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1 Power-law distributions

A power-law distribution is a special kind of probability distribution. There are several ways to
define them mathematically. Here’s one way, for a continuous random variable:

p(x) = Cx−α for x ≥ xmin , (1)

where the normalization constant C = (α − 1)xα−1
min is derived in the usual way. Note that this

expression only makes sense for α > 1, which is indeed a requirement for a power-law form to
normalize.1 As a more compact form, we can rewrite Eq. (1) as

p(x) =
α− 1

xmin

(

x

xmin

)

−α

for x ≥ xmin , (2)
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Figure 1: (a) Power-law and exponential distributions, for several choices of parameters. In both
cases, x ≥ xmin = 1. (b) The ratio of power-law and exponential distributions, illustrating that
events that are effectively “impossible” (negligible probability under an exponential distribution)
become practically commonplace under a power-law distribution.

1Mathematically, the only way to have something that behaves like a power-law distribution but with a heavier
tail than α & 1 is to effectively truncate its upper range, e.g., by adding an exponential cutoff in the upper tail like
this: Pr(x) ∝ x

−αe−λx.
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1.1 What’s weird about power laws

Many empirical quantities cluster around a typical value. The speeds of cars on a highway, the
weights of apples in a store, air pressure, sea level, the temperature in New York at noon on
Midsummer’s Day. All of these things vary somewhat, but their distributions place a negligible
amount of probability far from the typical value, making the typical value representative of most

observations. For instance, it is an entirely useful statement to say that an adult male American is
about 170cm (about 5 feet 7 inches) tall2 because not one of the 200 million-odd members of this
group deviate very far from this size. Even the largest deviations, which are exceptionally rare, are
still only about a factor of two from the mean in either direction and hence the distribution can
be well-characterized by quoting just its mean and standard deviation. In short, the underlying
processes that generate these distributions fall into the general class well-described by the central
limit theorem (recall Lecture 0).

Not all distributions fit this pattern, however, and in some cases the deviation is not a defect or
problem, but rather an indication of interesting underlying complexity in the generating process.
In particular, the past 15 years have produced countless examples of “non-normal” distributions
from complex social, biological and technological systems. As we’ll see in the next lecture, there
are a large (and increasing) number of ways to produce “heavy-tailed” distributions. The most
work has focused on power-law distributions because these have special mathematical properties
and can be produced by interesting endogenous processes like feedback loops, self-organization,
network effects, etc.

Power-law distributed quantities are not uncommon, and many characterize the distribution of
familiar quantities. For instance, consider the populations of the 600 largest cities in the United
States (from the 2000 Census).3 Among these, the average population is only 〈x〉 = 165,719, and
metropolises like New York City and Los Angles seem to be “outliers” relative to this size. One clue
that city sizes are not well explained by a Normal distribution is that the sample standard deviation
σ = 410,730 is significantly larger than the sample mean. Indeed, if we modeled the data in this
way, we would expect to see 1.8 times fewer cities at least as large as Albuquerque (population
448,607) than we actually do. Further, because it is more than a dozen standard deviations above
the mean, we would never expect to see a city as large as New York City (population 8,008,278), and
largest we expect to see in a sample of n = 600 cities would be Indianapolis (population 781,870).4

As a more whimsical second example, consider a world where the heights of Americans were dis-
tributed as a power law, with approximately the same average as the true distribution (which is

2See http://en.wikipedia.org/wiki/Human height#Average height around the world
3See http://www.demographia.com/db-uscity98.htm
4The expected maximum size for a sample of n iid random variables drawn can be calculated by solving the

following equation for xmax:
1

n
=

∫

∞

xmax

Pr(x)dx. Do you see why this makes sense?
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convincingly Normal when certain exogenous factors are controlled). In this case, we would expect
nearly 60,000 individuals to be as tall as the tallest adult male on record, at 2.72 meters. Further,
we would expect ridiculous facts such as 10,000 individuals being as tall as an adult male giraffe,
one individual as tall as the Empire State Building (381 meters), and 180 million diminutive indi-
viduals standing a mere 17 cm tall.

In fact, this same analogy was used in 2006 to describe the counter-intuitive nature of the extreme
inequality in the wealth distribution in the United States, whose upper tail is often said to follow
a power law.5

1.2 Moments

In addition to cropping up as descriptions of many interesting quantities in social, biological
and technological systems, power-law distributions have many interesting mathematical proper-
ties. Many of these come from the extreme right-skewness of the distributions and the fact that
only the first ⌊α−1⌋ moments of a power-law distribution exist; all the rest are infinite. In general,
the kth moment is defined as

〈xk〉 =

∫

∞

xmin

xk p(x)dx

= (α− 1)/xα−1
min

∫

∞

xmin

x−α+kdx

= xkmin

(

α− 1

α− 1− k

)

for α > k + 1 . (3)

Thus, when 1 < α < 2, the first moment (the mean or average)is infinite, along with all the higher
moments. When 2 < α < 3, the first moment is finite, but the second (the variance) and higher
moments are infinite! In contrast, all the moments of the vast majority of other pdfs are finite.

A consequence of these infinite moments is that empirical estimates of those or nearby moments
can converge very slowly due to the regular appearance of extremely large values. Figure 2 shows
this numerically using synthetic data. When a moment doesn’t exist, the sample estimate grows
with sample size n. But, even when the appropriate moment does exist, the sample estimates vary
a lot (remember, these data are shown on logarithmic scales), especially for small values of n, and
converge very slowly on the true value.

5See http://www.theatlantic.com/magazine/archive/2006/09/the-height-of-inequality/5089/ .
The upper tail of the wealth distribution does not in fact follow a perfect power law because there are statistically
significant deviations in it, which appear because the wealth of individuals are not iid random variables.
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Figure 2: The sample mean and variance for power-law distributions with α = {1.7, 2.05, 3.01}, for
a wide range of sample sizes n. For each value of n, the mean and variance estimates are for the
same set of synthetic observations. See Section 2 for Matlab code for these figures.

1.3 Scale invariance

Another interesting property of power-law distributions is “scale invariance.” If we compare the
densities at p(x) and at some p(c x), where c is some constant, they’re always proportional. That is,
p(c x) ∝ p(x). This behavior shows that the relative likelihood between small and large events is the
same, no matter what choice of “small” we make. That is, the density “scales.” Mathematically:

p(c x) = (α− 1)xα−1
min (c x)

−α

= c−α
[

(α− 1)xα−1
min x

−α
]

∝ p(x) .

Further, it can be shown6 that a power law form is the only function that has this property.

Here’s another way of seeing this behavior. If we take the logarithm of both sides of Eq. (1), we
get an expression for ln p(x) that’s linear in lnx. That is,

ln p(x) = ln
[

(α− 1)xα−1
min (x)

−α
]

= lnC − α lnx .

That is, rescaling x → c x simply shifts the power law up or down on a logarithmic scale. This
shows another of the more well-known properties of a power-law distribution: it’s a straight line on a
log-log plot. This is in contrast to the strongly curved behavior of, say, an exponential distribution,
as in Fig. 1.

6An exercise left to the reader.
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1.4 Top-heavy distributions and the 80–20 “rule”

The extreme right-skewness of power-law distributions also implies some other interesting behaviors.
For instance, assume that the distribution of wealth is power-law distributed with some parameter
α (which, it turns out, is not a terrible assumption). What fraction W of the total wealth is held
by the richest fraction P of the population?

The fraction P of the population whose wealth is at least x is given by the complementary cdf:

P (x) =

∫

∞

x
C y−αdy =

(

x

xmin

)

−α+1

, (4)

where C = (α− 1)xα−1
min , as above. And the fraction wealth held by those people is given by:

W (x) =

∫

∞

x y p(y)dy
∫

∞

xmin
y p(y)dy

=

(

x

xmin

)

−α+2

, (5)

where α > 2. Solving Eq. (4) for x/xmin, and substituting the result into Eq. (5) produces an
expression that does not depend on x

W = P (α−2)/(α−1) , (6)

Fig. 3 shows how skewed or “top heavy” the distribution of wealth can be for several different
choices of α, along with similar Lorenz curves for an exponential distribution, for comparison.7

This extreme top-heaviness is sometimes called the “80–20 rule,” meaning that 80% of the wealth
is in the hands of the richest 20% of people. However, as α → 2 this asymmetry gets progressively
more extreme, with a smaller and smaller fraction of the population holding a greater and greater
proportion of the total wealth. When α < 2, the integrals in our calculation above diverge and the
total wealth is almost completely held by a single person, i.e., the sum of all the wealth is largely
equal to the largest value in the sum.8

Gini coefficients are a common way to measure just how skewed the distribution is, and are often
quoted by people talking about wealth inequality, and are derived from Lorenz curves. The Gini

7If we assume that “wealth” is instead an exponentially distributed random variable, and if repeat the steps to
derive the corresponding Lorenz curve, we find W = P

(

1− [1 + λxmin]
−1 lnP

)

.
8There is an entire branch of theoretical statistics called extreme value theory that is devoted to studying the

asymptotics of such situations. Within extreme value theory, power-law distributions have special significance because
of their infinite moments. Extreme value theory is frequently used in the (re-)insurance industry, where rare but
catastrophic losses can lead to huge fluctuations in the profits (and reserves) of insurance companies. It’s worth
pointing out that most results from this field hold asyptotically, and thus it is not always clear that they hold for the
finite-sized samples we will typically encounter in studying complex systems.
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coefficient G is defined as twice the area between the observed W (P ) function and the “ideal”
W = P function (everyone having an equal portion of the total wealth). Since the maximum area
between the two curves is 1/2 (when one individual holds all the wealth), G ∈ [0, 1] with larger
values indicating more skewed distributions. The Wikipedia page for Gini coefficients9 has a nice
map, derived from the CIA World Fact Book 2009, showing Gini coefficients for most countries
worldwide.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α=3.5
α=2.7
α=2.4
α=2.2
α=2.1

Richest fraction of the population P

F
ra

ct
io

n 
of

 to
ta

l w
ea

lth
 W

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ=50

λ=5.0

λ=0.5λ=0.0000005

Richest fraction of the population P

F
ra

ct
io

n 
of

 to
ta

l w
ea

lth
 W

Figure 3: Lorenz curves (after Max Otto Lorenz, 1880–1962, an American economist) for several
different power-law (left) and exponential (right) wealth distributions. The dashed line shows the
empirical Lorenz curve for the wealthiest individuals in the United States (data from the Forbes 400,
2003). For the exponential distribution, these curves are for xmin = 1; setting xmin = 600,000,000,
which is the smallest value in the Forbes data, yields a flat line W = P ; see footnote 2.

1.5 Power-law tails

Equation (2) describes a pdf that follows a power law over its entire range. But some distributions
may only exhibit a power law in their tail, i.e., when x is sufficiently large. Generally, such distri-
butions can be expressed in the form Pr(x) = L(x)x−α, where L(x) represents a “slowly varying
function,” i.e., as x → ∞, L(x) → c, where c is some constant, and p(x) → x−α.

For instance, consider the shifted power-law distribution, which has a form

Pr(x) =
α− 1

k + xmin

(

k + x

k + xmin

)

−α

for x ≥ xmin , (7)

9See http://en.wikipedia.org/wiki/Gini coefficient
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where k is some constant. (Note that when k = 0, we recover Eq. (2) exactly.)
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Figure 4: The ccdf of the shifted power-law distribution, for several choices of shift parameter
k. Note that the tail does show the power-law form, but the “body” or “head” shows significant
curvature.

With a little algebra, we can rewrite Eq. (7):

Pr(x) = C(x+ k)−α for x ≥ xmin

= C(x+ k)−α

(

x−α

x−α

)

= C

(

1 +
k

x

)

−α

x−α

= L(x)x−α ,

where L(x) = C
(

1 + k
x

)

−α
→ 1 as x → ∞, and thus a shifted power-law distribution has a power-

law tail. The function L(x) describes exactly how the deviations from the power-law form decay
as we move further out into the tail. When x . k, the “body” term L(x) is large compared to
the tail term x−α, leading to curvature on the log-log plot. Figure 4 shows some examples of this
distribution.
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2 Matlab code for Figure 2

Here is the Matlab code for the in-class simulation of the convergence of the sample mean and
variance for iid random variables drawn from a power-law distribution. Note: you won’t be able
to run this code as-is because it calls a function randht that you don’t have. Once you’re solved
question 3a from problem set 1, replace that line with the function you derive.

% run the experiment 10 times, showing the results of each iteration for 1 second

for iterations=1:10

alpha=1.7;

nr = unique(round(logspace(1,6,40))); % sizes of samples to simulate

mn = zeros(length(nr),1); % storage for sample means

vr = zeros(length(nr),1); % storage for sample variances

for i=1:length(nr)

n = nr(i); % set the size of the iid sample

for j=1:size(mn,2)

x = randht(n,’powerlaw’,alpha); % generate iid PL r.v.

mn(i,j) = mean(x); % compute the sample mean

vr(i,j) = var(x); % compute the sample variance

end;

end;

% make a pretty figure

figure(2);

loglog(nr,mn,’ro’,’LineWidth’,2,’MarkerFaceColor’,[1 1 1]); hold on;

loglog(nr,vr,’bo’,’LineWidth’,2,’MarkerFaceColor’,[1 1 1]); hold off;

set(gca,’FontSize’,fs,’XLim’,10.^[1 6],’YLim’,10.^[0 9]);

set(gca,’XTick’,10.^(1:6),’YTick’,10.^(0:9));

xlabel(’Size of sample, n’,’FontSize’,16);

ylabel(’Value’,’FontSize’,16);

h=legend(’Sample mean’,’Sample variance’,2); set(h,’FontSize’,16);

h=text(8*10^4,10^8,strcat(’\alpha=’,num2str(alpha,’%3.1f’))); set(h,’FontSize’,16);

drawnow; % force Matlab to draw the figure now (flush the graphics queue)

pause(1); % pause for 1 second before continuing the loop

end;
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