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AbstrAct
New methods and algorithms are being developed for predicting 
untested phenotypes in schemes commonly used in genomic 
selection (GS). The prediction of disease resistance in GS has 
its own peculiarities: a) there is consensus about the additive 
nature of quantitative adult plant resistance (APR) genes, although 
epistasis has been found in some populations; b) rust resistance 
requires effective combinations of major and minor genes; and c) 
disease resistance is commonly measured based on ordinal scales 
(e.g., scales from 1–5, 1–9, etc.). Machine learning (ML) is a field 
of computer science that uses algorithms and existing samples to 
capture characteristics of target patterns. In this paper we discuss 
several state-of-the-art ML methods that could be applied in GS. 
Many of them have already been used to predict rust resistance 
in wheat. Others are very appealing, given their performance for 
predicting other wheat traits with similar characteristics. We briefly 
describe the proposed methods in the Appendix.

The development of low-cost genotyping strategies such 
as single nucleotide polymorphisms (SNP) and geno-

typing-by-sequencing (GBS) (Elshire et al., 2011; Kumar et 
al., 2012) has made it possible for genomic selection (GS) 
to offer new possibilities for improving the efficiency of 
plant breeding methods and programs (Bassi et al., 2016). 
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Crossa et al. (2010), for example, observed in four wheat 
datasets that the inclusion of markers significantly outper-
formed (by 8 to 36%) a pedigree-based model in predictive 
ability. Based on computer simulation studies, Bernardo 
and Yu (2007) showed that using the whole set of mark-
ers available for genotyping achieved better prediction of 
breeding values than using subsets of markers found to be 
significantly associated with quantitative trait loci (QTLs), 
i.e., marker-assisted selection (MAS). This was empirically 
confirmed by Heffner et al. (2011), who compared pheno-
typic selection (PS), MAS, and GS prediction performance 
for 13 phenotypic traits in 374 winter wheat (Triticum 
aestivum L.) breeding lines. Using GS, prediction accuracy 
measured by the correlation between observed and predic-
tive values was 28% higher than with MAS, and 95% as 
high as with PS. Moreover, the mean correlation across 
six genomic selection indices was 14% higher than for PS. 
Arruda et al. (2016) found correlations between observed 
and predicted values that ranged from 0.4 to 0.9 in GS 
models for Fusarium head blight resistance in wheat, 
and lower values (r < 0.3) in MAS models. Rutkoski et al. 
(2014) obtained r @  0.57 using only GBLUP and r > 0.6 
using GBLUP after adding a candidate gene-linked marker 
(Sr2) as a fixed effect (i.e., a combination of GS and MAS).

Rust diseases are one of main causes of wheat pro-
duction losses throughout the world. Puccinia graminis 
(stem rust) and Puccinia striiformis (yellow rust) cause 
major economic losses and, hence, receive attention in 
wheat breeding programs (Ellis et al., 2014). Stem rust 
(SR) resistance is generally categorized into two groups: 
(i) all stage resistance, and (ii) slow rusting, or quantita-
tive adult plant resistance (APR). In the first case, resis-
tance is conferred by race-specific genes and is related 
to a hypersensitive response; in the second case, slow 
rusting resistance is usually conferred by multiple loci 
and not related to a hypersensitive response (Singh et al., 
2011). Furthermore, slow rusting quantitative resistance 
is considered more durable than resistance conferred by 
pathogen recognition genes and must be improved over 
multiple selection cycles using screening nurseries for 
evaluation (Singh et al., 2011).

Strategies such as MAS and GS are alternatives for 
developing high-yielding wheat with APR. However, the 
complexity of these traits makes MAS difficult to imple-
ment. For instance, the Sr25 gene provides SR resistance 
only when the Sr2 gene is present (Singh et al., 2011). Also, 
the number of molecular markers associated with SR 
resistance genes is not enough for conducting MAS (Singh 
et al., 2011). Thus, GS is an important option for accumu-
lating favorable alleles for rust resistance (Rutkoski et al., 
2011; Ornella et al., 2012). Nevertheless, using GS for pre-
dicting disease resistance has its own peculiarities:

1.   Linear GS approaches are usually limited to modeling 
additive effects; however, machine learning (ML) 
methods are able to include epistasis. Although there 
is general consensus about the additive nature of APR 
to rust (Ornella et al., 2012; Rutkoski et al., 2014), 
some populations show epistasis (Rouse et al., 2014).

2.  Most GS applications assume that phenotypic response 
is continuous and normally distributed, whereas 
disease resistance is commonly expressed in ordinal 
scales (e.g., scales from 1 to 9, from 1 to 5, etc.) (Roelfs 
et al., 1992). Even if the data are transformed, many 
of the aforementioned problems remain in the model 
(Gianola 1980, 1982; Kizilkaya et al., 2014; Montesinos-
López et al., 2015a). A distinctive attribute of many 
supervised learning algorithms is that there is no 
restriction regarding the distribution of response 
variables. This characteristic makes them less sensitive 
to the problems that arise in parametric models when 
ordinal scores are used to quantify diseases. The 
disadvantages of dealing with count data are discussed 
by Montesinos-López et al. (2015a, b), who also present 
an appealing parametric solution to this difficulty.

3.  Clearly most economically important traits are affected 
by large numbers of genes with small effects (e.g., de 
los Campos et al., 2013), and durable rust resistance in 
wheat is determined by effective combinations of minor 
and major genes (Bansal et al., 2014). In this situation, 
simulation studies suggest the good performance of 
methods that use variable selection and differential 
shrinkage of allelic effects (e.g., Bayes B, de los Campos 
et al., 2013). Hence, ML should provide more flexible 
methods for genomic-enabled prediction values for SR 
resistance of wheat lines (González-Recio et al., 2014).

The main objective of this paper is to discuss several 
state-of-the-art ML methods applied in GS, particularly 
for predicting wheat diseases. First, we present a brief 
introduction to ML. Second, we compare results from 
well-known linear methods (ridge regression, Bayesian 
LASSO) with those from ML: random forests (RF), sup-
port vector machine (SVM) and radial basis function 
neural network (RBFNN). Third, we examine classifica-
tion models instead of the regression models commonly 
used in GS. There are only a few reports of GS being used 
on rust (and even fewer on ML); however, there is consid-
erable information related to mapping experiments that 
provide information about the relationship between QTLs 
and phenotypes. Finally, in the Appendix we present a 
brief summary of ML methods discussed in this review.

MAterIAls And Methods 
Machine Learning Methods: An Overview
With advances in GS, volumes of data have dramatically 
increased, and new research efforts aimed at integrating 
and unifying several fields of research, such as computer 
science, ML, bioinformatics, mathematics, statistics, 
and genetics, have emerged as new data-driven science. 
This new field of research focuses on estimating more 
accurate predictive values of unobserved individuals by 
using statistical learning or ML methods. For example, 
artificial neural networks (ANN) are common predic-
tion tools in ML. In GS, when a feedforward ANN with 
a single hidden layer is applied, each marker of the input 
vector is connected to all neurons in the hidden layer, 
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and these are connected to the output layer with the 
predicted phenotypic responses. More recently, devel-
opments in ANN and faster computer processing have 
allowed increasing the number of layers to ANN (deep 
learning) and improving prediction accuracy to capture 
higher-order interactions between covariates.

The ML is concerned with developing and applying 
computer algorithms that improve with data (Gareth et 
al., 2013). Learning can be classified as either supervised 
or unsupervised. In supervised learning, the objective 
is to predict a desired output value (trait) inferred from 
input data. The prediction task is called classification if 
outputs are categorical (e.g., red-black-blue, or suscep-
tible-moderate-resistant), and regression if outputs are 
continuous. In unsupervised learning, the objective is to 
discover groups and associations among input variables 
where there is no output variable (Hastie et al., 2009).

Many types of methods are used in supervised 
learning, such as nearest-neighbors methods, decision 
trees, naive Bayes, Bayes nets, and rule-based learning 
(Kotsiantis 2007). Methods that have been applied in 
GS include SVM, RF, and ANN (Gianola et al., 2011; 
González-Camacho et al., 2012; Pérez-Rodríguez et al., 
2012). The reproducing kernel Hilbert space (RKHS), 
initially presented as a semi-parametric method (Gianola 
et al., 2006), is now also included in the ML group 
(González-Recio et al., 2014).

Many ML methods have been implemented in statis-
tical and data-mining open-source software, e.g., Weka 
(Hall et al., 2009) and R (R Core Team 2016), which run 
on most modern operating systems (Windows, macOS, 
and Linux). Because this kind of software is open-source, 
users can freely modify source codes to fit their own spe-
cific needs (Sonnenburg et al., 2007). ML methods have 
been developed under different theoretical frameworks 
using classic and Bayesian statistical approaches; they 
have helped explain field results and focus on the devel-
opment and improvement of learning algorithms. One 
example is the theory of probably approximately cor-
rect learning described by Valiant (1984) that facilitates 
the development of boosting algorithms (BST) (Freund 
and Schapire 1996), with the statistical learning theory 
being the backbone of SVM (Cortes and Vapnik 1995). 
The SVM were evaluated for rust resistance (Ornella et 
al., 2012) and will be discussed in the next section and in 
the Appendix. To the best of our knowledge, BST has not 
been tested for GS in rust; however, some authors such as 
Ogutu et al. (2011) and González-Recio and Forni (2011) 
reported an outstanding performance of BST on simu-
lated and real data. Boosting is a method for improving 
the accuracy of regression and classification models 
(Hastie et al., 2009). Combining multiple learning algo-
rithms helps to improve predictive performance better 
than any of the constituent learning algorithms alone; 
the most popular ensemble-based algorithms are bag-
ging, boosting and AdaBoost (Polikar 2006). Sun et al. 
(2012) proposed a successful ensemble-based approach 
to imputation of moderate-density genotypes for GS. The 

RF is another type of ensemble algorithm where the non-
parametric function is the average of regression decision 
trees or classification (Hastie et al., 2009).

Alternatively, BST combines different predictors 
with some shrinkage imposed on each iteration, given a 
training dataset (x1, y1), … , (xn, yn), where xi is a set of 
input vectors and yi is the response variable. The goal is 
to obtain an x̂F  approximation of the function *

xF  that 
minimizes the expected value of some specified loss 
function (e.g., mean squared error or exponential loss) 
over the joint distribution of all (x, y) values. A common 
way to obtain *

x  F  is using an expansion of the form:
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where hm (x, y), the base learner, is a function relating 
x to y (commonly used base learners are decision trees 
or ordinary least-squares regression) and βm is a weight 
assigned to the learner model. This expansion is com-
monly obtained using gradient descent techniques, i.e., 

x̂F  is sequentially updated, such that FM (x) = FM–1 (x) + 
βM hM (x, y), where βM hM (x, y) is the learner that tends 
to the gradient of the loss function at a gradient-boosting 
point; a more detailed description is found in Friedman 
(2001). González-Recio et al. (2014) applied a BST algo-
rithm for GS. Another BST development is the AdaBoost 
classifier: once a new base learner is added, the data are 
reweighed, and then correctly classified cases lose weight, 
whereas cases that are misclassified gain weight. Thus, 
next learners focus more on the instances that previous 
weak learners misclassified. This may cause AdaBoost 
not to be robust when dealing with noisy data and the 
presence of outliers (Freund and Schapire, 1996).

Gradient-boosted methods can deal with interac-
tions among several variables, and select the variables 
automatically. These methods are also robust in the pres-
ence of outliers, missing data, and numerous correlated 
and irrelevant variables, and they take into account the 
importance of the variables in exactly the same way as 
RF (Walters et al., 2012).

We also review what are called single learners, i.e., 
single functions that cannot be decomposed into smaller 
units. The RKHS and SVM are examples of single learn-
ers with good learning performance. The increase of dif-
ferent modeling approaches in GS has made ML converge 
with classic statistical methods commonly applied in 
animal and plant breeding (González-Recio et al., 2014).

Parametric Linear Regression (PLR) Versus ML 
Methods in Genomic Breeding for Rust Resistance
Since GS was originally introduced by Meuwissen et al. 
(2001), a large number of parametric linear regression 
(PLR) models have been developed for prediction. The first 
models proposed by Meuwissen et al. (2001)— e.g., Bayes 
A and Bayes B— were followed by a plethora of Bayesian 
regression models— e.g., Bayes C, the Bayesian LASSO 
and Bayes R (de los Campos et al., 2013; Gianola 2013).
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Based on many experiments performed at CIMMYT 
and elsewhere (Table 1), we observed that several complex 
traits (e.g., yield and days to heading) are better represented 
by nonlinear approaches that are able capture small effect 
cryptic epistatic effects (González-Camacho et al., 2012; 
Pérez-Rodríguez et al., 2012; Crossa et al., 2014). Pérez-
Rodríguez et al. (2012) evaluated 306 CIMMYT wheat lines 
genotyped with 1717 DArT markers, and days to heading 
(DTH) and grain yield (GY) traits were measured in 12 
environments. The linear models applied were Bayesian 
LASSO (BL), Bayesian Ridge Regression, Bayes A and 
Bayes B and the nonlinear models were RKHS, Bayesian 
regularized neural network (BRNN) and radial basis func-
tion neural network (RBFNN). Results show that three 
nonlinear models had better prediction accuracy than PLR 
models and that nonlinear models RKHS and RBFNN 
were consistently better than the linear models. Further-
more, González-Camacho et al. (2012) evaluated BL, 
RKHS, and RBFNN on 21 maize datasets and also found a 
slight but consistent superiority of nonlinear models.

The additive and oligogenic nature of rust seems to 
defeat the potential supremacy of non-parametric models 
(Ornella et al., 2014, Poland and Rutkoski, 2016). Ornella 
et al. (2012) compared the performance of ridge regres-
sion as implemented in the R package rrBLUP (Endel-
man, 2011), with BL, support vector linear regression 
(SVR-l), and support vector Gaussian regression (SVR-g) 
for predicting SR and yellow rust (YR) resistance in five 
wheat populations. For SR, they analyzed the perfor-
mance of the models on 10 wheat datasets, each includ-
ing 90 to 180 individuals (Ornella et al., 2012). The BL 
and ridge regression (RR) models had similar prediction 
performance, with a small superiority over SVR models. 
The BL produced the best results in seven of the 10 datas-
ets. This result supports reports about the additive nature 
of SR resistance (Singh et al., 2008). Although APR to 
stem rust is additive in nature, the measurement is semi-
quantitative. Although the scale of measurement ranges 
from 0 to 100% of disease severity, it is comparable to 
the one through nine scale used to measure the disease. 
Meanwhile, rust heritability is usually high and major 
genes play a crucial role in enhancing resistance in CIM-
MYT wheat germplasm. Further discussion on this topic 
can be found in the section on classification models.

Regarding YR resistance, for the nine datasets evalu-
ated, predictions were not as good as those for SR resis-
tance, probably because the heritability of YR resistance 
is lower than the heritability of SR resistance; for exam-
ple, for population PBW343 × Kingbird, YR resistance 
had H2 = 0.45, while for SR resistance H2 = 0.90 (Ornella 
et al., 2012). The superiority of BL was less evident; SVR-l 
and SVR-g produced the best results (with statistically 
significant differences) and BL showed the best correla-
tions in three populations.

Rutkoski et al. (2014) evaluated the performance 
of multiple linear regression models: GBLUP imple-
mented in the rrBLUP package (Endelman, 2011), BL, 
and Bayes Cπ for predicting adult plant SR resistance 

in a set of 365 wheat lines characterized by GBS. They 
also included eight markers (identified in each training 
dataset by genome-wide association analysis) as fixed 
effects in the model. The best results were obtained 
with GBLUP considering markers linked to Sr2 as fixed 
effects. In Rutkoski et al. (2014), broad-sense herita-
bility was 0.82 and the most strongly significant Sr2 
linked marker explained 27% of the genetic variation. 
Including QTLs with large effects as fixed factors seems 
promising for PLR models in GS. Arruda et al. (2016) 
also obtained the best predictive correlations in GS for 
traits associated with Fusarium head blight resistance 
in wheat using rrBLUP + “in-house” QTLs (identified 
by genome-wide association studies, in the same popu-
lation) treated as fixed effects.

Using simulation, Bernardo (2014) found that major 
genes should be fitted as having fixed effects in GS, 
especially if a few major genes are present and if each 
gene contributes more than 10% of the genetic variance. 
Higher heritability values (> 0.5) also strengthen the 
impact of considering major genes as fixed effects. The 
ML offers flexibility regarding combinations of genes 
with major and minor effects. Ornella et al. (2014) evalu-
ated six regression models (BL, RR, RKHS, random for-
est regression [RFR], SVR-l, and SVR-g) for GS in 12 of 
the 19 rust datasets and the four yield datasets of wheat 
presented in Ornella et al. (2012). As in previous reports, 
RKHS had the best results in the four yield datasets, 
whereas RFR had the best results in nine of the 12 rust 
datasets (Table 2). This is an expected result, given that 
due to the additive nature of the trait (Singh et al., 2008; 
Rutkoski et al., 2014), one would expect PLR models (i.e., 
BL or RR) to produce the best results; major and minor 
gene/QTL with different effects are common in rust 
resistance. However, RFR has the capability of consider-
ing markers with large effects (see the Appendix), which 
is greater than the capability of linear models to capture 
additive effects. Within the ML group, RFR produced the 
best results in nine of the 12 rust datasets, RKHS pro-
duced the best results in one dataset and SVR-l was the 
best in one dataset, whereas within the PLR group, only 
the BL produced the best results in one dataset (Table 2). 
The performance of ML and PLR models on these rust 
data still supports the additive nature of rust statistical 
architecture. Note that RR and SVR-1 use the same regu-
larization term in the cost function, but the algorithm for 
optimizing the parameters differs in each case because 
the objective function is different. In RR, a generalized 
least squares approach is used and in SVR-1, epsilon sen-
sitive optimization is employed.

It should be mentioned that the precision of the clas-
sifiers depends on the number of individuals in a given 
class, which defines the extreme values. Small thresh-
olds are associated with higher variabilities and worse 
results in the classifications. Thus by selecting a different 
α threshold, the conclusions may change. For example, 
Ornella et al. (2014) gave special emphasis to the analysis 
for α = 15%, because it is a percentile commonly used in 
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plant breeding programs; however, this threshold may 
lead to different results as compared to using smaller 
values of the threshold (e.g., 10 or 5%). In these cases, the 
problem would generally become more difficult but, in 
general, the regression approaches could improve, as the 
problem would start to resemble regression.

Based on our work and the bibliography, we found 
meaningful consistency in the performance of the meth-
ods and the main characteristics of the trait (architecture): 
a few major genes (rust) versus traits that are the result 
of the joint action of a large number of genes, each with 
small effects (e.g., yield), and epistasis versus additivity. In 
the following paragraphs, we will explore the relationship 
between the trait’s architecture and the performance of 
some of the best-known GS methods: on the one hand, BL 
and RR as representatives of linear models; on the other 
hand, RKHS and RFR as examples of ML methods.

In Fig. 1A, we plot Pearson’s correlations ( r ) of 

RKHS and RFR versus the 
BL

RR

r
r  relationship in the 12 rust 

datasets already discussed. The 30 datasets (14 maize tri-
als and 16 wheat trials) and the R and Java scripts used 
in this work are in the data repository http://repository.
cimmyt.org/xmlui/handle/10883/2976 from Ornella et al. 

(2014). The ad hoc relationship BL

RR

r
r  would measure the 

discrepancy in the estimated marker effects between the 
two methods. The BL induces marker-specific shrinkage 
of the estimated regression coefficient. The BL shrinks 
markers with near zero effects more than those with 
large effects; this leads to pseudo-variable selection when 
making predictions, whereas RR-BLUP assumes equal 
variance and shrinks all the marker effects to zero; this

leads to potentially lower accuracy, especially when some 
large-effect QTLs are present close to or coincide with 
the markers (Thavamanikumar et al., 2015). Therefore, if 
there are no QTLs with large effects, the ratio holds 

table 1. Articles related to Gs and Machine learning methods. Publications, datasets used, traits, models, and 
performance criteria.

Publications and datasets used Traits† Model‡ Performance criteria ¶

Ornella et al. (2012)
Wheat datasets

PBW343xJuchi
PBW343xPavon76

PBW343xMuu
PBW343xKingbird

PBW343xK-Nyangumi

BL, RR, SVR-l, SVR-g r

González-Camacho et al. (2012); Ornella et al. (2014)
14 maize datasets 300 tropical lines genotyped with 55K SNPs
16 wheat datasets; 306 wheat lines genotyped with 1717 SNPs

GLS, FFL, MFL,  
ASI under SS or WW, GY-SS, GY-WW,  

Stem rust resistance, yellow rust resistance and GY

BL, RR, RKHS, RFR, SVR-l, 
SVR-g, RFC, SVC-l, SVC-g

r, κ, and RE

González-Camacho et al. (2012); maize datasets GLS, FFL,MFL, ASI, SS or WW BL, RHKS, RBFNN r and PMSE

González-Camacho et al. (2016); 16 maize datasets;  
17 wheat datasets

GLS, GY-SS, GY-WW, GY-LO, GY-HI,  
FFL, MFL, ASI with SS or WW, DTH

MLP, PNN AUC and AUCpr

† Traits: female flowering time (FFL), male flowering time (MFL) and the MFL to FFL interval (ASI) under severe drought stress (SS) or in well-watered (WW) environments; grain yield (GY) under SS, WW, low 
(LO) and high (HI) yielding conditions; days to heading (DTH), gray leaf spot (GLS) resistance.

‡ Models: Bayesian Lasso (BL), Ridge Regression (RR), Reproducing Kernel Hilbert Spaces (RKHS), Random Forest Regression (RFR) and Support Vector Regression (SVR) with linear (l) and Gaussian kernels (g), 
Random Forest Classification (RFC) and Support Vector Classification (SVC) with linear (l) and Gaussian (g) kernels, radial basis function neural network (RBFNN), multi-layer perceptron (MLP) and Probabilistic 
neural network (PNN).

¶ Performance criteria: Pearson’s correlation coefficient (r), Cohen’s Kappa coefficient (κ), relative efficiency (RE), predictive mean squared error (PMSE), area under the receiver operating characteristic curve 
(AUC) and area under the recall-precision curve (AUCpr).

table 2. Average Pearson’s correlation (of 50 
random partitions) of four regression models (rKhs, 
bl, rFr and sVr-l) applied to 16 wheat datasets. 
bold numbers represent the models with the highest 
average (extracted from ornella et al. 2014).

Dataset RKHS† BL RFR SVR-l

KBIRD-Srm 0.5 0.68 0.75 0.61

KBIRD-Sro 0.65 0.76 0.8 0.66

KNYANGUMI-Srm 0.35 0.38 0.43 0.39

KNYANGUMI-Sro 0.56 0.59 0.68 0.52

F6PAVON-Srm 0.5 0.6 0.67 0.46

F6PAVON-Sro 0.57 0.67 0.71 0.54

JUCHI-Ken 0.28 0.32 0.22 0.42

KBIRD-Ken 0.16 0.21 0.45 0.17

KBIRD-Tol 0.4 0.49 0.53 0.43

KNYANGUMI-Tol 0.14 0.28 0.49 0.21

F6PAVON-Ken 0.33 0.26 0.29 0.19

F6PAVON-Tol 0.51 0.63 0.56 0.54

GY-1 0.57 0.5 0.57 0.36

GY-2 0.49 0.49 0.45 0.36

GY-3 0.41 0.36 0.4 0.23

GY-4 0.51 0.44 0.49 0.34

† The models are RKHS (reproducing kernel Hilbert space); BL (Bayesian LASSO); RFR (random forest 
regression); SVR-l (support vector regression with linear kernel).

http://repository.cimmyt.org/xmlui/handle/10883/2976
http://repository.cimmyt.org/xmlui/handle/10883/2976
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close to one, whereas if there are large-effect QTLs, BL

RR

r
r  

would be greater than 1; the larger the effect of the QTLs, 
the greater the deviation from one should be (Thavaman-
ikumar et al., 2015).

This concept was evaluated by analyzing the range 
of values on the x axis of Fig. 1. The four yield datasets 

in Fig. 1B present a very narrow BL

RR

r
r  interval—from 

0.99 to @1— whereas the range of the rust datasets (1A) 
varied from approximately 0.92 to more than 1.15. As a 
control, in Fig. 1D we added results of eight non-disease 
datasets (yield and flowering) from Ornella et al. (2014). 
Although the range on the x axis was broader, most ratios 
ranged between 0.97 and 1.01. We also included (Fig. 
1C) the results of the five GLS (gray leaf spot) datasets of 
maize (also analyzed in Ornella et al., 2014), because this 
disease seems to be caused by a few major genes (Benson 
et al., 2015). Including these data points does not modify 
the range on the x axis @  [0.92, 1.2] nor the slope of the 
trend-lines. We included the performances of RKHS and 
RFR on the y axis with the intention of analyzing the 
response to the above-mentioned ratios of these two ver-
satile methods that take epistasis into account. Interest-
ingly, both methods showed a striking similarity in the 
slope of the trend-lines in the four datasets. Moreover, 
if large-effect QTLs are present (Fig. 1A and 1C), RFR 
outperforms RKHS. The situation is reversed if the trait 
is controlled by many small-effect QTLs (Fig. 1B and 1D). 
Although promising and consistent with the theory, our 
approach requires further research.

To conclude this section, we should mention that 
there are only a few other reports about GS for rust resis-
tance. Daetwyler et al. (2014), for example, assessed the 
accuracy of GS for rust resistance in 206 hexaploid wheat 
(Triticum aestivum) landraces. Based on a five-fold cross-
validation, the predicted mean correlations across years 
were 0.35, 0.27, and 0.44 for leaf rust (LR), stem rust 
(SR), and YR, respectively, using GBLUP, and 0.33, 0.38 
and 0.30, respectively, using Bayes R (e.g., Gianola 2013). 
Genomic heritabilities estimated using restricted maxi-
mum likelihood were 0.49, 0.29, and 0.52 for LR, SR, and 
YR, respectively. To the best of our knowledge, no ML 
research has been done on these types of populations.

results And dIscussIon 
Classification Models in Genomic  
Breeding for Rust Resistance
Although Pearson’s correlation is usually applied for 
assessing the performance of model prediction in GS, it 
may not be an adequate performance criterion at the tails 
of the distribution function, where individuals are often 
selected. The correlation metric is sensitive to extreme 
values: thus by predicting well the worst and best rust 
tolerances individuals, a high correlation score will be 
obtained. This is also what the models optimize for in 
the training set, when Gaussian noise models are used. 
The classification methods, on the other hand, use all 
modeling resources to separate the classes. Thus from 
a pure ML perspective, when the scores are classifica-
tion scores (kappa coefficient and relative efficiency), the 
classification methods should work better. Ornella et al. 
(2014) also evaluated the performance of the previously 

Fig. 1. Comparison of average Pearson’s correlations (of 50 random partitions) of the RKHS and RFR models vs. the average ratio 
BL

RR

r
r  for: (A) 12 rust datasets (B) 4 wheat yield datasets, (C) 12 rust datasets from (A) + 6 GLS datasets, (D) 4 datasets from (B) + 8 

non-disease datasets from maize. RKHS (reproducing kernel Hilbert space), BL (Bayesian LASSO), RFR (random forest regression), RR, 
ridge regression, GLS (gray leaf spot) (adapted from Ornella et al., 2014).
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described linear and nonlinear regression models for 
identifying individuals belonging to the best percentile of 
the distribution function (e.g., α = 15%), using the kappa 
coefficient (κ) and relative efficiency (RE).

The kappa coefficient is appropriate when data are 
unbalanced, for it estimates the proportion of cases that 
were correctly identified by taking into account coinci-
dences expected from chance alone (Fielding and Bell 
1997). κ is computed as:

1
o e

e

P P
P

-
k=

-

where Po is the agreement between observed and predicted 
values, computed by 

   ,tn tp
n
+

 where tn is the number of true 
negatives; tp is the number of true positives; n is the total 
of individuals; Pe is the probability of agreement calculated 
as tp  fn tp  fp fp  tn fn  tn 

eP
n n n n
+ + + +

= ´ + ´ , where fp  is the 

number of false positives; and fn is the number of false 
negatives (Table 3). If there is complete agreement, then κ = 
1 if there is no agreement among the raters other than what 
would be expected by chance, then κ ≤ 0.

The metric RE based on the expected genetic gain is 
computed by:
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where αʹ and α represent the classes of extreme individu-
als selected from the observed ranking and predicted 
values;  Na

and 'Na
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y
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å  is the mean of the test 

dataset. The numerator in the RE equation represents 
the selection differential of individuals selected by GS, 
whereas the denominator represents the selection dif-
ferential of individuals selected by traditional breeding 
(Falconer and Mackay, 1996).

Ornella et al. (2014) reported that r was a good per-
formance measure of genomic-enabled prediction when 
replacing phenotypic selection for α = 15%. For the wheat 
and maize datasets evaluated in this paper, the relation-
ships between r and κ and between r and RE were very 
similar (see Fig. 2 and 3 in Ornella et al., 2014). This close 
relationship is still present if we focus only on the rust 
data (i.e., with a peculiar distribution of the response vari-
able). In Fig. 2A, we present a comparison of r vs. RE of the 
regression models (RKHS, RFR, RR, and BL) evaluated on 
the 12 rust datasets, whereas in Fig. 2B we use r vs. κ (α = 
15%) as an example of the same approach and under the 
same conditions. From both figures, it seems that the ML 
and PLR models perform approximately the same when 
selecting the best individuals for a given level of correlation.

Classification models have been widely applied in 
research and industrial settings (Gareth et al., 2013). 

Classifiers can capture nonlinear relationships between 
markers and phenotypes, especially in the neighborhood 
where breeders select the best lines, i.e., where we set the 
decision threshold. Ornella et al. (2014) also compared 
the performance of three classifiers for selecting the best 
individuals: support vector classifier (SVC-l) and (SVC-g) 
with linear and Gaussian kernels, respectively, and ran-
dom forest classifier (RFC).

Tables 3 and 4 describe the performance measures (κ 
and RE) of the proposed regression and classification mod-
els for selecting the best 15% of individuals in the 16 wheat 
and 12 rust datasets. The SVC-l obtained the best κ in the 
SR datasets, in five YR datasets and in the GY-1 grain yield 
dataset (Table 4). This classifier outperformed F6PAVON-
Srm and KNYANGUMI-Srm in the SR datasets, and F6PA-
VON-Ken in the YR and grain yield datasets. The SVC-g 
yielded the best κ in one YR dataset (KBIRD-Ken). Ridge 
regression had the best κ in GY-2, and RKHS gave the same 
value as BL in GY-3 and a higher value in GY-2 (Table 4).

Regarding RE (Table 5), SVC-l gave the highest RE 
in four SR datasets (both KBIRDs, KNYANGUMI-Srm 
and F6PAVON-Srm) and in all YR datasets except one 
(KBIRD-tol) (the best RE was RFR). The BL had the 
highest RE values in two SR datasets (KNYANGUMI-Sro 
and F6PAVON-Sro), whereas RKHS gave the best RE val-
ues in GY-2, GY-3, and GY-4. Finally, SVR-g had the best 
average RE in GY-1.

The binary classification model was better than the 
regression models on disease datasets probably due to 
the skewness of the distribution (Ornella et al., 2014; 
Montesinos-López et al., 2015a) or to how regression and 
classification models accounted for the complexity of the 
relationship between genotypes and phenotypes.

Concerning the impact of the distribution of the 
response variable (i.e., a discrete instead of a continuous 
variable) on the accuracy of prediction, Montesinos-López 
et al. (2015a, b) give several examples. In both papers, the 
authors introduced methods for dealing with discrete 
instead of continuous variables. Since these methods can 
be considered part of the PLR group, we refer the inter-
ested reader to the original references. For simplicity, we 
will finish this presentation by describing the ability of 
ANN to perform accurate multiclass classification.

González-Camacho et al. (2016) extended the work 
of Ornella et al. (2014) on assessing the performance of 
multi-layer perceptron (MLP) and probabilistic neural 

table 3. confusion matrix for a binary classifier. 

Predicted value†

Sumtrue false

Observed value true tp fn tp + fn 

false fp tn fp +tn

Sum tp +fp fn + tn n

† tp: true positives, fp: false positives, fn: false negatives, tn: true 
negatives, and n is total of individuals.
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network (PNN) classifiers for estimating the probability 
of one individual belonging to a desired category. These 
classifiers were assessed using continuous traits grouped 
into three classes based on the empirical distribution 
function of traits. This is relevant for scales such as 
susceptible-moderate-resistant and can also be extended 
to more classes. González-Camacho et al. (2016) used 
genomic and phenotypic data from 16 maize datasets and 
17 wheat datasets in various trait-environment condi-
tions. The best individuals were selected from 15 and 30% 
of the upper class and similarly for the lower class. Wheat 
datasets were also evaluated as a binary class for the same 
percentiles in the upper and lower classes.

The performance of the two classifiers was assessed 
with two metrics: the area under the receiver operating 
characteristic (ROC) curve (AUC) and the area under the 

precision-recall curve (AUCpr) (Murphy 2012). The AUC 
produces a value between 0 and 1. The ROC curve is the 
plot of recall (R) versus the false positive rate (fpr) for a 
set of thresholds τ given.

Recall is the fraction of individuals correctly classi-
fied with respect to the observed individuals and is com-
puted as:

tpR
tp fn

=
+

And fpr is defined as:
fpfpr

fp tn
=

+

The AUCpr measure is more informative with unbal-
anced classes (Keilwagen et al., 2014). The AUCpr is the 

Fig. 2. Comparison of average relative efficiency and kappa coefficients (from 50 random partitions) for selecting the best 15% vs. 
average Pearson's correlations for 4 models evaluated on 12 rust datasets. BL (Bayesian LASSO), RFR (random forests regression), 
RKHS (reproducing kernel Hilbert space), RR (ridge regression) (adapted from Ornella et al., 2014).

Fig. 3. Support vector machines. Examples of regression (A) and classification (B). (A) Support vector regression ignores residuals 
smaller than some constant ε (the ε tube) and assigns a linear loss function to larger errors. (B) Support vector classification: training 
data are mapped from the input space to the feature space, and a hyperplane is used to do the separation.
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area under the precision-recall curve, i.e., the plot of 
precision P vs. R for a set of thresholds τ. Precision P is 
computed as

tpP
tp fp

=
+

The PNN outperformed the MLP classifier for select-
ing on 15 and 30% upper classes, in 7 environments for 
GY, and for selecting on 15 and 30% lower classes in 10 
environments for DTH (González-Camacho et al., 2016). 
In GS, it is usual that p markers >> n phenotype indi-
viduals, and PNN is promising because it has better gen-
eralization ability than MLP, with the advantage of being 
computationally faster than MLP in achieving optimal 
solutions. We must recall that, despite their good perfor-
mance, both methods consider categorical response vari-
ables. Still to be explored are several methods in the ML 
repository that also take advantage of ordinal response 
variables (Hall and Frank, 2001).

conclusIons
The features of the architecture of rust resistance— i.e., 
their additive nature, the effective involvement of major 
and minor genes and the nature of the response vari-
able (finite and discrete)— demand specific methods for 

dealing with the aforementioned characteristics. The flex-
ibility of ML methods suggests ML is a valuable alternative 
to well-known parametric methods for predicting categor-
ical and continuous responses in genomic selection.

We compared the performance of several regression/
classification models against some parametric models 
(BL, ridge regression, etc.) on SR and YR. To show the 
broad horizon of ML capabilities, we also discussed the 
performance of ML methods on other traits, e.g., yield and 
days to heading in wheat or gray leaf spot resistance in 
maize. Results confirmed that ML methods could circum-
vent restrictions imposed by the statistical architecture 
of the trait. Further development is needed to adapt new 
approaches to wheat populations and/or environments.
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Appendix
A0. Reproducing Kernel Hilbert Space (RKHS) Models
The RKHS was initially proposed for animal breed-
ing by Gianola et al. (2006); de los Campos et al. (2009) 
presented a genetic evaluation method where the values 
can be used for genetic evaluation using dense molecular 

table 4. Average kappa coefficients (of 50 random 
partitions) of three regression models (rKhs, bl, 
rr) and two classifiers (sVc-g, sVc-l) applied to 16 
wheat datasets when the best 15% of the individuals 
are selected. bold numbers indicate models with the 
highest average (extracted from ornella et al., 2014).

Dataset RKHS† BL RR SVC-g SVC-l

KBIRD-Srm 0.10 0.30 0.28 0.24 0.44

KBIRD-Sro 0.32 0.39 0.34 0.17 0.53

KNYANGUMI-Srm 0.17 0.18 0.21 0.23 0.42

KNYANGUMI-Sro 0.44 0.49 0.41 0.33 0.49

F6PAVON-Srm 0.26 0.26 0.25 0.36 0.46

F6PAVON-Sro 0.29 0.38 0.35 0.26 0.46

JUCHI-Ken 0.26 0.26 0.26 0.24 0.28

KBIRD-Ken 0.03 0.08 0.03 0.23 0.21

KBIRD-tol 0.37 0.35 0.33 0.30 0.41

KNYANGUMI-tol 0.03 0.06 0.06 0.29 0.33

F6PAVON-Ken 0.16 0.16 0.11 0.29 0.35

F6PAVON-tol 0.38 0.32 0.31 0.39 0.42

GY-1 0.23 0.14 0.14 0.27 0.40

GY-2 0.25 0.24 0.26 0.24 0.18

GY-3 0.23 0.23 0.23 0.22 0.15

GY-4 0.42 0.35 0.34 0.35 0.30

† The models are RKHS (reproducing kernel Hilbert space), BL (Bayesian LASSO), RR (ridge 
regression), SVC (support vector classification) with Gaussian (g) or linear (l) kernels.

table 5. Average relative efficiency (of 50 random 
partitions) of three regression models and two 
classifiers (rKhs, bl, rFr, sVc-g, and sVc-l) applied 
to 16 wheat datasets when the best 15% of the 
individuals are selected. bold numbers represent the 
highest values (extracted from ornella et al., 2014).

Dataset RKHS† BL RFR SVC-g SVC-l

KBIRD-Srm 0.28 0.60 0.56 0.12 0.71

KBIRD-Sro 0.62 0.76 0.81 0.47 0.82

KNYANGUMI-Srm 0.51 0.60 0.67 0.50 0.81

KNYANGUMI-Sro 0.65 0.74 0.68 0.48 0.73

F6PAVON-Srm 0.58 0.61 0.64 0.57 0.78

F6PAVON-Sro 0.61 0.75 0.69 0.49 0.74

JUCHI-Ken 0.50 0.50 0.17 0.26 0.55

KBIRD-Ken 0.08 0.27 0.39 0.19 0.48

KBIRD-tol 0.46 0.52 0.64 0.44 0.62

KNYANGUMI-tol 0.09 0.20 0.32 0.34 0.55

F6PAVON-Ken 0.32 0.21 0.27 0.26 0.57

F6PAVON-tol 0.58 0.57 0.55 0.48 0.64

GY-1 0.53 0.38 0.52 0.62 0.48

GY-2 0.50 0.46 0.39 0.45 0.32

GY-3 0.46 0.45 0.37 0.23 0.34

GY-4 0.59 0.48 0.56 0.47 0.36

† The models are RKHS (reproducing kernel Hilbert space), BL (Bayesian LASSO), RFR (random forest 
regression), SVC (support vector classification) with Gaussian (g) or linear (l) kernels.
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markers and pedigree. Furthermore, de los Campos et al. 
(2009) showed that the statistical models routinely used 
in genomic evaluations are particular cases of RKHS. De 
los Campos et al. (2010) give an overview of RKHS meth-
ods, as well as some ideas on how to set the parameters 
of the models and how to select the reproducing kernel; 
they also present an application in plant breeding. Other 
authors (e.g., Crossa et al., 2010; González-Camacho 
et al., 2012) have successfully applied RKHS models in 
plant breeding. The RKHS is the core mathematics used 
by all kernel methods; it is also the basis for the SVM and 
SVR methods, among others. Here the RKHS method 
additionally uses multiple kernel learning, which is an 
extension that combines several kernel functions.

A kernel is any smooth function K that defines a 
relationship between pairs of individuals through a 
covariance or by using similarity functions that can be 
defined in many ways. Several RKHS models have been 
proposed for GS (González-Recio et al., 2014). Here we 
describe the RKHS strategy with “kernel averaging” that 
was introduced in the field of quantitative genetics by de 
los Campos et al. (2010). The regression function takes 
the following form:

( ) 0 ´
´ 1

   ( , )
n

i i i
i

f K
=

= b + aåx x x

where ( )'

1 , ,i i ip= ¼x x x  and ( )'

´ ´1 ´ , ,i i i p= ¼x x x  are vectors of 
dimension p markers; αi are regression coefficients; and K 
(.) is a positive definite function (the reproducing kernel, 
RK) evaluated in a pair of lines denoted by i and i .́ In 
the case of a Gaussian kernel, ( ) { }= - - 2

´ ´, || ||i i i iK exp hx x x x , 
where - 2

´|| ||i ix x  is the squared Euclidean distance between 
the vectors of markers for a pair of individuals (i, i’); and 
h is a parameter that is known as bandwidth, h > 0. The 
RK provides a set of n basis functions, which are nonlin-
ear on marker genotypes; but the regression function is 
obtained by linearly combining the basis functions that 
are generated by the RK, with weights given by the cor-
responding regression coefficients.

To avoid over-fitting, the vector of regression coef-
ficients is estimated using penalized or Bayesian meth-
ods. The set of basis functions is defined a priori via the 
choice of kernel; if the kernel is not selected properly, the 
ability of RKHS to capture complex patterns is affected. 
De los Campos et al. (2009) proposed kernel averaging 
to increase the accuracy of prediction. This multikernel 
approach was implemented using a Bayesian approach; 
for example, for three kernels:
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are values of h, such that K1 (…) gives local basis functions 
and K3(…) gives basis functions with a wider span.

A1. Support Vector Regression (SVR)
Support vector machine learning can be applied to clas-
sification or to regression problems (Cortes and Vapnik, 
1995). Support vector regression (SVR) is a supervised 
learning algorithm capable of solving complex problems. 
The SVR aims to learn an unknown function based on 
the structural risk minimization principle. The SVR con-
siders, in general, approximating functions of the form 
( ) ( )

1

,  
n

i
i

f
=

= jåx w w x i . When we consider a linear 
regression 

model:f(x, w) = x ∙ w + b, where ,  Îx w R p  and bÎ R

In regression, usually an error of approximation is 
used instead of the margin between an optimal separat-
ing hyperplane and support vectors like in SVM. A linear 
loss function with ε-insensitivity zone is given by (Cortes 
and Vapnik 1995):
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When the difference between the measured and 
predicted values is less than ε, then the error is equal to 
zero. The ε-insensitive loss function defines an ε tube as 
depicted in Fig. 3. When the predicted response is within 
the tube, the error is zero. For points outside the tube, 
the error is the difference between the predicted response 
and the radius ε of the tube.

In an SVR problem, the objective is to minimize 
the empirical risk and the squared norm of the weights 
simultaneously. That is, to estimate the hyperplane 
f(x,w) = xTw + b by minimizing the empirical risk:
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Minimizing R is equivalent to minimizing the risk as 
a function of slack variables (Cortes and Vapnik, 1995):
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where ξ and ξ* are slack variables. ξ = y − f (x,w) − ε for 
points above an ε tube; ξ*= f (x,w) − y − ε  for points below 
an ε tube; the constant C is a parameter defined by the user. 
Big C values restrict large errors, reduce the approximation 
errors and increase the weight vector norm || w ||. The latter 
increase does not favor good generalization performance of 
a model; ε is another design parameter that defines the size 
of an ε tube. Figure 3(A) describes a regression problem for 
which no linear solution exists, given the radius of an ε tube.

To perform a nonlinear regression, nonlinear func-
tions f are defined by mapping the training dataset into a 
higher dimensional space, the feature space F (φ: X →F), 
and then solve the linear regression problem there (Fig. 
3B). As in a classification problem, to make this approach 
computationally feasible, a symmetric kernel function 
can be used K(x;y) = [ϕ(x)]∙ ϕ(y)]  that directly creates a 
dot product in the feature space (Hastie et al., 2009).

The linear kernel defined as K(x;y) = (x × y)
 
is the 

simplest kernel method. Another kernel method is the 
previously presented Gaussian kernel. The best values of 
C, ε and, eventually, h (Gaussian kernel) are commonly 
estimated by means of a grid search combined with a 
cross-validation procedure (Maenhout et al., 2007).

A2. Feedforward Artificial Neural Networks (ANN)
The ANN has the ability to capture linear and nonlinear 
relationships between predictor variables and response 
variables, including interactions between explanatory 
variables (Gianola et al., 2011; González-Camacho et al., 
2012). The ANN used in GS are based on a single hidden 
layer for predicting phenotypic responses from genotypic 
inputs. The first layer contains the marker input vector; the 
hidden layer contains a varying number of neurons with 
nonlinear transfer functions. Each neuron in the hidden 
layer transforms the input and sends the result to the out-
put layer. Thus the predicted responses of the neural net-
work represent the weighted outputs from each neuron.

The ANN have internal parameters with two main 
model choices: (i) the number of neurons in the hidden 
layer, and (ii) the type of transfer function applied in each 
neuron. A low number of neurons in a neural network 
may not be able to capture complex patterns. On the other 
hand, a neural network with many neurons can have over-
fitting and poor predictive ability (Haykin, 1994).

The multilayer perceptron (MLP) and the radial 
basis function neural network (RBFNN) are the most 
frequently used feedforward neural network models. The 
MLP uses the back-propagation algorithm to estimate 
the weight vectors. In this case, the input data are itera-
tively given to the neural network. For each input data, 
the error between the predicted and desired response 
is computed. The error is then back-propagated to the 
ANN and employed to modify the weights; thus the error 
diminishes at each iteration. The RBFNN is defined by 
a hidden layer of processing units with Gaussian radial 
basis functions. Its structure for obtaining a phenotypic 
response from a marker input vector is described in 
Fig. 4 (González-Camacho et al., 2012).

A3. Multilayer Perceptron (MLP) Classifier
An MLP classifier maps a set of input data into C differ-
ent disjoint classes (Fig. 5). In general, MLP is flexible 
because no assumptions are made about the joint distri-
bution of inputs and outputs. The hidden layer contains 
M neurons. In each one, an S score is obtained using a 
linear combination of the input markers plus an intercept 
term, i.e., 
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Then S is transformed using a nonlinear transfer 
function (e.g., a hyperbolic tangent sigmoid function), 
which maps from the real line to the interval [–1,1]. The 
sum layer contains C neurons (i.e., the number of classes) 
and each neuron processes the outputs of the hidden 
layer also using a linear combination of the outputs plus 
the intercept and a transformation using the tangent 
sigmoid function. Finally, the output of the MLP is a 
column vector of C elements. The index of the largest 
element in the vector specifies which of the C classes the 
vector represents (González Camacho et al., 2016).

The mean squared error between the predicted class 
Ĉ and the desired class C is commonly used to optimize 
an MLP classifier. Ĉ is a matrix of size S × n, with col-
umns containing values in the [0,1] interval. Training of 
an MLP involves estimating all the parameters using the 
backpropagation method, based on the conjugate gradi-
ent method (Møller, 1993).

A4. Probabilistic Neural Network (PNN) Classifier
A PNN has a single hidden layer (Fig. 6), but conceptu-
ally it is different from MLP. The pattern layer has M 
neurons (M = number of individuals in the training 
dataset) and calculates the Euclidean norm between the 
input vector xi and the center vectors cm using a Gaussian 
kernel. The output of this pattern layer is a vector ui with 
M elements, where

-
= -

ln0.5 || |  |mi i mu
h

x c

and h is the spread of the Gaussian function, show-
ing how near xi is to cm (the mth training data). At that 
point, in the summation-output layer, each umi is trans-
formed into a vector zi

M⋅∈  whose elements are defined 
by ( )expmi miz u= - . The zmi values are then used to obtain 
the contribution for each k class, that is, 
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where wkm are weights computed from the desired class 
C matrix of dimension S × n to produce a vector of prob-
abilities ĉi = softmax (vi) of size S × 1 as its response; the 
softmax function σ (.) is given by
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where vi is a desired vector of size S × 1. For each k 
class, the softmax function transforms the outputs of 
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Fig. 6. Structure of a probabilistic neural network (PNN) classifier with a single hidden or pattern layer. In this layer, Euclidean dis-
tances are computed using a Gaussian kernel. Then the summation-output layer integrates the contributions for each class to generate a 
vector of probabilities (extracted from González-Camacho et al. 2016).

Fig. 4. Structure of a radial basis function neural network (RBFNN). In the hidden layer, each input vector ( )1 , ,  ¼i ipx x is summa-
rized by the Euclidean distance between the input vectors xi and the centers cm, m = 1, …, M neurons, i.e., hm||xi – cm||, where hm 
is a bandwidth parameter. Then distances are transformed by the Gaussian kernel ( )( )- -

2
m || ||i mexp h x c  for obtaining the responses 

i 0    
1

y e
=

= + +∑
M

m mi i
m

w w z , (extracted from González-Camacho et al. 2012).

Fig. 5. Structure of a multi-layer perceptron (MLP) classifier. The hidden layer has M neurons whose outputs are computed by a lin-
ear combination of the input and weight vectors plus a bias term. In the output layer, the output of each of the S neurons (classes) is 
computed by a nonlinear transfer function and the phenotypic response is regressed from the data-derived features (extracted from 
González-Camacho et al. 2016).
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processing units on the output layer in the [0, 1] range 
(González Camacho et al., 2016).

An advantage of the PNN is that, for a given a value 
of h, it requires a single iteration over all the xi in the 
training set. Furthermore, PNN produces as output (ci) 
the posterior probabilities of each class membership 
within a short training time. The PNN converges to a 
Bayes classifier if the training dataset is large enough 
(Wasserman, 1993).

A5. Deep Learning
Conventional ANN models contain at least one hidden 
layer. Reaching beyond, deep learning architectures 
use many layers of nonlinear processing units (Good-
fellow et al., 2016). The presence of more than one 
hidden layer allows the network to learn higher order 
interactions. The computing of the weight vector in 
each layer combines simple and complex features so 
that the most suitable hierarchical representations can 
be captured from the data.

Min et al. (2016) characterized traditional deep 
learning architectures into six types: deep neural net-
work (DNN), multilayer perceptron (MLP), stacked 
auto-encoder, deep belief network, convolutional neural 
network (CNN) and recurrent neural network (RNN). 
They also defined three emergent architectures: convolu-
tional auto-encoder, multi-dimensional recurrent neural 
networks, and deep spatiotemporal neural networks.

Each architecture has advantages. For instance, 
CNN is suitable for studying spatial information, DNN 
is suitable for analyzing internal correlations in high-
dimensional data and RNN is suitable for analyzing 
sequential information.

A key element to take into account when training 
deep learning architectures is regularization, whose 
objective is to avoid over-fitting and attain good gener-
alization performance. The two most common methods 
are weight decay, where a penalty term is imposed on 
the error loss function so that the weight vectors con-
verge to smaller absolute values, and dropout, which 
randomly removes hidden units from the network.

A6. Random Forests (RF)
The RF is a non-parametric approach for solving regres-
sion and classification problems proposed by Breiman 
(2001) based on bagging, i.e., “bootstrap aggregated sam-
pling.” Gianola et al. (2014) applied the concept of bag-
ging to GBLUP. The RF captures complex interactions 
and it is robust to over-fitting the data. However, variable 
importance measures are reported to be systematically 
affected by minor allele frequency (Walters et al., 2012). 
The RF combines the output of decorrelated decision 
trees from classification or regression generated from 
bootstrapped samples of the training dataset (Hastie et 
al., 2009).

For both classification and regression models, each 
tree is constructed using the following heuristic algorithm:

i.  Draw samples with replacements from the entire 

dataset by bootstrapping so that records of the ith 
individual appear several times, or not at all, in the 
bootstrapped set. Root-node is the name given to each 
subset of the bootstrapped sample.

ii.  Draw a certain number (mtry) of input variables 
(SNPs) at random, and select the jth SNP j = 1,…,mtry 
that minimizes a loss function. The entropy criterion 
is used for classification problems, whereas the mean 
squared error is used for regression problems.

iii.  According to the genotypes of the jth SNP, the data in 
the node are separated into two new subsets.

iv.  Repeat steps ii–iii for each new node with the data 
until a minimum node size (number of individuals) is 
reached. This number is usually five or less.

v.  Construct a number ntree (> 50 – 100) of new trees 
by repeating steps I through iv and using new 
bootstrapped samples.

Finally, to make a prediction using a new example, 
the RF combines the outputs of the classification or 
regression trees based on bootstrapped samples of the 
dataset. In classification, the class of an unobserved 
example is predicted by counting the number of votes 
(usually one vote per decision tree is used) and assigning 
the class with the highest number of votes (Liaw, 2013). 
In regression, the method averages the ntree outputs.

Two main features can be tuned in RF:
1.  Number of covariates (markers) sampled at random 

for each node. Although cross-validation strategies 
can be used to optimize mtry, the default values of 
mtry = p / 3  (p is the number of predictors) when 
building a regression tree, or mtry = p  when 
building a classification tree, are commonly used 
(Gareth et al., 2013).

2.  Number of trees; there is consensus that RF does 
not overfit with a growing number of trees; however, 
building each tree is very time-consuming. In our 
experience, an ntree range between 500 and 1000 is 
safe enough for plant datasets evaluated in GS.

Another key benefit of RF, as implemented in the R 
package “randomForests” (Liaw 2013), is that it provides 
two different measures for judging the relevance of predic-
tor variables (e.g., marker or environmental effects). The 
first measure is computed by permuting markers from 
the OOB (“out of bag” sample) data, i.e., those individuals 
(around a third of the total) that were not selected in the 
bootstrapped sample. Briefly, after a tree is constructed, the 
OOB is passed down the tree and the prediction accuracy 
on this sample is calculated using several criteria (error 
rate for classification, mean squared error for regression 
problems). The genotypes for the p-th SNP are permuted in 
the OOB and the sample is again passed down the tree. The 
relative importance is computed as the difference between 
the prediction accuracy of the original OOB and the pre-
diction accuracy of the OOB with the permuted variable. 
Then this step is repeated for each covariate (SNP) and 
the decrease in accuracy is averaged over all trees in the 
random forests (normalized by the standard deviation of 
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the differences). The SNPs that show a larger decrease are 
assumed to be more relevant (González-Recio et al., 2014).

The second measure is the reduction in impurities 
of the node from splitting the variable, averaged over 
all trees. For classification problems, node impurity is 
measured by the Gini index, whereas for regression, it is 
measured by the residual sum of squares. Impurity is cal-
culated only at the node at which that variable is used for 
that split (Liaw, 2013).

References
Arruda, M.P., A.E. Lipka, P.J. Brown, A.M. Krill, C. Thurber, G. Brown-

Guedira, Y. Dong, B.J. Foresman, and F.L. Kolb. 2016. Comparing 
genomic selection and marker-assisted selection for fusarium head 
blight resistance in wheat (Triticum aestivum L.). Mol. Breed. 36:84. 
doi:10.1007/s11032-016-0508-5

Bansal, U., H. Bariana, D. Wong, M. Randhawa, T. Wicker, M. Hayden, and 
B. Keller. 2014. Molecular mapping of an adult plant stem rust resis-
tance gene Sr56 in winter wheat cultivar Arina. Theor. Appl. Genet. 
127:1441–1448. doi:10.1007/s00122-014-2311-1

Bassi, F.M., A.R. Bentley, G. Charmet, R. Ortiz, and J. Crossa. 2016. Breeding 
schemes for the implementation of genomic selection in wheat (Triti-
cum spp.). Plant Sci. 242:23–36. doi:10.1016/j.plantsci.2015.08.021

Benson, J.M., J.A. Poland, B.M. Benson, E.L. Stromberg, and R.J. Nelson. 
2015. Resistance to gray leaf spot of maize: Genetic architecture and 
mechanisms elucidated through nested association mapping and near-
isogenic line analysis. PLoS Genet. 045. doi:10.1371/journal.pgen.1005

Bernardo, R. 2014. Genome-wide selection when major genes are known. 
Crop Sci. 54:68–75. doi:10.2135/cropsci2013.05.0315

Bernardo, R., and J. Yu. 2007. Prospects for genome-wide selection for 
quantitative traits in maize. Crop Sci. 47:1082–1090. doi:10.2135/crop-
sci2006.11.0690

Breiman, L. 2001. Random forests. Mach. Learn. 45:5–32. 
doi:10.1023/A:1010933404324

Cortes, C., and V. Vapnik. 1995. Support-vector networks. Mach. Learn. 
20:273–297. doi:10.1007/BF00994018

Crossa, J., G. de los Campos, P. Pérez-Rodríguez, D. Gianola, J. Burgueño, 
J.L. Araus, et al. 2010. Prediction of genetic values of quantitative traits 
in plant breeding using pedigree and molecular markers. Genetics 
186:713–724. doi:10.1534/genetics.110.118521

Crossa, J., P. Pérez-Rodríguez, J. Hickey, J. Burgueño, L. Ornella, et al. 2014. 
Genomic prediction in CIMMYT maize and wheat breeding programs. 
Heredity 112:48–60. doi:10.1038/hdy.2013.16

Daetwyler, H., U.K. Bansal, S. Harbans, H.S. Bariana, M.J. Hayden, and 
B.J. Hayes. 2014. Genomic prediction for rust resistance in diverse 
wheat landraces. Theor. Appl. Genet. 127:1795–1803. doi:10.1007/
s00122-014-2341-8

de los Campos, G., D. Gianola, and G.J.M. Rosa. 2009. Reproducing kernel 
Hilbert spaces regression: A general framework for genetic evaluation. 
J. Anim. Sci. 87:1883–1887. doi:10.2527/jas.2008-1259

de los Campos, G., D. Gianola, G.J.M. Rosa, K.A. Weigel, and J. Crossa. 2010. 
Semi-parametric genomic-enabled prediction of genetic values using 
reproducing kernel Hilbert spaces methods. Genet. Res. 92:295–308. 
doi:10.1017/S0016672310000285

de los Campos, G., J.M. Hickey, R. Pong-Wong, H.D. Daetwyler, and M.P.L. 
Calus. 2013. Whole genome regression and prediction methods applied 
to plant and animal breeding. Genetics 193:327–345. doi:10.1534/genet-
ics.112.143313

Ellis, J.G., E.S. Lagudah, W. Spielmeyer, and P.N. Dodds. 2014. The past, pres-
ent and future of breeding rust resistant wheat. Frontier Plant Sc. 5:641.

Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, 
and S.E. Mitchell. 2011. A robust, simple genotyping-by-sequencing 
(GBS) approach for high diversity species. PLoS One 6(5):e19379. 
doi:10.1371/journal.pone.0019379

Endelman, J.B. 2011. Ridge regression and other kernels for genomic selection 
with R package rrBLUP. Plant Genome 4:250–255. doi:10.3835/plantge-
nome2011.08.0024

Falconer, D.S., and T.F.C. Mackay. 1996. Introduction to quantitative genet-
ics. 4th Edition, Longman Group Ltd., London.

Fielding, A.H., and J.F. Bell. 1997. A review of methods for the assessment of 
prediction errors in conservation presence/absence models. Environ. 
Conserv. 24:38–49. doi:10.1017/S0376892997000088

Freund, Y., and R.E. Schapire. 1996. Experiments with a new boosting 
algorithm. In: Thirteenth International Conference on Machine 
Learning (ed. L. Saitta), p. 148–156. San Francisco, CA: Morgan 
Kaufmann. ISBN 1-55860-419-7.

Friedman, J.H. 2001. Greedy functions approximation: A gradient boosting 
machine. Ann. Stat. 29:1189–1232. doi:10.1214/aos/1013203451

Gareth J., D. Witten, T. Hastie, and R. Tibshirani. 2013. An introduction to 
statistical learning. Springer Science+Business Media New York (cor-
rected at 6th printing 2015).

Gianola, D. 1980. A Method of Sire Evaluation for Dichotomies. J. Anim. Sci. 
51:1266–1271. doi:10.2527/jas1981.5161266x

Gianola, D. 1982. Theory and Analysis of Threshold Characters. J. Anim. Sci. 
54:1079–1096. doi:10.2527/jas1982.5451079x

Gianola, D. 2013. Priors in whole-genome regression: The Bayesian alphabet 
returns. Genetics 194:573–596. doi:10.1534/genetics.113.151753

Gianola, D., R. Fernando, and A. Stella. 2006. Genomic-assisted prediction 
of genetic values with semiparametric procedures. Genetics 173:1761–
1776. doi:10.1534/genetics.105.049510

Gianola, D., H. Okut, K.A. Weigel, and G.J.M. Rosa. 2011. Predicting complex 
quantitative traits with Bayesian neural networks: A case study with 
Jersey cows and wheat. BMC Genet. 12:87. doi:10.1186/1471-2156-12-87

Gianola, D., K.A. Weigel, N. Krämer, A. Stella, and C.C. Schön. 2014. Enhanc-
ing genome-enabled prediction by bagging genomic BLUP. PLoS One. 
doi:10.1371/journal.pone.0091693

González-Camacho, J.M., G. de los Campos, P. Pérez-Rodríguez, D. Gianola, 
J.E. Cairns, G. Mahuku, R. Babu, and J. Crossa. 2012. Genome-enabled 
prediction of genetic values using radial basis function neural networks. 
Theor. Appl. Genet. 125:759–771. doi:10.1007/s00122-012-1868-9

González-Camacho, J.M., J. Crossa, P. Pérez-Rodríguez, L. Ornella, and 
D. Gianola. 2016. Genome-enabled prediction using probabilistic 
neural network classifiers. BMC Genomics 17:208. doi:10.1186/
s12864-016-2553-1

González-Recio, O., and S. Forni. 2011. Genome-wide prediction of discrete 
traits using Bayesian regressions and machine learning. Genet. Sel. 
Evol. 43:7. doi:10.1186/1297-9686-43-7

González-Recio, O., G.J.M. Rosa, and D. Gianola. 2014. Machine learning 
methods and predictive ability metrics for genome-wide prediction of 
complex traits. Livest. Sci. 166:217–231. doi:10.1016/j.livsci.2014.05.036

Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. MIT Press, 
Cambridge, MA.

Hall, M., and E. Frank. 2001. A Simple Approach to Ordinal Classification. 
Machine Learning: ECML 2001. Lect. Notes Comput. Sci. 2167:145–156.

Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. 
2009. The WEKA data mining software: An update. SIGKDD Explor. 
11(1):10–18. doi:10.1145/1656274.1656278

Hastie, T., R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical 
Learning. Data Mining, Inference, and Prediction. Second Edition: Cor-
rected 10th printing. Springer-Verlag. doi:10.1007/978-0-387-84858-7

Haykin, S. 1994. Neural networks: A comprehensive foundation. MacMillan, 
New York, NY.

Heffner, E.L., J.L. Jannink, and M.E. Sorrells. 2011. Genomic selection accu-
racy using multifamily prediction models in a wheat breeding program. 
Plant Genome 4:65–75. doi:10.3835/plantgenome2010.12.0029

Keilwagen, J., I. Grosse, and J. Grau. 2014. Area under precision-recall curves 
for weighted and unweighted data. PLoS One 2014. doi:10.1371/journal.
pone.0092209

Kizilkaya, K., R.L. Fernando, and D.J. Garrick. 2014. Reduction in accuracy 
of genomic prediction for ordered categorical data compared to contin-
uous observations. Genet. Sel. Evol. 46:37. doi:10.1186/1297-9686-46-37

Kotsiantis, S.B. 2007. Supervised machine learning: A review of classification 
techniques. Informatica 31:249–268.

Kumar S., W. Travis, T.W. Banks, and S. Cloutier. 2012. SNP discovery 
through next-generation sequencing and its applications. Intern. J. of Pl. 
Genom. doi:10.1155/2012/831460.

http://dx.doi.org/10.1007/s11032-016-0508-5
http://dx.doi.org/10.1007/s00122-014-2311-1
http://dx.doi.org/10.1016/j.plantsci.2015.08.021
http://dx.doi.org/10.2135/cropsci2013.05.0315
http://dx.doi.org/10.2135/cropsci2006.11.0690
http://dx.doi.org/10.2135/cropsci2006.11.0690
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1534/genetics.110.118521
http://dx.doi.org/10.1038/hdy.2013.16
http://dx.doi.org/10.1007/s00122-014-2341-8
http://dx.doi.org/10.1007/s00122-014-2341-8
http://dx.doi.org/10.2527/jas.2008-1259
http://dx.doi.org/10.1017/S0016672310000285
http://dx.doi.org/10.1534/genetics.112.143313
http://dx.doi.org/10.1534/genetics.112.143313
http://dx.doi.org/10.1371/journal.pone.0019379
http://dx.doi.org/10.3835/plantgenome2011.08.0024
http://dx.doi.org/10.3835/plantgenome2011.08.0024
http://dx.doi.org/10.1017/S0376892997000088
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.2527/jas1981.5161266x
http://dx.doi.org/10.2527/jas1982.5451079x
http://dx.doi.org/10.1534/genetics.113.151753
http://dx.doi.org/10.1534/genetics.105.049510
http://dx.doi.org/10.1186/1471-2156-12-87
http://dx.doi.org/10.1371/journal.pone.0091693
http://dx.doi.org/10.1007/s00122-012-1868-9
http://dx.doi.org/10.1186/s12864-016-2553-1
http://dx.doi.org/10.1186/s12864-016-2553-1
http://dx.doi.org/10.1186/1297-9686-43-7
http://dx.doi.org/10.1016/j.livsci.2014.05.036
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.3835/plantgenome2010.12.0029
http://dx.doi.org/10.1186/1297-9686-46-37
http://dx.doi.org/10.1155/2012/831460


gonzalez-camacho et al.: machine learning methods in breeding wheat for rust resistance 15 of 15

Liaw, A. 2013. Package ‘randomForest’. Breiman and Cutler’s random forests 
for classification and regression (R package manual). http://cran.r-proj-
ect.org/web/packages/randomForest/index.html. (accessed Oct. 2015).

Maenhout, S., B. De Baets, G. Haesaert, and E. Van Bockstaele. 2007. Sup-
port vector machine regression for the prediction of maize hybrid 
performance. Theor. Appl. Genet. 115:1003–1013. doi:10.1007/
s00122-007-0627-9

Meuwissen, T.H.E., B.J. Hayes, and M.E. Goddard. 2001. Prediction of 
total genetic value using genome-wide dense marker maps. Genetics 
157:1819–1829.

Min, S., B. Lee, and S. Yoon. 2016. Deep learning in bioinformatics. Briefings 
in bioinformatics. 18(5):851–869. doi:10.1093/bib/bbw068

Møller, M.F. 1993. Scaled conjugate gradient algorithm for fast supervised 
learning. Neural Netw. 6:525–533. doi:10.1016/S0893-6080(05)80056-5

Montesinos-López O.A., A. Montesinos-López, P. Pérez-Rodríguez, G. de 
los Campos, K.M. Eskridge, and J. Crossa. 2015a. Threshold models for 
genome-enabled prediction of ordinal categorical traits in plant breed-
ing. G3: Genes Genomes Genetics. 5:291–300.

Montesinos-López, O.A., A. Montesinos-López, P. Pérez-Rodríguez, K.M. 
Eskridge, X. He, P. Juliana, P. Singh, and J. Crossa. 2015b. Genomic pre-
diction models for count data. J. Agric. Biol. Environ. Stat. 20:533–554. 
doi:10.1007/s13253-015-0223-4

Murphy, K.P. 2012. Machine learning: A probabilistic perspective. 1st ed. 
Cambridge, Massachusetts, London, England: The MIT Press.

Ogutu, J.O., H.P. Piepho, and T. Schulz-Streeck. 2011. A comparison of ran-
dom forests, boosting and support vector machines for genomic selec-
tion. BMC Proc. 5(Suppl 3):S11. doi:10.1186/1753-6561-5-S3-S11

Ornella, L., S. Singh, P. Pérez-Rodríguez, J. Burgueño, R. Singh, E. Tapia, S. 
Bhavani, S. Dreisigacker, H.J. Braun, K. Mathews, and J. Crossa. 2012. 
Genomic prediction of genetic values for resistance to wheat rusts. Plant 
Genome 5:136–148. doi:10.3835/plantgenome2012.07.0017

Ornella, L., P. Pérez-Rodríguez, E. Tapia, J.M. González-Camacho, J. Bur-
gueño, et al. 2014. Genomic-enabled prediction with classification algo-
rithms. Heredity 112:616–626. doi:10.1038/hdy.2013.144

Pérez-Rodríguez P., D. Gianola, J.M. González-Camacho, J. Crossa, Y. Manès, 
and S. Dreisigacker. 2012. Comparison between linear and non-para-
metric regression models for genome-enabled prediction in wheat. G3: 
Genes Genomes Genetics. 2:1595–605.

Poland, J., and J. Rutkoski. 2016. Advances and Challenges in Genomic 
Selection for Disease Resistance. Annu. Rev. Phytopathol. 54:79–98. 
doi:10.1146/annurev-phyto-080615-100056

Polikar, R. 2006. Ensemble based systems in decision making. IEEE Circuits 
Syst. Mag. 6(3):21–45. doi:10.1109/MCAS.2006.1688199

R Core Team. 2016. R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. http://
www.R-project.org/. (accessed Jul. 2017).

Roelfs, A.P., R.P. Singh, and E.E. Saari. 1992. Rust diseases of wheat: Concepts 
and methods of disease management. Mexico, D.F.: CIMMYT. 81 pp.

Rouse, M.N., L.E. Talbert, D. Singh, and J.D. Sherman. 2014. Complementary 
epistasis involving Sr12 explains adult plant resistance to stem rust in 
Thatcher wheat (Triticum aestivum L.). Theor. Appl. Genet. 127:1549–
1559. doi:10.1007/s00122-014-2319-6

Rutkoski, J., E. Heffner, and M. Sorrells. 2011. Genomic selection for durable 
stem rust resistance in wheat. Euphytica 179:161–173. doi:10.1007/
s10681-010-0301-1

Rutkoski, J.E., J.A. Poland, R.P. Singh, J. Huerta-Espino, S. Bhavani, H. 
Barbier, M.N. Rouse, J.L. Jannink, and M.E. Sorrells. 2014. Genomic 
selection for quantitative adult plant stem rust resistance in wheat. Plant 
Genome. doi:10.3835/plantgenome2014.02.0006

Singh R.P., D.P. Hodson, J. Huerta-Espino, Y. Jin, P. Njau, R. Wanyera, S. 
Herrera-Foessel, and R.W. Ward. 2008. Will stem rust destroy the world’s 
wheat crop? Adv. Agron. 98:271–309. doi:10.1016/S0065-2113(08)00205-8 

Singh, R.P., D.P. Hodson, J. Huerta-Espino, Y. Jin, S. Bhavani, P. Njau, S. 
Herrera-Foessel, P.K. Singh, S. Singh, and V. Govindan. 2011. The 
emergence of Ug99 races of the stem rust fungus is a threat to world 
wheat production. Annu. Rev. Phytopathol. 49:465–481. doi:10.1146/
annurev-phyto-072910-095423

Sonnenburg, S., M.L. Braun, C.S. Ong, S. Bengio, L. Bottou, G. Holmes, 
Y. LeCun, K. Muller, F. Pereira, C.E. Rasmussen, G. Rätsch, B. 
Scholkopf, A. Smola, P. Vincent, J. Weston, and R. Williamson. 
2007. The need for open-source software in machine learning. J. 
Mach. Learn. Res. 8:2443–2466.

Sun, C., X.L. Wu, K.A. Weigel, G.J.M. Rosa, S. Bauck, B.W. Woodward, 
R.D. Schnabel, J.F. Taylor, and D. Gianola. 2012. An ensemble based 
approach to imputation of moderate density genotypes for genomic 
selection with application to Angus cattle. Genet. Res. 94:133–150. 
doi:10.1017/S001667231200033X

Thavamanikumar S., R. Dolferus, and B.L Thumma. 2015. Comparison of 
genomic selection models to predict flowering time and spike grain 
number in two hexaploid wheat doubled haploid populations. G3: 
Genes Genomes Genetics. 5:1991–1998.

Valiant, L.G. 1984. A theory of the learnable. Commun. ACM 27:1134–1142. 
doi:10.1145/1968.1972

Walters, R., C. Laurin, and G.H. Lubke. 2012. An integrated approach to 
reduce the impact of minor allele frequency and linkage disequilibrium 
on variable importance measures for genome-wide data. Bioinformatics 
28:2615–2623. doi:10.1093/bioinformatics/bts483

Wasserman, P.D. 1993. Advanced methods in neural networks. New York: 
Van Nostrand Reinhold.

http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://dx.doi.org/10.1007/s00122-007-0627-9
http://dx.doi.org/10.1007/s00122-007-0627-9
http://dx.doi.org/10.1093/bib/bbw068
http://dx.doi.org/10.1016/S0893-6080(05)80056-5
http://dx.doi.org/10.1007/s13253-015-0223-4
http://dx.doi.org/10.1186/1753-6561-5-S3-S11
http://dx.doi.org/10.3835/plantgenome2012.07.0017
http://dx.doi.org/10.1038/hdy.2013.144
http://dx.doi.org/10.1146/annurev-phyto-080615-100056
http://dx.doi.org/10.1109/MCAS.2006.1688199
http://www.R-project.org/
http://www.R-project.org/
http://dx.doi.org/10.1007/s00122-014-2319-6
http://dx.doi.org/10.3835/plantgenome2014.02.0006
http://dx.doi.org/10.1016/S0065-2113(08)00205-8
http://dx.doi.org/10.1146/annurev-phyto-072910-095423
http://dx.doi.org/10.1146/annurev-phyto-072910-095423
http://dx.doi.org/10.1017/S001667231200033X
http://dx.doi.org/10.1145/1968.1972
http://dx.doi.org/10.1093/bioinformatics/bts483

