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A B S T R A C T

Commercial and scientific plant breeding programs require the phenotyping of large populations. Phenotyping is
typically a manual task (costly, time-consuming and sometimes arbitrary). The use of computer vision techni-
ques is a potential solution to some of these specific tasks. In the last years, Deep Learning, and in particular
Convolutional Neural Networks (CNNs), have shown a number of advantages over traditional methods in the
area. In this work we introduce a computer vision method that estimates the number of seeds into soybean pods,
a difficult task that usually requires the intervention of human experts. To this end we developed a classic
approach, based on tailored features extraction (FE) followed by a Support Vector Machines (SVM) classification
model, and also the referred CNNs. We show how standard CNNs can be easily configured and how a simple
method can be used to visualize the key features learned by the model in order to infer the correct class. We
processed different seasons batches with both methods obtaining 50.4% (FE+ SVM) and 86.2% (CNN) of ac-
curacy in test, highlighting the particularly high increase in generalization capabilities of a deep learning ap-
proach over a classic machine vision approach in this task. Dataset and code are publicly available.

1. Introduction

Plant phenotyping can be defined as the identification and quanti-
fication of effects on the phenotype (i.e., the appearance and behavior
of plants), using appropriate protocols and measurements, as result of
both genotype differences and the interaction with the environment
(Fiorani and Schurr, 2013). In their search for increased yields, plant
breeding programs require the phenotyping of large populations,
evaluating some or even several useful traits (Ghanem et al., 2015). In
addition, the results must be validated through multiple environments
and replicated trials, increasing the burden of the process. Un-
fortunately, phenotyping is typically a manual task, therefore laborious,
costly, and time-consuming. Even more, visual evaluation over many
segregating plants in the field is very difficult and error-prone due to
the observer subjectivity. As a consequence, phenotyping has become a
bottleneck for plant breeding programs (Singh et al., 2016). Thus, the
possibility of developing quick, accurate and repeatable methods to
characterize individual plant phenotypes will increase the quality of the
selection process and will provide a useful tool to foster the in-
corporation of desirable traits into commercial germplasm.

In recent years, imaging-based automatic methods have been in-
troduced to plant phenotyping (Fahlgren et al., 2015; Scharr et al.,
2016), using diverse devices and multiple scales. For example, Bendig

et al. (2014) used aerial images to estimate the biomass of entire crops.
Giuffrida et al. (2015) developed an efficient method for counting
leaves in rosette plants with images of individual plants in a controlled
environment in the context of the Leaf Counting Challenge held in the
CVPPP 2015 workshop. This challenge led to ongoing research which is
using deep learning techniques, (Aich and Stavness, 2017; Dobrescu
et al., 2017) for instance. Also (Pound et al., 2017) used deep learning
for localising wheat spikes and spikelets.

In particular, the yield of a soybean crop depends on three major
components: the number of pods per plant (PN), the number of seeds
per pod (SPP) and the seed size (Fehr, 1987). Under cultivation con-
ditions, yield is subject to strong genotype-environment interaction.
However, of the three main components, SPP is the least subject to
environmental influence (i.e. it is a characteristic of the genotype
(Board and Harville, 1998)) thus offering the opportunity to genetically
manipulate it to improve the yield potential of a cultivar.

The main goal of any breeding program is to develop varieties with
high yield potential. The capability of selecting for traits linked to yield
components such as high PN and SPP, early during the selection pro-
cess, would increase the efficiency of the breeding program. This im-
plies to cope with large genetic-engineering experiments consisting in
the order of tens of thousands plants to be manually labeled pod by pod,
among the other previous mentioned features, to select the best
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phenotype.
Counting the number of pods per plant is a simple but tedious task

that can be easily automated. Furthermore, estimating the number of
seeds per pod is laborious and difficult as well, requiring visual in-
spection of each pod by a human expert. The difficulty of the task relies
on the wide range of maturing sizes of seeds within the pods as a result
of environmental or genetic factors. All seeds must be counted even if
they have suffered an abortion in the early stages of pod development.
In such limit cases a trained expert can still visually distinguish subtle
changes in pod shape evidencing the presence of an aborted seed. As a
measure of the difficulty of the task, we point out that a group of
trained operators achieve an accuracy of 84% (with an standard de-
viation of 2%).1

In this work we introduce an automated tool that could replace
human experts in this counting task, allowing the increase in scale of
breeding programs without losing accuracy and, in consequence, the
speed up of the complete process. There are some precedents for au-
tomatic object counting from digital images in the context of agri-
cultural applications (Dorj et al., 2017; Harmsen and Koenderink, 2009;
Liu et al., 2017; Maldonado and Barbosa, 2016; Mussadiq et al., 2015;
Aich and Stavness, 2017; Dobrescu et al., 2017; Pound et al., 2017).
However, our case is different as we need to infer the number of seeds
–that are hidden– from the pod shape.

Convolutional Neural Networks (CNNs) have proven to be very ef-
fective at solving vision problems in a wide range of fields and they
have been one of key elements of the success of Deep Learning (LeCun
et al., 2015). In the context of agricultural applications, recent years
have witnessed a growing tendency to replace classic techniques with
deep learning algorithms for a variety of vision tasks (Grinblat et al.,
2016; Ding and Taylor, 2016; Sladojevic et al., 2016; Lu et al., 2017;
Tang et al., 2017). Even a typical phenotyping problem, counting
leaves, has been tackled with these techniques (Ubbens and Stavness,
2017). Recently, a complete survey of Deep Learning in agriculture has
been published (Kamilaris and Prenafeta-Boldú, 2018). According to
this survey our application is new and will fall into the area of plant
phenology recognition where only two paper were surveyed (Yalcin,
2017; Namin et al., 2017).

The advantages of the Deep Learning approach for vision tasks are
twofold: there is no need to carefully design handcrafted features ex-
tractors for the problem at hand, as CNNs can learn specialized features
extractors from raw data, and when provided with enough data, CNNs
generally reach higher accuracies than classic techniques (LeCun et al.,
2015). An important drawback of neural networks is the high number
of hyperparameters associated to the model architecture design (such as
number of layer, units per layer, etc) and the training algorithm
(learning rate, momentum) as well. Finding appropriate values may feel
like a challenging task to an inexperienced user. However, current deep
learning libraries offer default values for hyperparameters which are
good starting points for optimal search.

The aim of this paper is to tackle the problem of counting the SPP
number for soybean pods with a Deep Learning approach based on
standard Convolutional Neural Networks and to compare the results
with a classic approach based on a set of tailored features extracted
specifically for this problem and a SVM classifier. We also offer an
extensive study of how hyperparameters selection impacts on the CNN’s
performance on this task. This paper also aims to contribute to col-
lecting evidence in favor of the widespread use of Deep Learning for
agricultural applications even for users not specialized in these tools.

2. Background

2.1. Classic approach

The classic procedure in machine vision is to define and extract
appropriate features for the problem at hand and then train a classifier
(e.g. an SVM with Gaussian kernel) in the corresponding representation
space (as done for example in (Wu et al., 2007; Pydipati et al., 2006;
Golzarian and Frick, 2011)). Part of our team firstly tackled this pro-
blem with such a classic strategy.

In a preliminary stage, three state-of-the-art classic classification
methods were implemented, namely SVM, Random Forest (RF)
(Breiman, 2001) and Penalized Discriminant Analysis (PDA) (Hastie
et al., 1995). The cross-validation error for the three methods were
found to be comparable, with a slight difference in favor of SVM. For
this reason, in this paper SVM was chosen as the classic classification
method for comparison purposes against CNN.

Regarding the handcrafted features, many geometrical (Umbaugh,
2005) and shape (Hu, 1962) features were considered at first. Lately,
the addition of a 25-bin histogram of the profile of the pod shown to
improve classification. Alternatively, an ad hoc method of ellipse fitting
of beans inside the pod was designed, but it did not show any im-
provement.

2.2. Convolutional neural networks

CNNs, introduced by LeCun et al. (1990), have an architecture
specially designed to process images. Its topology leads to a huge re-
duction in the number of free trainable parameters in comparison to a
standard (fully connected) artificial neural network. This is due to its
sparse neural connectivity (restricted to small receptive fields) and to
the sharing of filter values along image locations exploiting transla-
tional invariance. In the following we briefly describe CNN’s archi-
tecture mainly with the purpose of defining the hyperparameters con-
sidered in this work. For a more detailed description of this kind of
models, we refer the reader to (LeCun et al., 2010) and references
therein.

Fig. 4 depicts a diagram of the considered CNN model, inspired on
the VGG architecture (Simonyan and Zisserman, 2014). Each layer is
composed of three transforms. First, there is a convolution operation
between the input image and a filter bank. Each filter has a bounded
size associated to a small receptive field in the input image, typically
3×3 or 5×5 filter sizes are considered. For each filter in the bank, the
convolution produces a feature map. Together with the convolution
operation a subsampling step may be introduced. This replaces the
standard average or max pooling operation by simply setting an stride
larger than 1 in the convolution transform (Springenberg et al., 2014).
A subsampling of factor 2 in each dimension of the feature map retains
1/4 of the output values (those with even indexes). This subsampling is
usually accompanied with a duplication of the number of feature maps
with respect to previous convolutional layers.

Second, a Batch Normalization (BN) transform (Ioffe and Christian,
2015) is applied after each convolution. This transform standardizes
convolution output by fixing maps mean and deviation to 0 and 1 re-
spectively over small batches of samples. It then applies a learnable
gain and bias to each feature map. This layer has a beneficial regular-
ization effect that has been verified in numerous machine vision ap-
plications (Vinyals et al., 2015; Radford et al., 2015; He et al., 2016),
making it a standard tool.

Finally, the third transform is an element-wise nonlinear function
applied to all feature maps. We use in all cases the Leaky ReLU func-
tion2 (Maas et al., 2013), which is widely used to enhance the back-
propagation signal.

1 In order to further illustrate the difficulty of the classification task, we have in-
tentionally included in Fig. 2 some hard samples together with more common cases. 2

=LReLU x x x( ) max(0.01 , ).
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The last layer in the network is a softmax function. It returns the
estimated probability of each class, given a concrete sample. This layer
is fully connected to all output feature maps of the last convolutional
layer. Alternatively, a pooling operation can be applied before this last
layer to reduce dimensionality and, hence, the number of trainable
parameters. We considered a global max-pooling operation that keeps
just one output per feature map (the maximum).

A final relevant comment on CNNs is about visualization techni-
ques. The procedures developed in (Zeiler and Fergus, 2014) allow the
visualization of the patterns that are detected at each layer of the deep
network, contributing to a partial reduction of CNNs from the category
of black-box models. In this paper we use a simple procedure con-
sidered in (Zeiler and Fergus, 2014) for highlighting the most relevant
input image regions for the network output probabilities (see Fig. 7).

3. Materials and methods

3.1. Data collection

In this study we considered populations of soybean plants coming
from crosses among parents with diverse SPPs. We also considered
populations from two consecutive seasons, in order to account for ty-
pical interseasonal variability.

The acquisition protocol starts collecting all the pods of a single
plant with full maturity (R8 stage (Fehr and Caviness, 1977)). The pods
are placed over a lightbox taking care to separate them from each other
to facilitate posterior digital segmentation. Camera setups and position
are kept fixed during each photography session where pod pictures of
several plants are taken. Before each session, a picture of an object of
known size is taken to calibrate the image scale for all the session.3 For
each plant three photographs were taken (see Fig. 1), one for each class
(2-, 3-, and 4-SPP) where pods of the corresponding class are placed on
top of the lightbox for the capture. For this task, a trained expert vi-
sually inspect each pod and classifies them by SPP class based on fea-
tures like number of protuberances, shape of pod contour, etc.

3.2. Pods segmentation

We used OpenCV library (Bradski, 2000) for pods segmentation.
Since segmentation is a simple task for these lightbox images (Fig. 1)
almost any strategy allows for optimal results and therefore we only
give here a minimal guideline. White background can be easily iden-
tified by thresholding the histogram of the full grayscale image. Borders
of the image were removed by considering objects inside the white
background external contour. We search for connected components and
discard small objects. Then, a watershed procedure is applied to segment
mutually touching objects. At this point we have a binary mask for each
pod in the image. We apply the mask to isolate each pod image and then
we compute the bounding rectangle with minimum area (best fitting ro-
tated rectangle). Finally, we crop the rectangle region and align all
images along the longest side. Fig. 2 shows sample images of segmented
pods for each class. Table 1 shows how many pods were obtained after
this segmentation process for each class and season.

3.3. Preprocessing

We considered a few simple image transformations before feeding
the CNN. The processing protocol was designed bearing in mind the
preservation of the relevant features for SPP visual estimation.

First we transform images to grayscale. Using color features would
require increasing acquisition specifications such as white balance, il-
lumination, exposure time, etc. and also the lapse that the plant is

stored before being photographed (since this also alters the intensity of
green). With these extra specifications the whole classification system
becomes less robust. On the other hand, we know that the problem at
hand can be solved by looking only at shape features.

We also rescale each pod image (keeping the aspect ratio) to fit
96× 32 resolution. We span each image histogram to full range
(0–255). Finally we invert intensity values in order to set background as
0. Fig. 3 shows the resulting images after preprocessing for the same set
of Fig. 2. The full dataset of processed images can be downloaded from
http://www.cifasis-conicet.gov.ar/uzal/dataset/soybean_pods.tar.gz.

3.4. Data augmentation

It is known that artificially increasing the number of training sam-
ples by applying simple random transformations to input images tends
to improve CNNs performance4 (Chatfield et al., 2014). Examples of
such transformations –which should not alter the class label of the
image– are flipping, shifting, scaling, rotating, shearing, among others
(Keras Documentation – Image Data Generator). We also considered a
random remapping of the image tonality by setting random curves
(Gimp Documentation – Curves Tool) for pixelwise intensity transfor-
mation. Except for flipping, the amplitudes of all these transformations
are continuous variables that can be regulated. For example, a random
rotation can be bounded to a maximum angle ranging from 0 (no ro-
tation based augmentation) to 180 degrees (free random rotations). We
consider these amplitudes as hyperparameters of the training procedure
and include them in the analysis of Section 3.8.

3.5. Feature extraction details

For the classic approach, a total of 38 tailored features were ex-
tracted from each automated segmentation of the pod. These features
include essential geometrical characteristics (Umbaugh, 2005) (area,
perimeter, major and minor axis length), shape features (Umbaugh,
2005) (density, elongation, compactness, rugosity and axis ratio), first 4
Hu moments (Hu, 1962), and finally a 25 bins histogram of the profile
of the pod straighten mask added along the short axis. Segmented pods
were binarized before feature extraction. All features were standardized
before learning. The feature extraction process was done using standard
OpenCV methods (Bradski, 2000).

3.6. SVM implementation details

We consider a support vector classifier with a Gaussian radial basis
function (rbf) as kernel. This model has two hyperparameters: (i) the
penalty parameter C of the error term in the SVM formulation and (ii)
the shape parameter gamma of the rbf kernel.5 We consider an ex-
haustive grid search for both hyperparameters with grid values [0.5, 1,
3, 5, 10, 50, 100, 200, 1000] for C and [50, 20, 14, 10, 5, 2, 1, 0.5, 0.2,
0.1, 0.05] for gamma. For the SVM implementation we use the Scikit-
learn machine learning library (Pedregosa et al., 2011).

3.7. CNN implementation details

We explored different model architectures with the main structure
as depicted in Fig. 4. We consider blocks of layers with a fixed number
of convolutional layers. In the last convolutional layer of the block a
stride factor of 2 in each spatial dimension reduces next block input
feature map size by 4. Following the standard practice, together with
this stride, we duplicate the number of feature maps. We call block-
Size to the number of layers in each block and nBlocks to the number

3 The real scale of the pod images is used only for the classic feature extraction ap-
proach. For the deep learning approach we discard scale information.

4 The kind of transformations considered are ineffective for classic features, as they are
based on binary masks and scale- and rotation-independent measurements.

5
= − −K u v γ u v( , ) exp( | | )2 .
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of blocks in the network. We have therefore two hyperparameters for
controlling model depth: blockSize and nBlocks.6

A global spatial pooling is applied to the last convolutional layer
output. Finally, the last layer is a fully- connected layer (affine trans-
formation) with a softmax nonlinearity that provides a probability

output for each class.
Fig. 4 shows, as an example, the model corresponding to block-

Size = 4 and nBlocks = 3, totalling 12 convolutional layers. The
number of maps (nMaps in the figure) is widthFactor in the first 4
layers, 2∗widthFactor in layers 5 to 8 and 4∗widthFactor in the
last 4 layers.

The models were trained using the Adam optimization algorithm
(Kingma and Adam, 2014). This broadly adopted extension of the
classic stochastic gradient descent algorithm computes individual
adaptive learning rates for different parameters from estimates of first
and second moments of the gradient. We set default parameters for this
method except for the learning rate parameter for which we test
random uniform values in a logarithmic scale around default value (see
Table 2).

All the models were implemented7 using Theano (Theano
Development Team, 2016) and Lasagne (Dieleman et al., 2015), two
libraries for Python which enormously simplify the training and usage
of neural nets, and particularly convolutional neural nets. Regarding
hardware, we used computers equipped with NVidia GeForce GTX 970
GPUs. With this setup, the considered 6000 iterations of training, for an
average model size, take about 15min.

3.8. Hyperparameter search

Table 2 shows the hyperparameters explored both for SVM and
CNN. With the latter, we also test varying amplitudes for different data
augmentation strategies. The size of the hyperparameter set for the
CNN training makes the standard grid search infeasible. Instead, we
consider a random search of hyperparameters (Bergstra and Bengio,
2012) which simply consists in progressively testing random combi-
nations of hyperparameters values. This strategy is suitable when we
expect that not all the hyperparameters have significant impact on
model performance. In Section 4, we show that this hypothesis was
confirmed.

3.9. Group k-fold cross-validation

To evaluate the classification performance for both considered ap-
proaches and for each hyperparameter combination we follow a stan-
dard group k-fold cross-validation procedure. This variation of k-fold
ensures that the same group is not represented in both validation and
training sets. For our dataset, the groups are defined by the photo

Fig. 1. Sample photographs of soybean pods used to build the dataset. Each pod is manually classified by an expert and photographed within its class group defined
by the SPP number.

Table 1
Total number of examples corresponding to each class and season.

Class Season 1 Season 2

2-SPP 811 3746
3-SPP 4598 5075
4-SPP 2444 1504

Total 7853 10325

Fig. 2. Pod images obtained after segmentation process. Each panel corre-
sponds to one of the three class label to be recognized, defined by the number of
seeds per pod (SPP). Images shown preserve the original relative sizes.

Fig. 3. Images obtained after preprocessing step. Samples are the same of
Fig. 2.

6 depth = blockSize ∗ nBlocks + 1. 7 The code is available at https://github.com/CIFASIS/spp_estimation.
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session detailed in Section 3.1. This grouping avoids possible correla-
tions between pods of the same plant or unexpected photo capture ar-
tifacts (such as illumination or focus shift) which may bias performance
estimation. As we just possess a small number of sessions, we set one
fold per session.

3.10. Experimental setup

We first perform a hyperparameter search for both SVM and CNN.

Hyperparameter combinations were chosen randomly (see Section 3.8).
We consider as performance measure the classification accuracy (frac-
tion of samples correctly classified). Each selected hyperparameter
combination was evaluated over Season 1 data by group k-fold cross-
validation (see Section 3.9). We report as validation accuracy the mean
accuracy (and standard deviation) over the k folds of this season. Based
on this search we chose a single set of hyperparameters for the CNN and
the SVM.

The second stage is to evaluate and compare the CNN and SVM
models using only the selected hyperparameters. To this end we con-
sider Season 2 data as test set. Reported test accuracy mean and stan-
dard deviation were computed over test session groups and averaged
over k-fold models.

4. Results and discussion

Fig. 5 summarizes the CNN results on validation accuracy for a
random search in the space of hyperparameters. Accuracies shown are
averages over group k-fold cross-validation sets from Season 1 data. The
main conclusion derived from these results is that it is not necessary to
make a careful selection of hyperparameters, but simply to consider a
sufficiently deep network. This statement follows from observing that
the accuracy does not correlate with training and data augmentation
hyperparameters and yet it has a strong dependence on the network
depth. It can also be observed that a very small batchSize limits
accuracy. We believe that this behavior is rooted in the BN layers which
perform statistics over batch samples. Very low batchSize may cause
an unstable behavior of these layers. Another second-order effect is
observed for the learning rate: very low learning rates (below −10 4)
amplify accuracies dispersion below optimal values. Given that we are
training with a fixed number of iterations, low learning rates may
simply not reach optimal accuracies and require more training time.

From the above exposed, we have to select the best combination of
hyperparameters as candidate CNN model for further analysis. Given
that a huge number of setups have near optimal performance (34% of
random trials reach accuracies above 0.94) we can bias our choice to
low size models without a significant loss of performance. In particular,
the selected setup (pointed with a red arrow in Fig. 5) ranked second in
terms of accuracy and it has two orders of magnitude less trainable
parameters than setups of equivalent performance. Choosing the
smallest model is justified by practical considerations such as reducing
training and testing time.

When we evaluate the selected CNN model over test data (Season 2)
we obtain a mean accuracy of ±0.862 0.052. This is just slightly above
the accuracy reached by trained operators ( ±0.84 0.02). This may
suggest that the CNN have the same difficulties as humans in classifying
some hard samples. On the other hand we have not detected mis-
labelling on the dataset (but, as in any large dataset, we cannot discard
the existence of mislabeled samples) that could explain part of the
misclassified samples.

The next step was to compare the selected CNN model with the
classifier based on the classic approach (feature extraction plus an
SVM). Table 3 shows this comparison; it presents the results obtained
with an SVM and with a CNN (with and without data augmentation).
Regarding validation accuracy (based on group k-fold over the Season 1
dataset) we can observe that the difference between the methods is
small nonetheless consistent. However, if the obtained models are ap-
plied to a test sample corresponding to Season 2 (not used in the
training process) the differences become very important. While the
classifier based on feature extraction+ SVM strongly deteriorates, the
CNN-based ones maintain an acceptable generalization capacity. In
addition, data augmentation improves the test accuracy over the next
season. This implies that the variations in shape, size and illumination
performed by this process may recreate part of the diversity present in
the test season but not in the training one. The low generalization of
SVM models could be related to changes in the mean size of a pod from

Fig. 4. Architecture of the Convolutional Neural Network selected in this work.
There is a total of 12 convolutional layers plus an output softmax layer defining
a depth of 13 layers. Each convolutional layer is labeled with its filter size, the
number of filters, and the stride, respectively. This model has 3 blocks of 4
convolutional layers each. Every block ends with a convolutional layer with a
stride of 2 in each spatial dimension together with a duplication of the number
of filters. A global spatial pooling is applied before the fully- connected softmax
layer. This architecture results from a search over networks of different num-
bers of blocks, block sizes and initial numbers of filters.
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one season to another. We checked (data not shown) that deleting the
four scale-dependent features (e.g area) does not improve the inter
seasonal performance of the SVM models, suggesting that size is not the
exclusive difference among seasons.

As to further characterize discrepancies among seasons we con-
sidered the inverse problem of training with Season 2 and testing on
Season 1. For this experiment, we use fixed hyperparameters, those
obtained by the random search. Fig. 6 compares training curves for
both cases. The green curve shows the accuracy computed over a
random minibatch during training. Every 100 iterations the accuracy is
computed on the validation fold (blue line). When this validation ac-
curacy reaches a new maximum (blue empty circles), the model is saved
and the test accuracy is computed (red dots). The best model is chosen

(i.e. early stopping of training) based only on validation performance
and test accuracy is computed for visualization purposes only.

Comparing the two panels in Fig. 6, it can be seen that although the
model trained on Season 1 does not completely generalize on Season 2,
the behavior is not symmetrical. When training on Season 2, the ac-
curacies tested on Season 1 are systematically better than those of va-
lidation. This confirms that the low generalization between these two
seasons is not simply due to a bias in the pod features (e. g. a shift in the
mean size) but that Season 2 dataset appears to contain more diverse
and difficult examples which are not present in Season 1. On the other
hand, Season 1 dataset characteristics seem to be totally included in
Season 2 data. The difference in performance between classic and deep
learning methods highlights the generalization capability of CNNs,
based on their ability to learn appropriate and simple high level fea-
tures from the data.

Finally, we considered training over joined Seasons 1 and 2.8 To this
end we concatenated datasets and considered nested group k-fold cross-
validation loops. The outer loop separates each fold for testing, while
the inner loop considered the remaining −k( 1) folds and separates one
for validation (for CNN early stopping) and the rest for training. This
concatenated dataset has 11 sessions and therefore we considered

Table 2
Explored hyperparameters and selected values (see Section 4) for SVM, CNN and Data Augmentation.

Method Hyperparameter Range Selected Valu Description

SVM C [0.5, 1, 3, 5, 10, 50, 10 SVM C parameter
100, 200, 1000]

gamma [50, 20, 14, 10, 5, 2, 10 Gaussian kernel gamma
1, 0.5, 0.2, 0.1, 0.05]

CNN blockSize [1–4] 4 Layers per block
nBlocks [1–5] 3 Number of blocks
widthFactor [8, 16, 32, 48, 64, 96, 128] 16 Multiplicative factor for the number of maps
log10lr [−5.0 to −2.0] −2.43 Learning rate (log10 scale)
log10wd [−5.0–0.0] −1.10 Weight decay (log10 scale)
batchSize [16, 32, 48, 64, 96, 128] 128 Samples per minibatch

Data Augm. zoom [0.9–1.1] 0.97 Zoom range center
zoomRange [0.0–0.25] 0.18 Amplitude of zoom interval
shear [0.0–0.35] 0.14 Maximum shear angle (radians)
wShift [0.0–10.0] 2.8 Maximum horizontal shift (%)
hShift [0.0–10.0] 1.6 Maximum vertical shift (%)
curves [0.0–0.75] 0.58 Maximum curve strength
rot [0–20] 20 Maximum random rotation (degrees)

Fig. 5. Random search of hyperparameters
for CNN training. The first row corresponds
to model hyperparameters (defining net-
work architecture). Variables depth and
CNNsize are significative quantities de-
rived from hyperparameters blockSize,
nBlocks, and widthFactor. The rest of
the panels corresponds to training algorithm
and data augmentation hyperparameters
(see Table 2 for details). Validation accuracy
is almost insensitive to these training and
data augmentation parameters. In order to
reach high accuracies (above 90%), the only
thing needed is to take a deep enough, high
capacity network. Red arrows show the
model selected which is a tradeoff between
maximizing accuracy and minimizing model
size.

Table 3
Accuracy for different methods trained on Season 1 data and tested on Season 2
data. Mean and deviation for validation accuracies were computed with a group
k-fold procedure over training data. Test accuracy mean and standard deviation
were computed over test session groups and averaged over k-fold models.

Method Valid. Accuracy Test Accuracy

Features+ SVM ±0.902 0.022 ±0.504 0.145
CNN without Data Augmentation ±0.936 0.009 ±0.827 0.043
CNN with Data Augmentation ±0.951 0.005 ±0.862 0.052

8 Also for this experiment, we use fixed hyperparameters, those obtained by the
random search.
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=k 11 folds for the outer loop and 10 folds for the inner loop. This
means × =11 10 110 training runs over which we compute mean and
standard deviation of model accuracies on test sets. The obtained value
is ±0.92 0.05. This value is our best proxy of expected accuracy over
new unseen data. It does not take into account possible new changes in
data distribution as seen from Season 1 to Season 2.

4.1. Visualizing relevant patterns

We also performed an analysis to visualize which elements of an
image are the most relevant for the CNN model to reach the final
classification. We intend to show which regions of a pod image were
more relevant to the CNN as to determine its output. We follow a simple
but very effective technique based on evaluating the image with partial
occlusions (Zeiler and Fergus, 2014).

In this technique, the image is occluded with a sliding block, in our
case a 5x5 pixels black patch. Each occluded image –i. e., with the block
occluding each different part of the original image– is classified with
the trained model, and the output is compared with the output corre-
sponding to the original image. The difference between these two
outputs will be large when the sliding block occludes an important
pattern for classification and small when the block occludes an irrele-
vant pattern. In this way we are able to visualize which regions of a
given image are relevant for the model to perform its classification. It is
worth mentioning that this method does not show all the patterns de-
tected by the model, but only the most relevant ones for a given image
and the relevance of each pattern can differ in each case.

Results are shown in Fig. 7 for representative samples of the con-
fusion matrix elements. The heatmap indicates the locations of the
image with more influence on the output. Green colored regions cor-
respond to a decrease in the output probability of the correct class when
those regions were occluded. Therefore green means a positive corre-
lation with the correct class probability. On the other hand, red in-
dicates an increase of correct class probability when the region is oc-
cluded implying a negative correlation.

In the main diagonal of the confusion matrix (Fig. 7), shown ex-
amples were correctly classified and therefore this occlusion procedure
typically lowers the probability of the correct class, biasing the heatmap
result to green as observed. More remarkably, the model seems to be
detecting each seed individually in order to make the classification.
This can be concluded from the green spots that are properly located
over the seeds. It is worth mentioning that this phenomena does not
imply that it is straightforward to build an individual seed detector
from our trained CNNs (as in (Pound et al., 2017)), but that the network
is using this pattern for class estimation in this sample cases.

There are also other kind of patterns relevant for classification in
some other cases. In the 4-SPP examples wrongly classified, the occlu-
sion of the pod ends further decrease the probability assigned to the
correct class. The opposite is true for the 3-SPP examples wrongly
classified as 4-SPP: the ends at the right of both examples are red co-
lored. In these two cases the pointed region contributed to mislead the

net. Finally, it is worth noting that in several cases the net pays at-
tention to the contour of the pod. This can be seen in the 2-SPP ex-
amples classified as 3-SPP, where the red regions are focusing on
thinning the middle of the pod. This behavior is observed systematically
on many 2-SPP and 3-SPP examples as shown in Fig. 8. It is worth
noting that although the model correctly classifies these examples, it
gives them a lower probability.

Fig. 6. Training curves for the two different
seasons. Green lines: accuracy computed over a
random minibatch during training. Blue lines:
accuracy computed on the validation fold. Blue
empty circles: new maximum in validation ac-
curacy. Red dots: test accuracy. Season 2 dataset
appears to contain more diverse and difficult
examples which do not exist in the Season 1
version. (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 7. Confusion matrix with representative samples visualization. Green (red)
colored regions indicates regions of positive (negative) correlation with correct
class CNN output probability obtained by occlusion experiments. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 8. Visualization of samples where the contour plays an important role. The
colors indicate the same as in Fig. 7. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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5. Conclusions

In this work we dealt with the problem of estimating the number of
seeds per pod in soybean as an ordinary classification problem using a
standard deep learning tool: Convolutional Neural Networks. Although
the training of CNNs introduces a large number of hyperparameters, we
observed that it is not necessary to choose precise values for them to
achieve a high level of accuracy when considering a deep enough ar-
chitecture.

In addition, CNNs clearly outperformed the classic approach based
on pre-designed feature extraction and furthermore, they offer a more
robust behavior against seasonal changes.

Finally, using simple visualization techniques we observed that
CNNs learnt to individually detect each seed in the pod for most cases,
supporting –in such examples– its classification output on this learnt
feature. The models also learnt to detect specific shapes in the contour
of the pods.

6. Future work

We believe that the capability of extracting simple high level fea-
tures that can generalize to situations that are clearly different from
what was learned makes CNNs ideal for some phenotyping tasks. Our
findings add evidence that deep learning techniques can be easily
adapted to precision tasks in plant phenology (for example, the detec-
tion of desirable growing patterns or the detection of subtle char-
acteristics in leaves, pods, etc.), helping in the improvement of current
and future breeding programs.

The proposed methodology can be easily extended to the study of
other species and varieties by augmenting the plant database.
Moreover, we are currently working in ways to avoid pod extraction
and lightbox captures in favor of faster in-field imaging. This outlook
involves handling pod (partial/total) occlusions, harder pod segmen-
tation, different pod orientations, etc. However, we believe that the
presented CNN models, trained with such in-field images, could be good
candidates as a part of a better pipeline for detecting and classifying
pods by SPP number from in-field images.
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