accurate description of all the patients excluded up until the definition of
the sample from which the results of the study are derived, with particular
reference to:

a. the refusals to be enrolled (listing the reasons);
b. the cases of enrolled patients who did not perform the diagnostic exami-

nation (listing the reasons);
c. the cases of non assessability of the examination (e.g. low image quality

due to artifacts);
d. the cases with a result non-classifiable as positive or negative (indetermi-

nate results);
e. the cases of non performed reference standard (listing the reasons);
f. the cases of non assessable or non classifiable reference standard (listing

the reasons).

9.2.3. Radiologic Methods and Reference Standard

The absence of bias due to the choice of radiologic methods and reference stan-
dard is a basic condition for achieving good study quality. It can be ascertained
by analyzing the subsections of materials and methods named Imaging
Methods and Image Analysis (where we find the radiologic expertise of the
authors), commonly followed by Pathologic Examination or Standard of
Reference. In some articles a specific subsection is dedicated to Radiologic-
pathologic Correlation. From the viewpoint of possible bias, we can list four
radiologic factors and the reference standard:

1. diagnostic technology;
2. radiologic technique (protocol for performing the examination);
3. methods for image interpretation;
4. training and specific experience of the readers;
5. reference standard.

9.2.3.1. Diagnostic Technology (Technologic Obsolescence)

The use of clearly outdated technology brings an obvious bias determining an
underestimation of the diagnostic performance. For example, this criticism
would affect a study on the diagnostic performance of CT for pulmonary
embolism using single-slice (non multidetector) equipment, of ultrasound for
breast cancer with a low-frequency transducer, of intracranial MR angiography
with a low field magnet, and so on.

However, the high speed of technologic evolution makes this a nontrivial
problem. We cannot limit ourselves to recommending the use of updated tech-
nology. Studies with clinical outcome end-points with prospective longitudinal
design frequently plan many years of follow-up. When the results finally arrive,
the technology used might already be outdated, reducing (sometimes negating)

Give complete information
about the enrolled patients

Technologic obsolescence
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Imaging protocol bias

Imaging analysis bias

Interpretation bias

Bias from reader
training/experience

Imperfect standard bias

the possibility of applying the results to clinical practice. The development of
technology may be so rapid that clinical studies on diagnostic performance
necessitating a large sample of patients (with relatively prolonged enrollment
and also with a multicenter design) imply a high risk of being published when
the technology used in the study is clearly out of date. An example of this risk
is given by the subsequent generations of multidetector CT equipment from
1999 to the present time: from 4 to 8, 16, 32, 64, 256, 320 rows of detectors…
And flat-panel CT is on its way…

When you design a study, use updated technology and take into considera-
tion the time needed to complete patient enrollment in relation with the pre-
dictable (how predictable?) technologic evolution.

9.2.3.2. Imaging Protocol

Here the factors which could generate an error determining a bias are practi-
cally infinite: all kinds of technical imaging parameters; patient preparation
and positioning; dosage and administration regimen of contrast material; tim-
ing and modality of image acquisition; postprocessing procedures, etc. An
error in any of these (or other) factors can have a negative impact on the exter-
nal validity of the study.

9.2.3.3. Imaging Analysis

The preliminary definition of the methods for imaging interpretation and analy-
sis, including all measurements performed on them, is another crucial aspect of
a study. If the interpreting method is incorrect, if the distinction between neg-
ative and positive findings is not entirely defined, if the methods of measure-
ment of any imaging feature entering the results are not precisely defined, the
external validity could be flawed.

9.2.3.4. Reader Training and Experience

Readers with little experience using the specific imaging modality and tech-
nique might underestimate the diagnostic performance. Conversely, highly-
experienced hyperspecialized radiologists (i.e. those working in a university
center or in a hospital highly devoted to particular diseases) could overestimate
the diagnostic performance.

This is another characteristic which renders multicenter studies, especial-
ly when conducted across multiple countries, clearly superior to single-cen-
ter studies.

9.2.3.5. Reference Standard

Here we should consider the choice of the reference standard and not its appli-
cation. We name imperfect standard bias the distortion due to the use of an
inadequate reference standard. An example is the use of pulmonary angiogra-
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phy as reference standard for the diagnosis of pulmonary embolism with mul-
tidetector row CT [SICA, 2006].

The general problem of the reference standard for studies on diagnostic
performance is complex. We cannot always obtain a histopathologic evalua-
tion of all the positive and negative findings of a diagnostic examination. In
screening programs, the reference standard is given by a combination of
histopathology of clearly positive and suspicious findings and clinical and
imaging follow-up of the patients with negative examinations. Moreover,
several imaging modalities supply in vivo functional information that cannot
be verified with a reliable standard of reference. A typical example is the
evaluation of cardiac end-diastolic and end-systolic volumes and of the ejec-
tion fraction. In similar cases, the imaging modality demonstrated to be the
most reliable is adopted as a reference standard: for many years, echocardio-
graphy has been compared with cine MR imaging, the latter being character-
ized by a higher but surely not perfect intra- and interobserver reproducibil-
ity [SARDANELLI ET AL, 2008].

The rule is to choose the best possible reference standard in relation to
the sample under investigation and the population from which the sample
is taken.

9.2.4. Statistical Analysis

The choice of the cutoff for α error and β error, which are the threshold for sig-
nificance and the complement to 1 of the power of the study, respectively, are
two very important features of study design. Apart from rare cases, α error is
always put at the level of 0.05. On the other hand, as we saw in Chapter 8, an
error in evaluating the difference between the samples considered to be clini-
cally relevant can determine important errors in the sample size calculation
and, as a consequence, in the study power. The absence of sample size calcu-
lation implies the risk of a false negative study.

Lastly, if you choose statistical tests which are not suitable to the study
design, the type of measured variables or their distribution, false positive and
false negative results are possible, with a complete failure of external validity.

9.3. Bias Affecting Internal Validity

Flaws in implementation limit the internal validity of a study on diagnostic per-
formance because they undermine its intrinsic logical coherence. Four cate-
gories can be distinguished, as follows: protocol application, reference stan-
dard application, data measurements and reader independence.

9.3.1. Protocol Application

In Section 9.1 we stated that a high number of protocol violations implies
errors or feasibility problems and undervaluation in planning and designing the
study. If the protocol is not respected, a study loses its internal validity.

Bias from statistical methods

Protocol violations
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Verification bias

Work-up bias

Incorporation bias

Disease progression bias

Drop-out bias
Indeterminate results

Lost at follow-up data

Intra- and inter-observer variability

Temporal effects

9.3.2. Reference Standard Application

In applying the reference standard three types of bias are possible. Verification
bias is due to the application of the reference standard only to a part of the sam-
ple investigated, causing serious overestimation or underestimation of sensitivi-
ty and specificity. Work-up bias is a peculiar kind of verification bias which hap-
pens when the reference standard is only applied to cases with a positive disease
diagnosis confirmed by the examination under investigation. This is the case
when we cannot obtain a histopathologic reference standard for lesions clearly
diagnosed as benign or for subjects who proved to be unaffected by any lesion.
In the absence of at least one negative follow-up in these negative cases, we have:

1. an overestimated sensitivity caused by lack of information regarding poten-
tial false negatives;

2. a reduced possibility of evaluating specificity due to a lack of information
regarding many true negatives.

Incorporation bias consists of the use of the result of the examination under
investigation as one of the parameters determining the reference standard. An
example is the use of the neurologic diagnosis at discharge as a reference stan-
dard for the study of diagnostic performance of CT and MR imaging in patients
with acute stroke [MULLINS ET AL, 2002]. In fact, this neurologic diagnosis is
also based on the result of the two examinations for which it should work as
reference standard.

9.3.3. Data Measurement

In data measurement, six types of bias are possible:

1. disease progression (too long a time interval between examinations and ref-
erence standard);

2. withdrawals from the study with lack of reference standard (drop out);
3. indeterminate results (typically due to technical artifacts). If the examina-

tions can be repeated, they cause higher economic, and sometimes biologic,
costs. If the examinations cannot be repeated, indeterminate results should be
carefully counted and declared; according to the study design and protocol,
they can be excluded or included (as false negatives or false positives in rela-
tion to the reference standard) from calculation of diagnostic performance;

4. data lost at follow-up (especially when we suspect that these lost subjects
could have had a mean different result from that of patients who remained
available at follow-up);

5. reader variability (also the external validity of a study depends on intraob-
server and interobserver reproducibility – see Chapter 7);

6. temporal effects (due to a learning curve of the readers or to changing tech-
nology during a study).

Particular types of bias due to disease progression are those we face in screen-
ing programs without a control group: the so-called lead time bias and length
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bias. In lead time bias the earlier diagnosis creates a false effect of prolonged
survival of the group of subjects who were screened (Figure 9.2); in length bias
a different disease progression acts making the overdiagnosis of indolent tumors
more probable in the group of subjects who were screened (Figure 9.3)

Lead time bias

Length bias
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Figure 9.2. Lead time bias. Comparison between a group of screened subjects and a control group. The
survival in the screened subjects appears double that of the controls. However, if the control group has
been formed as a result of correct randomization (with the same probability of disease of the same mean
severity as the screened group), the increase in survival is revealed as only apparent, solely due to earli-
er diagnosis. The difference between apparent and real survival in the screened group is the lead time.

Figure 9.3. Length bias. A screening event, given a fixed time interval between one event and the
next, can more probably reveal slow-growing tumors than fast-growing tumors. The extent of the
arrows represents the time between the subclinical detectability and the clinical onset. Black arrows
represent tumors not detected at the screening test (interval cancers) while gray arrows represent
screen-detected tumors.



Diagnostic review bias

Test review bias

Comparator review bias

Clinical review bias

We should be better

9.3.4. Reader Independence

Four types of bias can limit the reading:

1. diagnostic review bias: the reference standard was defined by a person
aware of the result of the examination under investigation;

2. test review bias: the result of the examination under investigation was defined
by a reader aware of the result of the reference standard;

3. comparator review bias: the result of one of two examinations under inves-
tigation was defined by a reader aware of the result obtained with the other
examination;

4. clinical review bias: the result of the examination under investigation was
defined by a reader who knew demographic data and clinical status of each
patient, a situation which is similar to clinical practice but potentially able to
incorporate pretest probability of the disease in the result of the examination.

9.4. A Lot of Work to Be Done

The demand for improving the quality of research on diagnostic performance
was well shown in a study published in JAMA in 1995 [REID ET AL, 1995]. The
authors reviewed 112 articles regarding diagnostic tests published from 1978 to
1993 in four important medical journals. Overall, over 80% of the studies had
relevant bias flawing their estimates of diagnostic performance. In particular:

− only 27% of the studies reported the disease spectrum of the patients;
− only 46% of the studies had no work-up bias;
− only 38% of the studies had no review bias;
− only 11% of the studies reported the confidence interval associated with the

point estimates of sensitivity, specificity, predictive values etc.;
− only 22% of the studies reported the frequency of indeterminate results and

how they were managed;
− only 23% of the studies reported the reproducibility of the results.

In this context, a detailed presentation of the rules to be respected for a good
quality original article on diagnostic performance was outlined in a paper con-
cerning the STARD initiative [BOSSUYT ET AL, 2003]. It provides an extremely
useful checklist of 25 items to be verified to avoid omitting important informa-
tion. This checklist is entirely reproduced in the next chapter. The gap to be
filled was testified by Smidt et al in a study published in 2005 [SMIDT ET AL,
2005]. They evaluated 124 articles on diagnostic performance published in 12
journals with an impact factor of 4 or higher, using the STARD checklist. Only
41% of articles reported on more than 50% of STARD items, and no articles
reported on more than 80%. A flow chart of the study was presented in only
two articles. The mean number of reported STARD items was only 12. They
concluded that “Quality of reporting in diagnostic accuracy articles published
in 2000 is less than optimal, even in journals with high impact factor”.

The relatively low quality of studies on diagnostic performance is a relevant
threat to the successful implementation of evidence based radiology. Hopefully,
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the adoption of the STARD requisites will improve the quality of radiologic stud-
ies but the process seems to be very slow [HOLLINGWORTH AND JARVIK, 2007], as
demonstrated also by the recent study by Wilczynski [WILCZYNSKI, 2008].

A lot of work still remains to be done.
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10
How to Write

a Radiologic Paper

While we teach, we learn.

SENECA

The purpose of this chapter is to provide a list of practical rules and recommen-
dations for writing a scientific article, with particular reference to radiology.
First, we will try to define the main types of articles published in the most impor-
tant journals1, with particular reference to major papers (composed of the four
classic sections Introduction, Materials and Methods, Results and Discussion).
Second, we will evaluate the radiologic journals with the recent trend of their
impact factor (IF) – explaining its mechanism of calculation – compared with
that of nonradiologic journals, a comparison useful for the choice of the suitable
journal for submitting an article. Third, we will explain the absolute need of
Ethics Committee approval and of informed consent by the patients asked to par-
ticipate in a clinical study. Fourth, we will illustrate the content of each of the
four sections of the major papers and the other associated sections, in particular
the Abstract and the References. Moreover, we will provide several partial sug-
gestions for tables, graphs, and figures, as well as some indications on how to
interpret the Editor’s response and the comments and criticisms of the reviewers.

A very important general reference for these topics is the article Uniform
requirements for manuscripts submitted to biomedical journals: writing and edit-
ing for biomedical publication by the International Committee of Medical Journal
Editors, available as updated to October 2007 at http://www.icmje.org/index.html,
where the reader can find further information.

1 We basically refer to a series of radiologic journals with high impact factor (Radiology, Invest
Radiol, Eur Radiol, Magn Reson Med, J Magn Reson Imaging, AJNR Am J Neuroradiol, AJR Am
J Roentgenol) but the general content of this chapter is also valid for the other radiologic and non-
radiologic journals.

F. Sardanelli, G. Di Leo, Biostatistics for Radiologists,
© Springer-Verlag Italia 2009.

Practical rules
and recommendations



Three main categories of papers

Invited papers

Some considerations and recommendations reported here can be found in the
instructions for authors in the journals themselves. Several of them are the
result of the personal experience of the senior author of this book, first as
author and then also as reviewer for radiologic journals over a twenty year peri-
od, and are the product of a process of “trial and error” mechanism. You learn
from your mistakes, and also from those of others.

10.1. Major Papers, Minor Papers, Invited Papers

An outline of the types of articles published by radiologic journals (and also by
nonradiologic journals) is presented in Table 10.1. We can distinguish three
main categories: major papers, minor papers and invited papers.

Invited papers are articles requested by the editor from experts. They can be
editorials, which frequently comment on major papers published in the same
issue of the journal, or narrative reviews2, namely critical summaries of pub-
lished articles on an emerging clinical or research topic. Both are usually
requested from authors who have already published important articles on the
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Table 10.1. Types of papers

Major papers
Original articles (Original research) on humans
Experimental studies (on animals or phantoms)
Meta-analyses (systematic reviews)

Minor papers
Letters to the Editor
Brief communications (Preliminary reports)
Technical developments (Technical notes)
Case reports
Teaching articles

Pictorial reviews
Diagnosis please
Interpretation corner
Signs in imaging
Images in medicine
(…)

Invited papers
Editorials
Narrative Reviews
Position papers, Guidelines
Special reports
Special series

2 Today review articles should be distinguished in narrative reviews, summaries of the literature on
a given topic mostly reflecting the authors’ opinion and experience, and systematic reviews or
meta-analysis which should be considered as an original article including studies instead of
patients (see Chapter 8). On the other hand, the meaning of the term review is entirely different for
the so-called pictorial reviews, where authors present a spectrum of high quality images of a par-
ticular disease studied with one or more imaging techniques.



same topic. The instructions for authors can suggest the possibility of submit-
ting a spontaneous review, but we advise against this if you have not already
published some articles on the topic you would like to review.

A particular kind of invited papers are position papers and guidelines. They
are basically official documents, edited by a panel of experts, commonly on
behalf of the scientific committee of a medical society, which take a position
on an emerging topic or define a guideline for the correct use of a diagnostic or
therapeutic medical technology.

In recent years, new types of invited papers have appeared thanks to the pres-
ence of special reports and special series, commonly dedicated to the diffusion
of particular knowledge by means of articles in subsequent issues of a journal.
Examples of this in the journal “Radiology” are Statistical Concept Series,
Historical Perspectives, and What the Clinicians Want to Know.

However, the main target of a scientist remains the major papers. They can
be original articles (also known as original research) on humans or on animal
models or phantoms and systematic reviews or meta-analyses (see Chapter 8).

Having reached the end of this book, the reader will have understood that
writing an original article for a medical journal is only the final act of a long
process. In fact, before editing the text of an original article, the following
phases should have been completed:

1. definition of the experimental hypothesis (H
1
);

2. study design and definition of the null hypothesis (H
0
);

3. sample size calculation;
4. editing of the study protocol;
5. request of approval from the Ethics Committee;
6. enrollment of patients (obtaining informed consent) and implementation of

the study protocol;
7. data acquisition;
8. statistical and logical data analysis.

This is the flowchart for a typical study with a prospective design. It also basically
works for a retrospective study, with the (partial) exception of the sample size calcu-
lation. If a study has been conducted according to this process, many problems in
editing the paper have already been solved. Introduction and materials and methods
sections have already been written, at least in a large part of them, for the documents
submitted to the Ethics Committee. The logical scheme is not so different for a sys-
tematic review (see Chapter 8), with the advantage of not needing approval from the
Ethics Committee. In the following paragraphs we basically refer to problems in writ-
ing and editing a major paper, in particular an original article on humans.

Lastly, there is the possibility of writing a minor paper.
The letters to the editor allow the presentation of short considerations on an

article already published in the same journal or opinions on a particular topic.
Sometimes the editorial space offered for a letter is very limited (up to only 400-
500 words with no more than five references) and the interval time is restricted to
a few weeks from the publication of the article you want to comment on. To avoid
wasting your time, we advise you carefully read the paragraphs in the Instructions
for Authors dedicated to this kind of article in the journal you have chosen.

Major papers:
original articles
systematic reviews
(meta-analyses)

Minor papers
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Case reports

Teaching articles

Each journal has special rules

Brief communications or preliminary reports, technical developments (where
some journals place the experimental studies on phantoms) or technical notes are
necessarily short articles with the same logical structure as the original articles:
preliminary clinical observations on a small sample of patients; new technical pro-
cedures performed on phantoms, small samples of healthy volunteers or patients.
Conceptually, they have the same difficulties as original articles. Sometimes, the
absolute need to be brief creates more problems than those we meet with original
articles, including a hard limitation in the number of references.

Case reports deserve some special considerations. Over the past decades,
these kinds of articles were a way to start scientific writing for several genera-
tions of radiologists. It was a good training phase for beginners. Today, things
have changed. There are many reasons for advising against investing your time
in writing case reports.

First, the following opinion – unquestionable from a methodologic viewpoint
– has gained increasing favor: the scientific value of anecdotal observations on
single or few cases is low due to the impossibility of quantifying the probabil-
ity of any described event. As a consequence, a published case report is rarely
quoted by other authors. A journal which publishes many case reports has a sig-
nificant disadvantage in terms of impact factor. The reader can verify this ten-
dency by means of the number of imaging journals which still accept the sub-
mission of case reports: only eighteen, mainly placed in the middle-low part of
the ranking. A long waiting list before publication after acceptance is a frequent
reason presented by the editor for rejecting an interesting case report. A higher
probability of acceptance exists for a case report of a very rare disease.

Second, the journals still admitting the submission of case reports require
that the article is well written, with detailed methods and updated references.
Thus, the time needed for writing and editing such an article is not that much
less than needed for an original article. It is therefore better to take the bull by
the horns and choose to perform a real study and write an original article. The
probability of acceptance is undoubtedly higher.

Interesting clinical cases can be used for a different scientific purpose. In fact,
several journals propose teaching articles, sometimes by means of supplements or
additional publications (an example is AJR Integrative Imaging). These frequent-
ly offer the reader the possibility of gaining points for continuous medical educa-
tion. A case report can be transformed into an educational article which regards an
unusual diagnosis, describing a radiologic sign, showing high quality images (as
it is for pictorial reviews), or summarizing the basics for a differential diagnosis.

10.2. Which Medical Journal?

Before starting to write you should have decided to which journal you want to
submit the manuscript. In fact, even though the logical structure is the same,
each journal has its own formal and stylistic rules3 which need to be accurate-
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ly respected. To avoid problems and wasting time, you should know them from
the beginning.

The first draft of the results of a study is commonly an abstract for a con-
gress, a summary produced within the congress deadline for submission. We
might suggest a more virtuous mechanism: submitting the congress abstract at
the same time as the submission of the full paper to the journal (maybe the jour-
nal of the medical society organizing the congress). However, especially for
those colleagues who must subdivide their time between clinical and scientific
work, the congress abstract submission deadlines are useful catalysts which
prompt producing the results of ongoing studies.

The acceptance of a congress abstract is obviously a positive event, indicat-
ing content judged to be original or at any rate interesting by the congress
reviewers. However, neither is it an open road to acceptance of the related
paper in the associated journal, nor a mandatory requirement for submitting the
paper to the journal. In practice, you can submit a paper to the journal even
though you did not submit the abstract to the congress or you submitted the
abstract but it was not accepted. As a result of practical experience, consider-
ing the Annual Meeting of the Radiological Society of North America (RSNA)
and the journal Radiology or the European Congress of Radiology and the jour-
nal European Radiology, all the four combinations of events are possible:

1. a work accepted as abstract at the congress was accepted as full paper for
publication in the journal;

2. a work rejected as abstract at the congress was rejected by the journal;
3. a work accepted as abstract at the congress was rejected by the journal;
4. a work rejected as abstract at the congress was accepted as full paper for

publication in the journal.

Combinations 3 and 4 should not astonish the reader, for at least three rea-
sons. First, the reviewers of a congress abstract and those of the paper are
almost always different persons and their opinions can differ highly. Second,
the full paper makes positive and negative aspects of the study clearly visible.
Third, with reference to combination 4, when writing the full paper you may
conduct broader data analysis, and when doing so discover new aspects espe-
cially for data interpretation and comment.

Apart from the relation between congresses and journals, which journal
should we submit a paper to? Generally, we advise trying a highly ranked
journal first. Bear in mind that the review process is normally characterized
by double blindness: you do not know who the reviewers are and the review-
ers do not know who you are. The reviewers’ comments and criticisms often
reveal real limitations to your study and frequently indicate interesting solu-
tions. Therefore, even if the paper is rejected, you could obtain useful sugges-
tions for submission to another journal. It is not a rare event that a paper
rejected by a journal with a middle ranked impact factor is accepted by a jour-
nal with a higher impact factor, maybe after some modifications suggested by
the reviewers of the first journal. At any rate, the interaction with the review-
ers of highly ranked journals is a real scientific school. You will learn from
your errors much more than you think. This is also true for statistical methods
(e.g. one of the reviewers of Radiology is a statistician).

Congress abstract
and full papers

To which journal do you
submit the manuscript?
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Impact factor (IF)

Technical limitations
of the impact factor

The basic limitation
of the impact factor

European Radiology

La Radiologia Medica

In this reasoning we have considered the IF – annually presented by the ISI-
Thomson Scientific in the Journal Citation Reports (JCR) – as a reliable meas-
ure of the scientific value of a medical journal. The underlying hypothesis is
that the number of quotations of a journal is directly proportional to its diffu-
sion in the medical scientific community and that this diffusion is an indicator
of its scientific level. For example, the 2007 IF of a journal is calculated
according to the following formula:

2007 IF =
Number of citations during 2007 of articles published by the journal in 2005 and 2006

Number of articles published by the journal in 2005 and 2006

We cannot develop here a deep analysis of the IF. Like many tools, it has
technical limitations: exclusion of journals not written in English; inclusion
in calculation of self-citations (when the journal quotes itself); competitive
advantage in publishing more small articles than less large articles. However,
the most important limitation is in the basic hypothesis that the scientific
quality of a journal (or also an article or an author) can be obtained by
means of a purely quantitative calculation.

At any rate, notwithstanding these limitations, the IF remains the only really
available tool for concisely evaluating the weight of a journal. Obviously, given
the large IF range obtained by the journals of different scientific medical fields,
methods for normalization based on the rank of the IF of each journal within
its medical field are frequently used to make comparisons between different
fields possible. At the University of Milan School of Medicine, we use a
method based on the subdivision into quartiles of the distribution of the IFs of
journals within their medical field, giving a standardized score according to the
quartile: 6 for the highest quartile, 4 for the second quartile, 2 for the third quar-
tile, and 1 for the lowest quartile.

In Table 10.2 we report the original (non-normalized) IFs obtained in
2000, 2003, and 2006 (related to 1998-99, 2001-2002, and 2004-2005,
respectively) of the journals regarding “radiology, nuclear medicine, and
medical imaging”.

A relevant aspect of the recent trend of IFs is a progressive increase in this
mean index for the imaging and radiologic journals. No journal has an IF
higher than 6.0, but many of them show an increasing trend from 2000 to
2006. In these years, the mean IF of imaging and radiologic journals went up
from 1.469 to 2.053. This reflects the increasing role of imaging and radiolog-
ic techniques in clinical medicine and the improved quality of scientific pro-
duction by radiologists and other colleagues working on medical imaging. In
this context, European Radiology went up from 1.321 in 2000 to 2.554 in
2006 and to 3.405 in 2007. By the way, in 2007 the official journal of the
Italian Society of Medical Radiology, La Radiologia Medica (Radiol Med)
obtained its first IF, ranked at 0.967, an important and promising result for
Italian radiology. In Table 10.2 you can observe how the number of imaging
journals with an increasing 2006 IF in comparison with both 2000 and 2003
is 57 out of 89 (64%).

The rules for editing a scientific article are in part the same as those for
writing good scientific international English. Grammar and style rules (e.g.
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Table 10.2. Impact factor (IF) of the journals regarding “radiology, nuclear medicine and medical
imaging” obtained in 2000, 2003, and 2006

Journal IF 2000 IF 2003 IF 2006

Semin Radiat Oncol 2.427 3.604 5.889 *
Neuroimage 6.857 6.192 5.559
Radiology 4.130 4.815 5.251 * #
J Nucl Med 3.617 4.899 4.986 *
Hum Brain Mapping 5.163 6.058 4.888 #
Semin Nucl Med 2.143 3.431 4.473 *
Int J Radiat Oncol 3.058 4.285 4.463 *
Eur J Nucl Med Mol - 3.324 4.041 *
Radiother Oncol 2.469 2.870 3.970 *
IEEE T Med Imaging 2.573 3.755 3.757 *
Mean of the top ten 3.604 4.323 4.728

Strhalenther Onkol 2.846 2.634 3.682 *
NMR Biomed 1.914 3.333 3.626 *
Med Phys 2.428 2.305 3.571 *
Magn Reson Med 3.121 3.313 3.427 *
Invest Radiol 1.410 1.990 3.398 *
Med Imaging Anal - - 3.256 *
Mol Imaging Biol - - 2.961 *
Phys Med Biol 2.013 2.128 2.873 *
J Biomed Opt - 3.541 2.870 *
J Magn Reson Imaging - 2.694 2.637
Radiat Res 2.752 3.208 2.602
Eur Radiol 1.119 1.969 2.554 *
Radiol Clin N Am 1.529 1.759 2.533 *
J Nucl Cardiol 1.854 1.629 2.440 *
J Vasc Interv Radiol 1.729 2.212 2.398 *
Radiographics 1.396 2.063 2.344 *
AJNR Am J Neuroradiol 2.126 2.629 2.279 #
Ultrasound Obst Gyn 1.725 1.973 2.288 *
Clin Nucl Med 0.399 0.737 2.217 *
Nucl Med Biol 1.580 2.000 2.121 *
AJR Am J Roentgenol 1.863 2.474 2.117
Ultraschall Med 0.925 1.473 2.103 *
Q J Nucl Med 1.910 2.222 2.062
Ultrasound Med Biol 1.822 2.033 2.011
Nuklearmed-Nucl Med 0.965 1.849 1.990 *
ROFO 1.005 1.786 1.976 *
Concept Magn Reson A - - 1.872 *
Int J Hyperther 0.952 1.762 1.866 *
Acad Radiol 0.912 1.409 1.781 *
Cancer Biother Radio 0.989 1.841 1.763
J Cardiov Magn Reson 2.304 1.125 1.739
J Radiat Res 1.111 1.697 1.709 *
Clin Radiol 0.934 1.270 1.665 * #
Neuroradiology 0.997 1.213 1.625 *
Ultrasonic Imaging 1.794 1.576 1.606
Magn Reson Imaging 1.452 1.420 1.580 * #
J Comput Assist Tomogr 1.484 1.318 1.530 * #
Magn Reson Mater Phy - 1.836 1.514
Korean J Radiol - 1.783 1.483 *
Brain Topogr 1.596 1.820 1.415
Abdom Imaging 0.866 0.996 1.336 * #
Eur J Radiol 0.822 1.060 1.332 * #
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the use of tense or of active instead of passive verb forms, the use of upper-
case or lower-case letters, etc.) go together with the technical rules for the
units of measurement or for rounding numbers in the data, etc. A useful tool
for this problem is the manual by Sylvia Rogers [ROGERS, 2007]. Beginners
can also refer to recently published articles in the journal to which they want
to submit their paper.

If writing in English poses no problems (maybe with the cooperation of a
more experienced colleague), you may dare to submit your paper to a journal
ranked in the first IF quartile. Do not lose heart if the journal rejects your paper.
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Journal IF 2000 IF 2003 IF 2006

J Thorac Imag 0.663 0.923 1.328 * #
Ultrasonics 0.711 0.780 1.322 *
Int J Radiat Biol 2.586 2.165 1.312
J Digit Imaging 0.722 0.953 1.304 * #
J Neuroimaging 0.942 0.927 1.298 * #
Nucl Med Commun 1.039 1.230 1.283 *
Br J Radiol 0.951 1.089 1.279 * #
J Ultras Med 0.966 1.194 1.189 #
Skeletal Radiol 0.695 0.821 1.176 * #
Concept Magnetic Res - 1.161 -
Cardiovasc Intervent Rad 1.029 1.207 1.149
Semin Ultrasound CT 0.797 0.851 1.135 *
Int J Cardiovasc Imaging - 0.496 1.119 * #
Radiat Environ Bioph 1.110 1.131 1.090
Pediatr Radiol 0.684 0.942 1.076 * #
Appl Radiat Isotopes 0.716 0.690 0.924 *
Comput Med Imaging Graph 0.500 1.158 0.909
Neuroimag Clin N Am 1.095 0.663 0.905
Health Phys 0.988 0.777 0.902
Acta Radiol 0.785 1.096 0.884
Dentomaxillofac Rad 0.780 0.669 0.821 *
Ann Nucl Med - 0.745 0.779 * #
Clin Imaging 0.368 0.658 0.758 * #
J Radiol Prot - - 0.736 *
Radiologe 0.608 0.626 0.696 *
Semin Roentgenol 0.597 0.887 0.625
J Radiol 0.345 - 0.600 *
J Clin Ultrasound 0.994 0.746 0.573 #
J Neuroradiol 0.451 0.603 0.509
Radiat Prot Dosim 0.581 0.617 0.446
Surg Radiol Anat 0.314 0.307 0.443 *
Interv Neuroradiol 0.585 0.512 0.366
Can Assoc Radiol J 0.268 0.376 -
Riv Neuroradiol 0.051 0.152 -
Int J Neuroradiol 0.139 - -

Mean 1.469 1.808 2.053

(continued)

Decreasing order according to the 2006 IF. The asterisk (*) indicates the journals with a 2006 IF increasing in comparison
with both that of 2000 and that of 2003. The hash (#) indicates the journals which have specific indications for case report
submission in their instructions for authors, accessed online from February 20 to March 8, 2008.
Source of IFs: Journal Citation Reports™ – Science edition, published by Thomson Scientific (with permission).



A paper which appears in a journal of the first IF quartile might have been pre-
viously rejected by two other journals.

Publishing in nonradiologic journals is a relatively different task. Of
course, only radiologic studies of general interest can be published in the big
medical journals, such as New Engl J Med, Lancet, JAMA, Ann Intern Med,
or other journals ranked with a very high IF. The access to journals with a
limited medical field is easier. Here you can be pleasantly surprised: a paper
rejected by a radiologic journal can be accepted by a clinical journal with a
higher IF. As the scientific level of radiologic journals is increasing and the
filtering by editors and referees is increasingly more stringent, you might
consider the alternative of submitting it to a clinical journal if your paper has
an evident clinical interest. The IF development of clinical journals with IF
higher than 10 in 2006 is reported in Table 10.3. You can observe that the
number of journals with an increasing IF is 70 out of 107 (65%), a percent-
age similar to that of imaging and radiologic journals. Obviously, the number
of nonradiologic journals that can publish radiologic papers is much higher
and comprises many medical journals with an IF lower than 10. The 2000,
2003, and 2006 IFs of the first ten journals of a series of medical fields is
reported in Table 10.4.

To publish on
non-radiologic journals
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Table 10.3. Journals with impact factor (IF) higher than 10 in 2006 and comparison with 2003 and
2000 (the asterisk indicates the journals with an increasing 2006 IF compared with 2000 and 2003)

Journal IF 2000 IF 2003 IF 2006

* CA Cancer J Clin 24.674 33.056 63.342
* New England J Med 29.512 34.833 51.296

Annu Rev Immunol 50.340 52.280 47.237
Annu Rev Biochem 43.429 37.647 36.525

* Rev Mod Phys 12.774 28.172 33.508
* Nat Rev Cancer - 33.954 31.583
* Physiol Rev 27.677 36.831 31.441

Nat Rev Mol Cell Biol - 35.041 31.354
* Science 23.872 29.781 30.028

Cell 32.440 26.626 29.194
* Nat Rev Immunol - 26.957 28.697

Nat Med 27.905 30.550 28.588
Annu Rev Neurosci 26.676 30.167 28.533
Nat Immunol - 28.180 27.596
Nature 25.814 30.979 26.681

* Annu Rev Cell Dev Bi 26.300 22.638 26.576
* Chem Rev 20.036 21.036 26.054
* Lancet 10.232 18.316 25.800
* Brief Bioinform - - 24.370

Nat Genet 30.910 26.494 24.176
* Cancer Cell - 18.913 24.077
* Endocr Rev 19.524 17.324 23.901
* JAMA 15.402 21.455 23.175

Nat Rev Neurosci - 27.007 23.054
Nat Rev Genet - 25.664 22.947

* Annu Rev Pharmacol 19.289 21.786 22.808
* Nat Biotechnol 11.542 17.721 22.672
* Nat Rev Drug Discov - 17.732 20.970
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Journal IF 2000 IF 2003 IF 2006

* Annu Rev Plant Biol - 15.615 19.837
* Nat Mater - 10.778 19.194
* Annu Rev Genet 13.450 11.920 19.098

Nat Cell Biol 11.939 20.268 18.485
Immunity 21.083 16.016 18.306

* Mat Sci Eng R 6.083 - 17.731
* Accounts Chem Res 13.262 15.000 17.113
* Annu Rev Bioph Biom 16.194 13.351 16.921
* Annu Rev Astron Astr 14.000 16.000 16.914

Pharmacol Rev 25.381 27.067 16.854
* Cell Metab - - 16.710

Microbiol Mol Biol R 20.639 14.340 15.864
* Nat Rev Microbiol - - 15.845
* J Clin Invest 12.015 14.307 15.754

Annu Rev Physiol 18.848 18.591 15.356
* J Natl Cancer Inst 14.159 13.844 15.271

Gene Dev 19.676 17.013 15.050
* Behav Brain Sci 14.250 10.625 14.964
* Nat Methods - - 14.959
* Prog Polym Sci 3.698 7.759 14.818

Nat Neurosci 12.636 15.141 14.805
* Ann Intern Med 9.833 12.427 14.780
* Annu Rev Microbiol 9.238 12.105 14.553

J Exp Med 15.236 15.302 14.484
Curr Opin Cell Biol 22.754 18.176 14.299
Trends Ecol Evol 22.754 12.449 14.125

* Plos Biol - - 14.101
Mol Cell 18.195 16.835 14.033

* Arch Gen Psychiat 11.778 10.519 13.936
Neuron 15.081 14.109 13.894
Trends Biochem Sci 13.246 14.273 13.863

* Plos Med - - 13.750
* Chem Soc Rev 10.747 9.569 13.690
* Astron Astrophys Rev 3.455 3.600 13.667
* J Clin Oncol 8.773 10.864 13.598

Dev Cell - 14.807 13.523
Trends Neurosci 17.417 12.631 13.494

* Annu Rev Med 9.891 11.381 13.237
* Psychol Bull 6.913 8.405 12.725
* Clin Microbiol Rev 12.141 11.530 12.643
* Am J Hum Genet 10.351 11.602 12.629
* Annu Rev Fluid Mech 6.486 5.108 12.469

Gastroenterology 12.246 12.718 12.457
Trends Cell Biol 18.815 19.612 12.429

* Nat Chem Biol - - 12.409
* Prog Lipid Res 5.379 10.000 12.235
* Nat Phys - - 12.040
* Lancet Infect Dis - - 11.808
* Mol Psychiatr 8.927 5.539 11.804
* Annu Rev Psychol 5.851 9.896 11.706
* Cytokine Growth F R 6.049 9.600 11.549
* Front Neuroendocrinol 8.375 8.870 11.526
* Nat Struct Mol Biol - - 11.502

Prog Neurobiol 9.933 12.327 11.304
* Adv Catal 11.000 7.889 11.250
* Annu Rev Phys Chem 9.237 10.500 11.250
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Journal IF 2000 IF 2003 IF 2006

* Curr Opin Struc Biol 10.427 8.686 11.215
Curr Biol 8.393 11.910 10.988

* Mass Spectrom Rev 7.600 7.364 10.947
Circulation 10.893 11.164 10.940
Annu Rev Genom Hum G - 12.200 10.771

* Immunol Rev 5.961 7.052 10.758
* Aldrichim Acta 5.900 7.077 10.692
* Adv Cancer Res 21.680 7.938 10.682
* Annu Rev Biomed Eng - 7.875 10.533
* Annu Rev Nutr 7.071 9.326 10.449
* Hepatology 7.304 9.503 10.446

Phys Rep 7.110 11.980 10.438
* Annu Rev Mater Res - 5.333 10.400

Trends Pharmacol Sci 10.377 13.965 10.400
* Blood 8.977 10.120 10.370
* Genome Res 7.615 9.635 10.256
* Angew Chem Int Edit 8.547 8.427 10.232

Progr Mater Sci 4.667 12.000 10.229
Trends Immunol - 18.153 10.213

* Curr Opin Plat Biol 7.347 8.945 10.182
J Cell Biol 13.955 12.023 10.152

* Lancet Oncol - 7.411 10.119
Embo J 13.999 10.456 10.086
Curr Opin Genet Dev 13.810 13.143 10.006

* Semin Immunol 6.544 5.964 10.000

Mean 14.746 16.215 17.434

(continued)

Decreasing order according to the 2006 IF.
Source: Journal Citation Reports™ – Science edition, published by Thomson Scientific (with permission).

Table 10.4. List of the first ten journals of a series of medical fields (increasing order according to the
2006 IF and comparison with 2000 and 2003)

Sector / Journal IF 2000 IF 2003 IF 2006

Allergy
J Allergy Clin Immun 4.179 6.831 8.829
Allergy 2.385 3.161 5.334
Clin Exp Allergy 2.947 3.176 3.668
Immunol Allergy Clin 0.520 0.731 3.178
Pediatr Allergy Immu 1.635 1.573 2.849
Int Arch Allergy Imm 1.630 2.000 2.524
Contact Dermatitis 0.675 1.095 2.446
Ann Alerg Asthma Im 1.889 2.181 2.254
Curr Allergy Asthm R - - 2.016
Clin Rev Allerg Immu 0.741 1.173 1.677

Mean 1.845 2.436 3.478

Anatomy and Morphology
Dev Dynam 3.131 3.160 3.169
J Anat 1.385 2.072 2.458
Anat Rec Part A - - 1.973
Cells Tissues Organs 0.896 1.757 1.841
Microsc Res Techniq 1.746 2.307 1.680
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Sector / Journal IF 2000 IF 2003 IF 2006

Appl Immunohisto M M 0.747 1.500 1.621
J Morphol 0.911 1.629 1.553
Adv Anat Embryol Cel 2.933 0.321 1.429
Anat Embryol 1.851 1.559 1.277
Zoomorphology 1.000 1.156 1.211

Mean 1.622 1.718 1.821

Andrology
Int J Androl 1.357 1.588 2.183
J Androl 2.106 2.480 2.137
Asian J Androl - 1.064 1.737
Andrologia 0.871 0.939 1.025
Arch Andrology 0.727 0.667 0.687

Mean 1.265 1.348 1.554

Anesthesiology
Pain 3.853 4.556 4.836
Anesthesiology 3.439 3.503 4.207
Euro J Pain - 1.770 3.333
Brit J Anaesth 1.989 2.365 2.679
Clin J Pain 1.900 2.080 2.448
Anaesthesia 2.027 2.041 2.427
Anesth Analg 2.321 2.210 2.131
Region Anesth Pain M 1.129 1.766 2.056
Can J Anaesth 1.149 1.200 1.976
J Neurosurg Anesth 0.937 0.959 1.926

Mean 2.083 2.245 2.802

Cardiac and Cardiovascular Systems
Circulation 10.893 11.164 10.940
Circ Res 9.193 10.117 9.854
J Am Coll Cardiol 7.082 7.599 9.701
Eur Heart J 3.840 5.997 7.286
Cardiovasc Res 3.783 5.164 5.826
J Mol Cell Cardiol 3.383 4.954 4.859
Trends Cardiovas Med 2.879 4.517 4.724
Basic Res Cardiol 1.490 2.993 3.798
Heart Rhythm - - 3.777
Am J Physiol-Heart C 3.243 3.658 3.724

Mean 5.087 6.240 6.449

Clinical Neurology
Lancet Neurol - 3.070 9.479
Ann Neurol 8.480 7.717 8.051
Brain 7.303 7.967 7.617
Cephalalgia 2.391 2.985 6.049
Neuroscientist 1.918 2.822 5.710
Neurology 4.781 5.678 5.690
Stroke 6.008 5.233 5.391
Brain Pathol 6.435 3.838 5.274
Curr Opin Neurol 3.176 3.920 5.229
Arch Neurol-Chicago 4.393 4.684 5.204

Mean 4.987 4.791 6.369

Critical Care Medicine
Am J Resp Crit Care 5.443 8.876 9.091
Crit Care Med 3.824 4.195 6.599
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Sector / Journal IF 2000 IF 2003 IF 2006

Intens Care Med 2.098 2.971 4.406
J Neurotraum 2.877 2.587 3.453
Shock 2.785 2.542 3.318
Crit Care - 1.911 3.116
Resuscitation 1.760 1.375 2.314
J Trauma 1.498 1.429 2.035
Crit Care Clin - 1.485 1.845
Am J Crit Care - - 1.685

Mean 2.898 3.041 3.786

Emergency Medicine
Ann Emerg Med 2.183 2.640 3.120
Resuscitation 1.760 1.375 2.314
J Burn Care Rehabil 0.810 1.042 1.744
Acad Emerg Med 1.419 1.844 1.741
Am J Emerg Med 1.054 1.489 1.518
Injury 0.363 0.511 1.067
Emerg Med J - 0.633 0.869
J Emerg Med - 0.652 0.816
Pediatr Emerg Care 0.428 0.505 0.700
Emerg Med Clin N Am 0.635 0.676 0.672

Mean 1.082 1.137 1.456

Endocrinology and Metabolism
Endocr Rev 19.524 17.324 23.901
Cell Metab - - 16.710
Front Neuroendocrin 8.375 8.870 11.526
Recent Prog Horm Res 5.306 8.275 9.263
Diabetes 7.715 8.298 7.955
Diabetes Care 4.992 7.501 7.912
Trends Endocrin Met 3.908 7.850 7.066
J Bone Miner Res 5.877 6.225 6.635
J Clin Endocr Metab 5.447 5.873 5.799
Curr Opin Lipidol 5.661 6.966 5.689

Mean 7.432 8.576 10.246

Gastroenterology and Hepatology
Gastroenterology 12.246 12.718 12.457
Hepatology 7.304 9.503 10.446
Gut 5.386 5.883 9.002
J Hepatol 3.761 5.283 6.073
Am J Gastroenterol 2.834 4.172 5.608
Semin Liver Dis 6.012 6.524 5.302
Gastrointest Endosc 2.820 3.328 4.825
Liver Transplant 2.130 4.242 4.629
Inflamm Bowel Dis 1.791 3.023 3.912
Am J Physiol-Gastr L 3.115 3.421 3.681

Mean 4.740 5.810 6.594

Genetics and Heredity
Nat Genet 30.910 26.494 24.176
Nat Rev Genet - 25.664 22.947
Annu Rev Genet 13.450 11.920 19.098
Gene Dev 19.676 17.013 15.050
Trends Ecol Evol 8.765 12.449 14.125
Am J Hum Genet 10.351 11.602 12.629
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Sector / Journal IF 2000 IF 2003 IF 2006

Annu Rev Genom Hum G - 12.200 10.771
Genome Res 7.615 9.635 10.256
Curr Opin Genet Dev 13.810 13.143 10.006
Trends Genet 12.912 12.016 9.950

Mean 14.686 15.214 14.901

Geriatrics and Gerontology
Rejuv Res - - 8.353
Aging Cell - - 6.276
Neurobiol Aging 4.159 5.552 5.599
Ageing Res Rev - 3.795 4.526
Mech Ageing Dev 1.897 3.214 3.846
J Am Geriatr Soc 3.136 2.835 3.331
Age 2.622 - 3.034
Exp Gerontol 2.622 2.857 2.930
Am J Geriat Psychiat - 3.741 2.894
J Gerontol A-Biol 1.549 4.369 2.861

Mean 2.644 3.766 4.365

Health Care Sciences and Services
Milbank Q 4.568 3.524 6.794
Health Technol Asses - - 5.290
Med Care 2.535 3.152 3.745
Health Affair 3.823 3.673 3.680
Value Health - - 3.433
J Med Internet Res - - 2.888
Acad Med 1.554 1.104 2.607
Med Educ 1.078 1.188 2.467
J Pain Symptom Manag - 1.885 2.437
Qual Saf Health Care - 1.760 2.382

Mean 2.712 2.327 3.572

Hematology
Circulation 10.893 11.164 10.940
Blood 8.977 10.120 10.370
Circ Res 9.193 10.117 9.854
Stem Cells 2.989 5.802 7.924
Arterioscl Throm Vas 5.111 6.791 6.883
Leukemia 3.736 5.116 6.146
Blood Rev 2.689 2.241 5.756
Curr Opin Hematol - 4.449 5.202
J Thromb Haemost - - 5.138
Haematol-Hematol J - - 5.032

Mean 6.227 6.975 7.325

Immunology
Annu Rev Immunol 50.340 52.280 47.237
Nat Rev Immunol - 26.957 28.697
Nat Immunol - 28.180 27.596
Immunity 21.083 16.016 18.306
J Exp Med 15.236 15.302 14.484
Immunol Rev 5.961 7.052 10.758
Trends Immunol - 18.153 10.213
Semin Immunol 6.544 5.964 10.000
Curr Opin Immunol 12.549 12.118 9.422
J Allergy Clin Immun 4.179 6.831 8.829

Mean 16.556 18.885 18.554
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Sector / Journal IF 2000 IF 2003 IF 2006

Infectious Diseases
Lancet Infect Dis - - 11.808
Clin Infect Dis 2.972 5.393 6.186
AIDS 8.018 5.521 5.632
J Infect Dis 4.988 4.481 5.363
Emerg Infect Dis 4.907 5.340 5.094
Antivir Ther 4.510 5.932 4.982
Curr Opin Infect Dis 0.778 2.674 4.795
AIDS Rev - - 4.022
Infect Immun 4.204 3.875 4.004
JAIDS-J Acq Imm Def - 3.681 3.946

Mean 4.340 4.612 5.583

Medical Informatics
J Am Med Inform Assn 3.089 2.510 3.979
J Med Internet Res - - 2.888
J Biomed Inform - 0.855 2.346
Stat Med 1.717 1.134 1.737
Med Decis Making 2.152 1.718 1.736
Int J Med Inform 0.699 1.178 1.726
Method Inform Med 0.929 1.417 1.684
Artif Intell Med 1.793 1.222 1.634
IEEE T Inf Technol B - 1.274 1.542
Stat Methods Med Res - 1.857 1.377

Mean 1.730 1.457 2.065

Medical Laboratory Technology
Crit Rev Cl Lab Sci 3.357 3.136 6.138
Clin Chem 4.261 5.538 5.454
Ther Drug Monit - 2.372 3.032
Adv Clin Chem 1.600 0.917 2.440
Clin Biochem 1.327 1.825 2.331
Clin Chim Acta - 1.633 2.328
Cytom Part B-Clin Cy - - 2.065
Clin Diagn Lab Immun - - 1.988
Clin Lab Med 0.460 0.854 1.904
J Lab Clin Med 1.978 2.011 1.812

Mean 2.164 2.286 2.949

Medicine, General and Internal
New England J Med 29.512 34.833 51.296
Lancet 10.232 18.316 25.800
JAMA-J Am Med Assoc 15.402 21.455 23.175
Ann Intern Med 9.833 12.427 14.780
Plos Med - - 13.750
Annu Rev Med 9.891 11.381 13.237
Brit Med J 5.331 7.209 9.245
Arch Intern Med 6.055 6.758 7.920
Can Med Assoc J 2.352 4.783 6.862
Medicine 4.623 4.500 5.167

Mean 10.359 13.518 17.123

Medicine Research and Experimental
Nat Med 27.905 30.550 28.588
J Clin Invest 12.015 14.307 15.754
J Exp Med 15.236 15.302 14.484
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Sector / Journal IF 2000 IF 2003 IF 2006

J Cell Mol Med - - 6.555
Trends Mol Med - - 5.864
Mol Ther - 6.125 5.841
J Mol Med-JMM 3.445 4.101 5.157
Curr Mol Med - - 4.850
Gene Ther 5.964 5.293 4.782
Hum Gene Ther 6.796 4.965 4.514

Mean 11.894 12.757 9.639

Neuroimaging
Neuroimage 6.857 6.192 5.559
Hum Brain Mapp 5.163 6.058 4.888
Psychiat Res-Neuroim 1.919 2.551 2.755
Cognitive Brain Res 2.733 2.865 2.568
Am J Neuroradiol 2.126 2.629 2.279
Neuroradiology 0.997 1.213 1.625
J Neuroimaging 0.942 0.927 1.298
Clin EEG Neurosci - - 1.255
Stereot Funct Neuros - 0.425 1.195
Minim Invas Neurosur 0.805 0.551 0.914

Mean 2.693 2.601 2.434

Neurosciences
Annu Rev Neurosci 26.676 30.167 28.533
Nat Rev Neurosci - 27.007 23.054
Behav Brain Sci 14.250 10.625 14.964
Nat Neurosci 12.636 15.141 14.805
Neuron 15.081 14.109 13.894
Trends Neurosci 17.417 12.631 13.494
Mol Psychiatr 8.927 5.539 11.804
Front Neuroendocrin - 8.870 11.526
Prog Neurobiol 9.933 12.327 11.304
Trends Cogn Sci - 7.528 9.374

Mean 14.989 14.394 15.275

Obstetrics and Gynecology
Hum Reprod Update 2.887 3.731 6.793
Obstet Gynecol 2.091 2.957 3.813
Hum Reprod 2.997 3.125 3.769
Obstet Gynecol Surv - 1.773 3.329
Fertil Steril 2.854 3.483 3.277
Reprod Biomed Online - - 3.206
Menopause 2.273 3.319 3.170
Semin Reprod Med - 1.575 3.000
Placenta 2.587 2.706 2.969
Am J Obstet Gynecol 2.519 2.518 2.805

Mean 2.601 2.799 3.613

Oncology
Ca-Cancer J Clin 24.674 33.056 63.342
Nat Rev Cancer - 33.954 31.583
Cancer Cell - 18.913 24.077
J Natl Cancer I 14.159 13.844 15.271
J Clin Oncol 8.773 10.864 13.598
Adv Cancer Res 21.680 7.938 10.682
Lancet Oncol - 7.411 10.119
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Sector / Journal IF 2000 IF 2003 IF 2006

BBA-Rev Cancer - 8.395 9.156
Stem Cells 2.989 5.802 7.924
Cancer Res 8.460 8.649 7.656

Mean 13.456 14.883 19.341

Ophthalmology
Prog Retin Eye Res 4.680 6.811 9.039
Ophthalmology 3.040 3.162 4.031
Invest Ophth Vis Sci 4.373 4.148 3.766
J Vision - - 3.753
Surv Ophthalmol 2.562 3.096 3.451
Arch Ophthalmol-Chic 2.158 3.203 3.206
Exp Eye Res 2.014 2.611 2.776
Brit J Ophthalmol 1.948 2.099 2.524
Am J Ophthalmol 1.941 2.258 2.468
Mol Vis - 2.777 2.377

Mean 2.840 3.352 3.739

Orthopedics
Osteoarthr Cartilage 2.080 2.964 4.017
J Orthop Res - 2.167 2.784
Orthop Clin N Am 0.874 0.907 2.500
J Bone Joint Surg Am 2.222 1.921 2.444
Spine 1.843 2.676 2.351
Clin Orthop Relat R 1.182 1.357 2.161
Gait Posture 0.955 1.585 1.976
Eur Spine J - 1.527 1.824
J Arthroplasty 0.978 0.922 1.806
J Am Acad Orthop Sur - - 1.792

Mean 1.448 1.781 2.336

Otorhinolaryngology
Jaro-J Assoc Res Oto - 2.086 2.522
Head Neck-J Sci Spec 1.917 1.805 1.961
Ear Hearing 1.506 1.450 1.858
Arch Otolaryngol 1.527 1.242 1.816
Audiol Neuro-Otol 2.390 1.765 1.758
Laryngoscope 1.457 1.449 1.736
Hearing Res 1.753 1.502 1.584
Otol Neurotol - 1.073 1.339
Otolaryng Head Neck 0.977 1.051 1.338
Am J Rhinol 1.021 1.055 1.220

Mean 1.569 1.448 1.713

Pathology
Am J Pathol 6.971 6.946 5.917
J Pathol 4.137 4.933 5.759
Brain Pathol 6.435 3.838 5.274
Springer Semin Immun 2.176 0.918 4.754
Lab Invest 4.165 4.418 4.453
J Neuropath Exp Neur 5.565 5.005 4.371
Am J Surg Pathol 4.269 4.535 4.144
Modern Pathol 3.241 3.323 3.753
Histopathology 2.554 2.952 3.216
Int J Immunopath Ph 1.174 3.927 3.213

Mean 4.069 4.080 4.485
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Sector / Journal IF 2000 IF 2003 IF 2006

Pediatrics
Pediatrics 3.742 3.781 5.012
J Am Acad Child Psy 3.175 3.779 4.767
J Pediatr 3.467 2.913 3.991
Arch Pediat Adol Med 1.701 2.190 3.565
Pediatr Infect Dis J 2.190 2.262 3.215
Pediatr Allergy Immu 1.635 1.573 2.849
J Adolescent Health 1.415 1.674 2.710
Ment Retard Dev D R 0.811 3.479 2.671
Pediatr Res 2.794 3.064 2.619
J Child Adol Psichop 1.982 2.487 2.486

Mean 2.291 2.720 3.389

Peripheral Vascular Disease
Circulation 10.893 11.164 10.940
Circ Res 9.193 10.117 9.854
Artherioscl Throm Vas 5.111 6.791 6.883
Hypertension 5.311 5.630 6.007
Atherosclerosis supp - 4.457 5.875
Curr Opin Lipidol 5.661 6.966 5.689
Stroke 6.008 5.233 5.391
J Thromb Haemost - - 5.138
Curr Opin Hephrol HY 2.544 3.976 4.137
J Hypertens 3.640 3.572 4.021

Mean 6.045 6.434 6.394

Pharmacology and Pharmacy
Annu Rev Pharmacol 19.289 21.786 22.808
Nat Rev Drug Discov - 17.732 20.970
Pharmacol Rev 25.381 27.067 16.854
Trends Pharmacol Sci 10.377 13.965 10.400
Pharmacol Therapeut 6.487 7.397 8.657
Clin Pharmacol Ther 5.275 6.141 8.066
Adv Drug Deliver Rev 2.406 6.588 7.977
Pharmacogenetics 4.465 5.851 7.221
Med Res Rev 3.417 7.788 7.218
Drug Discov Today 4.105 4.943 7.152

Mean 9.022 11.926 11.732

Physiology
Physiol Rev 27.677 36.831 31.441
Annu Rev Physiol 18.848 18.591 15.356
Physiology - - 6.268
Rev Physiol Bioch P 5.389 6.333 5.625
News Physiol Sci 2.060 3.682 5.241
J Gen Physiol 6.082 5.120 4.962
Pflug Arch Eur J Phy - - 4.807
J Biol Rythm 2.867 4.061 4.633
J Physiol-London 4.455 4.352 4.407
Am J Physiol-Cell Ph 4.086 4.103 4.334

Mean 8.933 10.384 8.707

Psychiatry
Arch Gen Psychiat 11.778 10.519 13.936
Mol Psychiatr 8.927 5.539 11.804
Am J Psychiat 6.577 7.157 8.250
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Sector / Journal IF 2000 IF 2003 IF 2006

Biol Psychiat 4.269 6.039 7.154
Neuropsychopharmacol 4.579 5.201 5.889
J Clin Psychiat 4.454 4.978 5.533
Brit J Psychiat 4.827 4.421 5.436
Int J Neuropsychoph 1.323 4.000 5.184
J Am Acad Child Psy 3.175 3.779 4.767
J Clin Psychopharm 5.052 4.432 4.561

Mean 5.496 5.607 7.251

Rehabilitation
Neurorehab Neural Re 0.190 - 2.403
J Rehabil Med - 1.068 2.168
Manual Ther - 1.189 1.931
Support Care Cancer 1.174 1.367 1.905
IEEE T Neur Sys Reh - 1.270 1.842
Arch Phys Med Rehab 1.409 1.350 1.826
Phys Med Rehab Kuror 0.160 0.485 1.746
J Burn Care Rehabil 0.810 1.042 1.744
J Electromyogr Kines 1.146 1.352 1.725
J Orthop Sport Phys 1.424 1.036 1.525

Mean 0.902 1.129 1.882

Respiratory System
Am J Resp Crit Care 5.443 8.876 9.091
Thorax 3.979 4.188 6.064
Eur Respir J 2.590 2.999 5.076
Am J Resp Cell Mol 4.353 4.015 4.593
Am J Physiol-Lung C 3.303 3.735 4.250
Chest 2.451 3.264 3.924
J Thorac Cardiov Sur 3.057 3.319 3.560
Lung Cancer - - 3.554
Tuberculosis - 1.594 3.425
J Heart Lung Transpl 2.526 2.843 2.830

Mean 3.463 3.870 4.637

Rheumatology
Arth Rheum/Ar C Res - 7.190 7.751
Ann Rheum Dis 2.444 3.827 5.767
Curr Opin Rheumatol - 3.150 4.805
Rheumatology 2.537 3.760 4.052
Osteoarthr Cartilage 2.080 2.964 4.017
Arthritis Res Ther - 5.036 3.801
Semin Arthritis Rheu 3.066 2.598 3.440
J Rheumatol 2.910 2.674 2.940
Rheum Dis Clin N Am 2.257 2.776 2.568
Lupus 2.514 1.808 2.366

Mean 2.544 3.578 4.151

Spectroscopy
Mass Spectrom Rev 7.600 7.364 10.947
Prog Nucl Mag Res Sp 5.062 5.971 6.417
Appl Spectrosc Rev 0.500 1.000 3.846
J Anal Atom Sprectrom 3.488 3.200 3.630
NMR Biomed 1.914 3.333 3.626
J Am Soc Mass Spectr 3.040 3.321 3.307
Spectrochim Acta B 2.608 2.361 3.092

(continued)

(continued)



Biostatistics for Radiologists200

Sector / Journal IF 2000 IF 2003 IF 2006

J Mass Spectrom 2.638 2.875 2.945
Rapid Commun Mass Sp 2.184 2.789 2.680
Int J Mass Spectrom 1.923 2.361 2.337

Mean 3.096 3.458 4.283

Surgery
Ann Surg 5.987 5.937 7.678
Am J Transplant - 5.678 6.843
Liver Transplant 2.130 4.242 4.629
Am J Surg Pathol 4.269 4.535 4.144
Brit J Surg 2.935 3.772 4.092
Transplantation 4.035 3.608 3.972
Obes Surg 1.464 2.421 3.723
J Neurol Neurosur Ps 2.846 3.035 3.630
Endoscopy 1.817 3.227 3.605
J Thorac Cardiov Sur 3.057 3.319 3.560

Mean 3.171 3.977 4.588

Toxicology
Annu Rev Pharmacol 19.289 21.786 22.808
Mutat Res-Rev Mutat 4.129 5.783 7.579
DNA Repair - 3.277 5.868
Toxicol Appl Pharm 2.730 2.851 4.722
Drugs 3.966 4.611 4.472
Mutat Res-Fund Mol M 2.148 3.433 4.111
Crit Rev Toxicol 6.360 2.471 3.707
Drug Safety 2.763 2.971 3.673
Toxicol Sci 2.361 3.067 3.598
Chem Res Toxicol 3.187 3.332 3.162

Mean 5.215 5.358 6.370

Transplantation
Am J Transplant - 5.678 6.843
Liver Transplant 2.130 4.242 4.629
Transplantation 4.035 3.608 3.972
Cell Transplant 2.959 2.327 3.482
Biol Blood Marrow Tr - 2.880 3.458
Nephrol Dial Transpl 2.056 2.607 3.154
Stem Cells Dev - - 3.076
J Heart Lung Transpl 2.526 2.843 2.830
Bone Marrow Transpl 2.396 2.172 2.621
Transpl Immunol 1.453 1.075 2.297

Mean 2.508 3.048 3.636

Tropical Medicine
Malaria J - - 2.748
Trop Med Int Health 1.350 2.156 2.595
Am J Trop Med Hyg 1.765 2.105 2.546
Acta Trop 0.799 1.336 2.211
T Roy Soc Trop Med H 1.485 2.114 2.030
Mem I Oswaldo Cruz 0.542 0.688 1.208
Ann Trop Med Parasit 0.988 1.010 1.191
Ann Trop Paediatr 0.413 0.704 0.934
Leprosy Rev 1.343 0.907 0.847
J Trop Pediatrics 0.447 0.514 0.592

Mean 1.015 1.282 1.690
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10.3. Do We Always Need Institutional Review Board Approval
and Informed Consent?

If we consider prospective studies on humans, the answer to this question is:
Yes, we do need them. We cannot perform here a deep analysis of the ethical,
deontological, and regulatory problems related to medical research on humans.
Instead we refer the reader to the Helsinki Declaration, approved in 1964 by
the World Medical Association, and later emended in 1975 (Tokyo), 1983
(Venice), 1989 (Hong Kong), 1996 (Somerset West, South Africa) and most
recently in 2000 (Edinburgh). Clarifications on particular paragraphs were
adopted in 2002 (Washington) and in 2004 (Tokyo) [WORLD MEDICAL

ASSOCIATION, 2004]. Notice that the most recent version confirms and empha-
sizes the importance of informed consent by the patients enrolled in a study.

What are the general rules which need to be respected?
All prospective studies need preliminary approval by the Ethics Committee or

Institutional Review Board and informed consent must be obtained from all
patients for them to be enrolled in the study and for their data to be managed for
scientific purposes. One may think that this rule holds only for those studies
where patients are randomized to one of two or more diagnostic modalities or for
those studies where the patients undergo a new, “experimental”, imaging tech-
nique they would not undergo according to a standard of care diagnostic algo-
rithm. For instance, you might imagine that a prospective study comparing
Doppler ultrasound and MR angiography in patients with suspected carotid steno-
sis performed as routine diagnostic examinations could be done and published
without any Institutional Review Board approval. This is not the case, and not
only because we might be lacking informed consent to use patient data. In fact,
the prevalent current opinion is that Institutional Review Board approval (and not
only informed consent) is an absolute requirement for all prospective studies.

Moreover, this rule is also valid for retrospective studies, where we gather,
manage, and analyze the data after the diagnostic events, even many years

Decreasing order according to the 2006 IF.
Source: Journal Citation Reports™ – Science edition, published by Thomson Scientific (with permission).

Sector / Journal IF 2000 IF 2003 IF 2006

Urology and Nephrology
J Am Soc Nephrol 5.745 7.499 7.371
Eur Urol 2.058 2.247 4.850
Kidney Int 4.371 5.302 4.773
J Sex Med - - 4.676
Am J Phisiol-Renal 4.129 4.344 4.199
Curr Opin Nephrol Hy 2.544 3.976 4.137
Am J Kidney Dis 3.646 3.897 4.072
J Urology 2.896 3.297 3.956
Prostate 3.754 3.278 3.724
Eur Urol Suppl - - 3.174

Mean 3.643 4.230 4.493

Overall mean 4.913 5.538 6.158

(continued)



The need of IRB approval
compels higher quality research

The title is important

Neutral or declarative titles

Interrogative titles

after. In situations like these, it is just the Institutional Review Board approval
which makes the study publication possible especially when informed consent
by the patients is not available: some of them may have moved to another
country or city or may have died (as is the case in oncology).

In our experience, we request the approval for a retrospective study from the
local Ethics Committee with a short document including the nomination of the
person responsible for personal data. Within two or three weeks, the study
leader meets the Ethics Committee for an oral presentation of the study. The
approval is almost always immediate.

An indirect demonstration of the necessary Institutional Review Board
approval of both prospective and retrospective studies on humans is the request
for a statement outlining that approval has been obtained for the submission of
an abstract of a scientific papers or a poster to the Annual Meeting of RSNA.
More importantly, this statement is today an absolute must for the acceptance
for publication of any prospective or retrospective study on humans in any well
respected journal. Many journals ask the reviewers to make a particular check
within the text for evidence of Institutional Review Board approval, typically
placed at the beginning of the section regarding materials and methods. Some
radiologic journals requires this declaration to also be placed in the abstract.

This development should be seen as a positive trend, regardless of ethical con-
cerns. In fact, the need of Institutional Review Board approval prompts a prelim-
inary analysis of the quality of the research project, careful reading of the litera-
ture, precise definition of the study protocol, and the exchange of views with all
the members of the Institutional Review Boards or Ethics Committee. This book
could be useful to radiologists for this exchange of opinions, but we strongly sug-
gest studies be designed in close cooperation with statisticians, especially studies
with patient randomization and sample size calculation.

10.4. Title, Running Title and Title Page

The title of the paper is important. During the 1980s, the ratio between the
number of people who read the whole text of a paper and those who read only
the title was estimated to be about 1:500 [KERKUT, 1983]. Today access to the
medical literature via the internet may have further reduced this ratio.

A title should stimulate the reader to read at least the abstract. Titles are most-
ly a short description of the subject matter contained in the article. An alterna-
tive which is still little utilized in radiologic journals is the declarative title.
This title makes a brief statement on the results of the study [GUSTAVII, 2003].
A paper clearly demonstrating a higher overall accuracy of CT compared to
ultrasound in the diagnosis of liver metastases in 135 patients affected with col-
orectal cancer can be modestly entitled: Ultrasound and computed tomography
in the diagnosis of liver metastases. The assertive alternative is: Computed
tomography is more accurate than ultrasound in the diagnosis of liver metas-
tases. The second option, communicating the main study result, has a stronger
impact. However, bear in mind that some important journals (e.g. JAMA and
New Engl J Med) require descriptive and not assertive titles.

We can also opt for an interrogative title. For our example: Are there differ-
ences in overall accuracy between ultrasound and computed tomography in the
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diagnosis of liver metastases? Is ultrasound less accurate than computed
tomography for the diagnosis of liver metastases? or Is computed tomography
more accurate than ultrasound for the diagnosis of liver metastases? For an
original article we prefer a descriptive neutral title or an assertive title contain-
ing the answer to the question. An interrogative title can be highly suitable for
a narrative review which considers different answers to the question.

Some journals (e.g. Invest Radiol) accept that the title is followed by a clar-
ifying subtitle. For our example: Computed tomography is more accurate than
ultrasound in the diagnosis of liver metastases. A prospective study on 135 con-
secutive patients affected with colorectal cancer. This option can also be adopt-
ed with a colon placed between the first and the second sentence. In this way,
we have a brief summary of the content of two sections of the paper (results:
materials and methods).

In the title, avoid abbreviations or acronyms (i.e. words formed by the initial
letters of different words), unless – in radiologic journals – they are well rec-
ognized such as CT, MR, or US, etc. Note that in the title of a congress abstract
we can use new acronyms (introducing them in brackets after the first full
form) in order to save space in abstract text. Eliminate these acronyms from the
title of the full paper to be submitted to a journal.

Many journals require a running title, namely a short title (frequently no
more than 50 characters, blank spaces included; acronyms generally permitted)
to be placed at the upper margins of the journal pages. For example: Liver
metastases: CT and US accuracy (35 characters).

Manuscript editing (always done using word processing software) requires a
full title page containing: the title of the paper; first and family names and affil-
iations of the authors; type of article (e.g. original article or original research)
and the complete address (including telephone number, fax number and e-mail
address) of the corresponding author who is submitting the paper and to whom
the readers could refer for any discussion or request of reprints. This full title
page should be a separate file not to be submitted to the reviewers, permitting a
blind review process. For this reason, a blind title page (with the manuscript title
only) is to be placed before the beginning of the main body of the manuscript.

10.5. Four-section Scheme, Section Size and Editing Sequence

An original article always follows a four-section scheme including:
Introduction; Materials and Methods; Results; and Discussion. The set of these
four sections is named main body. Some nominal variations are Background
instead of introduction; Methods or Subjects and Methods instead of materials
and methods, etc. but the content of the sections is the same. Conclusions,
which in the abstract substitute for the entire discussion, is usually the final part
of discussion and not a separate section.

Beginners should take into consideration a general rule for the size of each
of the four sections and carefully read the instructions for authors of the jour-
nal to observe possible limits to the whole size of the manuscript. Using a nor-
mal word processor, A4 format page with 2-cm margins, 12-point Times New
Roman type characters, and double spacing, the maximum size of the sections
of a typical manuscript should be as follows:

Subtitle

Running title

Full title page

Blind title page

Main body

Section size
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Manuscript size

Do not begin with the abstract

Why did you do it?

Three-block Introduction

1. Introduction: 1-2 pages;
2. Materials and Methods: 3 pages;
3. Results: 3 pages;
4. Discussion: 3-4 pages.

Note that the total size of the four sections (about 10 pages) is usually half the
size of the whole manuscript including also blind title page, abstract, references,
tables (each of them placed in a new page) and figure legends. Some compo-
nents (usually tables and figures), may be required as separate files. Remember
that some journals put a limit on the main body given by the sum of the four sec-
tions (e.g. 3,000 words for Radiology, 4,500 word for AJR Am J Roentgenol).

Lastly, you do not need to imitate the typographic style of the journal (print-
ed characters, paragraph indentation, etc.). You can refer to the Vancouver
Requirements (www.icmje.org) or edit the text according to the rules listed in
this chapter.

10.6. «Introduction»: Why did you do It?

In the practical writing and editing of a scientific manuscript we should not fol-
low the logical sequence of the printed paper. In particular, to begin with the
abstract is not a good idea, not even when you have the abstract accepted at a
congress. Sometimes this abstract is much larger than that permitted by the
journal. More importantly, the abstract must effectively represent quality of
methods as well as originality of results, and respect narrow mandatory limits
(see Section 10.11). This ambitious aim can be reached only when the entire
manuscript has been completed.

Can you begin with the introduction, as formal logic may suggest? The
initial part of the text of the research project approved by the Institutional
Review Board is a good starting point, even though it is commonly too long
to be placed without shortening and modification as an introduction. We
suggest (especially for beginners) writing or refining the introduction after
editing the materials and methods and results sections. This choice could
also be useful considering the partial overlap between the topics of the
introduction and those of the discussion, especially regarding the reference
to previously published papers.

The introduction should answer the question: Why did you do it? We stated
above that it should be no longer than one or two pages, with one page corre-
sponding to about 300 words, but 400-500 words is common enough. The eas-
iest scheme for an introduction answers two simple questions: What is the
problem? What did you do to solve it? [GUSTAVII, 2003]. Another scheme is
composed of three blocks, each to be ended with a full stop and followed by a
new paragraph:

1. general background (e.g. epidemiology of the disease);
2. particular background (e.g. diagnostic performance of standard of care

imaging modalities);
3. purpose of the paper (e.g. to evaluate sensitivity and specificity of a new

imaging modality).
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A four-block scheme could be:

1. a problem exists in diagnosing disease X with technique Y;
2. previous efforts have been made by other authors to solve the problem;
3. the results obtained with a new approach (new Y) were obtained in a differ-

ent clinical field;
4. aim: to evaluate the performance of new Y for the diagnosis of X.

A useful word of advice is to begin with a short statement summarizing the
problem or the context of the problem. To come back to the example of liver
metastases, an initial statement could be: The knowledge of number and loca-
tion of liver metastases is crucial for treatment planning in patients with col-
orectal cancer. You must avoid the temptation of a long introduction, which is
especially dangerous when you have wide knowledge of the matter under
investigation. Bear in mind this simple rule: move to the discussion what can-
not be included in the introduction.

At any rate, the introduction must end with a paragraph stating the purpose
of the study (you may take it from the purpose of the congress abstract).

10.7. «Materials and Methods»: What did you do
and how did you do it?

The beginner who is going to write the materials and methods (from now on
simply “methods”) of a manuscript should have a broad understanding of the
basic aim of this section. Many residents and young radiologists are astonished
by the very high level of detail required for reporting methods in radiologic
journals. A summary description of what you have done and how you have
done it is absolutely inadequate. You must give all the information which
enables other colleagues to repeat your study on a similar sample of patients
and, therefore, to confirm or deny your results.

Here we should come back to a general principle already discussed in
Chapter 3 which is encapsulated in the proverb: One swallow doesn’t make a
summer. A new promising result reported by a group of authors – for instance
the high accuracy of a new imaging modality for the diagnosis of an important
disease – needs multiple confirmations by other groups of authors before it can
be declared clearly demonstrated. This mechanism of medical science implies
that researchers must know the exact experimental conditions of the study they
would like to reproduce. Only a partial exception to this rule is possible when
your methods have been previously described in detail by you or other authors.
In this case, you can use the phrase “as already described” followed by the
number of the corresponding reference. The exception is partial because it is
common for the editor or reviewers to ask you to at least summarize the already
published methods while keeping the references.

We advise subdividing methods into subsections, each with subheadings you
can usually freely choose in relation to their content. The most commonly used
are the following: study design; study population; imaging protocol; imaging
analysis; standard of reference (not always corresponding to pathologic exam-
ination); radiologic-pathologic correlation; statistical analysis. But many vari-

Four-block Introduction

Beginning the Introduction

Ending the Introduction

Supply all information useful
to reproduce your study

One swallow doesn't
make a summer

Methods subsections
and subheadings
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Study design
Study population

Flow diagram

ations are possible. This subdivision is suitable even when each subsection is
composed of only a few lines of text. Reading the text will be easier and the
reader will more rapidly find a particular methodologic aspect.

For study design, see Chapter 8.
In the study population subsection you should provide sufficient information to

make clear whether your results can be applied to another population of patients.
You should report not only age and sex but also the clinical status and all the inclu-
sion and exclusion criteria (to allow for a definition of the pretest disease proba-
bility – see Section 1.4) as well as the consecutive or nonconsecutive modality of
enrollment. Here you should state having obtained Institutional Review Board
approval and informed consent from the enrolled patients. Moreover, if the
patients were randomized, you should explain the modality of randomization and
the level of blindness of the study (see Chapter 8). The study time period should
be declared reporting month and year of the first and last enrollments.

The course from enrollment to results can be usefully summarized in a flow
diagram, frequently required by the journals. An example is reported in Figure
10.1. A detailed reconstruction is particularly needed for large randomized tri-
als but should be more extensively applied, including the number of patients
screened, excluded (and the reasons for excluding them), eligible, refusing
consent, randomized to each arm of the study, retired (dropout), and conclud-
ing the study for each arm. Notice that the number of excluded patients (how
many for a contraindication to the examination under investigation?) can also
be of great value for radiologic prospective nonrandomized studies. It is impor-
tant to define the possibility of applying the results of these studies to clinical
practice. This number is sometimes not provided in radiologic studies, as hap-
pens when the authors list the exclusion criteria but do not report the number
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Figure 10.1. Flow diagram of a nonrandomized study. This scheme provides a synopsis of the distri-
bution of a sample of 278 women at high genetic-familial risk of breast cancer at the first and second
round of a multimodality surveillance program and the general results [SARDANELLI ET AL (2007)
Radiology 242:698-715, with permission of the copyright owner (RNSA)].



of screened patients as well as the number of excluded patients with the rea-
sons for exclusion, thus making the difference between screened and eligible
patients impossible to calculate. A theoretical example of this more complete
flow diagram can be seen in Figure 10.2.

The first two subsections of the methods can be merged into a single subsec-
tion entitled study design and population, which would also include the
description of the control group where present. Alternatively, a special subsec-
tion entitled control group can be added.

You should accurately describe how you performed the imaging modalities
in the subsection entitled imaging protocol, including: brand name of the man-
ufacturers of the equipment (with city and country of the registered office);
model of the equipments (also for power contrast injectors); release of soft-
ware; and all technical parameters. If these data are repetitive (as they may be
for MR sequences), you can create one or more tables. Here (or in the subsec-
tion entitled imaging analysis) you should declare specific training and years
of experience of the radiologists who performed and interpreted the examina-
tions. If a study includes multiple imaging modalities, we advise creating mul-
tiple subsections, one for each imaging modality.

Imaging analysis has an importance similar to that of imaging protocol. Here
you should describe who interpreted the images (training and specific experi-
ence) and how they were interpreted, whether using hardcopy or softcopy

Imaging protocol

Imaging analysis
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Figure 10.2. Flow diagram of a randomized study. This scheme shows a progressive reduction in the
number of patients: from 120 screened patients to 47 patients who completed the study with imaging
technique A and 48 who completed the study with imaging technique B.



Reference standard

Final assessment

Radiologic-pathologic
correlation

Statistical analysis

methods, with which windowing on the video-display, with or without knowl-
edge of clinical information or results of previous examinations, hopefully
blinded to the reference standard. If the observer(s) have done multiple read-
ings (as is the case for studies on intraobserver reproducibility – see Chapter
7), you should state the time interval between the readings and which proce-
dures were adopted to avoid that the reader had memory of the first reading at
the moment of the second reading (e.g. by means of randomized reading order).
You should declare how an examination was defined positive or negative,
namely the diagnostic criteria for the use of categorical or ordinal variables
(see Chapter 2), with possible references to the use of these methods in previ-
ously published papers. If you measured continuous variables (e.g. lesion size,
CT density, signal-to-noise or contrast-to-noise ratio, etc.), you should report
the procedure used and the way of calculating variables and indices. If you
used special software for imaging analysis, you should declare details as
already stated for the equipment. If special signs or imaging features or partic-
ular technical procedures are used (e.g. innovative software for image segmen-
tation), one or two figures can be associated to methods for a better understand-
ing of the procedure.

The classic standard of reference is histopathology. However, this may be
impossible, in part for ethical reasons. Negative examinations, especially for
asymptomatic subjects in screening programs, are compared to clinical and
imaging follow-up. In other circumstances, the definitive diagnosis is obtained
using the findings of another imaging modality considered a standard of care
for the investigated disease or using a combination of multiple evaluations
(final assessment). You must explain all of this in detail. If the paper includes
a pathologic reference standard, in this subsection (which can be named patho-
logic examination) you should report the histologic techniques and diagnostic
criteria used, with reference to previously published papers (here ask the
pathologist for advice, even if she/he is not an author).

Notice that in the presence of a histopathologic reference standard, the topo-
graphic correlation between pathologic and imaging findings can be problem-
atic, especially in cases of multiple lesions in the same organ or segment. In
these situations (for instance, liver metastases or multifocal/multicentric breast
cancers), methods for radiologic-pathologic correlation should be clearly
explained.

Statistical analysis is almost always the final subsection of the methods.
Here you should explain how true and false positives and negatives were
defined. Moreover, you should state which statistical tests were used, which α
error was adopted (usually, p ≤ 0.05 – see Chapter 3) and, hopefully for
prospective studies, the study power (usually 0.80-0.90 – see Chapters 3 and
8). The power calculation should be considered mandatory at least in the case
of nonsignificant results. The choice of statistical tests, especially if they are
not usual, should be justified with reference to previously published papers. In
particular, the use of parametric tests should be justified by means of a prelim-
inary demonstration of the existence of the necessary conditions (normal data
distribution in the sample or assumption of normal distribution in the popula-
tion, etc. – see Chapters 2 and 4). Lastly, you should state which statistical soft-
ware package was used (specify the release number, city and country of the
registered office of the manufacturer).
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10.8. «Results»: What did you Find?

The first rule to illustrate what you found is the following: all the results
must have the description in the methods of the way you found them.
Conversely, all the described methods must have in the results the descrip-
tion of the findings obtained using them. The second rule is that results must
be presented in a neutral manner, without any adjective or comment mini-
mizing or emphasizing their meaning or possibility to be clinically applied.
A subdivision in subsections with specific subtitles is also welcome in the
results section.

The use of tables and/or graphs is highly recommended. Do not report
data in the text which is already provided in tables and graphs. For text con-
tinuity, you may provide some summary data drawn from the tables. In
practice, the results are sometimes limited to a few lines referring to tables
and graphs.

The creation of tables and graphs is no trivial task, both for conceptual and
technical issues. Try using paper and pen first of all to manually design an
effective scheme. Then go to the computer and use the proper function of the
word processor (not free text with tabulations and blank spaces) to avoid prob-
lems in the pdf file submission and to facilitate the future editorial work by the
journal office. Tables should make reading the data easy and they should be
organized according to the journal style (as close as possible). You can use
tables recently published in the same journals as a model. If you have a large
amount of data, use two, three, or more tables. Remember that in any table,
percentages must be accompanied by their engendering ratio.

Suitable and well designed graphs can visually represent data and results in
a more effective way than any free text or table. Regardless of the software you
use (Excel®, or other statistical packages), you can place the graphs in the
main file of the manuscript or save them as images using other software (e.g.
Adobe Photoshop®). We advise using a tiff digital format (or other permitted
software, according to the instructions for authors) and saving the graphs with
high spatial resolution, up to 1200 dots per inch (dpi), to avoid them being
refused by the editorial office and/or appearing blurred in the printed paper.
This is also valid for the flow diagrams described in Section 10.7.

All figures containing radiologic images (commonly one figure is composed
of multiple panels) are typically placed in the results. They must be of high
quality, limited in number, representative of the principal message of the paper,
and conveniently magnified and cropped to allow the findings to be clearly rec-
ognized. Arrows and other graphical signs should be used to indicate the find-
ings (also those immediately evident to the authors), in accordance with the
journal style.

All tables must be numbered and need a title and, frequently, also notes and
explanations of symbols, in accordance with the journal style. All the figures
(line art designs, graphs, radiologic images) must be numbered and need a
legend which can never be reduced to a reference to the text. The golden rule
for tables (with titles and notes) and figures (with legends) is: they must be
understandable by a reader who observes them without having read the text
of the paper, that is they must provide enough information to bring out the
message by themselves. This is the reason for repeating information on the

Perfect correspondence
between Methods and Results

Tables and graphs

Percentages

Figures

Legends
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A creative work

Two ways for beginning
the Discussion

Discuss your results,
point by point

Study limitations

patients sample in a table title and not to use acronyms in tables and figure
legends unless they are explained in the same table or in the figure legend
(see Section 10.12).

Each table or figure, being a logical extension of the text of the manuscript,
must be quoted at least in one point of the text of the manuscript. Typically, the
references to a table or figure after the first one are indicated in brackets as
“(see Figure X)”.

All the significances or non significances obtained with statistical tests
should be placed in the results. Remember the need to provide the p values at
least up to the third decimal place, whether they are significant or nonsignifi-
cant (see Chapter 3).

10.9. «Discussion»: What is the Meaning of your Findings?

The discussion is probably the most creative part of the whole paper, apart
from the original idea (engendering the experimental hypothesis) and the
design of the study. As a consequence, it is also the most freely structured.
Beginners need some help from more experienced colleagues. A general rule
is: You must discuss your results, not show your general culture on the mat-
ter you investigated. The discussion is aimed at interpreting and commenting
on your results.

Two possible ways to begin the discussion are commonly used. The first
approach is to summarize your results. In the liver metastases example: The
current study demonstrated that contrast-enhanced CT is more accurate than
ultrasound in diagnosing liver metastases in patients with colorectal cancer.
The second approach is to come back to arguments already presented in the
introduction, maybe from a different viewpoint: The incidence of colorectal
cancer is increasing in all developed countries, shown by recent epidemiolog-
ic reports… [references].

At any rate, after a short “introduction to the discussion”, you must comment
on your work. If there are aspects of your methods to be discussed, you may do
so. But the core of this section is the discussion, point by point, of your results.
A practical word of advice: print your results section (including tables) on
paper, read it carefully and then edit a comment of each point, comparing your
work with already published papers on a similar topic (with a reference for
each study you quote). Try to explain the reasons for the differences between
your results and those obtained by other authors, whether they are better or
worse than your own. If there are no important differences, state that you have
confirmed the results already obtained by others. If some of your results are
trivial or obvious, comment on them by stating “as expected”. In the discussion
section you can finally comment on the quantities (the numbers) of your results
in a qualitative way. Try to indicate which clinical implications, which effects
on patient care your study could have as well as which aspects deserve future
investigations. You can highlight the original aspects of your work, but be cau-
tious in claiming to be the first to demonstrate a research hypothesis (see
Section 10.13).

Do not forget to list the limitations of your study, and try to detect possible
sources of bias (see Chapter 9), which may be unavoidable for various reasons
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(ethical, logistic, organizational, others…) to state in your discussion. The
readers must be warned against applying your results to a different clinical or
epidemiological context.

Lastly, most papers end the discussion with a statement summarizing the
major findings of the study, which serves as a conclusion.

10.10. «References»

References are the business card of your manuscript to the reviewers. Their
choice and the accuracy in their editing according to the journal style are a
strong indicator of the quality of the study. Inaccurate references create a neg-
ative bias in the reviewers’ evaluation. Some practical rules include:

1. verify possible explicit limits in the references number stated in the instruc-
tions for authors;

2. choose the most important and recent papers of a group of authors who have
published many papers on the same topic;

3. always use references accessible on MEDLINE/PubMed, with the only excep-
tion of books, chapters in book, and congress abstract for particular cases4;

4. do not use second hand references, namely do not copy references from other
studies, to avoid spreading errors, especially if the sources are old papers;

5. extract from PubMed all the references using a “copy and paste” technique
(after having activated the “send-to-text” option), to avoid errors, which oth-
erwise very commonly occur;

6. respect all the rules of the journal for the reference format, also those for the
citation of books and book chapters as well as for online journals and web
sites (for which the access date is requested); unpublished material or per-
sonal communications should be referenced in the free text, in brackets;

7. if you can, use dedicated software (e.g. EndNote ®) which gives you an auto-
mated formatting for the journal style (but always visually check the result).

Respecting the rules of the journal for the reference format is important not
only because some editors ask the reviewer to do this check, but also because:

1. even though the authors are responsible for the accuracy of the references,
many journals make automated controls and ask for the correction of all the
irregular references;

2. a “wrong” reference format can reveal that the manuscript has been previ-
ously submitted to another journal which rejected it.

In Table 10.5 we show how the same reference should be reported for five
radiologic journals.

Your business card
to the reviewers

Do not reveal
the previous refusal
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Your business card
to the reader

Structured or
nonstructured Abstract

10.11. «Abstract» and «Keywords»

After having completed the manuscript editing, it is time to write the abstract.
It will be, after the title, the business card of your manuscript to the reader, if
the paper is published. But do not forget that a reviewer decides whether to
review or not review your manuscript after having read the abstract. First,
check which type of abstract is required, namely structured (e.g. Radiology and
AJR Am J Roentegenol) or nonstructured (e.g. Eur Radiol). In the second case,
a subdivision in four blocks is not explicit but the content is the same. A struc-
tured abstract is composed of four sections, not entirely corresponding to the
four sections of the main body of the paper we have already discussed (the
name of the two first sections can be slightly different in many journals):

1. Purpose: summarizes the aim of the study (may be similar to the final part
of the introduction of the full paper);

2. Materials and methods: summarizes the same section of the main body;
3. Results: summarizes the same section of the main body;
4. Conclusion(s): summarizes the interpretation of the results (may be similar

to the final part of the Discussion of the full paper).

The mandatory limits to the abstract size (e.g. 200-250 words) may
appear as a very high hurdle for beginners. Look at the abstracts of papers
similar to yours in the same journal and ask for help from more experi-
enced colleagues.
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Table 10.5. Format for references. The same paper, an original article, is reported according to the
instructions of five radiologic journals

Radiology Sardanelli F, Iozzelli A, Losacco C, Murialdo A, Filippi M. Three subsequent
single doses of Gd-chelate in brain MR of multiple sclerosis. AJNR Am
Journal Neuroradiol 2003;24:658-662.

Invest Radiol Sardanelli F, Iozzelli A, Losacco C, et al. Three subsequent single doses of
Gd-chelate in brain MR of multiple sclerosis. AJNR Am Journal Neuroradiol.
2003;24:658-662.

J Magn Reson Imaging Sardanelli F, Iozzelli A, Losacco C, Murialdo A, Filippi M. Three subsequent
single doses of Gd-chelate in brain MR of multiple sclerosis. AJNR Am
Journal Neuroradiol 2003;24:658-662.

Eur Radiol Sardanelli F, Iozzelli A, Losacco C, Murialdo A, Filippi M (2003) Three sub-
sequent single doses of Gd-chelate in brain MR of multiple sclerosis. AJNR
Am Journal Neuroradiol 24:658-662

AJR Am J Roentgenol Sardanelli F, Iozzelli A, Losacco C, Murialdo A, Filippi M. Three subsequent
single doses of Gd-chelate in brain MR of multiple sclerosis. AJNR Am
Journal Neuroradiol 2003; 24:658-662

Note that Invest Radiol requires only the first three authors followed by “et al.” when the authors number is ≥ 4 while
the same instruction must be applied for Radiology, J Magn Reson Imaging (JMRI) e AJR Am J Roentgenol (AJR) when
the authors number is ≥ 7 (Eur Radiol does not specify). Moreover, Invest Radiol requires the journal name in Italic char-
acters followed by a full stop while AJR requires the journal name in Italic characters not followed by a full stop. Finally,
Eur Radiol and AJR do not want the full stop at the end of each reference.



Some journals require three to five keywords, free or to be chosen among
predetermined lists, such as the Medical Subject Headings (MeSH), a con-
trolled dictionary for indexing articles on the MEDLINE/PubMed
(http://www.nlm.nih.gov/mesh/meshhome.html). Pay attention to the possibil-
ity that the keywords you have chosen are used as a criterion for selecting
reviewers with a particular cultural background, since one may give a very dif-
ferent evaluation of your manuscript from another.

10.12. Shared Rules

A detailed presentation of the rules to be respected for a good quality original
article on diagnostic performance was done by an important paper [BOSSUYT ET

AL, 2003], published in 2003 by Radiology and also by: Annals of Internal
Medicine, British Medical Journal, Clinical Chemistry, Journal of Clinical
Microbiology, The Lancet, Nederlands Tijdschrift voor Geneeskunde. It is a
real short manual for checking the quality of a manuscript or an already pub-
lished paper. An extremely useful checklist is provided to authors so they may
avoid omitting important information. The paper is entitled: Towards complete
and accurate reporting of studies of diagnostic accuracy: the STARD initiative.
STARD is an acronym for Standards for Reporting of Diagnostic Accuracy.
The authors evaluated 33 papers which proposed a checklist for studies on
diagnostic performance. From a list of 75 recommendations, 25 were judged
important (Table 10.6). Many of them were discussed in the previous pages of
this book. Beginners should edit a manuscript keeping a copy of this list on
their table.

Other shared rules are available for articles reporting the results of random-
ized controlled trials, the CONSORT statement [MOHER ET AL, 2001], recently
extended to trials assessing nonpharmacologic treatments [BOUTRON ET AL,
2008] or of meta-analyses, the QUOROM statement [MOHER ET AL, 1999]. In
particular, systematic reviews and meta-analyses in radiology should evaluate
the study validity for specific issues, as pointed out by Dodd et al [DODD ET AL,
2004]: detailed imaging methods; level of excellence of both imaging and ref-
erence standard; adequacy of technology generation; level of ionizing radiation
exposure; viewing conditions (hard versus soft copy).

10.13. Other Recommendations

These can be summarized in the following paragraphs, some of them having
been partially discussed above.

Sequence of the items. Apart from the full title page, your submission in one
or more files should be as follows:

1. Blind title page;
2. Abstract and keywords;
3. Introduction;

Key words

STARD initiative

Read the Instructions
for Authors
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4. Materials and methods;
5. Results;
6. Discussion;
7. References;
8. Tables;
9. Captions (or legends) for illustrations.

Each of these items should begin on a new page. All pages must be num-
bered. Acknowledgments must be submitted in a separate file, in order to keep
the origin of the manuscript blinded to reviewers.
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Table 10.6. Checklist for the quality control of manuscripts on diagnostic performance according to
the Standards for Reporting of Diagnostic Accuracy (STARD)

From: Bossuyt M, Reitsma JB, Bruns DE et al (2003) Towards complete and accurate reporting of studies of diagnostic
accuracy: The STARD initiative. Radiology 226: 24-28 (with permission of the author and of the copyright owner [RSNA]).
This checklist is proposed for use in the practical quality check: in the column on the right side you should put the num-
ber of the page of your manuscript where each recommendation has been applied.



Acronyms. Limit their use to those universally recognized. If you used particu-
lar acronyms in the abstract (to respect the mandatory number of words), do not
use them in the remaining manuscript. Both in abstract and full text, introduce
each acronym the first time it appears in the text and then use them systemati-
cally. The same rule applies for abbreviations.

Consistency. Always use the same word(s) to indicate a concept. Do not worry
about repetitions. Always use the same units of measurement (e.g. length
always in cm or always in mm). If you list numerical data, always use the same
number of decimal places.

Anonymous origin of the manuscript. Systematically avoid making the authors
of the manuscript detectable. If you quote one of your own previously pub-
lished papers, place the word “BLINDED” at the corresponding reference or
quote the paper impersonally. Pay attention to avoid making the manuscript
origin detectable by the hospital name on the radiologic images in the figures.

“Significant”. Never use the adjective significant in a non-statistical sense, i.e.
to mean the relevance of a result independent from the calculation of a p value,
or the relevance of a topic in the literature. Strictly limit its use to statistics.

Cautiousness. Avoid self-evaluating your work with excessive and redundant
sentences. The affirmation of being the first to have proposed a technique or a
procedure should be done using the ritual sentence “To the best of our knowl-
edge, …”. But you must have done an accurate search on MEDLINE/Pubmed
using multiple combinations of keywords with a negative result before claim-
ing to be the first. If you give a negative evaluation of the work done by other
authors, do not forget that the object of a criticism is a paper and not its authors
(who may be your reviewers…).

10.14. Dealing with the Editor’s Response and the Reviewers’ Opinions

After about one or two months (sometimes more than three months) you will
receive the response from the editor and the comments of the reviewer(s). The
editor’s response can be categorized as follows, in decreasing order:

1. acceptance of the manuscript for publication, without any request of modi-
fications;

2. request of slight modifications (minor revision);
3. request of important modifications (major revision);
4. rejection with offer of resubmission;
5. rejection.

The first response is uncommon, but may happen. In cases of the request of
minor revision, the probability of final acceptance is very high. This probabil-
ity is still relatively high in cases of requests of major revision. In both cases,
you should pay attention. You must evaluate point by point all the criticisms
and suggestions of the editor and reviewers and prepare a new version of the

Acronyms and abbreviations

Consistency

Anonimity

Use the adjective “significant”
only for statistical significance

Be cautious

The Editor’s response
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Annotated copy

Clean copy

One or more requests
for revision

The offer of resubmission

Do not lose heart
over rejections

manuscript (which should be named “R1”, where “R” stands for revision).
Most journals require the submission of:

1. a document answering all the suggestions and criticisms, explaining how
you took them into account and the reasons why you decided not to follow
a suggestion;

2. a copy of the manuscript with evidence of the changes introduced, includ-
ing the erased sentences (use the “revision” function of a word processor).
Some journals require the indication of the correspondence between the crit-
icisms of the reviewers and the changes in the text in this “annotated copy”;

3. a “clean copy” with the final text, without any evidence of the changes.

We advise trying to answer and prepare an R1 version even after receiving a
request for major revisions. However, if you realize that the reviewers have
requested changes which cannot be made (e.g. to search for unavailable clini-
cal data) or changes which are overly time-consuming (e.g. to repeat all image
evaluations or segmentations, all measurements, or to add more observers),
you can opt for submitting the manuscript to another journal, after making the
changes according to the suggestions thought to be useful.

Some weeks after the submission of the R1 version, you might receive final
acceptance. However, the request of further modifications is relatively common.
You will prepare an “R2” version in the same way you did for the R1 version.
Then, if you have solved all the problems, you will receive final acceptance.

Sometimes, the rejection of the manuscript is coupled with an offer of resub-
mission. This event is not rare. In a recent analysis of 196 consecutive manu-
scripts submitted to the AJR Am J Roentgenol, 20 (10%) were accepted, 106
(54%) were rejected, and 70 (36%) were rejected with offer of resubmission
[KLIEWER ET AL, 2004].

This offer indicates that the editor, sometimes having a different opinion in
comparison with those of the reviewers, thinks that your manuscript is interest-
ing and wants to give you another possibility: resubmitting the paper for a new
evaluation cycle, frequently with at least one of the new reviewers remaining
the same as the first evaluation cycle. We advise accepting an offer of resub-
mission. In comparison with the request of major revision, you have an advan-
tage and a disadvantage. The advantage is that you do not have either to answer
point by point all the criticisms raised by the reviewers or take into account all
their suggestions. The disadvantage is having to restart from scratch, with a
high probability, if the resubmission is not rejected, of being requested to per-
form a revision, with a major revision being more likely than a minor one.
However, in our experience, resubmission is associated with final success in a
good percentage of cases.

The rejection of a manuscript (without any offer of resubmission) is a com-
mon event. Do not lose heart. It also happens to experienced scientists submit-
ting a paper of high value. There are many possible reasons for a rejection.
Your paper could be flawed by errors in the design, with unrecoverable biases.
Another possibility is that the editor and/or the reviewers might not have
understood some important aspects of the study, possibly due to a lack of spe-
cific knowledge in a particular research field. There is always a random factor
in the assignment of the reviewers. In this case, you could write a polite letter
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to the editor explaining your disagreement with the reviewers’ opinion and ask-
ing for the possibility of a resubmission.

Notice that a manuscript can be rejected even in the absence of substantial
methodologic criticisms, simply for an evaluation of low priority. In this case,
the submission to another journal is perhaps the best option. Remember that
you can choose a journal with a higher IF than the previous one and… keep
your fingers crossed. Consider also the possibility of submitting the manuscript
to a nonradiologic journal. At any rate, trust in yourself. If there are no basic
methodologic flaws, your paper will be published in the end.

Beginners may think that after one or two rejections or one resubmission,
and after R1 and R2 versions, final acceptance has brought an end to the mat-
ter. This is not true, even though the additional final steps are usually
approached with enthusiasm, knowing that you have almost reached your goal.
What are these final steps?

Firstly, you must answer the queries raised by the editorial office to the
authors. Some journals have high quality editorial staff who set the text and
understand the meaning in detail. For any problems, they propose modifica-
tions by asking the authors for specific approval. Trivial errors are detected in
this phase, including a lack of consistency between abstract and text, text and
tables, or text and figures, as well as inaccurate references. You may receive as
many as 100 queries for a manuscript of regular length. Each of them requires
an answer. Some particular problems are discussed between the deputy editor,
the staff and you with a series of emails until a good agreed solution is found.

For authors who are non-native English speakers, the editorial staff may
make a rewording/rephrasing of the text to make it more elegant and under-
standable. Notice that this restyling can be flawed by mistakes in meaning: the
new text is in elegant and fluent English but it says something different, some-
times the opposite, from what you want it to mean.

For these reasons, too, proofs correction is a very important task. Carefully
check the final text: a shifted colon can entirely change the meaning! To do this
job, print the proofs and read all parts of the paper, including authors’ names
and affiliations, tables (a skipped tabulation may change the entire meaning of
the data), and figures (inverted or rotated images, lack of correspondence
between images and legends). Do not delegate this job to people who did not
directly participate in editing the text. The result could be very bad, and you,
as the first or one of the principal authors, will be responsible.

If you realize that possible differences between the proofs and your text can-
not be easily detected, the proof correction should be done by two authors. One
of them reads the final manuscript, the other – at best, the first author – checks
that the proofs are retaining all the original meaning. At any rate, a double read-
ing finds more errors. Remember that in screening mammography the double
reading detects about 15% more cancers!

A professional proofs correction should be performed using a system of ded-
icated symbols which exists in at least three versions: continental European,
British, and American [GUSTAVII, 2003]. For each correction, you should write
a symbol on the printed text, repeat it in the margin, writing next to the possi-
ble lacking text. At any rate, the corrections should be clearly understandable.
The corrected proofs should be faxed to the editorial office. Alternatively, you
could use digital proofs correction on the pdf file, sending the corrected pdf file

The final steps

Queries from
the editorial office

Pay attention to rewording

Proofs correction
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Errata-corrige

Importance of proofs correction

Long times

Is it worth it?

by email. A further possibility to facilitate (and maybe accelerate) the work of
the editorial office is to also submit a list of the corrections in the old form of
an “errata corrige”, a five-column text containing for each correction: page
number; column; line number; text to be changed; and changed text.

Let us repeat this once more. Do not underestimate the importance of proofs
correction. This is the last possibility of discovering and correcting errors. It can
happen that an important error (especially in graphs and tables) is not detected
in the first manuscript, nor discovered by the reviewers, and goes unnoticed
right up to the final text and the proofs. Only the printed proofs allow the paper
to be seen in a new way, hopefully also allowing the error to be detected.

10.15. To Conclude

What we have described in this book and especially in this last chapter explains
why performing a study and writing a paper requires much more time than
what is thought by those not involved in this type of work. From the ideation
of a prospective study on diagnostic performance to its publication the time is
measured in years.

An example calculation:

1. conception and initial discussion among colleagues = 2 months;
2. writing and editing the proposal to be submitted to the Institutional Review

Board = 1-2 months;
3. approval by the Institutional Review Board = 2 months;
4. patient enrollment = 6-12 months;
5. data acquisition and analysis = 2-3 months;
6. manuscript editing and online submission = 3 months;
7. waiting time for the journal response = 2-3 months;
8. editing of answers to reviewers and editing of the R1 version= 1-2 months;
9. return of proofs to the authors and proofs correction = 3 months;

10. waiting time for final publication = 2-4 months;
Overall time = 24-36 months = 2-3 years.

Sometimes online first publication may shorten this time by several months,
but experienced people agree that the preceding time evaluations are largely
optimistic. In cases of randomized controlled trials, almost all phases are indu-
bitably longer.

So what now? Is it all worth it? When we compare the working time with the
results, this question arises spontaneously. The answer is subjective. We say
yes, for reason and passion.

For reason, because physicians (for instance, radiologists) who are also
researchers have a higher degree of clinical knowledge and are able to
offer a superior degree of diagnosis and treatment to patients, which is our
final mission.

For passion, a passion for a world game where we can interact with the best
specialists in each research field, the reviewers of the top journals. We can
obtain their evaluation of our work and exchange opinions with them, making
real science in the real world.
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In ending his autobiography, Luca Cavalli-Sforza stated:

In my opinion, my need to be always active is like being a child who is relent-
lessly playing, sometimes changing the game. Of course, the reader thinks that
I can do it because making science is basically equivalent to playing. It really is
a game, in the sense that it engages the researcher as a game does. However, it
is different due to its long-term special purpose [CAVALLI-SFORZA, 2005].

Making science is a remarkable long-term game. We love it both for the
intellectual knowledge and pleasure it brings, which go beyond any ambition
or possibility available in an academic career, and for its effect of improving
the quality of clinical medicine.

Every game has its rules. We hope that this book contributes to explaining
some of the rules of scientific research in radiology.
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Subject and Noun Index

Symbols

α, type I error, 70
β, type II error, 71
χ2, 101-103, 104-105

A

Abbreviations, 215
Abstract, how to write, 204, 212
Accuracy, 26
ACHESON L, 5
Acronyms, 215
Agreement

between observers, Cohen k, 137
limits, Bland-Altman analysis,
132, 135

AJR Am J Roentgenol, see American
Journal of Roentgenology

ALARA (as low reasonably
achievable) principle, 6-7, 7 figure

ALIPRANDI A, XI
ALTMAN DG, 59, 63, 80, 81, 84, 85,

88, 90, 99 footnote, 116, 129, 130,
147, 148, 149, 151, 153, 158,
158 figure

Altman’s nomogram, 158 figure
AMERICAN COLLEGE OF RADIOLOGY,

12, 38, 42, 79

American Journal of Roentgenology,
204, 212, 216

Analysis of variance, see ANOVA
ANDERSSON I, 146
Annotated copy, 216
Anonimity, 215
ANOVA, 86-90

for independent groups, 87-89
for paired data, 89-90

APPLEGATE KE, 8, 9 table
Appropriateness criteria, 3 figure
Area under the curve (AUC), ROC

analysis, 39, 40 figure
ARMITAGE P, 103
ARRIVÉ L, 5
Association, 109-110
Asymmetric distribution, 48-49
ATKINS D, 160, 163
AUC, ROC analysis, 39, 40 figure

B

BABAEI B, XI
BACCHIERI A, 142, 142 table
BAILAR JC, 147
BAINES CJ, 147
BARR HJ, 6
BAYES T, 33

theorem, 32-34



Bayesian statistics, 33
Before/after study design, 146
Behavioral science statistics, 93
Behrens-Fisher problem, 103
BELLONE E, 67
BENNETT JD, 5
BERRY G, 103
BERTOLOTTI P, XI
Best fit, regression line, 118
Bias, 69, 165-179

centripetal, 171
classification, 166-167
clinical review, 178
comparator review, 178
data measurement, 176-177
definition, 165
diagnostic access, 171
diagnostic review, 178
diagnostic safety, 171
disease progression, 176
drop-out, 176
imaging analysis, 174
imaging protocol, 174
imperfect standard, 167, 174-175
incorporation, 176
indeterminate results, 176
interpretation, 174
intra- and inter-observer

variability, 176
lead time, 177, 177 figure
length, 177, 177 figure
lost at follow-up data, 176
mean difference, Bland-Altman

analysis, 131-132, 132 figure,
133 figure

patient cohort, 171
patient filtering, 171
popularity, 171
population, 171
protocol application/violation,

175-176
publication, 75, 156, 160
reader independence, 178
reader training and experience,

174
recall, 149
reference standard, 174-175, 176
referral, 171
selection, 170-171

spectrum, 171
statistical analysis, 175
study design, 168-170
surveillance, 148, 149
technologic obsolescence, 173
temporal effects, 176
test review, 178
verification, 176
volunteer, 149
work-up, 176

Binomial test, 97-98
Bivariate analysis, 109
BLACKMORE CC, 3 figure, 5
BLAND JM, 129, 130
Bland-Altman analysis, 129-136
Blind review, 215
Blind title page, 203
Blindness, single, double, triple,

151-152
Block randomization (restricted),

154-155
BLOCH F, IX
BI-RADS®, 12, 38, 40 figure, 42, 43,

44 table, 52, 79, 140
Biostatistics, 11-12
BOHEM T, 99
Bonferroni’s correction, 99,

99 footnote
BOSSUYT M, 178, 213, 214 table
BOUTRON I, 213
BRADFORD HILL A, 2
BRANCATELLI G, XVII
BRCA1, BRCA2, 38
BREALEY SD, 9
Breast Imaging Reporting and Data

System, see BI-RADS®

Breast MR imaging, 23, 169-170
British Columbia Office of Health

Technology Assessment, 5
BRUZZI P, X
BUI AA, 5

C

CANAVESE G, X
CARACCIOLO E, 69, 93
Cardiac CT, 30, 168-169
Cardiac MR
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delayed enhancement, 59-61, 82-84,
89-90

functional (cine), 125-136
Carry-over effect, 149
Case reports, 184
Case-control studies, 148
CASTELLAN NJ JR, 42, 94, 103
Causal relationship, 110
Causation 109-110
CAVALLI-SFORZA L, 69, 219
Central limit theorem, 57
Central tendency, 51-54
CENTRE FOR EVIDENCE-BASED

MEDICINE, Oxford, UK, 2, 160,
162 tables

Centripetal bias, 171
Centroid, 64
CERRI A, XII
Chi-square, 101-103, 104-105
CICCHETTI D, 139
CITTADINI G JR, X
CITTADINI G, IX, X, X footnote
Clean copy, 216
Clinical relevance and statistical

significance, 12
Clinical review bias, 178
Cluster randomization, 155
CME, continuous medical education,

teaching articles, 184
Cochran Q test, 103-104
COCHRANE A, 2
Coefficient

determination, 114
Pearson, r, 112-114
repeatability, Bland-Altman

analysis, 135
Spearman, rs, rank correlation,

116-118
COHEN J, 138

k, 136-140
COHEN WA, 5
Cohort (follow-up) studies, 144

table, 148
Cohort bias, 171
Comorbidities, 4, 172
Comparative studies, 150, 151 table
Comparator review bias, 178
CONAN DOYLE A, 141
Conditional probability

Bayes’ theorem, 32
Graphs (GCPs), 35, 36 figure
Confidence intervals, 58-59, 61-63,

63-64
t test, 85-86

Confounding factor, 168; see also Bias
CONFUCIUS, IX
Congress abstract, 185
CONOVER WJ, 100, 103, 104, 106
Consecutive series of patients, 172
Consistency, 215
CONSORT, 213
Contingency table, 20, 20 table,

21 table
Continuous medical education,

CME, 184
Continuous variables, 43-44
Contrast materials, research, 142
Control group, 145-148
CORMACK A, XV
CORNALBA GP, XII
Correction

Bonferroni, 99, 99 footnote
Yates, 102

Correlation and regression, 109-124
Correlation

between continuous variables,
111-113

determination coefficient, 114
Pearson coefficient, r, 112-114

rank correlation, Spearman
coefficient, rs, 116-118
test for significance, 115

Cost-effectiveness, 8-9
COUNCIL OF THE EUROPEAN UNION, 6
Covariance, 113 footnote
CROCETTI L, XVII
Cross-over design, 149
Cross-sectional studies, see

Transversal studies
Cutoff, 36-38, 37 figure, 39 figure

for significance, 70, 74-75

D

Decision analysis, 11
Decision-making, 74-75
Degree of freedom, 54
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DEL MASCHIO A, XII
Delayed enhancement see Cardiac

MR
DELLA CIOPPA G, 142, 139 table
Delphi protocol, 3 figure
Descriptive statistics, 11, 51
Design of a study, 141, 168-170
DI LEO G, XII
DI MAGGIO C, 147
Diagnostic

access bias, 171
accuracy, 26
performance, 19-40
review bias, 178
safety bias, 171
study classification, 150-153, 151
table, 152-153

Demonstration, 68-69
Dichotomous, judgement, 20
Dichotomous, variables, 42-43
Discrete, variables, 43
Discussion, how to write, 210-211
Disease

prevalence, 22 table, 25, 25-36;
see also Prevalence

progression bias, 176
spectrum, 38

Distribution-free, 94
Distribution, 41

normal (Gaussian), 45-50, 46
figure, 47 figure, 49 figure

population, 47
probability, 48
standard normal, 50, 50 figure
symmetric/asymmetric, 48-49,

53-54, 53 figure
DIXON AK, VII, 5, 6, 10
DODD JD, 2, 5, 6, 35, 213
DOLL R, 2
DONALD A, 2
Drop-out bias, 176
DU SATOY M, IX

E

EASTERBROOK G, 165
EASTON L, XVII
EBM, see Evidence based medicine,

EBR, see Evidence based radiology
ECR, European Congress

of Radiology, 185
EDDINGTON AS, 67
EDWARDS AWF, 93
Effectiveness, 8
Efficacy, 8
Efficiency, 8
EINSTEIN A, 1
End-points, radiologic, 142
Errata-corrige, 218
Error

type I, α, 70
type II, β, 71
standard, of the difference between

two sample means, 59-61
standard, of the mean, 56-59

ERDEN A, 5
Estimator versus estimate, 56
Ethics Committee, Institutional

Review Board, 144, 201-202
EUCLID, 68
European Congress of Radiology,

ECR, 185
European Radiology (journal), 185,

186
Evidence based imaging, see

Evidence based radiology
Evidence based medicine, 1-4, 3 figures

bottom-up, 2, 3 figure
top-down, 2, 3 figure

Evidence based radiology, 5-7, 7 figure
Working Group, 1, 2, 5, 8, 9

Evidence, levels, 160-163, 162 table
Experimental

hypothesis, 67, 68
studies, 144, 144 table, 145-148

Experimental, how to use the term,
145 footnote

F

F test, analysis of variance, 88
Factorial design, 150
Factorial, study, 150
FAGAN TJ, 35, 35 figure (Bayesian

nomogram)
False negative rate, 23
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False positive rate, 23
Falsification, principle, 69
Fast-twitch, muscle fibers, 120
FDA RADIOLOGICAL HEALTH

PROGRAM, 6
FEINSTEIN AR, 139, 171
FILIPPI M, 142
FILIPPONE A, XVII
Final assessment, 208
FINEBERG HV, 8
FISCHER U, 170
FISHER RA, 2, 68, 69, 74, 77, 78

exact test, 101-102
FLORIANI I, XII, XVII
Flow-diagram, 206, 206 figure,

207 figure
Follow-up (cohort) studies,

144 table, 148
Forest plot, 160, 161 figure
Frequentistic statistics, 33
Friedman test, 104
FRYBACK DG, VII, 8
Full title page, 203

G

GAARDER J, 19
Gadolinium-based contrast agents,

NSF, 148-149
GALLI G, 12
GALTON F, 48, 77, 93
GARDNER MJ, 63
GARLASCHI G, X footnote
GATSONIS CA, 8
GAUSS KF, 48
Gaussian distribution, 45-50, 46

figure, 47 figure, 49 figure
GERRA F, XII
GILBERT FJ, 5, 9
GIOVAGNONI A, 5
Gleason grade, prostate, 109-110
GOERGEN SK, 5
GOETHE JW, 93
Gold standard, see Reference standard
GOSSET WS, 77, 78, 81
GRADE system, 160-163
Graphs of conditional probability,

35, 36 figure

GREENHALG T, 2, 107
Guidelines, 183
GUILLERMAN RP, 5
GUSTAVII B, 202, 204, 217
GUYATT G, 2

H

H0, null hypothesis, 68
H1, experimental hypothesis, 67, 68
Health technology assessment, 7-11
Helsinki Declaration, 201
Heteroschedasticity, 80

t test, 85
Hierarchy of studies on diagnostic
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