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Abstract: This study assessed the impact of climate change on the hydrological regime of the
Paraguaçu river basin, northeastern Brazil. Hydrological impact simulations were conducted using
the Soil and Water Assessment Tool (SWAT) for 2020–2040. Precipitation and surface air temperature
projections from two Regional Climate Models (Eta-HadGEM2-ES and Eta-MIROC5) based on
IPCC5—RCP 4.5 and 8.5 scenarios were used as inputs after first applying two bias correction
methods (linear scaling—LS and distribution mapping—DM). The analysis of the impact of climate
change on streamflow was done by comparing the maximum, average and reference (Q90) flows of the
simulated and observed streamflow records. This study found that both methods were able to correct
the climate projection bias, but the DM method showed larger distortion when applied to future
scenarios. Climate projections from the Eta-HadGEM2-ES (LS) model showed significant reductions
of mean monthly streamflow for all time periods under both RCP 4.5 and 8.5. The Eta-MIROC5 (LS)
model showed a lower reduction of the simulated mean monthly streamflow under RCP 4.5 and a
decrease of streamflow under RCP 8.5, similar to the Eta-HadGEM2-ES model results. The results
of this study provide information for guiding future water resource management in the Paraguaçu
River Basin and show that the bias correction algorithm also plays a significant role when assessing
climate model estimates and their applicability to hydrological modelling.

Keywords: climate change; Paraguaçu River Basin; semi-arid region; SWAT model; Eta-HadGEM2-
ES; Eta-MIROC5; correction bias

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) [1]
provided an overview of projected impacts on water resources for different regions of the globe.
These are likely to have profound implications on human populations, and are already being reported
throughout the world [2–5]. The Brazilian semi-arid region, one of the poorest rural communities in
the country with 24 million inhabitants (12% of the national population), is particularly vulnerable to
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this phenomenon [6–8]. In this region, the lower availability of water resources reported over the last
few years has affected agricultural activities, the economy, and society in general due to an extensive
drought [9,10]. Climate change projections for this region suggest a substantial temperature increase,
rainfall reduction, and the occurrence of more extended periods with consecutive dry days; these that
will no doubt exacerbate the water scarcity problem.

The integrated assessment of regional climate and hydrological models is increasingly being
performed worldwide to study the impact of climate change on water resources [11–16]. Regional
Climate Models (RCMs) provide dynamic downscaling of Global Climate Model (GCM) results and
higher-resolution scenarios. They are the first step towards assessing the vulnerability of water
resources to climate change and adaptation needs. On the other hand, hydrological models are
commonly used for estimating streamflow, but can also ease the assessment of RCMs performance
by integrating the complex spatial and temporal dynamics of several meteorological variables in a
reduced number of river cross sections, with precipitation being the most important.

Several studies demonstrated that different factors can lead to uncertainty when evaluating
streamflow under climate change. In general, this uncertainty is associated with GCM initialization,
downscaling techniques, future emission scenarios, hydrologic model parameterization, climate
variables (temperature and precipitation) inputs, and bias correction methods [12,14,17,18].
Krysanova et al. [19] showed that a good hydrological modeling performance for the historical period
increases confidence in projected climate change impacts and decreases the uncertainty related to
hydrological modeling estimates.

In this paper, we recognize the importance of an adequate model performance when estimating
the impact of climate change on local water resources. Santos et al. [20] already calibrated and
validated the Soil and Water Assessment Tool (SWAT) [21] for simulating streamflow in the Paraguaçu
watershed following the hierarchical scheme proposed by Klemeš [22]. The objective of this study
is now to support or reject the hypothesis that a well-calibrated hydrological model can: (i) assess
the performance of regional climate models; (ii) evaluate the methods used for bias correction of
RCMs precipitation estimates; and (iii) assess the impacts of climate changes on streamflow under
different climate scenarios. The daily precipitation and maximum and minimum daily surface air
temperatures projections from the Eta regional climate model [23,24] forced by two global climate
models (HadGEM2-ES [25] and MIROC5 [26]) under different emission scenarios were used to
represent climate change projections for 2020–2040. The hydrological cycle was then simulated
with the calibrated SWAT model for the Paraguaçu River Basin with impacts being analyzed by
comparing the simulation results under different scenarios. The results of this study can provide
valuable information for guiding future water resource management in the Paraguaçu watershed as
well as in other arid and semiarid regions of the world.

2. Materials and Methods

2.1. Study Area

This study was conducted in the Paraguaçu River Basin, Bahia state, northeastern Brazil
(11◦17’–13◦36’ S; 38◦50’–42◦01’ W), (Figure 1). The drainage basin is 55,317 km2 (10.14% of total
state area), with an altitude range of 0 to 1800 m. According to the Köppen classification, the climate in
the Paraguaçu watershed varies from semi-arid (BSh) in the central part (67% of the area) to equatorial
(Af) in the west and southeast. Consequently, annual precipitation ranges from less than 600 mm in
the central region up to 1400 mm in the west and southeast. The study area was here limited to the
upstream of the Paraguaçu River just before the interception of its main tributary (Figure 1), covering
an area of 37,900 km2.
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Figure 1. Location of the Paraguaçu River Basin, Bahia state, northeastern Brazil.

2.2. Soil and Water Assessment Tool

2.2.1. Model Description

The Soil Water Assessment Tool [21] is a physically-based, semi-distributed, catchment scale
hydrologic model, widely used for simulating the effect of climate and land management on the
hydrological regime of the catchment [27]. The hydrologic cycle is based on the computation of the
daily water balance, as follows [28]:

SWt = SWo + ∑t
i=1(Rday −Qsurf − ETa −Qdeep − Qgw), (1)

where SWt and SWo are the final and initial soil water contents (mm), respectively, t is the time period
(days), Rday is the precipitation (mm), ETa is the actual evapotranspiration (mm), Qsurf is the surface
runoff (mm), Qdeep is the water drained into the deep aquifer (mm), and Qgw is the return flow (mm),
all on a given day i. The overall water balance is computed for hydrologic response units (HRUs)
consisting of homogeneous land-use, soil, and slope characteristics [29]. Potential evapotranspiration
(ETp) rates are estimated following the Penman–Monteith approach [30], with rates being then reduced
based on soil water availability to obtain ETa. Qsurf is calculated from daily Rday using a modification of
the Soil Conservation Service Curve Number (SCS-CN) method [31]. Qdeep is obtained by combining a
storage routing technique and a crack-flow model. Lateral flow is simulated using a kinematic storage
method. A detailed description of the model is provided by Neitsch et al. [21].

2.2.2. Model Setup, Calibration and Validation

Santos et al. [20] applied the SWAT model for simulating streamflow in the Paraguaçu watershed.
There, the study area was divided in 69 sub basins and 1906 HRUs based on the digital elevation
model (DEM), land use and soil maps available for the region (Figure 2). The DEM was extracted from
the Shuttle Radar Topography Mission (SRTM), presenting a spatial resolution of 30 m. The land-use
map was obtained from GlobCover 2009 [32]. The soil map was produced by Empresa Brasileira de
Pesquisa [33], with the soil physical and chemical properties being collected from the literature [34–37].
Precipitation data was obtained at Agência Nacional de Águas (ANA), while the remaining weather
data was from Instituto Nacional de Meteorologia (INMET). Xavier et al. [38] meteorological grid of
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variables was also used to complement weather information and more accurately describe the high
rain spatial variability of rainfall in the region.Water 2019, 11, x FOR PEER REVIEW  4 of 17 
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Figure 2. (a) Localization of weather and hydrometric stations; (b) Regional Climate Model (RCM) and
Xavier et al. [38] grid points; (c) land-use map; (d) soil map.

This study followed Santos et al. [20] in performing calibration and validation of the SWAT model
by comparing simulated and observed monthly streamflow at two additional hydrometric stations:
Itaeté and Argoim (Figure 2). Daily discharge data at these stations were collected at Agência Nacional
de Águas (ANA). Two time periods were selected for this analysis: calibration was performed for
1989–1996, while validation was for 1997–2005. The simulation ran from January 1985 and included
four years of model warm-up (1985–1988). Daily values of the water balance were integrated into the
monthly averages.

The goodness-of-fit indicators adopted for comparing SWAT model simulations of streamflow
with measured data were the coefficient of determination (R2), the Nash–Sutcliffe model efficiency
(NSE), the percent bias (PBIAS), and the root mean square error observations standard deviation
ratio (RSR). The R2 indicates the degree of linear relationship between observed and simulated
data, with values close to one indicating better performance. The NSE is a normalized statistic that
determines the goodness of fit and ranges from −∞ to 1. Values close to 1 indicate a perfect match,
while values close to 0 or negative indicate that observations are a better description of reality [39].
The PBIAS measures the deviation of model simulations from the measured data, with values above
or below zero indicating under- or overestimation of the observed data, respectively [40]. The RSR
is a scaling/normalization factor that ranges from 0 to infinity, with smaller values indicating better
simulation results [40]. The calibration/validation performance of a SWAT model was also evaluated
following Moriasi et al.’s [40] criteria.
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2.3. Climate Change Projection

2.3.1. Regional Climate Model and Scenarios

The dynamical downscaling of the RCM Eta from two GCMs (MIROC5 and HadGEM2-ES)
of the Fifth Assessment Report (AR5) dataset [24] provided climate projections for two different
Representative Concentration Pathways (RCPs): the RCP 8.5 and RCP 4.5 W.m−2 radiative forcing
scenarios. The first RCP is the most pessimistic and results in a global average warming at the end of
21st century of from 2.6 to 4.8 ◦C, while the second is an intermediate scenario representing global
average warming between 1.1 and 2.6 ◦C [41].

The Eta-MIROC5 and Eta-HadGEM2-ES divide the year into 365 days and 360 days, respectively.
The time series of the Eta-HadGEM2-ES model was thus converted to a 365-day calendar prior to
its use in the SWAT model. This conversion was performed using a linearly technique proposed by
Bosshard et al. [42]. The regional model Eta-MIROC5 and Eta-HadGEM2-ES have a resolution of
20 km in the horizontal direction and 38 layers in the vertical for the domain area of South and Central
America [23]. The variables simulated by both RCMs were the daily precipitation and daily maximum
and minimum temperatures, which were used to assess the potential hydrological impacts in the
Paraguaçu catchment.

2.3.2. Bias Correction

As the estimates of the RCMs for the control period may not agree with the observed data,
a correction is usually introduced to minimize the existing bias. This correction is based on
the differences between observed and historical simulated values [43]. Maximum and minimum
temperature values thus were corrected using an additive term based on the difference of long-term
monthly mean observed and simulated data. For each variable, a set of 12 grids, one for each month,
were produced from the observed and simulated monthly values. The addends were assumed to
remain static even for future conditions. The following equation was used to correct temperature
values [18]:

Tcorr(d) = Tsim(d) + [µm(Tobs(d))− µm(Tcontr(d))], (2)

where T is the temperature daily (d) values, µm is the long-term monthly mean, Tcorr are the bias
corrected values, Tsim are the RCMs simulated values, Tobs are the observed values, and Tcontr are the
simulated values during the historical (or controlled) period.

Two methods were evaluated to correct the precipitation values. The Linear Scale method (LS)
uses a multiplicative factor to adjust the simulated monthly mean values to the observed monthly
mean weather values. The correction factors were assumed to remain static even for future conditions.
A set of 12 grids, one for each month, was computed from the observed and simulated monthly mean
precipitation values and the following equation was used [18]:

Pcorr(d) = Psim(d) × [µm(Pobs(d))/µm(Pcontr(d))], (3)

where P represents the precipitation daily (d) values.
The purpose of the second bias correction method (DM) is to correct the distribution of the RCM

simulated estimates to agree with the distribution of the observed values. The gamma distribution
(Equation (4)) with shape parameter α and scale parameter β is often assumed to be suitable for the
distribution of precipitation events [18]:

fr x|α ,β = xα−1 × 1
βα × e

−x
β ; x ≥ 0, α,β > 0. (4)

The cumulative distribution functions (CDFs) were constructed for both daily observed and RCM
simulated precipitation value (1985–2005) within a specific month. The value of the RCM-simulated
precipitation for a given day d within month m was taken from the empirical CDF of the RCM
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simulations together with its corresponding cumulative probability. Thereafter, the value of
precipitation of the same cumulative probability was located on the empirical CDF of observations.
Finally, this value was used as the corrected value for the RCM control baseline (1985–2005),
as follows [18]:

P∗corr (d) = F−1
Υ (FΥ(Pcorr(d)

∣∣∣αcorr,m,βcorr,m)
∣∣∣αobs,m,βobs,,m) (5)

P∗scen (d) = F−1
Υ (FΥ(Pscen(d)

∣∣∣αcorr,m,βcorr,m)
∣∣∣αobs,m,βobs,,m), (6)

where FΥ and F−1
Υ are, respectively, the gamma cumulative distribution function and its inverse,

αcorr,m,and βcorr,m are the fitted gamma parameters for the corrected precipitation on a given month
m, and αobs,m,βobs,m are the corresponding fitted gamma parameters for observation. More detailed
information on this methodology is provided by Teutschbein and Seibert [18].

2.3.3. Evaluation of Bias Correction Methods

The bias correction methods applied to RCM estimates of temperature and precipitation were
evaluated by applying the following statistics to the monthly streamflow estimate: average annual
flow, maximum and minimum average monthly flow, and the 10 percentile (Q10) and 90 percentile
(Q90) values of the average monthly flow. Additionally, the Wilcoxon’s nonparametric hypothesis test
was used to compare the data series.

3. Results and Discussion

3.1. Model Calibration and Validation

Table 1 lists the default and calibrated parameters used during the water balance simulations
for the Paraguaçu River basin. These were first tested in Santos et al. [20], who calibrated/validated
the SWAT model for simulating streamflow in the Andaraí, Fortém, and Iguaçu sub-basins of the
Paraguaçu watershed, and applied here now for assessing the accuracy of streamflow predictions in
Itaeté and Argoim.

Table 1. Calibrated parameters and range of values for the study area.

Parameter Description and Units Default Calibrated Value

GW_DELAY Groundwater Delay (days) 0–500 31–365
GW_REVAP Revaporation coefficient (-) 0.02–0.2 0.02–0.2

GW_RCHRG_DP Deep aquifer recharge (mm) 0–1 0.05–0.25
Mgt1_CN2 SCS runoff curve number for moisture condition II (-) 35–98 45–78

HRU_SLSOIL Hillslope length (m) 0–150 0–85
SOL_AWC Available water capacity of the soil layer (mm/mm soil) 0.075–0.40 0.1–0.30

SOL_Z Soil depth (mm) - 500–3000
SOL_K Saturated hydraulic conductivity (mm/h) - 2–35
CH_K2 hydraulic conductivity of channel (mm/h) 0.01–500 0.01–1.5

Table 2 presents the statistical indicators obtained for the Itaeté and Argoim station after
comparing model simulations with field measurements. According to the goodness-of-fit statistics,
the model achieved very good performance [40]. The NSE values of 0.84-0.89 for monthly outputs
during the calibration and validation periods, respectively, suggested that the model is appropriate
for simulating streamflow. The PBIAS value range from -14% to 4%, indicating excellent model
performance. The R2 values were usually equal to or greater than 0.80, indicating the model’s capacity
to explain most of the variance in the observed data. Finally, the RSR <0.5 demonstrated very good
estimates for monthly flows. All goodness-of-fit indicators obtained here were also within the range of
values reported in the literature for similar applications using the SWAT model [29,44].
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Table 2. Statistical indicators obtained by comparing model simulations and measured monthly
streamflow during the calibration (1989–1996) and validation (1997–2005) periods.

Location
Discharge Average (m3/s) Statistic Performance

Approach Observed Simulated PBIAS RSR R2 Moriasi et al.
(2007)

Itaeté
Calibration 48.18 46.13 4.2 0.40 0.85 Very good
Validation 56.96 59.4 −5.0 0.39 0.86 Very good

Argoim Calibration 65.89 67.08 −2.0 0.39 0.88 Very good
Validation 72.7 83.28 −14.0 0.32 0.80 Very good

3.2. Climate Projections

3.2.1. Raw Projections for the Baseline Period

Figure 3 shows the average maximum and minimum temperature of observed data and baseline
of the Eta-HadGEM2-ES and Eta-MIROC5 models for 1985–2005. As observed, there was a large
difference between observed data and the baseline for both temperatures, indicating the necessity of
bias correction before the Eta-HadGEM2-ES and Eta-MIROC5 models could be considered as reliable
input data to the SWAT model. The monthly differences between models were very small, though.
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Figure 3. Spatial averaged maximum and minimum surface air temperatures for the observed and
baseline data of the Eta-HadGEM2-ES (left) and Eta-MIROC5 (right) models for 1985–2005.

Figure 4 portrays the hydrological annual average precipitation of the observed data and baseline
projections from the Eta-HadGEM2-ES and Eta-MIROC5 models for 1985–2005. These averages are
given for four stations shown in Figure 2b, which compare weather variables station between grid
point and models baselines. In general, the pattern of the mean monthly rainfall is well captured by
both models. However, there are considerable differences between observed data and models baseline
scenarios, which likewise indicate the occurrence, among others, of systematic errors and the need
for bias correction. The Eta-HadGEM2-ES baseline model underestimated precipitation values in all
selected stations (Figure 4), while the Eta-MIROC5 baseline model showed a tendency to overestimate
precipitation values in the selected points for several months of the year (Figure 4). For both models,
the peak of precipitation occurred during February and March, while observed data showed the
corresponding peaks during November and December.
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Figure 4. Average daily precipitation for observed and baseline data of the Eta-HadGEM2-ES and
Eta-MIROC5 models for 1985–2005 at four stations (A, B, C, D) shown in Figure 2b.

3.2.2. Corrected Climate Projections

Corrected Temperature Projections by Linear Scaling

Figure 5 illustrates the projected surface temperature changes for the Paraguaçu watershed for
2020–2040 when compared to 1985–2005. For maximum (Figure 5a,b) and minimum (Figure 5c,d)
temperatures, the Eta-HadGEM2-ES model showed, respectively, an average increase of 0.62 and
0.69 ◦C for RCP 4.5 and 0.86 and 0.54 ◦C for RCP 8.5. Also, the Eta-MIROC5 model showed higher
maximum and minimum temperature increase than the Eta-HadGEM2-ES model. The average of
both models showed an increase of the maximum and minimum temperatures of 0.85 and 1.5 ◦C for
RCP 4.5, and 0.8 and 1.0 ◦C for RCP 8.5, respectively. Similar values are reported in Chou et al. [24],
with an increase in maximum and minimum temperature for NE Brazil of about 1.5 ◦C in both RCP
for 2011–2040.

Corrected Precipitation Projections by Linear Scaling and Distribution Mapping

The range of the precipitation correction factors are shown in Figure 6. These factors represent
the ratio between the mean monthly observed precipitation and the mean monthly precipitation
estimated by the RCMs for the controlled or historical period (Eta-HadGEM2-ES and Eta-MIROC5)
for each point in the grid. The largest correction factors values are found for the period from May to
August, corresponding to low precipitation months, while the largest amplitudes are found from June
to August. For example, in June and August, most grid points present a correction factor between 3.5
and 8.5 and between 2.5 and 4.2, respectively. In addition, the large range of the correction factors also
show that the precipitation variability in the watershed and the correction factor are dependent on
the location.

The correction factors of the Eta-HadGEM2-ES model are usually higher than the Eta-MIROC5
ones, meaning that the original precipitation estimates from the former model are lower than the
latter one. According to Chou et al. [24], the annual precipitation cycles in Eta simulations driven by
HadGEM2-ES produces less precipitation than the MIROC5 in the rainy season, and generally more in
the dry season.
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Figure 7 shows the Gamma distribution adjustment of the baseline model (1985–2005) for daily
precipitation of the Eta-HadGEM2-ES and Eta-MIROC5 models. The baselines of the models (black
and blue lines) were shifted towards the gamma distribution of the observations (red line) in the four
points of the grid (A–D). The figure also shows the accumulated probability of the daily precipitation,
where 65% of the time the rain was equal to zero for both models. The analysis showed that the method
is capable of correcting systematic errors. However, precipitation values below 5 mm/day were not
adequately adjusted in the Eta-HadGEM2-ES model (Figure 7), probably because the model baseline
contained many drizzly days or more drier days than the observed values, which did not happen with
Eta-MIROC5. The results indicate that the quality of the adjustment of the baseline precipitation data
is strongly dependent on the choice of correction algorithm (LS or DM), as reported by Teutschbein
and Seibert [18].

Figure 8 shows the average monthly precipitation values obtained by applying both bias correction
methods (LS and DM) to the Eta_HadGEM2-ES and Eta-MIROC5 results. Bias were found to vary
substantially depending on the catchment location when using both correction methods. Figure 8
shows a strong tendency for the HadGEM2-ES model corrected by DM method to fail in simulating
low precipitation values (June to September) at points A, B and D. The same outcome was not observed
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for bias correction LS. According to Fang et al. [45], the high frequency of drizzly days in a time series
distorts the baseline precipitation distribution. In such cases, the best fit can be obtained by arranging
data by frequency. This will assure an adequate performance of DM in situations with more modeled
than observed dry days [46].
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3.3. Effect of Bias Correction on the Baseline Streamflow

Table 3 compares the results of the SWAT model for the Argoim hydrometric station with inputs
from RCMs following different bias corrections. The Eta-HadGEM2-ES (LS and DM) model output
resulted in an underestimation of the minimum streamflow simulated by the SWAT model. Mean error
was about 69% and 80% for LS and DM, respectively. On the other hand, Eta-MIROC5 LS and
Eta-MIROC5 DM overestimated the minimum flow by 32% and 24%, respectively. The results
also indicated an overestimation of the maximum flow in 68%, 27%, and 8% for Eta-HadGEM2-ES
(LS), Eta-MIROC5 LS and Eta-MIROC5 DM, respectively, and an underestimation in 4% for
Eta-HadGEM2-ES (DM). The Q90 was overestimated by 58% and 18% when using outputs from the
Eta-HadGEM2-ES and Eta-MIROC5 models corrected by the LS method, while the Eta-HadGEM2-ES
DM outputs underestimated that parameter by 24%. Our results demonstrate that the simulated
streamflow was substantially improved by applying a correction algorithm, considerably reducing
monthly mean streamflow deviations of more than 100%. The Eta-MIROC5 corrected by distribution
mapping (DM) yielded better results for hydrological extreme simulations.

Table 3. Statistical indicators of simulated streamflow in Argoim for the baseline (1985–2005) and
bias-corrected precipitation given by the Eta-HadGEM2-ES and Eta-MIROC5 climate models.

Statistic Parameters
Model
(m3/s)

Eta-HadGEM2-ES Eta-MIROC5

Baseline LS DM Baseline LS DM

Minimum flow 3.1 0.01 0.98 0.62 3.3 4.2 3.9
Maximum flow 826.4 288.50 1391.0 792.9 549.5 1047.5 889.8
Average flow 77.0 15.67 109.0 44.3 88.6 93.1 85.3

Q10 182.5 38.12 277.6 109.5 200.5 238.7 203.0
Q90 8.5 1.0 13.4 6.5 10.26 10.0 8.4

Figure 9 shows the monthly simulated streamflow for the hydrological year using the outputs of
the Eta-HadGEM2-ES and Eta-MIROC5 model as inputs to SWAT, as well as the respective individual
maximum exceedance curves. The RCM baseline and Eta-HadGEM2-ES corrected by the DM method
were unable to simulate streamflow (p < 0.05 in the Wilcoxon rank), with the comparison between
observed and modeled streamflow yielding significant deviations.

The monthly mean streamflow using the Eta-HadGEM2-ES model projections as inputs was
underestimated by 75% (mean) from October to January, even after bias correction by the DM method
(Figure 8). On the other hand, the Eta-HadGEM2-ES LS method overestimated monthly mean flow by
44% (mean). Regarding the Eta-MIROC5 (LS and DM), the simulated monthly mean showed a different
behavior when compared to the Eta-HadGEM2-ES model. The LS and DM methods overestimated
flow by 33% and 6% flow during the same period (October to January), respectively. The overestimated
flow by the LS method between October and January may have been due to the presence of correlation
factor outliers.

The maximum exceedance curve is one of the tools to determine water availability in a river
basin (Figure 9(a1,b1)). Flow duration curves showed that the Eta-HadGEM2-ES model corrected
by the DM method persistently underestimated flow. A contrasting scenario was observed for the
Eta-MIROC5 model. The Eta-MIROC5 model produced fewer reductions in the annual precipitation
when compared to Eta-HadGEM2-ES and, therefore, possible fewer impacts on streamflow [23].
Considering the dispersion in the Eta-Hadgem2-ES (DM) discharge curves, this method of correction
should not be considered for simulating streamflow based on climate change projections.
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(bottom) in Argoim with inputs from the Eta-HadGEM2-ES (a,a1) and Eta-MIROC5 (b,b1) models for
1989–2005 (LS, linear scaling; DM, distribution mapping).

3.4. Climate Change Impact on Streamflow

Based on the hypothesis that the processes of generation of the systematic errors of the variables
(precipitation, maximum and minimum temperatures) occur similarly for the reference and future
periods, the adjustment obtained for the reference period was applied to the precipitation values
generated by the Eta-HadGEM2-ES and Eta-MIROC5 models for baseline and future projections
(2020–2040) of RCPs 4.5 and 8.5.

The change in the percentage of streamflow as projected by different climate models and
bias-corrected methods is summarized in Table 4. The streamflow resulting from Eta-MIROC5 (LS)
projections varied from −4% to −35% from March to September under RCP 4.5, and decreased by
more than 45% under the RCP 8.5 scenario. However, the Eta-MIROC5 (DM) showed an increase of
over 75% under both RCP scenarios. Oliveira et al. [47] assessed the impacts of climate change on the
Grande river basin headwater region streamflow, Southeast Brazil, using also the Eta-HadGEM-ES
and Eta-MIROC5 models as inputs to the SWAT model. The results showed streamflow reductions
varying from 41% to 56% for the Eta-HadGEM2-ES for both RCP 4.5 and 8.5 scenarios for 2007–2040.
For the Eta-MIROC5, the same reduction was found for RPC 4.5, while for the RCP 8.5 streamflow
reduction varied from 14.6% to 29%.

Although the DM method showed a good fit to observed data (e.g., Eta-MIROC5), results showed
that DM disfigured the results when applied to future scenarios. According to Themeßl et al. [46] these
impacts can be explained by the combination of two factors: a magnitude-dependent error correction
functions, thus low and high quantities are corrected differently; and a trend in the underlying data,
thus uncorrected future periods feature a significantly changed of the probability density function to
the respective baseline.
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Table 4. Percentage change in monthly average discharge for RCP 4.5 and RCP 8.5 scenarios.

Month October November December January February March April May June July August September

Baseline Model * 28.05 51.63 110.41 112.07 126.42 175.46 153.30 97.00 73.68 55.39 41.64 38.73
Baseline LS * 16.71 90.44 237.14 244.38 128.35 106.93 77.92 54.42 60.25 38.41 36.90 24.87

Baseline DM * 14.13 61.09 184.25 222.87 126.56 119.01 87.97 60.95 57.20 37.85 30.94 20.88

% change discharge under RCP 4.5 (2020–2040)

Eta-MIROC5 LS 14% 40% −35% −2% 7% −14% −4% −5% −32% −27% −33% −31%
Eta-MIROC5 DM 362% 264% 90% 153% 228% 213% 219% 229% 186% 233% 212% 242%

% change discharge under RCP 8.5 (2020–2040)

Eta-MIROC5 LS −75% −54% −49% −48% −46% −61% −67% −64% −73% −72% −71% −69%
Eta-MIROC5 DM 186% 84% 76% 89% 160% 135% 124% 136% 116% 146% 126% 149%

Baseline Model * 4.24 3.16 30.45 16.12 15.93 50.59 34.27 11.65 8.04 5.88 4.06 3.52
Baseline LS * 28.52 119.79 306.71 253.88 106.92 126.71 101.09 60.11 65.69 55.47 45.24 38.23

Baseline DM * 7.84 20.54 117.81 121.51 55.28 68.64 52.08 28.44 23.25 16.23 11.50 8.20

% change discharge under RCP 4.5 (2020–2040)

Eta-HadGEM2-ES LS −72% −60% −82% −69% −43% −61% −71% −69% −55% −65% −61% −74%
Eta-HadGEM2-ES DM −91% −86% −91% −77% −50% −71% −83% −81% −77% −79% −77% −81%

% change discharge under RCP 8.5 (2020–2040)

Eta-HadGEM2-ES LS −45% 9% −81% −80% −70% −90% −94% −84% −42% 18% 419% −20%
Eta-HadGEM2-ES DM −41% 4% −83% −80% −62% −87% −92% −77% −63% −44% 256% 17%

Note: * Baseline period 1989–2009—discharge m3/s.
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Regarding Eta-HadGEM2-ES (LS and DM), the hydrological simulation projected a reduction
in the monthly streamflow between 40% and 80% for the years 2020–2040 on both scenarios when
compared with baseline, except for month July and August in RCP 8.5. These results are according
to Alvarenga et al. [48] for southeastern Brazil. The authors used the Distributed Hydrology Soil
Vegetation (DHSVM) hydrological model and the Eta-HadGEM2-ES climate model (RCP 8.5 scenario)
for 2011–2040, obtaining a reduction in monthly streamflow between 50% and 60%. The relative
decrease in discharge suggests that the available streamflow was not sufficient to meet the current
demand for water resources.

4. Conclusions

The calibrated/validated SWAT model was able to reproduce long-term monthly streamflow in
the Paraguaçu watershed. The goodness-of-fit indicators resulted in NSE values higher 0.84 monthly
streamflow, indicating an excellent result on the monthly scale. This study confirms previous studies
showing the importance of bias correction of RCM simulated precipitation time series. The bias
correction methods (linear scaling and distribution mapping) were able to correct bias from the
baseline models. However, the simulations of monthly mean streamflow with Eta-HadGEM2-ES
was underestimated by 42% in the baseline period, after bias correction by the distribution
mapping method.

The climate projections for 2020–2040 showed significant reductions of mean monthly streamflow,
under both RCP 4.5 and 8.5, negatively impacting the flow and showing the high vulnerability of
the region concerning water supply in the future. The Eta-HadGEM2-ES (LS) indicated more critical
results for both RCP than Eta-MIROC5 (LS), while the bias correction method distribution mapping
(DM) is distorted when applied to future scenarios.

The results of the study highlight the need for a good performance of the hydrological and
climate models for climate impact studies applications. Nevertheless, the choice of a bias correction
algorithm plays also a significant role when assessing climate model estimates and their applicability
to hydrological modelling.
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