
5 Basis Sets

Ab initio methods try to derive information by solving the Schrödinger equation
without fitting parameters to experimental data. Actually, ab initio methods also make
use of experimental data, but in a somewhat more subtle fashion. Many different
approximate methods exist for solving the Schrödinger equation, and which one to use
for a specific problem is usually chosen by comparing the performance against known
experimental data. Experimental data thus guides the selection of the computational
model, rather than directly enteringinto the computational procedure.

One of the approximations inherent in essentially all ab initio methods is the intro-
duction of a basis set. Expanding an unknown function, such as a molecular orbital, in
a set of known functions is not an approximation if the basis set is complete. However,
a complete basis set means that an infinite number of functions must be used, which
is impossible in actual calculations. An unknown MO can be thought of as a function
in the infinite coordinate system spanned by the complete basis set. When a finite basis
set is used, only the components of the MO along those coordinate axes correspon-
ding to the selected basis functions can be represented. The smaller the basis set, the
poorer the representation. The type of basis functions used also influence the accuracy.
The better a single basis function is able to reproduce the unknown function, the fewer
basis functions are necessary for achieving a given level of accuracy. Knowing that the
computational effort of ab initio methods scales formally as at least M 4

basis, it is of course
of prime importance to make the basis set as small as possible, without compromising
the accuracy.1 The expansion of the molecular orbitals leads to integrals of quantum
mechanical operators over basis functions, and the ease with which these integrals can
be calculated also depends on the type of basis function. In some cases the accuracy-
per-function criterion produces a different optimum function type than the efficiency-
per-function criterion.

5.1 Slater and Gaussian Type Orbitals
There are two types of basis functions (also called Atomic Orbitals (AO), although
they in general are not solutions to an atomic Schrödinger equation) commonly used
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in electronic structure calculations: Slater Type Orbitals (STO) and Gaussian Type
Orbitals (GTO). Slater type orbitals2 have the functional form shown in eq. (5.1).

(5.1)

Here N is a normalization constant and Yl,m are spherical harmonic functions. The
exponential dependence on the distance between the nucleus and electron mirrors the
exact orbitals for the hydrogen atom. However, the STOs do not have any radial nodes;
nodes in the radial part are introduced by making linear combinations of STOs. The
exponential dependence ensures a fairly rapid convergence with increasing numbers
of functions, however, as noted in Section 3.5, the calculation of three- and four-centre
two-electron integrals cannot be performed analytically. STOs are primarily used for
atomic and diatomic systems where high accuracy is required, and in semi-empirical
methods where all three- and four-centre integrals are neglected.They can also be used
with density functional methods that do not include exact exchange and where the
Coulomb energy is calculated by fitting the density into a set of auxiliary functions.

Gaussian type orbitals3 can be written in terms of polar or Cartesian coordinates as
shown in eq. (5.2).

(5.2)

The sum of lx, ly and lz determines the type of orbital (for example lx + ly + lz = 1 is a
p-orbital). Although a GTO appears similar in the two set of coordinates, there is a
subtle difference. A d-type GTO written in terms of the spherical functions has five
components (Y2,2, Y2,1, Y2,0, Y2,−1, Y2,−2), but there appear to be six components in the
Cartesian coordinates (x2, y2, z2, xy, xz, yz). The latter six functions, however, may be
transformed to the five spherical d-functions and one additional s-function (x2 + y2 +
z2). Similarly, there are ten Cartesian “f-functions” that may be transformed into seven
spherical f-functions and one set of spherical p-functions. Modern programs for eval-
uating two-electron integrals are geared to Cartesian coordinates and they generate
pure spherical d-functions by transforming the six Cartesian components to the five
spherical functions.When only one d-function is present per atom the saving by remov-
ing the extra s-function is small, but if many d-functions and/or higher angular momen-
tum functions ( f-, g -, h-, etc., functions) are present, the saving can be substantial.
Furthermore, the use of only the spherical components reduces the problems of linear
dependence for large basis sets, as discussed below.

The r2 dependence in the exponential makes the GTOs inferior to the STOs in two
respects. At the nucleus a GTO has a zero slope, in contrast to a STO which has a
“cusp” (discontinuous derivative), and GTOs consequently have problems represent-
ing the proper behaviour near the nucleus. The other problem is that the GTO falls
off too rapidly far from the nucleus compared with an STO, and the “tail” of the wave
function is consequently represented poorly. Both STOs and GTOs can be chosen to
form a complete basis, but the above considerations indicate that more GTOs are nec-
essary for achieving a certain accuracy compared with STOs. A rough guideline says
that three times as many GTOs as STOs are required for reaching a given level of
accuracy. Figure 5.1 shows how a 1s-STO can be modelled by a linear combination of
three GTOs.
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The increase in the number of GTO basis functions, however, is more than com-
pensated for by the ease of which the required integrals can be calculated. In terms of
computational efficiency, GTOs are therefore preferred and are used almost univer-
sally as basis functions in electronic structure calculations. Furthermore, essentially all
applications take the GTOs to be centred at the nuclei. For certain types of calcula-
tions the centre of a basis function may be taken not to coincide with a nucleus, for
example being placed at the centre of a bond or between non-bonded atoms for
improving the calculation of van der Waals interactions.

5.2 Classification of Basis Sets
Having decided on the type of function (STO/GTO) and the location (nuclei), the most
important factor is the number of functions to be used. The smallest number of func-
tions possible is a minimum basis set. Only enough functions are employed to contain
all the electrons of the neutral atom(s). For hydrogen (and helium) this means a single
s-function. For the first row in the periodic system it means two s-functions (1s and 2s)
and one set of p-functions (2px, 2py and 2pz). Lithium and beryllium formally only
require two s-functions, but a set of p-functions is usually also added. For the second
row elements, three s-functions (1s, 2s and 3s) and two sets of p-functions (2p and 3p)
are used.

The next improvement of the basis sets is a doubling of all basis functions, produc-
ing a Double Zeta (DZ) type basis. The term zeta stems from the fact that the expo-
nent of STO basis functions is often denoted by the Greek letter z. A DZ basis thus
employs two s-functions for hydrogen (1s and 1s′), four s-functions (1s, 1s′, 2s and 2s′)
and two sets of p-functions (2p and 2p′) for first row elements, and six s-functions and
four sets of p-functions for second row elements. The importance of a DZ over a
minimum basis can be illustrated by considering the bonding in the HCN molecule.
The H—C bond will primarily consist of the hydrogen s-orbital and the pz-orbital on C.
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Figure 5.1 A 1s-STO modelled by a linear combination of three GTOs (STO-3G)



The π-bond between C and N will consist of the px (and py) orbitals of C and N, and 
will have a more diffuse electron distribution than the H—C σ-bond. The optimum 
exponent for the carbon p-orbital will thus be smaller for the x-direction than for the 
z-direction. If only a single set of p-orbitals is available (minimum basis), a compro-
mise will be necessary. A DZ basis, however, has two sets of p-orbitals with different
exponents. The tighter function (larger exponent) can enter the H—C σ-bond with a
large coefficient, while the more diffuse function (small exponent) can be used pri-
marily for describing the C—N π-bond. Doubling the number of basis functions thus
allows for a much better description of the fact that the electron distribution is differ-
ent in different directions.
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Figure 5.2 A double zeta basis allows for different bonding in different directions

The chemical bonding occurs between valence orbitals. Doubling the 1s-functions in
for example carbon allows for a better description of the 1s-electrons. However, the
1s-orbital is essentially independent of the chemical environment, being very close to
the atomic case. A variation of the DZ type basis only doubles the number of valence
orbitals, producing a split valence basis. In actual calculations, a doubling of the core
orbitals would rarely be considered, and the term DZ basis is used also for split valence
basis sets (or sometimes VDZ, for valence double zeta).

The next step up in basis set size is a Triple Zeta (TZ). Such a basis contains three
times as many functions as the minimum basis, i.e. six s-functions and three p-functions
for the first row elements. Some of the core orbitals may again be saved by only split-
ting the valence, producing a triple split valence basis set. Again the term TZ is used
to cover both cases. The names Quadruple Zeta (QZ) and Quintuple or Pentuple Zeta
(PZ or 5Z, but not QZ) for the next levels of basis sets are also used, but large basis
sets are often given explicitly in terms of the number of basis functions of each type.

So far, only the number of s- and p-functions for each atom (first or second row in
the periodic table) has been discussed. In most cases, higher angular momentum func-
tions are also important, and these are denoted polarization functions. Consider again
the bonding in HCN in Figure 5.2.The H—C bond is primarily described by the hydro-
gen s-orbital(s) and the carbon s- and pz-orbitals. It is clear that the electron distribu-
tion along the bond will be different than perpendicular to the bond. If only s-functions
are present on hydrogen, this cannot be described. However, if a set of p-orbitals is
added to hydrogen, the pz component can be used for improving the description of the
H—C bond. The p-orbital introduces a polarization of the s-orbital(s). Similarly, d-
orbitals can be used for polarizing p-orbitals, f-orbitals for polarizing d-orbitals, etc.
Once a p-orbital has been added to polarize a hydrogen s-orbital, it may be argued
that the p-orbital should now be polarized by adding a d-orbital, which should be polar-
ized by an f-orbital, etc. For independent-particle wave functions, where electron cor-
relation is not considered, the first set of polarization functions (i.e. p-functions for



hydrogen and d-functions for heavy atoms) is by far the most important, and will in
general describe most of the important charge polarization effects.

If methods including electron correlation are used, higher angular momentum func-
tions are essential. Electron correlation describes the energy lowering by the electrons
“avoiding” each other, beyond the average effect taken into account by Hartree–Fock
methods. Two types of correlation can be identified, an “in–out” and an “angular” cor-
relation. The in-out or radial correlation refers to the situation where one electron is
close to, and the other far from, the nucleus. To describe this, the basis set needs func-
tions of the same type, but with different exponents. The angular correlation refers to
the situation where two electrons are on opposite sides of the nucleus. To describe this,
the basis set needs functions with the same magnitude exponents, but different angular
momentum. For example, to describe angular correlation of an s-function, p-functions
(and d-, f-, g-functions, etc.) are needed. The angular correlation is of similar impor-
tance as the radial correlation, and higher angular momentum functions are conse-
quently essential for correlated calculations. Although these should properly be
labelled correlation functions, they also serve as polarization functions for HF wave
functions, and it is common to denote them as polarization functions.

Normally only the correlation of the valence electrons is considered, and the expo-
nents of the polarization functions should be of the same magnitude as the valence s-
and p-functions (actually slightly larger in order to have the same maximum in the
radial distribution function). In contrast to HF methods, the higher angular momen-
tum functions (beyond the first set of polarization functions) are quite important. Or
alternatively formulated, the convergence in terms of angular momentum is slower for
correlated wave functions than at the HF level. For a basis set that is complete up to
angular momentum L, numerical analysis suggests the asymptotic convergence at the
HF level is exponential (i.e. ~exp(− )), while it is ~L−3 at correlated levels.4

Polarization functions are added to the chosen sp-basis. Adding a single set of polar-
ization functions (p-functions on hydrogens and d-functions on heavy atoms) to the
DZ basis forms a Double Zeta plus Polarization (DZP) type basis. There is a variation
where polarization functions are only added to non-hydrogen atoms. This does not
mean that polarization functions are not important on hydrogen. However, hydrogen
often has a “passive” role, sitting at the end of bonds that do not take active part in
the property of interest. The error introduced by not including hydrogen polarization
functions is often rather constant and, as the interest is usually in energy differences,
tends to cancel out. As hydrogen often accounts for a large number of atoms in the
system, a saving of three basis functions for each hydrogen is significant. If hydrogen
plays an important role in the property of interest, it is of course not a good idea to
neglect polarization functions on hydrogen.

Similarly to the sp-basis sets, multiple sets of polarization functions with different
exponents may be added. If two sets of polarization functions are added to a TZ sp-
basis, a Triple Zeta plus Double Polarization (TZ2P) type basis is obtained. For larger
basis sets with many polarization functions the explicit composition in terms of number
and types of functions is usually given. At the HF level there is usually little gained by
expanding the basis set beyond TZ2P, and even a DZP type basis set usually gives
“good” results (compared with the HF limit). Correlated methods, however, require
more, and higher angular momentum, polarization functions to achieve the same level
of convergence.

L
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Before moving on we need to introduce the concept of basis set balance. In princi-
ple, many sets of polarization functions may be added to a small sp-basis, but this is a
poor idea. If an insufficient number of sp-functions has been chosen for describing the
fundamental electron distribution, the optimization procedure used in obtaining the
wave function (and possibly also the geometry) may try to compensate for inadequa-
cies in the sp-basis by using higher angular momentum functions, thereby producing
artefacts. A rule of thumb says that the number of functions of a given type should at
most be one less than the type with one lower angular momentum. A 3s2p1d basis is
balanced, but a 3s2p2d2f1g is too heavily polarized. It may not be necessary to polar-
ize the basis all the way up, thus a 5s4p3d2f1g basis is balanced, but if it is known 
(for example by comparison with experimental data) that f- and g -functions are 
unimportant, they may be left out. Furthermore, it may be that two d-functions are 
sufficient for the given purpose, although a 5s4p1d basis would be considered 
underpolarized.

Another aspect of basis set balance is the occasional use of mixed basis sets, for
example a DZP quality on the atoms in the “interesting” part of the molecule and a
minimum basis for the “spectator” atoms. Another example would be the addition of
polarization functions for only a few hydrogens that are located “near” the reactive
part of the system. For a large molecule, this may lead to a substantial saving in the
number of basis functions. It should be noted that this may bias the results and can
create artefacts. For example, a calculation on the H2 molecule with a minimum basis
at one end and a DZ basis at the other end will predict that H2 has a dipole moment,
since the variational principle will preferentially place the electrons near the centre
with the most basis functions. The majority of calculations are therefore performed
with basis sets of the same quality (minimum, DZP, TZ2P, . . .) on all atoms, possibly
removing polarization and/or diffuse (small exponent) functions on hydrogen. Even
so, it may be argued that small basis sets inherently tend to be unbalanced. Consider
for example the LiF molecule in a minimum or DZ type basis. This will have a very
ionic structure, Li+F−, with nearly all the valence electrons being located at the fluo-
rine. In terms of number of basis functions per electron, the Li basis is thus of a much
higher quality than the F basis, and thereby unbalanced. This effect of course dimin-
ishes as the size of the atomic basis set increases.

Except for very small systems, it is impractical to saturate the basis set such that the
absolute error in the energy is reduced below chemical accuracy, say 4kJ/mol. The
important point in choosing a balanced basis set is to keep the error as constant as
possible. The use of mixed basis sets should therefore only be done after careful con-
sideration. Furthermore, the use of small basis sets for systems containing elements
with substantially different numbers of valence electrons (such as LiF) may produce
artefacts.

Having decided on the number of basis functions (from a consideration of the prop-
erty of interest and the computational cost), the question becomes: how are the values
for the exponents in the basis functions chosen? The values for the s- and p-functions
are typically determined by performing variational HF calculations for the atoms, using
the exponents as variational parameters. The exponent values that give the lowest
energy are the “best”, at least for the atom. In some cases, the optimum exponents are
chosen based on minimizing the energy of a wave function that includes electron cor-
relation. The HF procedure cannot be used for determining exponents of polarization
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functions for atoms. By definition these functions are unoccupied in atoms, and there-
fore make no contribution to the energy. Suitable polarization exponents may be
chosen by performing variational calculations on molecular systems (where the HF
energy does depend on polarization functions) or on atoms with correlated wave func-
tions. Since the main function of higher angular momentum functions is to recover
electron correlation, the latter approach is usually preferred. Often only the optimum
exponent is determined for a single polarization function, and multiple polarization
functions are generated by splitting the exponents symmetrically around the optimum
value for a single function. The splitting factor is typically taken in the range 2–4. For
example if a single d-function for carbon has an exponent value of 0.8, two polariza-
tion functions may be assigned with exponents of 0.4 and 1.6 (splitting factor of 4). The
details of how the exponents are determined for various basis sets are discussed in the
following sections.

5.3 Even- and Well-Tempered Basis Sets
The optimization of basis function exponents is an example of a highly non-linear opti-
mization problem (Chapter 12). When the basis set becomes large, the optimization
problem is no longer easy. The basis functions start to become linearly dependent (the
basis set approaches completeness) and the energy becomes a very flat function of the
exponents. Analyses of basis sets that have been optimized by variational methods
reveal that the ratio between two successive exponents is approximately constant.
Taking this ratio to be constant reduces the optimization problem to only two param-
eters for each type of basis function, independent of the size of the basis. Such basis sets
have been labelled even-tempered basis sets, with the ith exponent given as zi = ab i,
where a and b are fixed constants for a given type of function and nuclear charge. It
was later discovered that the optimum a and b constants to a good approximation can
be written as functions of the size of the basis set, M.5

(5.3)

The constants a, a′, b and b′ depend only on the atom type and the type of function (s
or p). Even-tempered basis sets have the advantage that it is easy to generate a
sequence of basis sets that are guaranteed to converge towards a complete basis. This
is useful if the attempt is to extrapolate a given property to the basis set limit. The dis-
advantage is that the convergence is somewhat slow, and an explicitly optimized basis
set of a given size will usually give a better answer than an even-tempered basis of the
same size.

Even-tempered basis sets have the same ratio between exponents over the whole
range. From chemical considerations it is usually preferable to cover the valence region
better than the core region.This may be achieved by well-tempered basis sets.6 The idea
is similar to the even-tempered basis sets, with the exponents being generated by a
suitable formula containing only a few parameters to be optimized. The exponents in
a well-tempered basis of size M are generated according to eq. (5.4).
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(5.4)

The a, b, g and d parameters are optimized for each atom. The exponents are the same
for all types of angular momentum functions, and s-, p- and d-functions (and higher
angular momentum) consequently have the same radial part.

A well-tempered basis set has four parameters, compared with two for an even-tem-
pered one, and is consequently capable of giving a better result for the same number
of functions. Petersson et al.7 have proposed a somewhat more general parameteriza-
tion based on expanding the logarithmic exponents in a polynomial of order K in the
basis function number.

(5.5)

Setting K = 1 is equivalent to generating an even-tempered basis set. The optimization
of the parameters ak becomes problematic for K larger than 2, since the polynomials
are non-orthogonal, and increasing K thus significantly changes all the expansion coef-
ficients. This problem can be alleviated by using Legendre polynomials instead, since
these are orthogonal, and this significantly improves the optimization.

(5.6)

It has been found that a fourth-order polynomial (K = 3) expansion produces much
better results than the well-tempered formula, despite having the same number of vari-
ables. Furthermore, the results from a fourth-order Legendre parameterization with M
basis functions is comparable to those from a fully optimized basis set with M − 1 func-
tions, i.e. the penalty in reducing the number of optimization variables from M to four
is only one function. The Legendre parameterization furthermore solves the potential
problem of variational collapse, i.e. two neighbouring exponents collapsing to the same
value during optimization, and eq. (5.6) thus provides an efficient way of systemati-
cally approaching the basis set limit.

Optimization of basis sets is not something the common user needs to worry about.
Optimized basis sets of many different sizes and qualities are available either in the
forms of tables, websites8 or stored internally in the computer programs. The user
“merely” has to select a suitable basis set. However, if the interest is in specialized
properties the basis set may need to be tailored to meet the specific needs. For example
if the property of interested is an accurate value for the electron density at the nucleus
(for example for determining the Fermi contact contribution to spin–spin coupling 
(see Section 10.7.6)) then basis functions with very large exponents are required.
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Alternatively, for calculating hyperpolarizabilites, very diffuse functions are required.
In such cases, the basis function optimization is in terms of the property of interest,
and not in terms of energy, i.e. basis functions are added until the change upon addi-
tion of one extra function is less than a given threshold.

5.4 Contracted Basis Sets
One disadvantage of all energy-optimized basis sets is the fact that they primarily
depend on the wave function in the region of the inner-shell electrons. The 1s-
electrons account for a large part of the total energy, and minimizing the energy will
tend to make the basis set optimum for the core electrons, and less so for the valence
electrons. However, chemistry is mainly dependent on the valence electrons. Further-
more, many properties (for example polarizability) depend mainly on the wave func-
tion “tail” (far from the nucleus), which energetically is unimportant. An
energy-optimized basis set that gives a good description of the outer part of the wave
function therefore needs to be very large, with the majority of the functions being used
to describe the 1s-electrons with an accuracy comparable with the outer electrons in
an energetic sense. This is not the most efficient way of designing basis sets for describ-
ing the outer part of the wave function. Instead energy-optimized basis set are usually
augmented explicitly with diffuse functions (basis functions with small exponents).
Diffuse functions are needed whenever loosely bound electrons are present (for
example anions or excited states) or when the property of interest is dependent on the
wave function tail (for example polarizability).

The fact that many basis functions focus on describing the energetically important,
but chemically unimportant, core electrons is the foundation for contracted basis sets.
Consider for example a basis set consisting of ten s-functions (and some p-functions)
for carbon. Having optimized these ten exponents by a variational calculation on a
carbon atom, maybe six of the ten functions are found primarily to be used for describ-
ing the 1s-orbital, and two of the four remaining describe the “inner” part of the 2s-
orbital. The important chemical region is the outer valence. Out of the ten functions,
only two are actually used for describing the chemically interesting phenomena. Con-
sidering that the computational cost increases as the fourth power (or higher) of the
number of basis functions, this is inefficient. As the core orbitals change very little
depending on the chemical bonding situation, the MO expansion coefficients in front
of these inner basis functions also change very little.The majority of the computational
effort is therefore spent describing the chemically uninteresting part of the wave func-
tion, which is furthermore almost constant.

Consider now making the variational coefficients in front of the inner basis func-
tions constant, i.e. they are no longer parameters to be determined by the variational
principle. The 1s-orbital is thus described by a fixed linear combination of say six basis
functions. Similarly, the remaining four basis functions may be contracted into only two
functions, for example by fixing the coefficient in front of the inner three functions. In
doing this the number of basis functions to be handled by the variational procedure
has been reduced from ten to three.

Combining the full set of basis functions, known as the primitive GTOs (PGTOs),
into a smaller set of functions by forming fixed linear combinations is known as 
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basis set contraction, and the resulting functions are called contracted GTOs 
(CGTOs).

(5.7)

The previously introduced acronyms DZP,TZ2P, etc., refer to the number of contracted
basis functions. Contraction is especially useful for orbitals describing the inner (core)
electrons, since they require a relatively large number of functions for representing 
the wave function cusp near the nucleus, and furthermore are largely independent of
the environment. Contracting a basis set will always increase the energy, since it is a
restriction of the number of variational parameters, and makes the basis set less 
flexible, but it will also reduce the computational cost significantly. The decision is 
thus how much loss in accuracy is acceptable compared with the gain in computational
efficiency.

The degree of contraction is the number of PGTOs entering the CGTO, typically
varying between one and ten. The specification of a basis set in terms of primitive and
contracted functions is done by the notation (10s4p1d/4s1p) → [3s2p1d/2s1p].The basis
in parenthesis is the number of primitives with heavy atoms (first row elements) before
the slash and hydrogen after. The basis in the square brackets is the number of con-
tracted functions. Note that this does not indicate how the contraction is done, it only
indicates the size of the final basis (and thereby the size of the variational problem in
HF calculations).

There are two different ways of contracting a set of primitive GTOs to a set of con-
tracted GTOs: segmented and general contraction. Segmented contraction is the older
method, and the one used in the above example. A given set of PGTOs is partitioned
into smaller sets of functions that are made into CGTOs by determining suitable coef-
ficients. A 10s basis set may be contracted to 3s by taking the inner six functions as
one CGTO, the next three as the second CGTO and the one remaining PGTO as the
third “contracted” GTO.

(5.8)

In a segmented contraction each primitive as a rule is used only in one contracted func-
tion, i.e. the primitive set of functions is partitioned into disjoint sets. In some cases it
may be necessary to duplicate one or two PGTOs in two adjacent CGTOs. The con-
traction coefficients can be determined by a variational optimization of the atomic HF
energy, where both the exponents and contraction coefficients are optimized simulta-
neously. It should be noted that this optimization often produces multiple minima, and
selecting a suitable “optimum” solution may be non-trivial.9

In a general contraction all primitives (on a given atom) enter all the contracted
functions, but with different contraction coefficients.
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(5.9)

One popular way of obtaining general contraction coefficients is from Atomic Natural
Orbitals (ANOs), to be discussed in Section 5.4.5. The difference between segmented
and general contraction may be illustrated as shown in Figure 5.3.
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Figure 5.3 Illustrating segmented and general contraction

In reality, there are very few truly segmented or general contracted basis sets.
General contracted basis sets normally leave the outermost function(s) uncontracted,
and a Gram–Schmidt type orthogonalization can be used for partly segmenting the
inner functions.10 The disjoint nature of the primitive set of functions in a segmented
contraction, on the other hand, often necessitates a duplication of one or more func-
tions, i.e. effectively a general contraction.The segmented–general classification should
thus be seen as limiting cases, with actual basis sets having varying characteristics of
both types.

There are many different contracted basis sets available in the literature or built into
programs, and the average user usually only needs to select a suitable quality basis for
the calculation. Below is a short description of some basis sets that often are used in
routine calculations.The contractions are given for a first row element (such as carbon),
while the corresponding ones for other elements can be found in the references.

5.4.1 Pople style basis sets

STO-nG basis sets These are Slater type orbitals consisting of n PGTOs.11 This is a
minimum type basis where the exponents of the PGTO are determined by fitting to
the STO, rather than optimizing them by a variational procedure. Although basis sets
with n = 2–6 have been derived, it has been found that using more than three PGTOs
for representing the STO gives little improvement, and the STO-3G basis is a widely
used minimum basis. This type of basis set has been determined for many elements of
the periodic table. The designation of the carbon STO-3G basis is (6s3p) → [2s1p].



k-nlmG basis sets These basis sets, designed by Pople and coworkers, and are of the
split valence type, with the k in front of the dash indicating how many PGTOs are used
for representing the core orbitals.The nlm after the dash indicate both how many func-
tions the valence orbitals are split into, and how many PGTOs are used for their rep-
resentation. Two values (nl) indicate a split valence, while three values (nlm) indicate
a triple split valence. The values before the G (for Gaussian) indicate the s- and p-
functions in the basis; the polarization functions are placed after the G. These types of
basis sets have the further restriction that the same exponent is used for both the s-
and p-functions in the valence. This increases the computational efficiency, but of
course decreases the flexibility of the basis set. The exponents and contraction coeffi-
cients have been optimized by variational procedures at the HF level for atoms.

3-21G This is a split valence basis, where the core orbitals are a contraction of three
PGTOs, the inner part of the valence orbitals is a contraction of two PGTOs and the
outer part of the valence is represented by one PGTO.12 The designation of the carbon
3-21G basis is (6s3p) → [3s2p]. Note that the 3-21G basis contains the same number
of primitive GTOs as the STO-3G, however, it is much more flexible as there are twice
as many valence functions that can combine freely to make MOs.

6-31G This is also a split valence basis, where the core orbitals are a contraction of
six PGTOs, the inner part of the valence orbitals is a contraction of three PGTOs and
the outer part of the valence is represented by one PGTO.13 The designation of the
carbon 6-31G basis is (10s4p) → [3s2p]. In terms of contracted basis functions it con-
tains the same number as 3-21G, but the representation of each function is better since
more PGTOs are used.

6-311G This is a triple split valence basis, where the core orbitals are a contraction
of six PGTOs and the valence split into three functions, represented by three, one and
one PGTOs, respectively, i.e. (11s5p) → [4s3p].14

To each of these basis sets can be added diffuse15 and/or polarization functions.16 Diffuse
functions are normally s- and p-functions and consequently go before the G. They are
denoted by + or ++, with the first + indicating one set of diffuse s- and p-functions on
heavy atoms, and the second + indicating that a diffuse s-function is added also to hydro-
gen.The argument for only adding diffuse functions on non-hydrogen atoms is the same
as for only adding polarization functions on non-hydrogens (Section 5.2). Polarization
functions are indicated after the G, with a separate designation for heavy atoms and
hydrogen. The 6-31+G(d) is a split valence basis with one set of diffuse sp-functions on
heavy atoms only and a single d-type polarization function on heavy atoms. A 6-
311++G(2df,2pd) is similarly a triple split valence with additional diffuse sp-functions,
two d-functions and one f-function on heavy atoms, and diffuse s- and two p- and one d-
functions on hydrogen.The largest standard Pople style basis set is 6-311++G(3df,3pd).
These types of basis set have been derived for hydrogen and the first row elements, and
some of the basis sets have also been derived for second and higher row elements. The
composition in terms of contracted and primitive functions is given in Table 5.1.

If only one set of polarization functions is used, an alternative notation in terms of
* is also widely used. The 6-31G* basis is identical to 6-31G(d), and 6-31G** is iden-
tical to 6-31G(d,p). A special note should be made for the 3-21G* basis. The 3-21G
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basis is basically too small to support polarization functions (it become unbalanced).
However, the 3-21G basis by itself performs poorly for hypervalent molecules, such 
as sulfoxides and sulfones. This can be improved substantially by adding a set of d-
functions. The 3-21G* basis has only d-functions on second row elements (it is some-
times denoted 3-21G(*) to indicate this), and should not be considered a polarized
basis. Rather the addition of a set of d-functions is an ad hoc repair of a known flaw.

5.4.2 Dunning–Huzinaga basis sets

Huzinaga has determined uncontracted energy-optimized basis sets up to (10s6p) for
first row elements.17 This was latter extended to (14s9p) by van Duijneveldt,18 and up
to (18s13p) by Partridge.19 Dunning has used the Huzinaga primitive GTOs to derive
various contraction schemes, and these are known as Dunning–Huzinaga (DH) type
basis sets.20 A DZ type basis can be made by a contraction of the (9s5p) PGTO to
[4s2p]. The contraction scheme is 6,1,1,1 for s-functions and 4,1 for the p-functions. A
widely used split valence type basis is a contraction of the same primitive set to [3s2p]
where the s-contraction is 7,2,1 (note that one primitive enters twice). A widely used
TZ type basis (actually only a triple split valence) is a contraction of the (10s6p) to
[5s3p], with the contraction scheme 6,2,1,1,1 for s-functions and 4,1,1 for p-functions.
Again, a duplication of one of the s- and p-primitives has been allowed.

McLean and Chandler have developed a similar set of contracted basis sets from
Huzinaga primitive optimized sets for second row elements.21 A DZ type basis is
derived by contracting (12s8p) → [5s3p], and a TZ type is derived by contracting
(12s9p) → [6s5p]. The latter contraction is 6,3,1,1,1,1 for the s-functions (note a dupli-
cation of one function) and 4,2,1,1,1 for the p-functions, and is often used in connec-
tion with the Pople 6-311G when second row elements are present.

The Dunning–Huzinaga type basis sets do not have the restriction of the Pople style
basis sets of equal exponents for the s- and p-functions, and they are therefore some-
what more flexible, but computationally also more expensive. The major determining
factor, however, is the number of basis functions and less so the exact description of
each function. Normally there is little difference in the performance between differ-
ent DZ or different TZ type basis sets.

The primary reason for the popularity of the Pople and DH style basis sets is the
extensive calibration available. There have been so many calculations reported with
these basis sets that it is possible to get a fairly good idea of the level of accuracy that
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Table 5.1 Composition in terms of contracted and primitive basis functions for some Pople style
basis sets

Basis Hydrogen First row elements Second row elements

Contracted Primitive Contracted Primitive Contracted Primitive

STO-3G 1s 3s 2s1p 6s3p 3s2p 9s6p
3-21G 2s 3s 3s2p 6s3p 4s3p 9s6p
6-31G(d,p) 2s1p 4s 3s2p1d 10s4p 4s3p1d 16s10p
6-311G(2df,2pd) 3s2p1d 5s 4s3p2d1f 11s5p 6s4p2d1fa 13s9pa

a McLean–Chandler basis set



can be attained with a given basis. This is of course a self-sustaining procedure, the
more calculations that are reported with a given basis, the more popular it becomes,
since the calibration set becomes larger and larger.

5.4.3 MINI, MIDI and MAXI basis sets

Tatewaki and Huzinaga have optimized minimum basis sets for a large part of the peri-
odic table at the HF level.22 The MINI-n (n = 1–4) basis sets are all minimum basis sets
with three PGTOs in the 2s CGTO, and a varying number of PGTOs in the 1s and 2p
CGTOs. In terms of PGTOs, the MINI-1 is (3s,3s,3p), the MINI-2 is (3s,3s,4p), the
MINI-3 is (4s,3s,3p) and the MINI-4 is (4s,3s,4p). These MINI basis sets in general
perform better than STO-3G, but it should be kept in mind that they are still minimum
basis sets. The MIDI-n basis sets are identical to MINI-n, except that the outer valence
function is decontracted. The MAXI-n basis sets all employ four PGTOs for the 2s
CGTO and from five to seven PGTOs for the 1s and 2p CGTOs. The valence orbitals
are split into three or four functions, and MAXI-1 is (9s5p) → [4s3p] (contraction
5,2,1,1 and 3,1,1), MAXI-3 is (10s6p) → [5s4p] (contraction 6,2,1,1,1 and 3,1,1,1) and
MAXI-5 is (11s7p) → [5s4p] (contraction 7,2,1,1,1 and 4,1,1,1).

5.4.4 Ahlrichs type basis sets

The group centred around R. Ahlrichs has designed basis sets of DZ, TZ and QZ
quality for the elements up to Kr.The Split Valence Polarized (SVP) basis set is a [3s2p]
contraction of a (7s4p) set of primitive functions (contraction 5,1,1 and 3,1), while the
Triple Zeta Valence (TZV) basis set is a [5s3p] contraction of an (11s6p) set of primi-
tive functions (contraction 6,2,1,1,1 and 4,1,1).23 More recently, the series has been
extended by a Quadruple Zeta Valence (QZV) basis set, being a [7s4p] contraction of
a (15s8p) set of primitive functions with the contraction 8,2,1,1,1,1,1 and 5,1,1,1.24 Note
that both the TZV and QZV basis sets employ more contracted s-functions than indi-
cated by the TZ and QZ acronyms. The s- and p-exponents and corresponding con-
traction coefficients are optimized at the HF level, while the polarization functions are
taken from the cc-pVxZ basis sets.
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Table 5.2 Composition in terms of contracted and primitive basis functions for the Ahlrichs type
basis sets

Basis Hydrogen First row elements Second row elements

Contracted Primitive Contracted Primitive Contracted Primitive

SVP 2s1p 4s 3s2p1d 7s4p 4s3p1d 10s7p
TZV 3s2p1d 5s 5s3p2d1f 11s6p 5s4p2d1f 14s9p
QZV 4s3p2d1f 7s 7s4p3d2f1g 15s8p 9s6p4d2f1g 20s14p

5.4.5 Atomic natural orbital basis sets

All of the above basis sets are of the segmented contraction type. Modern contracted
basis sets aimed at producing very accurate wave functions often employ a general



contraction scheme. The Atomic Natural Orbitals (ANO) and correlation consistent
basis sets below are of the general contraction type.

The idea in the ANO type basis sets is to contract a large PGTO set to a fairly small
number of CGTOs by using natural orbitals from a correlated calculation on the free
atom, typically at the CISD level.25 The natural orbitals are those that diagonalize the
density matrix, and the eigenvalues are called orbital occupation numbers (see Section
9.5). The orbital occupation number is the number of electrons in the orbital. For an
RHF wave function, ANOs would be identical to the canonical orbitals with occupa-
tion numbers of exactly 0 or 2. When a correlated wave function is used, however, the
occupation number may have any value between 0 and 2.The ANO contraction selects
the important combinations of the PGTOs from the magnitude of the occupation
numbers. A large primitive basis, typically generated as an even-tempered sequence,
may generate several different contracted basis sets by gradually lowering the selec-
tion threshold for the occupation number. The nice feature of the ANO contraction is
that it more or less “automatically” generates balanced basis sets, e.g. for neon the
ANO procedure generates the following basis set: [2s1p], [3s2p1d], [4s3p2d1f] and
[5s4p3d2f1g]. Furthermore, in such a sequence the smaller ANO basis sets are true
subsets of the larger, since the same set of primitive functions is used.

5.4.6 Correlation consistent basis sets

The primary disadvantage of ANO basis sets is that a very large number of primitive
GTOs are necessary for converging towards the basis set limit. Dunning and cowork-
ers have proposed a somewhat smaller set of primitives that yields comparable results
to the ANO basis sets.26 The correlation consistent (cc; the convention is to use lower
case letters as the acronym, to distinguish it from coupled cluster (CC)) basis sets are
geared towards recovering the correlation energy of the valence electrons. The name
correlation consistent refers to the fact that the basis sets are designed such that func-
tions that contribute similar amounts of correlation energy are included at the same
stage, independent of the function type. For example, the first d-function provides a
large energy lowering, but the contribution from a second d-function is similar to that
from the first f-function. The energy lowering from a third d-function is similar to that
from the second f-function and the first g -function. The addition of polarization func-
tions should therefore be done in the order: 1d, 2d1f and 3d2f1g. An additional feature
of the cc basis sets is that the energy error from the sp-basis should be comparable
with (or at least not exceed) the correlation error arising from the incomplete polar-
ization space, and the sp-basis therefore also increases as the polarization space is
extended.The s- and p-basis set exponents are optimized at the HF level for the atoms,
while the polarization exponents are optimized at the CISD level, and the primitive
functions are contracted by a general contraction scheme using natural orbital 
coefficients.

Several different sizes of cc basis sets are available in terms of final number of con-
tracted functions. These are known by their acronyms: cc-pVDZ, cc-pVTZ, cc-pVQZ,
cc-pV5Z and cc-pV6Z (correlation consistent polarized Valence Double/Triple/Quadru-
ple/Quintuple/Sextuple Zeta). The composition in terms of contracted and primitive
(for the s- and p-part) functions is shown in Table 5.3. Note that each step up in terms
of quality increases each type of basis function by one, and adds a new type of higher
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order polarization function. For second row systems it has been found that the per-
formance is significantly improved by adding an extra tight d-function.27

The energy-optimized cc-basis sets can be augmented with diffuse functions, indi-
cated by adding the prefix aug- to the acronym.28 The augmentation consists of adding
one extra function with a smaller exponent for each angular momentum, i.e. the aug-
cc-pVDZ has additionally one s-, one p- and one d-function, the cc-pVTZ has 1s1p1d1f
extra for non-hydrogens and so on.The cc-basis sets may also be augmented with addi-
tional tight functions (large exponents) if the interest is in recovering core–core and
core–valence electron correlation, producing the acronyms cc-pCVXZ (X = D, T, Q,
5). The cc-pCVDZ has additionally one tight s- and one p-function, the cc-pCVTZ has
2s2p1d tight functions, the cc-pCVQZ has 3s3p2d1f and the cc-pCV5Z has 4s4p3d2f1g
for non-hydrogens.29

5.4.7 Polarization consistent basis sets

The basis set convergence of electron correlation methods is inverse polynomial in the
highest angular momentum functions included in the basis set, while the convergence
of the independent-particle HF and DFT methods is exponential.30 This difference in
convergence properties suggests that the optimum basis sets for the two cases will also
be different, especially should low angular momentum functions be more important
for HF/DFT methods than for electron correlation methods as the basis set becomes
large. Since DFT methods (Chapter 6) are rapidly becoming the preferred method for
routine calculations, it is of interest to have basis sets that are optimized for DFT type
calculations, and that are capable of systematically approaching the basis set limit. The
polarization consistent (pc) basis sets are developed analogously to the correlation 
consistent basis sets except that they are optimized for DFT methods.31 The name indi-
cates that they are geared towards describing the polarization of the (atomic) electron
density upon formation of a molecule, rather than describing the correlation energy.
Since there is little difference between HF and DFT, and even less difference between
different DFT functionals, these basis sets are suitable for independent-particle
methods in general.

The polarization consistent basis sets again employ an energetic criterion for deter-
mining the importance of each type of basis function. The level of polarization beyond
the isolated atom is indicated by a value after the acronym, i.e. a pc-0 basis set is 
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Table 5.3 Composition in terms of contracted and primitive basis functions for the correlation con-
sistent basis sets

Basis Hydrogen First row elements Second row elements

Contracted Primitive Contracted Primitive Contracted Primitive

cc-pVDZ 2s1p 4s 3s2p1d 9s4p 4s3p2d 12s8p
cc-pVTZ 3s2p1d 5s 4s3p2d1f 10s5p 5s4p3d1f 15s9p
cc-pVQZ 4s3p2d1f 6s 5s4p3d2f1g 12s6p 6s5p4d2f1g 16s11p
cc-pV5Z 5s4p3d2f1g 8s 6s5p4d3f2g1h 14s8p 7s6p5d3f2g1h 20s12p
cc-pV6Z 6s5p4d3f2g1h 10s 7s6p5d4f3g2h1i 16s10p 8s7p6d4f3g2h1i 21s14p



unpolarized, pc-1 contains a single polarization function with one higher angular
momentum, pc-2 contains polarization functions up to two beyond that required for
the atom, etc. In contrast to the cc-pVxZ basis sets, the importance of the polarization
functions must be determined at the molecular level, since the atomic energies only
depend on s- and p-functions (at least for elements in the first two rows in the peri-
odic table). For the DZ and TZ type basis sets (pc-1 and pc-2), the consistent polar-
ization is the same as for the cc-pVxZ basis sets (1d and 2d1f), but at the QZ and 5Z
levels (pc-3 and pc-4) there are one and two additional d-functions (4d2f1g and
6d3f2g1h), respectively. The s- and p-basis set exponents are optimized at the DFT
level for the atoms, while the polarization exponents are selected as suitable average
values from optimizations for a selection of molecules.The primitive functions are sub-
sequently contracted by a general contraction scheme by using the atomic orbital coef-
ficients.

For properties dependent on the wave function tail, such as electric moments and
polarizabilities, the convergence towards the basis set limit can be improved by explic-
itly adding a set of diffuse functions, producing the acronym aug-pc-n.

5.4.8 Basis set extrapolation

The main advantage of the ANO, correlation consistent and polarization consistent
basis sets is the ability to generate a sequence of basis sets that converges toward the
basis set limit in a systematic fashion. For example, from a series of calculations with
the 3-21G, 6-31G(d,p), 6-311G(2d,2p) and 6-311++G(3df,3pd) basis sets it may not be
obvious whether the property of interest is “converged” with respect to further
increases in the basis, and it is difficult to estimate what the basis set limit would be.
This is partly due to the fact that different primitive GTOs are used in each of these
segmented basis sets, and partly due to the lack of higher angular momentum func-
tions. From the same (large) set of primitive GTOs, however, increasingly large ANO
basis sets may be generated by a general contraction scheme that allows an estimate
of the basis set limiting value. Similarly, the cc-pVxZ basis sets consistently reduce
errors (both HF and correlation) for each step up in quality. In test cases it has been
found that the cc-pVDZ basis can provide ~65% of the total (valence) correlation
energy, the cc-pVTZ ~85%, cc-pVQZ ~93%, cc-pV5Z ~96% and cc-pV6Z ~98%, with
similar reductions of the HF error.
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Table 5.4 Composition in terms of contracted and primitive basis functions for the polarization con-
sistent basis sets

Basis Hydrogen First row elements Second row elements

Contracted Primitive Contracted Primitive Contracted Primitive

pc-0 2s 3s 3s2p 5s3p 4s3p 8s6p
pc-1 2s1p 4s 3s2p1d 7s4p 4s3p1d 11s8p
pc-2 3s2p1d 6s 4s3p2d1f 10s6p 5s4p2d1f 13s10p
pc-3 5s4p2d1f 9s 6s5p4d2f1g 14s9p 6s5p4d2f1g 17s13p
pc-4 7s6p3d2f1g 11s 8s7p6d3f2g1h 18s11p 7s6p6d3f2g1h 20s16p



Given the systematic nature of the cc basis sets, several different schemes have been
proposed for extrapolation to the infinite basis set limit, using the highest angular
momentum Lmax included in the basis set as the extrapolating parameter.32 At the HF
and DFT levels the convergence is expected to be exponential, and indeed functions
of the form shown in eq. (5.10) in connection with the cc-pVxZ basis sets usually
provide a good fit.33

(5.10)

An alternative fitting function (eq. (5.11)) for use with the pc-n basis sets has been
shown to improve the accuracy of absolute energies by almost an order of magnitude,
although relative energies are only marginally improved.34 The number of s-functions
(Ns) in the basis set is here used as the main extrapolating parameter.

(5.11)

Exponential forms like eq. (5.10) have also been used for extrapolating the total energy
at correlated levels of theory with the cc-pVxZ basis sets.Theoretical analysis, however,
suggest that the correlation energy itself (i.e. not the total energy, which includes the
HF contribution) should converge with an inverse power dependence, with the leading
term for singlet electron pairs being (L + 1)−3 while the leading term for triplet pairs
is (L + 1)−5.35 The theoretical assumption underlying these results is that the basis set
is saturated in the radial part (e.g. a TZ type basis set should be complete in the s-,
p-, d- and f-function space).This is not the case for the correlation consistent basis sets:
even for the cc-pV6Z basis set, the errors due to insufficient numbers of s- to i-func-
tions are comparable with that from neglect of functions with angular momentum
higher than i-functions. Nevertheless, it has been found that extrapolations based on
only the leading L−3 term give good results when compared with accurate results gen-
erated by for example R12 methods.36 This has the advantage that the infinite basis set
result can be estimated from only two calculations with basis sets having maximum
angular momentum N and M according to eq. (5.12).

(5.12)

It has been suggested that a separate extrapolation of the singlet (opposite spin) and
triplet (same spin) correlation energies with A + B(L + 1/2)−3 and A + B(L + 1/2)−5 func-
tion forms, respectively, may provide better results.37

The main difficulty in using the cc-pVxZ or pc-n basis sets is that each step up in quality
roughly doubles the number of basis functions. The fitting functions in eqs (5.10) and
(5.11) contain three parameters, and therefore require at least three calculations 
with increasingly larger basis sets. The simplest sequence is cc-pVDZ, cc-pVTZ and 
cc-pVQZ, but the cc-pVDZ basis is too small to give good extrapolated values for the
correlation energy, and a better sequence is cc-pVTZ, cc-pVQZ and cc-pV5Z. The
requirement of performing calculations with at least the cc-pVQZ basis places severe
constraints on the size of the systems that can be treated.The extrapolation based on eq.
(5.12) has the advantage of requiring only two reference calculations. It should be noted
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that the B parameter in eq. (5.11) varies little from system to system, and taking this to
be a universal constant also reduces eq. (5.11) to a two-parameter fitting function.

Perhaps the most interesting aspect of the analyses that led to the development of
the correlation consistent basis sets is the fact that high angular momentum functions
are necessary for achieving high accuracy. While d-polarization functions are sufficient
for a DZ type basis, a TZ type should also include f-functions. Similarly, it is ques-
tionable to use a QZ type basis for the sp-functions without also including three d-,
two f- and one g -function in order to systematically reduce the errors. It can therefore
be argued that an extension of for example the 6-31G(d,p) to 6-311G(d,p) is incon-
sistent as the second set of d-orbitals (and second set of p-orbitals for hydrogen) and
a set of f-functions (d-functions for hydrogen) will give similar contributions as the
extra set of sp-functions. Similarly, the extension of the 6-311G(2df,2pd) basis to 6-
311G(3df,3pd) may be considered inconsistent, as the third d-function is expected to
be as important as the fourth valence set of sp-functions, the second set of f-functions
and the first set of g -functions, all of which are neglected.

In the search for a basis set converged value, other approximations should be kept
in mind. Basis sets with many high angular momentum functions are normally designed
for recovering a large fraction of the correlation energy. In the majority of cases, only
the electron correlation of the valence electrons is considered (frozen-core approxi-
mation), since the core orbitals usually are insensitive to the molecular environment.
As the valence space approaches completeness in terms of basis functions, the error
from the frozen-core approximation will at some point become comparable to the
remaining valence error. From studies of small molecules, where good experimental
data are available, it is suggested that the effect of core electron correlation for unprob-
lematic systems is comparable with the change observed upon enlarging the cc-pV5Z
basis, i.e. of a similar magnitude as the introduction of h-functions.38 Improvements
beyond the cc-pV6Z basis set have been argued to produce changes of similar magni-
tude to those expected from relativistic corrections for first row elements, and further
increases to cc-pV7Z and cc-pV8Z type basis sets would be comparable with correc-
tions due to breakdown of the Born–Oppenheimer approximation for systems with
hydrogen. Within the non-relativistic realm, it would therefore appear that basis 
sets larger than cc-pV6Z would be of little use, except for extrapolating to the non-
relativistic, clamped nuclei limit for testing purposes. In attempts at obtaining results
of “spectroscopic accuracy” (~0.01kJ/mol), a brute force calculation with for example
the cc-pV7Z quality basis set combined with explicit extrapolation has been shown to
become problematic,37 and such high-quality results must probably be obtained by
explicit correlated techniques, such as the R12 method discussed in Section 4.11.

There is a practical aspect of using large basis sets, especially those including diffuse
functions, that requires special attention, namely the problem of linear dependence.
Linear dependence means that one (or more) of the basis functions can be written as
a linear combination of the other, i.e. the basis set is overcomplete. A diffuse function
has a small exponent and consequently extends far away from the nucleus on which it
is located. An equally diffuse function located on a nearby atom will therefore span
almost the same space. A measure of the degree of linear dependence in a basis set
can be obtained from the eigenvalues of the overlap matrix S (eq. (3.51)). A truly lin-
early dependent basis will have at least one eigenvalue of exactly zero, and the small-
est eigenvalue of the S matrix is therefore an indication of how close the actual basis
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set is to linear dependence. As described in Section 16.2.3, solution of the SCF equa-
tions requires orthogonalization of the basis by means of the S−1/2 matrix (or a related
matrix that makes the basis orthogonal). If one of the S matrix eigenvalues is close to
zero, this means that the S−1/2 matrix is essentially singular, which in turn will cause
numerical problems if trying to carry out an actual calculation. In practice, there is
therefore an upper limit on how close to completeness a basis set can be chosen to be,
and this limit is determined by the finite precision with which the calculations are
carried out. If the selected basis set turns out to be too close to linear dependence to
be handled, the linear combinations of basis functions with low eigenvalues in the S
matrix may be discarded.

5.5 Plane Wave Basis Functions
Rather than starting with basis functions aimed at modelling the atomic orbitals (STOs
or GTOs), and forming linear combination of these to describe orbitals for the whole
system, one may use functions aimed directly at the full system. For modelling
extended (infinite) systems, for example a unit cell with periodic boundary conditions,
this suggests the use of functions with an “infinite” range. The outer valence electrons
in metals behave almost like free electrons, which leads to the idea of using solutions
for the free electron as basis functions. The solutions to the Schrödinger equation for
a free electron in one dimension can be written either in terms of complex exponen-
tials or cosine and sine functions.

(5.13)

Note that the energy depends quadratically on the k factor. For infinite systems,
the molecular orbitals coalesce into bands, since the energy spacing between distinct
levels vanishes. The electrons in a band can be described by orbitals expanded in 
a basis set of plane waves, which in three dimensions can be written as a complex 
function.

(5.14)

The wave vector k plays the same role as the exponent z in a GTO (eq. (5.2)), and is
related to the energy by means of eq. (5.13) (conventionally given in units of eV). As
seen in eq. (5.14), k can also be thought of as a frequency factor, with high k values
indicating a rapid oscillation. The permissible k values are given by the unit cell trans-
lational vector t, i.e. k ⋅ t = 2π m, with m being a positive integer. This leads to a typical
spacing between k vectors of ~0.01eV, and the size of the basis set is thus uniquely
characterized by the highest energy k vector included. A typical energy cutoff of 
200eV thus corresponds to a basis set with ~20000 functions, i.e. plane wave basis sets
tend to be significantly larger than typical Gaussian basis sets. Note, however, that the
size of a plane wave basis set depends only on the size of the periodic cell, not on the
actual system described within the cell. This is in contrast to the linear increase with
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