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Robustness and uncertainties in the new CMIP5
climate model projections
Reto Knutti* and Jan Sedláček

Estimates of impacts from anthropogenic climate change rely
on projections from climate models. Uncertainties in those
have often been a limiting factor, in particular on local scales.
A new generation of more complex models running scenarios
for the upcoming Intergovernmental Panel on Climate Change
Fifth Assessment Report (IPCC AR5) is widely, and perhaps
naively, expected to provide more detailed and more certain
projections. Here we show that projected global temperature
change from the new models is remarkably similar to that
from those used in IPCC AR4 after accounting for the different
underlying scenarios. The spatial patterns of temperature and
precipitation change are also very consistent. Interestingly, the
local model spread has not changed much despite substantial
model development and a massive increase in computational
capacity. Part of this model spread is irreducible owing
to internal variability in the climate system, yet there is
also uncertainty from model differences that can potentially
be eliminated. We argue that defining progress in climate
modelling in terms of narrowing uncertainties is too limited.
Models improve, representing more processes in greater
detail. This implies greater confidence in their projections, but
convergence may remain slow. The uncertainties should not
stop decisions being made.

Coordinated experiments, in which many climate models
run a set of scenarios, have become the de facto standard
to produce climate projections1. Those multi-model ensembles
sample uncertainties in emission scenarios, model uncertainty
and initial condition uncertainty, and provide a basis to estimate
projection uncertainties2–6. The Coupled Model Intercomparison
Project Phase 5 (CMIP5; ref. 7), coordinated by the World Climate
Research Programme in support of the IPCCAR5, is themost recent
of these activities, and builds on CMIP3. The efforts for CMIP5
are enormous, with a larger number of more complex models
run at higher resolution, with more complete representations of
external forcings, more types of scenario and more diagnostics
stored. Here we perform a first comparison between projections
fromCMIP3 andCMIP5 and test whether the newmodels converge
in their projections.

The change in global mean temperature over the twentieth and
twenty-first century as simulated by the CMIP3 and CMIP5models
is shown in Fig. 1. The simulated twentieth-century warming is less
gradual in the CMIP5 model mean, because radiative forcings are
included more completely. In contrast, some CMIP3 models did
not include solar and volcanic forcings, and indirect aerosol effects.
Interannual variations are large in eachmodel but suppressed in the
model mean. The range of warming for the twenty-first century is
not straightforward to compare, because CMIP3 used the Special
Report on Emissions Scenarios (SRES) B1, A1B and A2 scenarios8,
whereas CMIP5 uses the new Representative Concentration
Pathways9 (RCPs). The overall range across the RCP scenarios is
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larger because for the first time a low-emission mitigation scenario
is included. That does not imply a larger uncertainty in climate
change, but is simply a choice of economic scenarios. The model
spread relative to the model mean change for a given scenario is
similar or in some cases slightly larger, implying that the models
have not converged in their projections. This is consistent with
the fact that the mean and range of both the climate sensitivity
and transient climate response of the CMIP5 models are similar to
CMIP3 (ref. 10), and consistent with the fact that climate sensitivity
has been notoriously difficult to constrain11,12 and projection
uncertainties have been similar over successive IPCC reports.

The lack of a common scenario makes a direct CMIP3–CMIP5
comparison difficult. The box plots in Fig. 1 provide the best
alternative by comparing the CMIP5 RCP mean and spread to that
predicted by the energy balance model MAGICC for the RCPs but
with model parameters calibrated to the older CMIP3 models13,14
(see Methods). We observe a higher warming in CMIP5 than
predicted by MAGICC, and larger spread for the lower scenarios,
but an interpretation of that seems premature given the lack of
low-emission scenarios in CMIP3 and the potential uncertainty
implied in using a simple model to emulate RCP2.6. Our results
are consistent with a recent probabilistic study for the SRES and
RCP scenarios15. It is important to note that model spread is not
necessarily a good estimate of uncertainty, because the distribution
of models in the CMIP ensemble of opportunity is rather arbitrary
and affected by interdependencies across models2–5,16,17. Other
methods to quantify uncertainties in global temperature on the
basis of observational constraints often yield larger uncertainties
than those in CMIP (ref. 18). With all those caveats, CMIP5
projections seem largely consistent with CMIP3. There is, despite
better process understanding, little evidence from CMIP5 that our
ability to constrain the large-scale climate feedbacks has improved
significantly. Differences in global temperature projections are
largely attributable to different scenarios15.

Model mean patterns of temperature and precipitation change
are shown in Figs 2 and 3, respectively, for two seasons and two time
periods. They also are remarkably similar in CMIP3 and CMIP5,
indicating that the large-scale features of climate change are robust
towards resolution and assumptions, to the extent that they are
sampled in today’s models. We argue that this robustness across
generations of models is positive, and its consistency with simpler
models, theoretical process understanding and observed changes
provides strong support for the argument that climate change
over the twenty-first century will probably exceed that observed
over the past century19, even for the RCP2.6 scenario in which
global greenhouse-gas emissions are reduced by about 90% in 2100
compared with the present.

To show model agreement locally we use stippling in the maps,
based on a new robustness measure R. This quantity is inspired
by the signal-to-variability ratio and the ranked probability skill
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Figure 1 | Global temperature change and uncertainty. Global temperature change (mean and one standard deviation as shading) relative to 1986–2005
for the SRES scenarios run by CMIP3 and the RCP scenarios run by CMIP5. The number of models is given in brackets. The box plots (mean, one standard
deviation, and minimum to maximum range) are given for 2080–2099 for CMIP5 (colours) and for the MAGICC model calibrated to 19 CMIP3 models
(black), both running the RCP scenarios.
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Figure 2 | Patterns of surface warming. Multi-model mean surface warming for two seasons (December–February, DJF, and June–August, JJA) and two
20-year time periods centred around 2025 and 2090, relative to 1986–2005, for CMIP5 (left) and CMIP3 (right). Stippling marks high robustness,
hatching marks no significant change and white areas mark inconsistent model responses (see Methods and Supplementary Figs S2 and S3).
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Figure 3 | Patterns of precipitation change. Multi-model mean relative precipitation change for two seasons (December–February, DJF, and June–August,
JJA) and two 20-year time periods centred around 2025 and 2090, relative to 1986–2005, for CMIP5 (left) and CMIP3 (right). Stippling marks high
robustness, hatching marks no significant change and white areas mark inconsistent model responses (see Methods and Supplementary Figs S2 and S3).

score used in weather prediction (seeMethods). In contrast to other
criteria19–21, it considers the magnitude of change, the sign, natural
variability and inter-model spread. The main conclusions are
similar if other methods are used to measure model agreement20,21.
Small and large dots indicate good and very good agreement
between models, respectively (see Methods). Hatching marks areas
where at least 80% of the models show no significant change,
information that is often not highlighted yet clearly relevant for
impacts and adaptations. A significant warming with high model
agreement is evident already for a projection centred around
2025. Regions where most models show significant changes but
do not agree well (robustness R< 0.5) are masked as white. Even
for precipitation, the extent of those is limited, as pointed out
recently20,22. The area of the Earth where the robustness R exceeds
0.8 (fine stippling) for precipitation change is depicted in Fig. 4a
(black lines). The area fraction with robust projections is increasing
with global temperature as the precipitation signal emerges, but
levels off at about 3 ◦C, where the signal further strengthens, but
model differences also become pronounced. There are also large

areas with no significant precipitation change (that is, 50% of the
globe in boreal winter for 2 ◦Cwarming)20,23.

Whereas the similarity of the projected precipitation change in
CMIP3 and CMIP5 is reassuring, the similarity of the measure
of robustness is more troublesome. The stippled area in CMIP3
and CMIP5 is nearly identical, implying little increase in model
agreement in CMIP5 for precipitation changes. The corresponding
results for RCP4.5 and SRES B1 are similar. Robustness over land
is slightly higher but also similar in CMIP3 and CMIP5 (Fig. 4c).
There are several hypotheses that potentially explain the lack of
convergence and associated reduction of uncertainty. There could
be (1) inherent limitations in the way models are built given
limited computational resources and spatial resolution, (2) lack of
process understanding, (3) lack of accurate long term observations
to constrainmodels, (4) lack of consensus onmetrics of present-day
model performance that clearly separate better from worse models
in terms of projection quality, (5) inherent limitation of climate
change not being predictable owing to internal variability, (6)
addition of dissimilar models from institutions new in CMIP5
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Figure 4 | Model robustness for precipitation. a, Fraction of the Earth
surface with high robustness (black, R> 0.8), no significant change (blue)
and inconsistent model responses (red) illustrated for December–February
precipitation change for CMIP3 and CMIP5. Fractions are shown as a
function of global temperature change rather than time, which largely
eliminates the differences in scenarios. Maximum achievable robustness is
calculated for CSIRO and CanESM2 initial condition ensembles (see the
main text and Methods). b, The same as for a but for a subset of 11 models
from 11 institutions participating in both CMIP3 and CMIP5 (see
Supplementary Table S1). c, The same as for b but for land alone. Results for
June–August look very similar.

and (7) addition of new processes, components, or forcings in
CMIP5 that are not well understood, not well represented in the
model, or not well constrained by observations. To pin down
the contributions of each of these is difficult at this stage. We
test hypothesis (6) by analysing a subset of 11 models from 11
institutions who participated in both CMIPs. Although CMIP5 has
slightly higher robustness for all models (Fig. 4a), that becomes
negligible for the subset (Fig. 4b). We find that new institutions

contributing to CMIP5 are not to blame for the lack of convergence,
and that nearly identical models from some institutions in CMIP5
are artificially (and unjustifiably) increasing the robustness. In our
view the lack of consensus on relevant model performance metrics
(4) is important, and not surprising given that models have to
be evaluated not on their future projection but the present and
past simulation2,3,5,17. The extra model complexity in CMIP5 (7)
is likely to be an important factor. In contrast to end users, who
would define model quality on the basis of prediction accuracy,
climatemodel developers often judge theirmodels to be better if the
processes are represented in more detail. Thus, the new models are
likely to be better in the sense of being physically more plausible,
but it is difficult to quantify the impact of that on projection
accuracy, in contrast to weather prediction where forecast skill is
readily estimated through verification. To quantify the contribution
of internal variability (5), we recalculated the same robustness mea-
sure for precipitation in Fig. 4 separately for two initial condition
ensembles (the Commonwealth Scientific and Industrial Research
Organisation (CSIRO) with 10 members; the Second Generation
Canadian Earth SystemModel (CanESM2)with 5members). Those
demonstrate the inherent limits tomaximum achievable robustness
ifmodel uncertaintywas eliminated. For a 1 ◦Cwarming, only about
half of the Earth surface could be stippled even if model uncertainty
was eliminated entirely. Still, the area with high robustness (R>0.8)
is only about 60–80% of what it could potentially be if models
converged, so significant progress is possible in principle. The com-
parison of robustness from initial condition runs and CMIP5 shows
that potential improvements in precipitation projections are largest
in the tropics (Central America and Africa, Middle East, Southeast
Asia andAustralia; see Supplementary Fig. S1). For temperature, the
potentially achievable R is always close to one, and the regions with
the greatest potential improvement are the North Atlantic, the areas
with or close to sea ice, the SouthernOcean and Southeast Asia.

The area where changes do not emerge from variability locally
(hatching) and with inconsistent model responses (white) for
precipitation is also shown in Fig. 4. The former is larger in CMIP5
owing to a slightly increased magnitude of internal variability in
CMIP5; the latter is very small (a few per cent). Temperature
changes emerge from variability much more quickly and with high
robustness, consistent with earlier studies6,23,24.

From the lack of reduction in model spread one might conclude
that the models have not changed, but we believe this argument
is not justified. It is clear that large efforts were made to include
more complex and comprehensive representations of the processes
in many models, and to build different model versions (for
example, for decadal prediction, or including chemistry, or a
carbon cycle). We estimate that, contrary to popular belief, a
larger fraction of the increase in computational capacity is used to
build more complete models rather than simply increasing spatial
resolution (see Methods).

How should we interpret the lack of model convergence? Can
we be more confident in a projection even if the uncertainty is
unchanged? We believe this can be the case if more model data,
observations and process understanding are available. It is common
that more research uncovers a picture that is more complicated;
thus, uncertainty can growwith time. Climatemodels in CMIP5 are
better in the sense that they representmore of the relevant processes
inmore detail. Even though themodel spread inCMIP3 andCMIP5
projections is similar, model developers have incorporated some of
the unknown unknowns, that is bold assumptions or previously
ignored factors, into the projection, so we are more confident
that the models capture most of the relevant processes. Recent
strategic documents suggested that a massive international effort
into model development and high-performance computing could
strongly increase the value of climate predictions for impacts25.
Judging the potential success of such a project is speculative, and
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it may simply take a long time to succeed. However, if the past
is a guide to the future then uncertainties in climate change are
unlikely to decrease quickly, and may even grow temporarily. We
have illustrated this for seasonal temperature and precipitation,
and it is likely that impact-relevant predictions, for example of
extreme weather events, may be even harder to improve. Progress
in climate modelling is essential and will continue when efforts
are maintained. It must not be measured only in how quickly
model spread in projections decreases, but should also consider
how adequate models are for specific purposes. Some uncertainties
will remain, but these should not prevent those working on climate
impacts,mitigation and adaptation frommaking decisions26.

Methods
The comparison between CMIP3 and CMIP5 in Fig. 1 is based on the actual
CMIP5 RCP data and the simple climate model MAGICC calibrated to 19 CMIP3
models13,14 and then run for the RCP scenarios. Those projections were made
before CMIP5 data were available. For global temperature, MAGICC provides a
sufficiently accurate prediction of what CMIP3 would have given for the RCPs if
they had run them. Although the calibration has some uncertainty for individual
models, it is very small for the model mean. Differences can however arise from
the fact that CMIP3 forcings were not fully documented. In addition, MAGICC
assumes a zero mean volcanic forcing in the past and future, whereas many
GCMs assume volcanic forcing can only be negative. The difference between these
assumptions could explain up to 0.2 ◦CbetweenMAGICC andCMIP5.

The robustness R used here is inspired by the ranked probability skill score27
used in weather prediction, and by the ratio of model spread to the predicted
change (noise to signal). It is defined as R= 1−A1/A2, where A1 is defined
as the integral of the squared area between two cumulative density functions
characterizing the individual model projections and the multi-model mean
projection and A2 is the integral of the squared area between two cumulative
density functions characterizing the multi-model projection and the historical
climate (see Supplementary Fig. S2). A value of R equal to one implies perfect model
agreement. Higher model spread or smaller signal decreases the value of R. It can
therefore be interpreted as a measure of relative agreement. However, importantly,
it considers the width of the initial distributions (such that the same projection has
a lower R value if the variability is small). In contrast to other methods19,20, it also
penalizes the case when models agree on the sign but disagree on the magnitude. A
high value for R is possible even if the models do not change in their mean but agree
on a change in shape of the distribution of variability.

For the maps, colour contours show the multi-model average. Each model is
given the same weight, and the first available initial condition ensemble member
is used for each model (see Supplementary Table S1). Light stippling marks
R> 0.8 (good agreement); strong stippling marks R> 0.95 (very good agreement).
Hatching marks areas where at least 80% of models indicate no significant change.
White indicates areas where at least half of the models show significant changes
but R< 0.5, that is significant changes but little agreement among models (see
Supplementary Fig. S3 for illustration). The maps therefore convey high model
agreement (stippling) and no significant change (hatching) separately. Note
that the thresholds chosen for R and the fraction of models without significant
change are subjective and for illustration alone, and may need to be different for
different impact applications. Higher threshold implies higher confidence for a
certain response, or the lack thereof. The main conclusions are similar for other
thresholds for the robustness R.

The capacity of the fastest computers has increased annually by about a factor
of 1.8, implying about a factor of 60 in computational capacity between CMIP3
and CMIP5, or a bit less if the fraction of computing for research has decreased.
On average, the total number of grid cells in the atmosphere has approximately
doubled from CMIP3 to CMIP5. Ocean resolution has also improved in some
models. About a factor of 2–4 in computing could therefore have gone into model
resolution. The number of simulated years has probably also increased by a factor
of 2–3 owing to more scenarios in CMIP5. This leaves a factor of roughly 3–10 of
computing that has gone into model complexity and the development of different
model versions, that is at least asmuch as went into higher resolution.
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