Machine Learning




"Field of study that gives computers an ability to learn without being explicitly programmed" - Arthur Samuel
1959



Machine Learning

It explores the study and construction
of algorithms that can learn from their
errors and make predictions about data
through inductive rationality, rather
than simply foHoWing programmed

instructions.
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Artificial neural network-based model for the prediction of optimal growth and culture conditions
for maximum biomass accumulation in multiple shoot cultures of Centella asiatica.
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Artificial neural networks modeling the in vitro rhizogenesis
and acclimatization of Vitis vinifera L.
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This study employs artificial neural networks (ANNs) to create a model to identify relationships between
variables affecting the in vitro rhizogenesis and acclimatization of two cultivars of Vitis vinifera L. Albarino
and Mencia. The effects of three factors (inputs), the type of cultivar, concentration and exposure time to
indolebutyric acid (IBA), on the success of in vitro rhizogenesis and acclimatization were evaluated. The
developed model, using ANNs software, was assessed using a separate set of validation data and was in
good agreement with the observed results. Exposure time to IBA was found to have the dominant role in
influencing the height of acclimatized plantlets. ANNs can be a useful tool for medeling different complex
processes and data sets, in plant tissue cultures or, more generally, in plant biology.

d modelling approach is used to determine the synergistic effect of five major components of growth
&) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back
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COMPARISON OF MACHINE LEARNING ALGORITHMS RANDOM FOI
ARTIFICIAL NEURAL NETWORK AND SUPPORT VECTOR MACHINE
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ABSTRACT:

The classification and recognition of agricultural crop types is an important application of remote sensing. New mi
algorithms have emerged in the last years, but so far, few studies only have compared their performance and usability
compared three different state-of-the-art machine learning classifiers, namely Support Vector Machine (SVM), A
Metwork (ANN) and Random Forest (RF) as well as the traditional classification method Maximum Likelihood (M
other. For this purpose we classified a dataset of more than 500 crop fields located in the Canadian Prairies w
randomized sampling approach. Up to four multi-spectral RapidEye images from the 2009 growing season were used
the mean overall classification accuracies as well as standard deviations. Furthermore, the classification accuracy of si
analysed. Support Vector Machine classifiers using radial basis function or polynomial kernels exhibited superior |
and RF in terms of overall accuracy and robustness, while ML exhibited inferior accuracies and higher variabi
exhibited the best results for early-season mono-temporal analysis. With a multi-temporal approach, the highest a
achieved for Rapeseed and Field Peas. Other crops, such as Wheat, Flax and Lentils were also successfully classified.
producer’s accuracies were higher than &3 %,

Support vector machines-based identification of
alternative splicing in Arabidopsis thaliana from
whole-genome tiling arrays

Johannes Eichner'", Georg Zeller'**, Sascha Laubinger™, Gunnar Ratsch’

Abstract

Background: Altemative splicing (AS) is a process which generates several distinct mRNA isoferms from the same
gene by splicing different portions out of the precursor transcript. Due to the (patho-)physiological importance of
AS, a complete inventory of AS is of great interest. While this is in reach for human and mammalian model
organisms, our knowledge of AS in plants has remained more incomplete. Experimental approaches for monitoring
AS are either based on transcript sequencing or rely on hybridization to DNA microarrays. Among the microarray
platforms facilitating the discovery of AS events, tiling arrays are well-suited for identifying intron retention, the
most prevalent type of AS in plants. However, analyzing tiling array data is challenging, because of high noise
levels and limited probe coverage.

Results: In this work, we present a novel method 1o detect intron retentions {IR) and exon skips (ES) from tiling
arrays. While statistical tests have typically been proposed for this purpose, our method instead utilizes support
vector machines (SWMs) which are appreciated for their accuracy and robustness to noise. Existing EST and cDNA
sequences served for supervised training and evaluation. Analyzing a large collection of publicly available
microarray and sequence data for the model plant A thalianag, we demonstrated that our method s more accurate
than existing approaches. The method was applied in a genome-wide screen which resulted in the discovery of
1,355 IR events. A comparison of these IR events to the TAIR annotation and a large set of short-read RMA-seq data
showed that 830 of the predicted IR events are novel and that 525 events (39%) overlap with either the TAIR
annotation or the IR events inferred from the RNA-seq data.

Conclusions: The method developed in this work expands the scarce repertoire of analysis tools for the
identification of altemative mRMA splicing from whole-genome tiling arays. Our predictions are highly enriched
with known AS events and complement the A thallang genome annotation with respect to AS. Since all predicted
AS events can be precisely attributed to experimental conditions, our work provides a basis for follow-up studies
focused on the elucidation of the regulatory mechanisms underlying tissue-specific and stress-dependent AS in

plants.




Strengths of artificial neural networks in
mnde]ling complex plant processes
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ommonly, simple mathemarical

muodels can not be used to deseribe
exactly the biological processes due to
their higher complexity. In fact, most
biological interactions cannot be elu-
cidated by a simple stepwise algorithm
or a precise formula, particularly when
the data are complex or noisy. ANNs
allows an aceurate description of those
kind of biological processes in plant sei-
ence, offering new advantages over tra-

and binary data should w be analyzed
by Poi regression and binary logistic
regression, respectively. For this purpose,
plant researchers need a high level statisri-
cal background therefore, in many cases,
have to be assisted by statisticians in spite
of it the outputs being difficult to under-
stand.? Furthermaore, l:.-r_}mi:qu:.-n to model

the whole process or to obrain oprimized
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How to make?

* Gathering data

* Preparing that data

* Choosing a model

* Training

* Evaluation

* Hyperparameter tuning
* Prediction
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