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 Plants are the primary source of “most of our food, fuel, fi bers, fabrics, and 
pharmaceuticals”. Stresses (biotic and abiotic) are the major threats to plants, 
being the primary cause of crop yield losses worldwide. On the other hand, 
with the global population expected to reach nine billion by 2050, an increase 
in crop productivity and quality will be needed to meet the requirements. 
Each of the 29 chapters of this  PlantOmics: The Omics of Plant Science  book 
opens a door to exciting cutting-edge omics approaches and their applications 
to meet the future demands. 

 The fl ow of the chapters in the book is highly scientifi c and strategically 
organized to be easy to go. It starts with the topic omics approaches in model 
plants and their applications in improvement of maize and rice like major 
cereal crops. Chapters   2    ,   3    , and   4     describe very important technologies such 
as spectroscopy (NIR, MIR, Raman), next generation sequencing (NGS), and 
functional genomics and their applications in current plant science. Chapters 
  5     and   6     deal with technical advancements and applications of cyto- 
mutagenomics and epigenomics in crop improvement. Chapter   7     gives a 
detailed account on plant miRNA biology, associated technologies, and their 
tailor-made applications to improve plant stress response. 

 Each topic dealt in Chaps.   8    ,   9    ,   10    ,   11    ,   12    ,   13    ,   14    ,   15    ,   16    ,   17    ,   18    ,   19    ,   20    , 
  21    ,   22    ,   23    ,   24    , and   25     is a unique imprint of this book. These chapters cover 
well established and several budding omics areas in plant science such as 
Plant Proteomics, Metabolomics, Glycomics, Lipidomics, Secretomics, 
Phenomics, Cytomics, Physiomics, Signalomics, Thiolomics, Organelle Omics, 
Micromorphomics, Microbiomics, Cryobionomics, Nanobiotechnology, and 
Plant Pharmacogenomics. Each of these chapters describes the latest technol-
ogies and applications of the respective omics in a very comprehensive way; 
therefore, they are up to date, easy to understand, and can be spontaneously 
adopted to expand the area of our research and development. 

 Chapters   26    ,   27    , and   28     deal with computational and systems biology 
approaches in plant science making the book more useful to any kind of plant 
biology research, whether in a wet lab or  in silico . The last chapter (Chap.   29    ) 
is very brief but interesting where the editors have provided valuable insights 
on the future directions of omics and plantomics. They have proposed several 
new areas in omics which we must explore towards development of an inte-
grated meta-omics strategy to ensure the world and earth’s health and related 
issues. 

   Foreword   
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 Overall, it is a great effort by Dr. Barh, his editorial team, and 90 expert 
contributors from 15 countries to make this highly resourceful, up-to-date, 
thought provoking, and worthwhile unique book for students and researchers 
in the fi eld of cutting-edge plant omics sciences. I highly recommend the 
book for keeping you up to date in the fi eld. 

 Professor      Ana     Paulina     Barba     de la     Rosa    ,  PhD  
 Molecular Biology Division 
Head, Unit of Proteomics and Molecular Biomedicine 
 Instituto Potosino de Investigación 
Científi ca y Tecnológica (IPICyT), Mexico 
 President, Mexican Proteomics Society, Mexico  
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ix

 The term “ omics ” depicts completeness. In the last two decades, the term has 
been suffi xed with several biological topics to provide complete information 
on the subject. With the advent of new technologies, the arena of “ omics ” is 
increasing rapidly. However, most of the currently available books that deal 
with omics technologies and their applications are mainly focused on animal 
system. To fi ll this gap, we have introduced this  PlantOmics: The Omics of 
Plant Science  book to provide a complete spectrum of plant related omics to 
the students and researchers working in the fi eld of cutting-edge plant molec-
ular biotechnology. Equal focus has been given to the technological advance-
ments as well as their specifi c applications. Therefore, the book provides a 
comprehensive account of the state-of-the-art latest developments and trends 
of  omics  approaches in plant science. Several topics have also highlighted the 
integrative omics strategies enabling the cost-effective development of supe-
rior plants for various purposes. 

 The book consists of  29 chapters  written by  90 experts  from  15 countries  
that represent three-fourths of the globe. In the introductory chapter (Chap.   1    ), 
Dr. Agrawal and colleagues have described the omics of model plants where 
genomics, proteomics, transcriptomics, and metabolomics of model plants 
such as  Arabidopsis , rice, and maize are dealt in detail. Further, this chapter 
also provides how these technology derived knowledge can be used for 
transgenomics, mapping for biotic and abiotic stresses, and marker assisted 
selection for crop improvement. In Chap.   2    , Dr. Cozzolino’s group has given 
a nice overview on the most commonly used spectroscopy techniques such as 
NIR, MIR, and Raman in plant omic analysis. To make the chapter more 
resourceful, Dr. Cozzolino has also demonstrated instrumentations and ana-
lytic software for these spectroscopy techniques. The hot topic, next genera-
tion sequencing (NGS), its technologies, various platforms, algorithms, and 
 de novo  assembly, annotation, and analysis of plant genome are given by Dr. 
Tiwary in Chap.   3    . Chapter   4    , by Dr. Jha and his colleagues, provides a com-
prehensive account of techniques associated with plant functional genomics 
and their applications. Drs. Talukdar and Sinjushin in Chap.   5     have described 
various techniques of cytogenomics and mutagenomics and their cost effec-
tive applications in plant breeding and biology. This chapter has also high-
lighted the mutations that cause alterations in antioxidant defense response to 
withstand diverse abiotic stresses to reveal intrinsic cellular and metabolic 
events towards sensitivity of seed plants to salinity, drought, metal toxicity 
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and other stresses, prospecting to formulate effective breeding strategies in 
different agro-climatic conditions. Epigenomics technologies and their 
potential applications in crop improvement are summarized in Chap.   6     by 
Drs. Shafi q and Khan. Especially, this chapter highlights the roles of chromatin 
remodeling mechanisms in response to environmental stimuli and their role 
in crop improvement. Chapter   7    , by Dr. Boopathi, on Plant miRNomics gives 
a comprehensive account to explain how the miRNAs fi ne tune the gene 
expression and play key roles in developmental timing and patterning of 
structures in response to external and internal stimuli in plants. This chapter 
also provides how the miRNAs can be used to improve plant stress responses. 
Chapter   8    , by Dr. Agrawal and his group, describes the recent technological 
progresses in plant proteomics and highlights the achievements made in 
understanding the plant proteomes and their applications. In Chap.   9    , Dr. 
Sangwan and colleagues explain various technology platforms in plant 
metabolomics research and how the metabolomics is used in monitoring and 
assessing gene functions, stress responses, and to characterize post-genomic 
processes from a broad perspective along with the challenges the domain is 
facing. Dr. Khurana’s group in Chap.   10     overviews the chemistry and tech-
nologies in plant glycomics. This chapter also gives summary of applications 
of glycomics in biopharming and several biological processes such as plant 
signaling, stress responses, and immunity. In the next chapter (Chap.   11    ), 
Dr. Namasivayam elucidates the chemistry and analytic technologies, lipid 
signaling in plants, lipidomes in plant defense mechanisms, and several other 
aspects of plant lipidomics. The comprehensive mechanisms regulating 
constitutive and induced secretome of diverse plants and their habitat along 
with technological approaches are discussed by Dr. Yadav and her group in 
Chap.   12    . In Chap.   13    , Dr. Rahman and colleagues give a detailed account on 
integrated-omics approaches in phenomics and its applications in plant and 
agriculture. Chapter   14    , by Drs. Davies and Stankovic, describes how novel 
methods based on super-fast and super- resolution microscopy can be used in 
describing proteins, nucleic acids, cytoskeleton, and small molecules of 
major interest to plants. In Chapter   15    , Dr. Karpiński and colleagues educate 
us on plant physiomics. The chapter provides insights on how the combined 
molecular-physiological events drive plant growth, development, acclimati-
zation, and defense responses. Dr. Vian et al., in Chap.   16    , have introduced 
the term “Signalomics” and have shown how novel methods can be used to 
analyze systemic signals including electrical and hydraulic signals in plants. 
In Chap.   17    , Dr. Talukdar and colleagues elucidate the use of latest cutting-
edge functional genomics tools to understand the plant thiol metabolism from 
source (soil) to sink (grains) in diverse arenas of “thiolomics”. The next three 
chapters (Chaps.   18    ,   19    ,   20    ) are dedicated to organelle omics. Chapter   18    , by 
Dr. de Luna Valdez et al., explores how chloroplasts organize their genomes 
and regulate their transcriptomes, proteomes, and metabolomes, trying to 
focus on classical  knowledge and reviewing new datasets obtained through 
large-scale research projects and systems approaches that shed light on 
 chloroplast functionality under the chloroplast omics chapter. In Chap.   19    , 
Dr. Khan summarizes the developments from plastid genomics to gene 
expression and briefl y describes how transplastome facilitates expression of 
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vaccines, therapeutics, and plantibodies, in addition to tailoring agronomic 
traits in plants. Plant mitochondrial omics (Chap.   20    ), by Dr. Mustafa and his 
colleagues, describes a detailed account on regulation of mitochondrial genes 
at transcriptional, post- transcriptional (splicing and RNA editing), transla-
tional, and post- translational levels in omics perspective. Chapter   21     describes 
“Micromorphomics”, a term coined by Dr. Tulika Talukdar to explain how 
plants combat environmental stresses through collective morphological mani-
festations in their organs architectures. Chapter   21     is dedicated to micro-
biomics. In this chapter, Dr. Sharma’s team has discussed technologies to 
identify new groups of microorganisms involved in plant diseases from 
microbiome of rhizosphere and roles of microbiome in plant health and 
related areas. Drs. Martinez-Montero and Harding in Chap.   22     
(Cryobionomics) intend to explore the connections between stability and 
cryogenic/non-cryogenic stress factors with a view to aiding protocol 
improvement, optimization, and validation for plant genetic resources con-
servation with several examples. Chapter   24    , by Dr. Kazi and colleagues, 
focuses on the development and use of “nanotechnology” for formulating 
agriculturally important chemicals (fertilizers) with more useful properties 
and their direct delivery as well as their applications in various agricultural 
sectors. Chapter   25    , by the same group, systemically analyzes the recent 
developments in plant pharmacogenomics and its contributions in the fi eld of 
molecular and pharmaceutical sciences. Dr. Somvanshi and colleagues in 
Chap.   26     have attempted to describe several machine learning approaches 
and their applications in plant biology in a very simple way. Similarly, in 
Chap.   27    , Dr. Sarika’s team has emphasized on a number of applications of 
bioinformatics in agriculture in view of functional genomics, data mining 
techniques, genome-wide association studies, high-performance computing 
facilities in agriculture, and various bioinformatics tools/databases important 
for breeders, biotechnologists, and pathologists. Chapter   28     (Plant systems 
biology), by Drs. Bhardwaj and Somvanshi, describes recent insights and 
advancements in systems biology approaches in order to understand how 
plant systems work. In the brief concluding chapter (Chap.   29    ), we, the editors, 
have proposed several omics terms under “ Futuromics ” centraling Plantomics 
to direct the future perspectives of plant omics in meta-omics era. 

 We believe that this book will be a valuable resource to all who are working 
on cutting-edge plant omics. We appreciate your comments and suggestions 
to improve the next edition.  

    Nonakuri ,  India      Debmalya     Barh    
   Faisalabad ,  Pakistan      Muhammad     Sarwar     Khan   
    Raleigh ,  NC ,  USA      Eric     Davies       
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Abstract

There is an increasing amount of various 

genome-sequencing projects and advance-

ment in generation of plant ESTs has resulted 

in generation of large quantities of data from 

different fields of plant biology in the public 

domain. Therefore, a need arises in the analy-

sis of the available data and integrating them 

with several information of plant biology like 

crop improvement, nutrigenomics, biochemi-

cal engineering, etc. The biological data are 

mostly complex and vague, analysis of these 

data is difficult, and interpretation of interac-

tion in different elements cannot be done by 

simple mathematical functions. Complex 

computing approaches like artificial intelli-

gence are being applied to understand and 

interpret these data. The definition of intelli-

gence is debatable for a long period of time; 

however, intelligence can be vaguely defined 

as the ability to learn from previous experi-

ences and to adapt accordingly in relatively 
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new situations. Artificial intelligence uses 

machine learning algorithm in which the sys-

tem generates some adaptive learning 

approaches in order to achieve some goal of 

environment. Several machine learning 

approaches have been applied in plant biology 

till date. In this chapter we will discuss few 

machine learning approaches and their appli-

cations in plant biology.

Keywords

Artificial neural network • Support vector 

machine • Artificial intelligence • Hidden 

Markov model • Genetic algorithm

 Introduction

One of the most distinctive qualities of human 

beings that distinguishes them from other ani-

mals is their desire to understand and control the 

process of nature. This basic nature of humans 

gives birth to the field of science. Over the years 

of learning and understanding, humans have 

developed a majestic structure of knowledge that 

helps us to understand and predict to varying 

extent various natural phenomena. Though, there 

is a limit in our abilities to predict and hence sev-

eral complex resources have been developed by 

us to understand and control many aspects of life. 

Over the course of time and our repeated interac-

tions with great uncontrollable natural forces, we 

have learned the extent in which we can control 

some aspects of life and extent to which many 

aspects are uncontrollable. The aim of creating 

artificial intelligence and artificial life can be 

traced back to the very beginnings of the 

Computer Age. Although the study of intelli-

gence is a more than 2000-year-old discipline, 

artificial intelligence is one of the newest disci-

plines formally started in 1956. Artificial intelli-

gence is a vast field comprising large areas like 

logical reasoning, computation, and probability. 

Different scientists have defined artificial intelli-

gence in different ways; however, these defini-

tions can be broadly categorized in four classes 

(Russell et al. 1995) as:

 1. Systems that think rationally

 2. Systems that act rationally

 3. Systems that think like human beings

 4. Systems that act like human beings

The machine learning field is a part of the broad 

field of artificial intelligence and a direct succes-

sor of statistical model fitting with useful infor-

mation from pile of data. The only staggering 

difference between statistical approach and 

machine learning is that the former regards 

description of data to be handled in mathematical 

terms of probability measure and not in terms of 

deterministic function such as cluster assign-

ments, prediction functions, etc. The tasks to be 

solved are practically equivalent. In this area, 

learning methods are also known as estimation 

methods. Many researchers have long time ago 

found the basic philosophy and idea of machine 

learning to be very closely related to nonparamet-

ric forms of estimation. Estimation, unlike the 

statistical approach, does not require learning 

frameworks or other related things to statistical 

approach as the former does not have to do with 

probabilistic model of any data. As an alterna-

tive, it only assumes interest in prediction of new 

instances, which is a far less ambitious work and 

requires lesser examples to help the point in order 

to achieve a required performance.

Human beings learn through their life experi-

ence and human brain can solve very complex 

problems based on that learning. On the contrary, 

machines follow a set of rules or algorithm to 

solve a problem. The difference in the workings 

of a human brain and machine can be explained 

by a simple example of a 5-year-old child who 

can easily differentiate between a cow, goat, and 

sheep but will not be able to solve a mathematical 

equation. However, a computer can solve the 

equation quite easily, while differentiating 

between animals would be much difficult (Fig. 1). 

In the past few years, various studies have shown 

that machine learning and statistical approach are 

unlike approaches but converge at some point of 

time. It is often possible to express the methods 

of machine learning in probabilistic framework, 

and vice versa performance of these methods in 

view of theoretical study is immensely based 

on the similar assumption or postulation and 

has been followed as probability theory. It is 

inspired by the biological brain; the word “fitting” 

is exchanged with “learning.” The “learning” 
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process in machine learning can be classified into 

three categories.

 (a) Supervised Learning: In this type of learn-

ing, a sample of input–output pair is provided 

to the machine for learning (training data 

set). Each input set in the training data set is 

associated with the output set. The task of the 

machine is to find a deterministic function 

that maps each input with its associated tar-

get values in order to minimize the error in 

future prediction. While solving a given 

problem using supervised learning, some of 

the steps are to be considered (Fig. 2). First, 

we need to determine the number of vari-

ables involved in defining the problem; sec-

ond, we need to select a training data set that 

describes the problem completely. In the 

third step, the training data is presented to the 

system in a form understandable to it. The 

“machine” or the model is then trained with 

the data. The learning takes place by adjust-

ing weights of connections according to 

training error calculated by comparing model 

output and the actual output in training data 

set. The trained model is then validated for 

its robustness and accuracy with the valida-

tion data set which contains data that were 

not present in the training data set. Based 

upon the nature of the target values’ type of 

deterministic function, changes and different 

types of learning can be performed like clas-

sification learning (the aim is to find whether 

the two elements in output space are the 

same or not); preference learning (where the 

aim is to find whether two elements in output 

space are equal or not and if not, which one 

is preferred over the other), an example of 

such learning are search results of queries on 

web search engines; and function learning 

(where the aim is to optimize a function for a 

given process).

 (b) Unsupervised Learning: Unsupervised learn-

ing is a machine learning technique in which 

the data set used for training the system does 

not contain target vectors. Instead of which 

training data set contains input vectors and a 

cost function which is to be minimized 

 during the process of learning. The aim of 

machine in unsupervised learning is to 

develop representations of input data that can 

be used for solving problems like decision 

making, predicting future inputs, etc. 

Unsupervised learning is mostly used in the 

field of estimation problem like dimensional-

ity reduction, clustering, statistical modeling, 

etc. One simple example of unsupervised 

learning is clustering where we try to cluster 

different types of data based upon the input 

data. The inputs in training data set are used 

by machine to learn pattern, and any new 

data which lies beyond the limit of those pat-

terns is considered noise.

Fig. 1 Illustration of difference in the workings of the human brain and machines
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 (c) Reinforced Learning: In reinforced learning, 

the data is not provided to the machine. 

Instead, the machine interacts with the envi-

ronment by taking some actions and is 

rewarded or punished by the reactions from 

the environment. The machine uses these 

rewards, corresponding to its actions to learn 

to act in a way to maximize its future rewards 

(and minimize punishments). The reinforced 

learning is concerned about how the machine 

learns to live with the environment for long 

term while maximizing its rewards. It defines 

a function that needs to be maximized during 

the learning process, and then it finds a strat-

egy to get maximum reward. The reinforced 

learning uses several algorithms to find this 

strategy like native brute-force algorithm, 

value function approaches, direct policy esti-

mation, etc. Reinforced learning is being 

successfully used in robotics, games, tele-

communications, etc.

Machine learning is called black box model as 

compared to mathematical modeling which is con-

sidered to be white box model (Fig. 3). Machine 

learning is considered black box because in these 

models are based upon the information or data 

available from the process but very little theory is 

known, while in mathematical modeling, models 

are based upon theoretical knowledge of the pro-

cess. It will classify or optimize test set according 

to training set, but it will not provide information 

of which variables are involved (Mozer and 

Smolensky 1989; Andrews et al. 1995; Tickle et al. 

1998; Alexander and Mozer 1999).

Ideally, machine learning approaches are best 

suited where abundant amount of data are avail-

able, but very less is known about the process. 

Thus, machine learning is used in fields which 

are rich in information. These fields are rich in 

data but the theoretical knowledge is not suffi-

cient for building a model. Thus, these fields 

solve the problems by principle of induction in 

inference. However, building a model with the 

available data and no theoretical knowledge is a 

difficult task because often these data are incom-

plete and noisy (Baldi and Brunak 2001). 

Biological science is essentially an information- 

rich field and since biological processes are too 

complex, so very little has been discovered about 

them; thus, biological science in general or com-

putational biology in particular is an ideal field 

for application of machine learning.

Fig. 2 Steps taken in supervised learning
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 Problems in Modeling Biological 
Process

Biological processes vary with time, are nonlin-

ear in nature, and are complex due to composi-

tion of many different and interacting elements 

governed by nondeterministic rules and influ-

enced by external factors (Coruzzi et al. 2009; 

Gallego et al. 2011). Commonly, most of biologi-

cal interactions cannot be elucidated by simple 

stepwise algorithm or a precise formula, particu-

larly when the data set is complex, noisy, vague, 

uncompleted, or formed by different kinds of 

data (Prasad and Gupta 2006; Gallego et al. 

2011). Many times, behavior of a biological sys-

tem over a time period is difficult to understand 

and interpret; additionally, genetic and environ-

mental factors also show biological responses 

(Karim et al. 1997).

The modeling of these systems is challenging 

and of extreme importance for scientists and 

engineers for purposes such as prediction and 

simulation. Typically, researchers look to create 

models with two main goals in mind. First, the 

model should accurately map the input variables 

to the output variables as observed in real-life 

situations. Secondly, the model should be a fitting 

representation of the system’s underlying physi-

cal characteristics (Resop 2006).

Deterministic mathematical models also 

known as white box models have been tradition-

ally developed from either physical principles or 

by statistical regression (Salas et al. 2000). 

Physical models consist of systems of ordinary or 

partial differential equations. These models try to 

represent the underlying physical relationship 

between variables involved. The benefit of physi-

cal models is that they are based on a deep and 

thorough understanding of the system. However, 

limitations of these models include the difficulty 

of setting up and solving complex differential 

equations analytically, as well as determining 

equation coefficients and initial and boundary 

conditions (Coppola et al. 2005). Usually, these 

equations must be solved using numerical meth-

ods, such as the finite element method.

Statistical models on the other hand are 

designed by finding the equation that best fits a 

set of experimental data. These models are useful 

and are generally simple to solve. Statistical 

regression equations limit the user by requiring a 

large amount of sample data to estimate parame-

ters of equation and to find the data trend. Also, 

there are difficulties that arise when manually 

determining the optimal structure of the statisti-

cal equation (Hill et al. 1994).

Artificial intelligence technologies have same 

or even better potential than traditional statistics 

in modeling nonlinear relationships in biological 

data and also have superior prediction powers 

(Gago et al. 2010a). Recent studies have demon-

strated that AI technologies show the same or 

even better performance than traditional statistics 

for modeling complex nonlinear relationships 

hidden in the data and offer superior prediction 

powers (Landín et al. 2009; Gago et al. 2010a).

MODELS

WHITE BOX

Mathematical modelling

GREY BOX
Statistical 
modelling

BLACK BOX
Neural Network 
modelling

Fig. 3 Classification of models
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 Algorithms of Machine Learning

In this section we will briefly discuss some of the 

highly used algorithms of machine learning.

 Dynamic Programming

Dynamic programming is used for problems 

which can be divided into smaller subproblems 

and the solution of the bigger problem is found 

by combining the solutions of smaller problems. 

Dynamic programming is used almost every-

where in sequence analysis. Sequence alignment 

analysis algorithms like Needleman–Wunsch and 

Smith–Waterman are some examples of dynamic 

programming. Dynamic programming is very 

well known and the origin of many predictable 

algorithms for series analysis. Reinforcement or 

fortification learning algorithms are another very 

important class of algorithms which can be ana-

lyzed as simplification of ideas for dynamic 

programming.

 Gradient Descent

Gradient descent also known as steepest descent 

is one of the most important breakthroughs in 

machine learning. It is used for building a best 

model that minimizes the error. It is simple and 

easy to use and guarantees to find a minimum of 

a function if present. Gradient descent is often 

used with back propagation of information like in 

back-propagation neural networks. In complex 

functions where a number of local minima are 

present, gradient descent mostly ends up finding 

the local minima rather than global. Therefore, 

gradient descent algorithm is generally run in 

multiple iterations with different starting points 

and learning rates.

Gradient descent is slow and often less effec-

tive at small step size, and while convergence 

speed could be increased with increasing step 

size, larger step size results in large error. Speed 

of convergence and efficiency of gradient descent 

are improved using various variations like conju-

gate gradient descent (in which the weights are 

adjusted in directions conjugate to the gradient in 

order to get fast convergence) and gradient 

descent with adaptive (in which the learning rate 

is adjusted during the training in order to produce 

an optimum convergence rate and error) line 

search algorithms (Stanimirovic and Miladinovic 

2010).

 Expectation–Maximization 
Algorithms

In computational biology, the data available for 

training probabilistic are often incomplete. 

Expectation–maximization algorithm is used for 

parameter estimation in such models. It is a gen-

eralization of maximum likelihood estimation in 

incomplete data case, but expectation–maximiza-

tion addresses more difficult problems than max-

imum likelihood.

In the expectation–maximization algorithm, 

hidden or missing variables are estimated using 

known or present parameters (the E step), and 

then these completions are used to reestimate 

hidden parameters. This step is called the M step 

because this can be thought as maximization of 

expected log-likelihood of data. In the complete 

data case, there is only one global optimum, but 

in the incomplete data case, there are multiple 

local optima. Expectation–maximization algo-

rithm cuts the problem into simple subproblems 

which have single global optima (Chuong and 

Serafim 2008).

Many models in computational biology have 

hidden variables. These hidden variables are due 

to missing or non-recordable or corrupted data. 

Expectation–maximization algorithms are used 

in many applications like hidden Markov models, 

neural networks, etc. and sequence analysis like 

gene expression clustering (D’haeseleer 2005), 

motif finding (Lawrence and Reilly 1990), haplo-

type inference problem (Excoffier and Slatkin 

1995), etc.
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 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo methods belong to 

an important class of stochastic methods, which 

are strongly related to statistical physics and are 

highly sought methods for machine learning and 

Bayesian inference. These methods use probabil-

ity distribution to solve problems. Markov Chain 

Monte Carlo (MCMC) method aims to find the 

solution of two basic problems: first, to use a 

probability distribution to generate random 

inputs in a defined domain and second, to esti-

mate the expectations of a deterministic function 

over the distribution. This takes several steps, and 

after number of steps, the quality of the given 

sample improves as function for a number of 

steps to be taken at some point of time. If the dis-

tribution of inputs is not uniform, the approxima-

tion will not be accurate; also, size of input affects 

the accuracy of approximation; if a number of 

input samples are low, approximation will be 

poor. Typically, it is really not hard to create a 

Markov Chain with the preferred properties. In 

addition, the more difficult thing is to determine 

the steps, which are needed to converge to static 

distribution within a suitable error. A good form 

of chain will also have rapid mixing in which the 

immobile distribution is reached very quickly 

starting from any arbitrary position. The most 

common application of algorithm used in Markov 

Chain Monte Carlo methods is numerically cal-

culating multidimensional integrals.

 Simulated Annealing

Optimization of problem is a difficult task often 

practically impossible. As the problem gets large, 

area required to search for optimum also becomes 

large and a huge number of possible solutions 

were searched to find the optimum one. These are 

a large number of solutions still for modern com-

puting. Often, while finding the global optima for 

a given problem, optimization algorithm gets 

stuck in local optima. Simulated annealing is a 

random search method for global optimization 

problem. This method is inspired by the anneal-

ing process of metals. Annealing involves heat-

ing and cooling of metals to change their physical 

properties. When the metal is heated, molecules 

in metal have high energy and they vibrate highly, 

but when it cools slowly, the vibration of metal 

molecules also slows down and metals’ new 

structure gets fixed. In simulated annealing, the 

search of optimum is started at high energy and 

then it is lowered slowly. At high energy, the 

algorithm will accept solutions with greater fre-

quency, accepting more solutions worse than the 

current solution. This provides algorithm the 

ability to jump local minimums. As the algorithm 

progresses, energy is slowly lowered, reducing 

the algorithm’s frequency of finding solutions 

worse than the current one. Thus, the algorithm 

focuses on a search space to find global minima. 

Simulated annealing may become more efficient 

than other algorithms such as exhaustive enumer-

ation, if the aim is merely to find an acceptably 

good solution in a fixed amount of time, or rather 

the best of all the possible solutions.

 Evolutionary and Genetic Algorithms

Evolutionary algorithms are computer programs, 

which can solve complex and complicated math-

ematical and statistical problems using Darwin’s 

theory of evolution. Several fixed-length vectors 

also known as individuals compete with each 

other to search for an optimal area. These crea-

tures evolve with time to find the optimal solu-

tion. Evolutionary algorithms have been started 

with an initial population of individuals of finite 

size. Each individual is then associated with a fit-

ness score. A fitness function is used to calculate 

the fitness score of each individual. The individu-

als with high fitness score represent the healthier 

solutions of the problems than that with individu-

als having low fitness score. After this initial 

phase, the main cycle of evolution begins. Each 

individual in the initial population generates one 

offspring using mutations. These offspring are 

then given a fitness value. Now, this first- 

generation children form a population which is 

considered as present population, and this cycle 

is repeated many times. These individuals evolve 

from generation to generation and compete with 
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each other in the same generation to be fittest 

scorer. The individual with the fittest score is 

considered to be the fittest individual and is 

selected to solve the problem.

 Artificial Neural Networks

Artificial neural networks are complex mathe-

matical models, which mimic biological neural 

networks. An artificial neural network like any 

biological neural network is built by connecting 

several neurons. An artificial neuron (Fig. 4) is a 

simple mathematical model that does three func-

tions: multiplication, addition, and activation 

(Krenker et al. 2011). The neuron first multiplies 

every input given by its corresponding weights. 

The network to memorize a given process uses 

weights corresponding to inputs and inter-node 

connections; these weights determine the con-

ductivity of inputs through the network. The 

weighted inputs given to an artificial neuron are 

then added and passed through an activation 

function, also called a transfer to the next neuron. 

This function can be sigmoidal, linear, hyper-

bolic, tangent, or radial basis, and the type of 

activation can be selected according to specific 

problem. The most common neuronal nonlinear 

activation function used in biological systems is 

sigmoid in nature.

A single neuron is a simple mathematical 

function which is not useful in solving big prob-

lems. When these neurons are connected to each 

other to form an artificial neural network, the real 

potential of these models is visible. Unlike bio-

logical neural networks, artificial neurons are 

connected in a defined architecture. This arrange-

ment of artificial neurons is called topology of 

network. Several standard network topologies 

have been defined by scientists in the past for dif-

ferent problems. For a particular problem, appro-

priate topology has to be decided and we need to 

fine-tune the topology itself and its parameters. 

The fine-tuning of network topology includes 

teaching the network in solving a given problem. 

Artificial neural networks like biological neural 

network can learn their behavior on the basis of 

inputs that they get from their environment (Kos 

et al. 2011).

This teaching or fine-tuning of neural network 

is called training of artificial neural network. 

Many different training mechanisms have been 

used in neural networks. These affect the accu-

racy of models and also influence speed at which 

the networks converge. The training of artificial 

neural networks can be classified as supervised 

learning and unsupervised learning. In super-

vised method, the desired output or target values 

are provided by an external source, and then the 

network output is matched with target values for 

optimizing the network weights and correcting 

network functioning. Artificial neural network 

uses a delta rule for training (Widrow and Hoff 

1960). To train a network with a given set of 

training samples containing input data set xp and 

target data set dp, network calculates output yp for 

every input values and subtract it from target val-

ues to calculate error (dp − yp):

 

y w x
j

j j
p = +∑ θ

 

(1)

where θ is the bias of the network.

Delta rule uses a cost function based on these 

errors to modify weights. The final error is then 

calculated using a cost or error function which 

can be mean square, root mean square, least mean 

Fig. 4 Working principle 

of an artificial neuron
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square, etc. The total error using least mean 

square error can be defined by

 

E d y
p p

= = −( )∑ ∑Ep p p1
2

2

 

(2)

P represents the range of input data set, and Ep 

represents the error on the whole range of input 

data set. Weights are then adjusted to reduce error 

by gradient descent method and delta rule finds 

the value of new weights. The weights are 

changed proportionally to the negative of deriva-

tive of error measured for the current iteration 

with respect to each weight:
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where γ is a constant of proportionality and ∆pwj 

represents the change in target for pattern p. The 

derivative is
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For a linear activation function,
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and
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Thus,

 
Δ p j

pW = ∂γ x j  (7)

where xj is the input vector and ∂p = (dp − yp) is 

the difference between the network output and 

the actual output or target for pattern p.

The delta rule modifies weights according to a 

proportionally negative derivative of error, i.e., if 

on increasing weight error decreases, then delta 

rule keeps on increasing weight till error reaches 

minimum or starts increasing, and if on increas-

ing weight error decreases, delta rule decreases 

weights till error reaches minimum or starts 

decreasing.

In supervised learning technique, input vari-

ables and a cost function are provided to network, 

but no output variables are provided. In this tech-

nique, network parameters are set on the basis of 

input data and cost function. In pattern classifica-

tion using unsupervised learning, a self- 

organizing network identifies the silent features 

of input data set; however, unlike supervised 

learning, In supervised learning there is no 

defined set of categories into which the patterns 

can be classified (Prasad and Gupta 2006).

A trained network is then validated for accu-

racy and robustness by simulating for a valida-

tion data set. Validation data set contains some 

input variables present in training data set and 

some new input variables. If network accurately 

simulates validation data set, then it is considered 

a trained or learned network.

Sometimes after learning if the network per-

formance for training data is best but for test data 

set its performance is poor, it is called overlearn-

ing or over-fitting of network. Network size plays 

an important role in overlearning of a network; a 

large network over-fits small problem. So, an 

optimum size of network (number of nodes) has 

to be decided for a given problem. After training 

of network, it can be used for solving problems. 

Artificial neural networks are used for problems 

like function approximation, regression analysis, 

time series prediction, classification, pattern rec-

ognition, decision making, data processing, fil-

tering, clustering, etc.

 Structure of Artificial Neural Network

Artificial neural networks are inspired from bio-

logical nervous system and consist of a network 

of artificial neurons. An artificial neuron is a sim-

ple mathematical model which is not capable of 

solving complex real-life problems. The ability 

of artificial neural network in solving complex 

problems is due to arrangement of these neurons 

in the form of a network. The information in a 

neural network is processed through its building 

blocks in a nonlinear and parallel manner.
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Arrangement of neurons in a network is called 

its topology or architecture of artificial neural 

network. An artificial neuron is called a node in a 

network; these nodes are arranged in the form of 

layers. Typically, the most commonly used artifi-

cial neural network is a three-layered network. 

The first layer is an input layer, the second layer 

is a hidden layer, and the third layer is an output 

layer. Generally, the three-layered neural net-

work is shown as typical example because it is 

capable of solving practically all types of prob-

lems. Three-layered networks are capable of 

solving all problems but larger networks can 

solve these problems more efficiently.

The connections between nodes and number 

of nodes per layer are defined by the approach, 

which is adopted to solve or interpret a given 

problem. Internodal connections direct direction 

of information flow through a neural network. On 

the basis of direction, the flow of information 

neural networks can be classified as: feed- forward 

neural network and cascade forward for unidirec-

tional flow of information and recurrent or feed-

back for bidirectional flow of information. In 

feed-forward neural network, information flows 

from one layer to another in one direction, i.e., 

from input to hidden to output layer (Fig. 5). In 

cascade forward neural network, the flow of 

information is unidirectional except that there is 

an extra weight connection from input to each 

layer (Fig. 6). However, in networks having bidi-

rectional flow of information (recurrent neural 

network), information flows both in forward and 

backward directions (Fig. 7). In a complete recur-

rent neural network, each node is connected to 

every node including itself. Recurrent neural net-

works are bulky and complex compared to feed- 

forward neural networks due to massive parallel 

processing of information. These networks 

require large computational space and are not 

easy to understand, unstable, and noise sensitive 

(Mandic and Chambers 2001). However, recur-

rent neural networks are closer to biological neu-

ral networks. Due to recurrent connections in 

these networks, output of a network can be used 

as input of the same network. This property pro-

vides the ability of prediction of future outcomes 

to recurrent neural networks. Several other net-

works are being designed using fuzzy logic and 

other techniques; some of these networks are 

self-organizing neural network, regression neural 

networks, fuzzy neural networks, etc. (Hayashi 

et al. 1993; Yao 1999; Yang 2006).

In 1980s back-propagation algorithm devel-

oped and helped in increasing popularity of arti-

ficial neural networks as function optimizers. 

Back-propagation algorithm is used to train net-

works using experimental data. Learning and 

updating of weights became easy with back- 

propagation algorithm. In this algorithm, net-

work errors are back propagated to the network 

in order to train it. Back propagation can also be 

considered as a generalization of delta rule for 

nonlinear activation functions and multilayer net-

works (Kruschke and Movellan 1991).

Fig. 5 Architecture of feed-forward neural network
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 Key Steps in Applying Artificial 
Neural Networks

 Data Preprocessing
Transformation and normalization are two widely 

used preprocessing methods. Transformation 

involves manipulating raw input data to reduce 

its dimensionality, while normalization is a trans-

formation performed on input data to distribute 

the data evenly and scale it (mostly in range of −1 

to 1 or 0 to 1) into an acceptable range for the 

network.

 Network Selection
It involves selection of network model, number 

and size of hidden layers, initial weight matrix, 

etc.

 Training Selection
It needs to start with network topology and initial 

weight, and train the network on your training 

data set. When the network reaches the satisfac-

tory minimum error, it saves the weights.

Fig. 6 Architecture of cascade forward neural network

Fig. 7 Architecture of recurrent neural network
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 Testing and Interpretation of Results
The trained network is applied on test data set to 

find the error. If it is not satisfactory, the training 

process and/or network architecture needs to be 

modified.

 Applications of Artificial Neural 
Networks in Plant Biology

Artificial neural networks have been researched 

and used for applications in many different fields. 

Many of these areas are using artificial neural 

networks to solve problems, previously thought 

to be impossible or very difficult with traditional 

methods. Some of the reasons for the great inter-

est shown in neural networks are their property of 

being a universal function approximator, i.e., 

their applicability on different types of problems 

(White 1992), and their flexibility, robustness, 

and no need of prior knowledge. A neural net-

work can be applied to practically any problem 

unlike statistical methods where a mathematical 

relation between input and output variables is 

necessary and responses have to be determined 

for each problem (Zealand et al. 1999). Artificial 

neural networks prove to be a better choice than 

regression models for noisy data (Denton 1995). 

Thus, neural networks are powerful tools for 

modeling complex processes. They can model 

highly nonlinear complex systems like biological 

processes and other real-life problems (Gevrey 

et al. 2003) (Table 1).

Less applications of artificial neural network 

to plant biology are present in literature as com-

pared to other fields, viz., pharmaceutical science 

(Colbourn 2003; Shao et al. 2006; York et al. 

2009), ecology (Hilbert and Ostendorf 2001; 

Adriaenssens et al. 2004), agriculture (Huang 

2009), etc. Initial applications of artificial neural 

networks in plant science include optimization 

studies. Earlier studies used neural networks with 

image analysis to identify live or dead plant cells 

(Fukuda et al. 1991), analyze developmental 

stages of somatic embryos (Uozumi et al. 1993), 

etc. Some researchers (Honda et al. 1997) used 

hybrid fuzzy neural model to predict the length of 

shoots regenerated from rice callus to be trans-

ferred from the growth medium to sugar-free 

medium for acclimatization. Radius, length, 

width, roundness, area, and perimeter of the digi-

tal images of somatic embryo taken from CCD 

camera were used as input data for the network. 

The results of neural network analysis were com-

pared to that of multiple regression analysis. 

Neural network predicted shoot lengths with 95 % 

accuracy with an average error of 1.3 mm. In 

another work, fuzzy neural network was used for 

modeling the production of Ginjo sake by fer-

mentation in bioreactor (Hanai et al. 1997).

The use of neural network technology in plant 

and agriculture biology has increased in the last 

20 years (Huang 2009). Neural networks have 

been used for predicting crop yield and modeling 

pest control treatments according to environmen-

tal conditions. Optimization of pesticide concen-

tration and periods of treatment improves the 

economy of production and minimizes toxic 

residual levels of agricultural products (Jiménez 

et al. 2008). Other authors developed neural net-

work models to predict crop yield for crops like 

corn (Kaul et al. 2005), sugar beet (Kehagias 

et al. 1998), soybean (Kaul et al. 2005) and win-

ter wheat for different cultivation conditions and 

distribution of crops in different climate distribu-

tions. These works provide important informa-

tion about the effect of climate change on 

vegetation of different areas and thus help in con-

servation of these areas (Hilbert and Ostendorf 

2001).

Neural networks have been used in combina-

tion with a bioelectric recognition assay to detect 

plant viruses (Frossyniotis et al. 2008). The 

authors used biosensors to detect electric signals 

from plant cells suspended in a gel matrix. The 

responses of plant cells on interaction with 

viruses were recorded and used for training of a 

neural network, and a classification model of cul-

tured cell was prepared. In another study, a mul-

tilayer neural network was used with genetic 

algorithm for the detection of plant virus 

(Glezakos et al. 2010).

Neural networks have been used in tissue cul-

ture on determining the effect of different param-

eters like carbon source, pH, etc. on plant growth 

(Prasad and Gupta 2006). A growth model was 
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Table 1 Some applications of artificial neural network in plant biology

S. No. Application

Network 

architecture Plant species Database References

1. Growth modeling of 

alfalfa shoots

Feed-forward 

neural network 

with Kalman filter

Medicago sativa Dry weight, leaf 

number, and root 

initiation stage

Tani et al. (1992)

2. Classification of 

embryo types from 

non-embryos and 

predicting embryo- 

derived plantlet 

formation

Feed-forward Apium graveolens Area, length to width 

ratio, circularity, and 

distance dispersion of 

plant cell cultures

Uozumi et al. 

(1993)

3. Biomass estimation of 

cell cultures

Feed-forward 

neural network 

with gradient 

descent training 

method

Daucus carota Sucrose, glucose, and 

fructose level of 

medium

Albiol et al. 

(1995)

4. Simulation of 

temperature 

distribution in culture 

vessel

Fuzzy neural 

network with 

back-propagation 

algorithm

Spatial temperature 

distribution of culture 

vessel

Suroso et al. 

(1996)

5. Identification of live 

and dead plant cells

Three-layered 

neural network

Size and color of 

cells

Fukuda et al. 

(1991)

6. Clustering of 

regenerated plantlets 

into groups

Adaptive resonance 

theory

Mean brightness 

values, maximum 

pixel count, and gray 

level of maximum 

pixel count in RBG 

regions

Zhang et al. 

(1999)

7. Predicting shoot 

length of regenerated 

callus

Three-layered 

fuzzy neural 

network with 

Kalman filter

Oryza sativa Radius, length, width, 

roundness, area, and 

perimeter of the 

somatic embryo 

images

Honda et al. 

(1997)

8. Detection of plant 

viruses

Feed-forward 

back-propagation 

network with 

BFGS quasi- 

Newton 

optimization 

algorithm

Electric response 

from plant cells

Frossyniotis et al. 

(2008)

9. Model in vitro 

rhizogenesis and 

subsequent 

acclimatization

Feed-forward 

neural network

Vitis vinifera Gago et al. 

(2010c)

10. Classification of sweet 

potato embryos

Back-propagation 

neural network

Ipomoea batatas Embryo area, length, 

and symmetry; polar 

coordinates of an 

embryo’s perimeter 

with respect to its 

centroid

Molto and Harrell 

(1993)

11. Classification of 

somatic embryos into 

normal and abnormal

Feed-forward 

neural network

Daucus carota Morphological 

features

Ruan et al. (1997)

(continued)
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developed for the study in effect for CO2 and 

sucrose content on in vitro shoots of alfalfa (Tani 

et al. 1992). Gago et al. (2010c) developed a 

neural network model for in vitro rhizogenesis 

and acclimatization of micropropogated Vitis 
vinifera L. plants. Effect of cultivars, IBA con-

centration, and exposure time of plant to IBA on 

acclimated plant were studied. It was found that 

they have significant effect on root numbers, 

number of nodes, and height of the acclimatized 

plantlets, with exposure time being a more 

prominent factor. Study was done in different 

cultivars and the model did good predictions for 

all cultivars.

Albiol et al. (1995) compared a deterministic 

mathematical model with a neural network model 

and found that neural network modeling was cost 

effective and time efficient and required smaller 

data set. Neural networks have been used in clas-

sification and pattern recognition in plant tissue 

culture (Prasad and Gupta 2006). Zhang et al. 

(1999) used neural networks with image analysis 

for selection of embryos in embryonic tissue cul-

ture of Douglas fir. In another study, machine 

vision was used for distinguishing between white 

and bright-yellow callus formed in sugarcane cal-

lus culture. The technique was successfully used 

to obtain regeneration frequency of callus culture 

(Honda et al. 1999). ANNs have been used for 

sorting regenerated plantlets according to tricho-

metric features of leaves. The sorting of plantlets 

was done using adaptive resonance theory (ART) 

having unsupervised architecture (Mahendra 

et al. 2004). This approach provided a means of 

selecting plants suitable for ex vitro transfer and 

helps in quality control of commercial 

micropropagation.

Hairy roots are a good source of plant second-

ary metabolites. These roots show genetic and 

biosynthetic stability and require no exogenous 

growth hormone. However, culture of these hairy 

roots for high secondary metabolite associated 

with better biomass production requires optimi-

zation of several physical and chemical parame-

ters that affect the growth and productivity of 

these roots. A feed-forward back-propagation 

neural network model was developed (Mehrotra 

et al. 2008) for prediction of in vitro culture con-

ditions for hairy root growth. The model used 

inoculum size, fresh weight, density, culture tem-

perature, pH, and time of inoculation as input 

parameters and final fresh weight of roots as final 

parameters. The trained neural network model 

was able to predict the final biomass for a partic-

Table 1 (continued)

S. No. Application

Network 

architecture Plant species Database References

12. Prediction of culture 

condition for optimal 

productivity

Feed-forward 

back-propagation 

neural network

Glycyrrhiza 
glabra

Inoculum size, fresh 

wt, density, culture 

temperature, pH, and 

time of inoculation

Mehrotra et al. 

(2008)

13. Growth modeling of 

hairy roots in nutrient 

mist reactor

Feed-forward and 

cascade forward 

and recurrent 

neural networks

Artemisia annua Mist On/Off cycle 

time, initial packing 

density, media 

volume, initial 

sucrose concentration 

in media, and culture 

time

Osama et al. 

(2013)

14. Sorting of regenerated 

plants on the basis of 

their photometrical 

behavior

Adaptive resonance 

theory

Gladiolus Photometrical 

behavior of their 

leaves in red, blue, 

and green color 

regimes

Mahendra et al. 

(2004)

15. Prediction of culture 

conditions for 

maximum biomass 

growth

Generalized 

regression network 

with radial basis 

function

Glycyrrhiza 
glabra

Inoculum density, 

medium pH, sucrose 

conc., media volume

Prakash et al. 

(2010)
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ular culture condition efficiently. Later, Prakash 

et al. (2010) developed a regression and feed- 

forward neural network model for prediction of 

optimal culture conditions for prediction of hairy 

root maximum biomass yield. It was found that 

both networks predicted culture conditions effi-

ciently; however, regression neural network was 

more accurate.

Scale-up of hairy roots in bioreactors is a very 

difficult task. During their growth hairy roots 

form clumps which causes heat and mass transfer 

restrictions. In order to solve these problems, agi-

tators and aerators have to be used in bioreactors, 

but these equipment cause shear stress on roots, 

which results in injury and callus formation. 

Neural networks have also been used for model-

ing of bioreactors for hairy root growth. Neural 

network model (Osama et al. 2013) was devel-

oped for modeling of hairy root growth in a nutri-

ent mist reactor. The significant features for 

culture parameters, viz., inoculum size, mist ON 

time, mist OFF time, initial packing density, 

media volume, initial sucrose concentration in 

media, and time of culture, were considered as 

input of the network. The final biomass of hairy 

roots on dry weight basis was taken as network 

output. Three network architectures, viz., feed- 

forward, cascade forward, and recurrent, were 

tested and all these networks were found efficient 

with recurrent neural network being the most 

accurate.

The knowledge derived through ANNs can be 

easily increased by training the model by adding 

to database new inputs (salt concentration, type 

of medium, other plant hormone, etc.) and/or out-

puts (plantlet weight, chlorophyll and carotene 

content, stomata analysis, etc.).

 Support Vector Machine

A support vector machine is an abstract machine 

that uses supervised learning to solve classifica-

tion problems. These are relatively new, general 

formulation for learning machines. These tech-

niques learn to assign labels to objects. To control 

the generalization ability of a learning machine, 

one has to control two different factors: error rate 

on the training data and capacity of learning 

machine as measured by its Vapnik–Chervonenkis 

dimension, which is a non-negative integer that 

measures the expressive power for the family of 

classification functions realized by the learning 

machine (Haykin 2003). A special property of 

SVMs is that they simultaneously minimize the 

empirical classification error and maximize the 

geometric margin. Hence, they are also known as 

maximum margin classifiers. A classification 

task usually involves with training and testing 

data, which consists of some data instances. Each 

instance in the training set contains one target 

value called class labels and several “attributes” 

called features. The goal of SVM is to produce 

the model that predicts the target value of data 

instances in the testing set, which are given only 

the attributes.

The training data provided for training con-

tains n (i = 1, 2, 3…n) input vectors denoted by xi, 

with each of vectors paired with corresponding 

labels and are denoted by yi. The labels in the 

training data lie in two classes, and for classifica-

tion of these data in different classes, support 

vector machine uses an oriented hyperplane. This 

hyperplane separates the two classes of data 

points on either side of it. The data points on one 

side of the hyperplane are labeled positive and on 

the other side negative. The directed hyperplane 

is defined by the maximally distant hyperplane 

from the data points on both of its sides. Thus, the 

points closest to the hyperplane on each side are 

the most influential for defining its position, and 

therefore, these points are called support vectors. 

The perpendicular distance from support vectors 

and hyperplane is called margin.

A nonlinear transformation function Φ(.) is 

defined to map the input space to a higher dimen-

sional feature space. The oriented separating 

hyperplane is given as w. Φ(x) + b = 0 where 

w. Φ(x) is the product of data points and weights 

that determine their orientation and b is the bias 

or offset of hyperplane from the origin. If for a 

point xi, w. Φ(xi) + b = 1, it lies on one side of the 

hyperplane, and if w. Φ(xi) + b = − 1, the point 

lies on the other side. The support vector machine 

uses the optimization theory to minimize an 

objective function which is half the distance 
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between two canonical hyperplanes (hyperplanes 

passing through support vectors) (Fig. 8).

As mentioned above, most of the traditional 

neural network models seek to minimize the 

training error by implementing the empirical risk 

minimization principle, whereas the support vec-

tor machines implement the structural risk mini-

mization principle which attempts to minimize 

an upper bound on the generalization error by 

striking a right balance between training error 

and capacity of machine. Support vector machine 

also provides guaranteed global optimal solution 

(Haykin 2003).

 Applications of Support Vector 
Machine in Plant Biology

Biological applications of support vector 

machines involve classifying objects such as pro-

tein and DNA sequences and microarray expres-

sion profiles. Performance of support vector 

machine is mostly similar to or better than tradi-

tional machine learning approaches (Hua and Sun 

2001). At present there is no algorithm for finding 

the optimum network architecture, i.e., ideal num-

ber of hidden layers, best activation function, etc. 

This is usually done by trial and error method and 

is time consuming and often less effective (Shigidi 

and Garcia 2003). Generally, neural network 

structures are developed according to past experi-

ences; this requires considerable skills, and effi-

ciency of these networks depends largely on their 

training (Gonzalez 2000). Another common 

approach is simply selecting an arbitrarily large 

number of neurons as models (Xiang et al. 2005). 

However, a large number of nodes may lead to 

poor generalization and large computational 

requirement (Archer and Wang 1993). Support 

vector machines can thus be an alternative for 

more accurate classifications.

Protein interactions play a very significant 

role in any of the biological operation. Prediction 

of these interactions is a point of key focus for 

researchers. However, very little has been 

achieved in this area due to expensive and time- 

consuming experimental approaches. A support 

vector machine-based model was developed (Lin 

et al. 2009) to predict potential Arabidopsis 

(A. thaliana) protein interactions based on a vari-

ety of indirect evidences. The potential interac-

tions were predicted based on 14 features derived 

from four types of indirect evidence (coexpres-

sion, domain interaction, colocalization and 

shared annotations). The confidence of predicted 

interaction was estimated to be 46.87 % and these 

interactions were expected to cover 29.02 % of 

the entire interactome. The model successfully 

recognized 28.91 % of new interactions, similar 

to its expected sensitivity (29.02 %).

Margin

Separating
hyperplane

Canonical
hyperplane

Fig. 8 Classification using 

support vector machine
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Knowledge of locations in protein expression 

is important for better understanding of defined 

cellular processes at organellar and cellular lev-

els. A complete map of a plant proteome is 

clearly a major goal for plant research commu-

nity in terms of determining the function and 

regulation of each encoded protein. An integra-

tive support vector machine-based localization 

predictor called AtSubP was developed (Kaundal 

et al. 2010) which was based on the combinato-

rial presence of diverse protein features, viz., 

amino acid composition, sequence-order effects, 

terminal information, position-specific scoring 

matrix, and similarity search-based, position- 

specific, iterated Basic Local Alignment Search 

Tool information. The model predicted seven 

subcellular compartments through fivefold cross- 

validation test and achieved an overall sensitivity 

of 91 % with high-confidence precision and 

Matthew’s correlation coefficient values of 90.9 % 

and 0.89, respectively.

Eichner et al. (2011) used a support vector- 

based model for identification of alternate splic-

ing in A. thaliana by detecting intron retention 

and exon skip from tiling arrays. The model used 

existing EST and cDNA sequences for super-

vised training. The method developed in this 

work expands the scarce repertoire of analysis 

tools for identification of alternative mRNA 

splicing from whole-genome tiling arrays.

Other authors used image analysis with sup-

port vector machine for detection and tracking of 

plant cell division by in vivo imaging. Cell divi-

sion in plants takes place mostly in meristems 

which contain stem cells that give rise to all cell 

types by regular cell division. However, the con-

trol mechanism of cell division is not understood 

properly and is the center of interest of develop-

mental biologists doing in vivo research in plant 

cell division (Marcuzzo et al. 2008b). However, 

for automated machine, vision images have to be 

partitioned into multiple segments. The goal of 

segmentation is to simplify and/or change the 

representation of an image into something that is 

more meaningful and easier to analyze. Some 

authors developed support vector machine-based 

model for classification of plant root cells of A. 
thaliana (Marcuzzo et al. 2008a, 2009). The 

images were segmented using watershed algo-

rithm and result was improved by merging adja-

cent regions. The selection of individual cells 

was obtained using a support vector machine 

(SVM) classifier, based on a cell descriptor con-

structed from the shape and edge strength of the 

cells’ contour.

Recently, support vector machines have been 

used in agricultural research. Support vector 

machine-based models have been used for clas-

sification of crop types, seed pollen grains, etc. 

Crop type classification is an important applica-

tion of remote sensing technology, and since the 

advent of remote sensing technologies, several 

studies on crop type classification have been pub-

lished. A support vector machine-based model 

was developed (Karimi et al. 2006) for detection 

of weed and nitrogen stress in corn. The results of 

support vector machine-based classification were 

compared to that of neural network, and SVM- 

based classifier was found more accurate. These 

models use imaging spectroscopy for studying 

hyperspectral images. Extraction of end- members 

from these remote-sensed images is a difficult 

task. A number of algorithms based on notion of 

spectral mixture modeling have been proposed to 

accomplish the complex task of finding appropri-

ate end-members for spectral unmixing in hyper-

spectral data (Martinez et al. 2006). A support 

vector machine-based end-member extraction 

(SVM-BEE) model was developed (Filippi and 

Archibald 2009) for hyperspectral agricultural 

mapping. This model accurately and rapidly 

yields a computed representation of hyperspec-

tral data that can accommodate multiple distribu-

tions. The efficacies of SVM-BEE, N-FINDR 

and SMACC algorithms in extracting end- 

members from real, predominantly agricultural 

scene were compared. SVM-BEE estimated veg-

etation and other end-members for all classes in 

the image, which N-FINDR and SMACC failed 

to do. Shi et al. (2012) used SVM for classifying 

agricultural data from public agricultural data set 

and concluded that SVM outperformed other 

popular algorithms, like naive Bayes and artifi-

cial neural network, in terms of the F1 measure. 

Different machine learning algorithms and tradi-

tional maximum likelihood algorithm were com-
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pared for classification of crops (Nitze et al. 

2012). Researchers compared support vector 

machine, artificial neural network, random forest 

and maximum likelihood algorithms for classifi-

cation of ten different crop types. Support vector 

machine was found to exhibit better results than 

the other algorithms.

 Hidden Markov Model

Andrey Markov gave a concept of a mathemati-

cal system that undergoes change from one state 

to another, between finite numbers of possible 

states. In this process, next state depends upon 

the current state and not on sequence of events 

that preceded it. This phenomenon is called 

Markov property. Markov model is a probabilis-

tic graphical model considering Markov prop-

erty. The simplest Markov model is a Markov 

chain which is like any random process with 

Markov property. In Markov chain model, the 

system is assumed to be autonomous and the 

transition states are fully observable. However, in 

a hidden Markov model (HMM), the states of 

transition are not fully observable but output 

depending upon those states is observable. These 

models are named because of their two proper-

ties. First, it assumes that states Yt are not observ-

able or hidden from the observer, and second, it 

assumes that the states of transition and output 

follow the Markov property, i.e., state Yt at time t 

does not depend upon the previous states and also 

the output At does not depend upon the state Yt 

(Fig. 9).

These models are used to analyze different 

types of time series problems in different areas 

like speech recognition (Juang and Rabiner 

1991), ion channel recording (Venkataramanan 

and Sigworth 2002), optical character recogni-

tion (Agazzi and Kuo 1993), computational biol-

ogy (Krogh et al. 1994), etc.

Hidden Markov model is a tool for estimating 

probability distributions of a sequence of obser-

vations over a time series, finite time series t. The 

observations can be represented as discrete 

alphabets, integers, real-valued numbers, etc. In 

biological applications, the HMM observations 

are generally discrete alphabets (the 20-letter 

amino acid, 4-letter nucleotide, 64-letter codon 

triplet, etc.). A HMM used for solving real-life 

problems contains many transition states and hid-

den variables connected to each other. Generally, 

in biological problems, a unidirectional HMM is 

used which is also called left–right model. In this 

type of model, the direction of transition of state 

is from left to right, and it prevents any transition 

to a state if transition from that state to another 

state has taken place (machine learning bioinfor-

matics). There are three basic questions one can 

ask immediately for a HMM: the likelihood ques-

tion (how likely is the output for HMM), decod-

ing question (probable sequence of transition 

states followed by the model to reach the output), 

and the learning question (how to revise values of 

transitions and emissions from the given infor-

mation given that they are not known with com-

plete certainty).

 Applications of Hidden Markov 
Model in Plant Biology

HMM is widely used in speech recognition, natu-

ral language modeling, and on-line handwriting 

recognition. HMM is widely being used in a vari-

ety of biological problems like gene finding, sec-

ondary structure prediction, gene annotation, etc.

With development in automated whole- 

genome sequencing, complete genome sequences 

are becoming more and more abundant. The first 

and most important task after getting a new 

genome is to find a protein coding sequence. One 

of the most successful gene finders was GeneMark 

(Borodovsky and McIninch 1993; Borodovsky 

et al. 1994, 1995), which in its first version was 

based on frame-dependent nonhomogeneous 

Y(t-1)

A(t-1)

Y(t)

A(t)

Y(t+1)

A(t+1)

Fig. 9 Simple hidden Markov model
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Markov models. The accuracy of gene finder 

depends on various factors, the most important 

being training. A HMM-based gene finder named 

SNAP was developed and is easily adaptable to a 

number of organisms (Korf 2004). This gene 

finder was used to evaluate genomes of A. thali-
ana and Oryza sativa. Earlier, three HMM-based 

gene finders—Exonomy, Unveil and 

GlimmerM—were presented (Majoros et al. 

2003). These gene finders were trained with 

Oryza sativa and A. thaliana along with other 

organisms. Later, a HMM profile was developed 

(Feng and Xue 2006) to search the proteome of 

O. sativa L. ssp. japonica for serine carboxypep-

tidase (SCP) and serine carboxypeptidase-like 

(SCPL) protein. A total of 71 SCPs and SCPLs 

were found in rice.

Alternative splicing contributes to genome 

complexity and proteome diversity. Thus, study 

of alternative splicing sites in a genome is a topic 

of great interest. Experimental research in this 

field is both costly and time consuming. A hidden 

Markov model was used for genome-wide detec-

tion and analysis of alternative splicing for nucle-

otide binding site/leucine-rich repeat sequences 

in rice (Gu and Guo 2007). HMM-based searches 

were performed for nucleotide binding site and 

leucine-rich repeat (NBS-LRR) domain. Out of 

875 NBS-LRR sequences obtained from The 

Institute for Genomic Research (TIGR), 119 

(13.6 %) sequences had alternative splicing. 

Conversely, 71 intron retention events, 20 exon 

skipping events, 16 alternative termination 

events, 25 alternative initiation events, 12 alter-

native 5′ splicing events and 16 alternative 3′ 
splicing events were identified.

In another study, HMM was used in a neural 

network-based combinatorial model for predic-

tion of optimal culture condition for maximum 

biomass yields in Rauwolfia serpentina hairy 

root cultures. Neural network approaches can be 

evaluated through spatial variations; there is no 

proper resolution for temporal variations. 

Nonlinear biological responses are affected by 

both spatial as well as temporal differences. 

Therefore, a stochastic approach where time- 

based differences are taken as random variables 

to evaluate the whole bioprocess should be con-

sidered (Mehrotra et al. 2013). In this study, five 

HMMs were derived for five test culture condi-

tions and connected to the input layer of three- 

layered feed-forward neural network. The results 

of combinatorial ANN-HMM model simulation 

was compared with ANN model and it was 

observed that only 2.99 % deviation from experi-

mental result was recorded from combinatorial 

model against 44 % recorded from ANN model.

 Genetic Algorithms

Genetic algorithms were invented in the late 

1960s by John Holland and colleagues and stu-

dents at the University of Michigan in between 

1960s and 1970s. Furthermore, John Holland 

was the first researcher who not only challenged 

but succeeded to put computational evolution and 

development on a firm hypothetical footing. Until 

this, theoretical foundation, based on the ideas of 

schemas, was the basis of almost all succeeding 

theoretical works on genetic algorithms. In the 

past few years, there have been extensive interac-

tions among various researchers studying differ-

ent computational methods, and existing 

boundaries between genetic algorithms, evolu-

tionary programming, evolution strategies,, and 

related approaches have broken down to some 

extent. At present, the interpretations of genetic 

algorithm have changed to a very far meaning 

from John Holland’s original conception. Genetic 

algorithms are an adaptive search heuristic algo-

rithm based on the evolutionary ideas of genetic 

and natural selection. The basic idea of genetic 

algorithms is designed to simulate various pro-

cesses in natural system, which is essential for 

evolution, specifically those processes which fol-

low the doctrines laid down by Charles Darwin of 

fittest survival. They represent a sharp exploita-

tion of random search space to solve any particu-

lar problem. This search heuristic is consistently 

used to generate useful solutions to search prob-

lems and optimization. GAs are the higher class 

of evolutionary algorithms, which is used to gen-

erate the solutions to optimization problems 

using the techniques evolved by natural evolution 

such as mutation, inheritance, crossover, and 
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selection. Genetic algorithms not only provide 

alternate method for problem solving but also 

outperforms consistently other traditional meth-

ods. Many problems of real world involve opti-

mal parameters which might become cumbersome 

for traditional methods but ideally suited to 

genetic algorithms. Because of its outstanding 

performance in optimization, genetic algorithms 

have been wrongly regarded as a function opti-

mizer. There are many ways of viewing the 

genetic algorithms and perhaps the idea that most 

users come to make use of genetic algorithms for 

a problem solver is a restrictive view.

In contrast with evolutionary programming 

and evolution strategies, John Holland’s original 

aim was to establish and design algorithms for 

solving specific problems, but to study the phe-

nomenon of adaptation occurring in nature and to 

develop some ways to import the mechanism of 

natural adaptation into computer systems to run 

simulation and study the effect. John Holland’s 

1975 book Adaptation in Natural and Artificial 
Systems presented the genetic algorithm as a gen-

eralization of natural evolution and also gave 

theoretical structure for adaptation under the 

genetic algorithm. Genetic algorithm is a popular 

method for moving one inhabitant of chromo-

somes or individual of population (which is a 

computer program or algorithm capable of pro-

viding a potential solution of the problem) to a 

new inhabitant using a kind of natural selection 

with the influx of genetics and stimulated opera-

tors of crossover, inversion, and mutation. The 

individuals or the computer programs used in 

genetic algorithms are basically a set of rules 

arranged in the form of trees. These tree-like 

structures also called parse tree can be mutated 

and recombined with new variants. Thus, the 

machine evolves to find a solution of a complex 

problem using simple equations. These equations 

give different outputs from different inputs char-

acteristic for different classes (Kell et al. 2001). 

The individuals or rules (algorithm/programs) 

from the population which are chosen by selec-

tion operator are allowed to reproduce, and a fit-

ter individual is more likely to produce further 

offspring than the less fit one. For any defined 

problem to be solved, the simplest of genetic 

algorithm works as follows:

 (a) Start with a randomly generated population 

of computer programs/algorithms.

 (b) Evaluate the fitness f(x) of each individual in 

the population.

 (c) Select individuals from the present popula-

tion, the probability of selection being an 

increasing function of fitness. Selection of 

individuals is done with replacement, which 

means any particular chromosome can be 

selected more than once for it to become a 

parent one.

 (d) Modify the individuals by mutation, recom-

bination, or crossover.

 1. With the crossover rate or its probability, 

cross over the pair at an assorted selected 

pair to form two offspring. If no crossover 

takes place, form two offspring that are 

exact copies of respective parents. The 

thing, which is here to be noted, is that 

crossover rate is simply the probability of 

two-parent crossing over in a single point. 

There is some multi-point crossover of 

the genetic algorithm in which the cross-

over rate is the number of valid points for 

crossover to take place.

 2. Mutate the resulted offspring at locus 

with probability Pm, mutation rate or 

probability, and set the individual in new 

population.

 (e) After this, replace the present population 

with new population.

 (f) Go back to step b.

Each resultant of this process is called “genera-

tion”; genetic algorithm (GA) is typically iterated 

for anything in between 50 and 500 or could be 

even more generations. The entire set of required 

generation is called as “run.” At the end of run, 

there is likelihood to get one or more fit chromo-

somes from the population. Randomness plays a 

vital role in run; that’s why different runs with 

different number seeds are more likely to pro-

duce different behaviors of generations. 

Researchers on genetic algorithm often scale 

down observation based on various simulations 

averaged over many different runs on the same 

problem.
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 Applications of Genetic Algorithms 
in Plant Biology

Major application of genetic algorithms in fer-

mentation technology and plant science has been 

for optimization of bioprocess. In a study a 

mobile robot was developed for harvesting fruit 

automatically (Noguchi and Terao 1997). Genetic 

algorithms were used to optimize methods for 

finding small paths in a given space. Neural net-

works have been for long used for optimization 

of bioprocess in fermentation technology. In 

plant biology, hybrid models of neural networks 

and genetic algorithms have been used for opti-

mization of conditions for storage of fruits 

(Morimoto et al. 1997; Morimoto and Hashimoto 

2000) and for detection of plant virus using bio-

sensors to observe virus reactions (Glezakos 

et al. 2010). More complex in vitro culture pro-

cesses such as shoot proliferation, root formation 

(rhizogenesis), and plantlet acclimatization have 

been modeled by ANNs and successfully opti-

mized by genetic algorithms in woody fruit 

plants, such as kiwifruit (Gago et al. 2010a) and 

grapevine (Gago et al. 2010b).

 Future Prospects

Biological systems are complex and nondeter-

ministic and depend upon genetic and environ-

mental factors. Due to the advent of modern 

technologies, we can generate a large amount of 

biological data. These large data have to be ana-

lyzed and interpreted to understand important 

relations between different factors. Machine 

learning techniques provide a very good scope to 

analyze these large biological data, interpret the 

obtained information, and give deep insight into 

the biological processes. These technologies can 

be used to develop models that can explain the 

relationship between different factors and bio-

logical responses, which can further be used to 

predict future responses in specific situations.

Machine learning techniques are good for 

determining nonlinear relationships followed in 

biological systems; thus, these techniques make 

better models than statistical techniques. 

Techniques like neural network require less prior 

data and are more accurate compared to statisti-

cal techniques (Gago et al. 2010b). Combinations 

of these techniques could be used for developing 

more accurate models which can predict outcome 

of tissue culture experiments, optimize and con-

trol bioprocess operations at large-scale, predict 

crop yields according to climate changes, etc.. 

These techniques are easy to understand and a 

plant biologist can very easily use these tech-

niques by having a very good understanding of 

mathematical and statistical modeling.
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